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Abstract

Empowerment and causal reasoning are crucial abilities for intelligence. In rein-
forcement learning (RL), empowerment enhances agents’ ability to actively control
their environments by maximizing the mutual information between future states
and actions. In model-based RL (MBRL), incorporating causal structures into
dynamics models provides agents with a structured understanding of the envi-
ronment to better control outcomes. We posit that learning causal world models
can enhance agents’ empowerment and, conversely, improved empowerment can
facilitate causal reasoning. From this viewpoint, our goal is to enhance agents’
empowerment, aiming to improve controllability and learning efficiency, and their
ability to learn causal world models. We propose a framework, Empowerment
through Causal Learning (ECL), where an agent with the awareness of causal
models achieves empowerment-driven exploration and utilize its structured causal
perception and control for task learning. Specifically, we first train a causal dy-
namics model of the environment based on collected data. We then maximize
empowerment under the causal structure for policy learning, simultaneously updat-
ing the causal model to be more controllable than dynamics model without causal
structure. An intrinsic curiosity reward is also included to prevent overfitting in
offline model learning. Importantly, our framework is method-agnostic, capable
of integrating various causal discovery and policy learning techniques. We evalu-
ate ECL combined with 2 different causal discovery methods in 3 environments,
demonstrating its superior performance compared to other causal MBRL methods,
in terms of causal discovery, sample efficiency, and episodic rewards.

1 Introduction

Model-based reinforcement learning (MBRL) uses predictive models to enhance decision-making
and planning [1]. Recent advances in integrating causal structures into MBRL have provided a more
accurate description of systems, aiding adaptation and improving generalization amid environmental
changes [2–7], spurious correlations [8–10], and systematic or compositional generalization chal-
lenges [11–15]. These studies show that agents with causal world models achieve robustness and
adaptability across diverse scenarios. However, these methods often rely on passively using the
learned or given causal structures to improve RL generalization.

Exploring how agents can actively leverage causal structure to better control the environment, aiming
to improve controllability and learning efficiency, presents a compelling challenge. To measure the
controllability and efficiency, we can employ empowerment gain as the intrinsic motivation for the
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Figure 1: (a). Example of robot manipulation task with three trajectories and three nodes: one
target node (movable) and two noisy nodes (one movable, one unmovable). (b). Underlying causal
structures of the example.

agents. Empowerment is an information-theoretic framework where agents strive to maximize the
mutual information between their actions and future states, conditioned on the initial state [16–20].

In this paper, we explore how to actively leverage causal structures to enhance empowerment, thereby
improving learning efficiency and whether this, in turn, can improve the learning of the causal
structure in RL environments. Conceptually, learning an accurate causal model for environments
and improving empowerment are interdependent processes that reinforce each other. Causal models
enable agents not only to predict but also to influence future states more effectively by utilizing
variables that directly cause important state changes or reward maximization. Consequently, agents
with causal world models are better positioned to manipulate state outcomes, resulting in a higher
degree of control and efficiency in their actions. At the same time, by improving controllability,
agents gain a better understanding of the consequences of their actions, thereby implicitly learning
the causal model of their environment.

The given example (Fig.1(a)) discusses robot manipulation, where the goal is to move the target node
(movable) while avoiding noisy nodes (some movable and some not). Three possible trajectories
(rows 1-3) are shown with different levels of control, efficiency, and success in finding the target.
Row 1 represents the least effective trajectory, while rows 2 and 3 indicate that the agent has learned
control and efficiency (high empowerment, as these behaviors tend to movable objects). However,
row 2 fails to find the target, whereas row 3 successfully identifies it. Assuming the agent has the
causal structure between states and actions (Fig.1(b)), it will likely execute actions similar to rows
2-3 since there are causal relationships between actions and movable objects, effectively optimizing
empowerment. If the agent also knows the causal relationship between states and rewards, it would
further prioritize actions leading to the target object. Conversely, when optimizing empowerment,
the agent implicitly learns that action sequences like rows 2 and 3 have a greater impact, facilitating
efficient control and implicitly learning the causal state-action relationship.

From this viewpoint, we introduce an Empowerment through Causal Learning (ECL) framework
that actively leverages causal structure to maximize empowerment, improving controllability and
learning efficiency. The ECL framework consists of three main steps: offline model learning, online
model learning, and policy learning. In offline model learning (step 1), we learn the causal dynamics
model with causal mask and reward encoder. With the learned causal structure, we then integrate
empowerment-driven exploration in online model learning (step 2), to better control the environment,
by alternating the updates of the causal structure and policy of empowerment maximization. Finally,
the learned causal structure is used to learn policies for down-streaming task with a curiosity reward
to maintain robustness and prevent overfitting in model learning (step 3). Importantly, our framework
is method-agnostic, able to integrate diverse causal discovery and policy learning techniques.

ECL not only refines policy learning but also ensures that the causal model remains adaptable and
accurate, even in the face of novel or shifting environmental conditions. We evaluate ECL with two
causal discovery techniques (conditional independence testing and regularization-based) across 3
environments, considering in-distribution and out-of-distribution settings. ECL outperforms other
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causal MBRL methods, showing remarkable performance with more accurate causal discovery, higher
sample efficiency, and improved episodic rewards.

2 Preliminaries
2.1 MDP with Causal Structures
Markov Decision Process In RL, the interaction between the agent and the environment is formal-
ized as an MDP. The standard MDP is defined by the tupleM = ⟨S,A, T, µ0, r, γ⟩, where S denotes
the state space, A represents the action space, T (s′|s, a) is the transition dynamic model, r(s, a) is
the reward function, and µ0 is the distribution of the initial state s0. The discount factor γ ∈ [0, 1)
is also included. The objective of RL is to learn a policy π : S × A → [0, 1] that maximizes the
expected discounted cumulative reward ηM(π) := Es0∼µ0,st∼T,at∼π [

∑∞
t=0 γ

tr(st, at)].

Structural Causal Model A structural causal model (SCM) [21] is defined by a distribution
over random variables V = {s1t , · · · , sdt , a1t , · · · , ant , s1t+1, · · · , sdt+1} and a Directed Acyclic Graph
(DAG) G = (V, E) with a conditional distribution P (vi|PA(vi)) for node vi ∈ V . Then the
distribution can be specified as:

p(v1, . . . , v|V|) =

|V|∏
i=1

p(vi|PA(vi)), (1)

where PA(vi) is the set of parents of the node vi in the graph G.

Causal Structures in MDP We use a dynamic Bayesian network (DBN)[22] (Fig.1b) denoted by
G, to model the MDP and the underlying causal structures between states, actions, and rewards. In the
DBN, nodes represent system variables (different dimensions of the state, action, and rewards), while
edges denote their relationships within the MDP. This model aligns with the factored MDPs [23, 24],
and we employ causal discovery methodologies to learn the structures of G. We have the Markov
conditions and faithfulness assumptions and the assumptions on edges in MDP (A1-A4):

Assumption 1 (Global Markov Condition [25, 21]) The state is fully observable and the dynamics is
Markovian. The distribution p over a set of variables V = (s1t , · · · , sdt , a1t , · · · , adt , rt)T satisfies the
global Markov condition on the graph if for any partition (S,A,R) in V such that if A d-separates
S fromR, then p(S,R|A) = p(S|A) · p(R|A)

Assumption 2 (Faithfulness Assumption [25, 21]) For a set of variables V =
(s1t , · · · , sdt , a1t , · · · , adt , rt)T , there are no independencies between variables that are not
implied by the Markovian Condition.

Assumption 3 Under the assumptions that the causal graph is Markov and faithful to the observa-
tions, the edge sit → stt+1 exists for all state variables si.

Assumption 4 No simultaneous or backward edges in time.

Theorem 1 Assuming A1-A4, we define the conditioning set {at, st \ sit} =

{at, s1t , . . . si−1
t , si+1

t , . . . }. If sit ⊥̸⊥ sjt+1|{at, st \ sit}, then sit → sjt+1. Similarly, if
ait ⊥̸⊥ s

j
t+1|{at \ ait, st}, then ait → sjt+1.

With Assumptions 1-4 and Theorem 1, we can identify the graph structures in G, which can be
represented as the adjacency matrix M . Hence, the dynamic transitions and reward functions in MDP
with structures are as follows:{

sit+1 = f (Ms→s ⊙ st,Ma→s ⊙ at, ϵs,i,t)
rt = R(ψ(st), at)

(2)

where sit+1 represents the next state, Ms→s ∈ {0, 1}|s|×|s| and Ma→s ∈ {0, 1}|a|×|s| are the
adjacency matrices indicating the influence of current states and actions on the next state, respectively,
⊙ denotes the element-wise product, and ϵs,i,t represents i.i.d. Gaussian noise. The reward rt is a
function of the current state ψ(st), which filters out the state without direct edges to the target, and
the action at.
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2.2 Empowerment in RL
Empowerment is to quantify the influence an agent has over its environment and the extent to which
this influence can be perceived by the agent [17, 26, 27]. Within our framework, the empowerment is
the channel capacity between the agent actions at and its subsequent state st+1 given the causal mask
M as follows:

E := max
p(at)
I(st+1; at |M), (3)

where E is used to represent the channel capacity from the action to state observation. p(at) is the
distribution of actions.

3 Empowerment through Causal Learning
3.1 Overview

Step 1: Offline Model Learning

Reward 
Encoder

{ ̂rt+1, …, ̂rt+1+k}{ ̂st+1, …, ̂st+1+k}

{st, at, rt, …, st+k, at+k, rt+k}

Causal Dynamics 

Encoder

Step 2 & 3: Online Model and Policy Learning

Policy Learning with 
Curiosity Reward Bonus 

 rt = rtask + λrcur

πe(a |s) π(a |s)

Empowerment-driven Exploration

max
a∼πe(a|s)

𝔼 [ℰϕc
(s ∣ M) − ℰϕ(s)]

{st, at, rt, …, st+k, at+k, rt+k}

{ ̂rt+1, …, ̂rt+1+k}{ ̂st+1, …, ̂st+1+k}

Reward Encoder

Causal Dynamics Encoder

Model Learning

{st, at, rt, …, st+k, at+k, rt+k}

Figure 2: Framework of ECL. Gold lines: offline model learning. Blue lines: online model learning
alternating with empowerment-driven exploration (yellow lines). Green lines: policy learning.

This framework (Fig. 2) consists of three main steps: offline model learning, online model learn-
ing, and policy learning. In offline model learning (step 1), we learn the causal structures of the
environment dynamics, capturing the causal dynamics and reward structures. This causal model is
trained using offline collected data to identify the causal structures (i.e., causal masks), dynamics and
reward models by maximizing the likelihood of observed trajectories. With the learned structured
causal model in place, we then integrate empowerment-driven exploration in online model learning
(step 2), to learn policies that enhance the agent’s ability to control and influence its environment
effectively. By alternating the updates of the causal structure and policy to achieve empowerment
maximization, the overall optimization objective is to learn the policy that maximizes empowerment
with the causal structure. Finally, in step 3, the learned causal structure is used as a model to learn
policies for down-streaming task policy. In addition to the task reward, to maintain robustness and
prevent overfitting in model learning, the curiosity reward is also incorporated.

3.2 Step 1: Offline Model Learning with Causal Structures
We learn the causal and model structures from the offline dataset D. Specifically, we employ a causal
dynamic encoder and a reward encoder to maximize the likelihood of observed trajectories.

Causal Dynamics Encoder The causal dynamics encoder consists of two parts: the dynamics
encoder Pϕc

and causal mask M . The dynamics encoder Pϕc
maximizes the likelihood of observed

states:

Ldyn = E(st,at,st+1)∼D

[
dS∑
i=1

logPϕc
(sit+1|st, at;ϕc)

]
, (4)

where dS is the dimension of the state space, and ϕc denotes the parameters of the dynamics encoder.

Causal Discovery For causal discovery, with the learned dynamics model Pϕc , we further embed
the causal structure into the objective function. To learn the causal structure, we employ two off-the-
shelf causal discovery methods: conditional independence testing in [2] and regularization by sparse
filters [3]. We also maximize the likelihood of states by updating the dynamics encoder and masks.
Thus, the total objective for the causal dynamics encoder is:
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Lc−dyn = E(st,at,st+1)∼D

[
dS∑
i=1

logPϕc
(sit+1|Ms→sj ⊙ st,Ma→sj ⊙ at;ϕc) + Lcausal

]
, (5)

where Lcausal represents the objective term associated with learning the causal structure2.

Reward Encoder Similarly, the reward encoder Pφr
aims to maximize the likelihood of the

rewards:
Lrew = E(st,at,rt∼D) [logPφr

(rt|ψ(st), at)] , (6)

where ψ(·) is the operation to filter out the irrelevant states with causal dynamics model. Hence,
the overall objective of the offline model learning with causal structures is to maximize L =
Ldyn + Lc−dyn + Lrew.

3.3 Step 2: Online Model Learning with Empowerment-driven Exploration
In Step 2, we aim to simultaneously optimize the learning of the causal structure and empowerment.
Specifically, as illustrated in Fig. 2, we alternately optimize the empowerment-driven exploration
policy πe, the causal mask M , and the reward encoder φr. To ensure stable learning, we keep the
dynamic encoder ϕc learned in Step 1 fixed, focusing solely on the alternating optimization of the
causal structure and empowerment.

Empowerment-driven Exploration To enhance the agent’s control and efficiency given the causal
structure, instead of maximizing I (st+1, at|st) at every environment step, we consider a baseline
that uses a dense dynamics model ϕ without causal structures. We then optimize the difference
between the empowerment gain of the causal dynamics model and the baseline dense dynamics
model.

We first denote the empowerment gain of the causal dynamic model and dynamic model as
Eϕc(s) = maxa I (st+1; at | st;ϕc,M) and Eϕ(s) = maxa I (st+1; at | st;ϕ), respectively. Here,
ϕ corresponds to the dynamic model without considering causal structures. For this purpose, we
separately train a well-tuned ϕ on offline data to serve as a baseline for optimization.

Then, we have the following objective function:

max
a∼πe(a|s)

Est,at,st+1∼D [Eϕc
(s)− Eϕ(s)] . (7)

In practice, we employ the estimated Êϕc(s) and Êϕ(s), specifically

Êϕc(s) = max
at∼πe(a|s)

Eπe(at|st)pϕc (st+1|st,at) [logPϕc(st+1 | st, at;M,ϕc)− logP (st+1|s)] , (8)

and

Êϕ(s) = max
at∼πe(a|s)

Eπe(at|st)pϕ(st+1|st,at) [logPϕ(st+1 | st, at;ϕ)− logP (st+1|s)] , (9)

where P (st+1|s) is the marginal distribution of the future state st+1. Hence, the objective function
Eq. 7 is derived as:

max
a∼πe(a|s)

H(sϕc

t+1 | st)−H(s
ϕ
t+1 | st)+Ea∼πe(a|s) [KL (Pϕc

(st+1 | st, at;M)∥Pϕ(st+1 | st, at))] ,

(10)
where sϕc

t+1 and sϕt+1 denote the state at time t+ 1 under the causal dynamics and dynamics model,
respectively. Since ComputingH(sϕc

t+1 | st)−H(s
ϕ
t+1 | st) requires integrating over actions. So for

simplicity, we update πe by only optimizing the KL term.

Online Model Learning In Step 2, we fix the dynamics encoder ϕc and further fine-tune the causal
mask M and the reward encoder φr. We adopt an alternating optimization with the policy πe to learn
the model. Specifically, given M , we first optimize πe. Then, using the actions from πe, we collect
new trajectories online to update M and φr.

2Detailed loss functions are given in Appendix D.2
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3.4 Step 3: Policy Learning with Curiosity Reward
We learn the downstream policy for the task given the causal structures. To mitigate the potential
overfitting of the causal model learned in Steps 1&2, we use a curiosity reward (CUR) to serve as
an intrinsic motivation objective or exploration bonus, in conjunction with a task-specific reward, to
prevent overfitting in model learning.

rcur = E(st,at,st+1∼D) [KL (Ptrue||Pϕc)−KL (Ptrue||Pϕ)] , (11)

where Ptrue is the ground truth dynamics of the system. By taking account of rcur, we encourage
the agent to explore states that the causal dynamics cannot capture but the dense dynamics can, thus
preventing the policy from being overly conservative due to offline model learning. Hence The shaped
reward is shown as follows:

r(s, a) = rtask(s, a) + λrcur(s, a), (12)

where rtask(s, a) is the task reward, λ is a balancing hyperparameter.

4 Practical Implementation
We introduce the practical implementation of ECL for casual dynamics learning with empowerment-
driven exploration and task learning. The proposed framework for the entire learning process is
illustrated in Figure 2, comprising three steps that step 2 and 3 are executed cyclically over time.

Step 1: Offline Model Learning Initially, following [2], we establish a transition collection
policy πcollect by formulating a reward function that incentivizes selecting transitions that cover more
state action pairs to expose causal relationships thoroughly. We train the dynamics model ϕc by
maximizing the log-likelihood Ldyn, following Eq. 4. Then, we employ causal discovery approach
for learning causal mask by maximizing the log-likelihood Lc−dyn followed Eq. 5. Subsequently, we
train the reward predictor φr by maximizing the likelihood in accordance with Eq. 6.

Step 2: Online Model Learning We execute empowerment-driven exploration by maximizing
I(st+1; at|M) − I(st+1; at) followed Eq. 7 with causal dynamics model and dynamics model
without causal mask for policy πe learning. Furthermore, the learned policy πe is used to sample
transition for casual mask M fine-tuning with fixed ϕ. We alternately perform empowerment-driven
exploration for policy learning and causal model learning for causal structure optimization.

Step 3: Policy Learning During downstream task learning, we incorporate the causal effects of
different actions as curiosity rewards combined with the task reward, following Eq. 12. The causality
introduced by CUR in task learning maintains essential exploration, thereby facilitating the learning of
an optimal policy to maintain robustness and prevent overfitting in model learning. We maximize the
discounted cumulative reward ηM̂(πθ) to learn the policy by the cross entropy entropy (CEM) [28].

5 Experiments
We aim to answer the following questions in the evaluation: (i) How does the performance of
ECL compared to other causal and dense causal models across different environments for tasks
and dynamics learning? (ii) Whether different causal discovery methods in step 1 and 2, impact
policy performance? (iii) Does ECL improve the causal discovery and learning efficiency with the
empowerment gain? (iv) What are the effects of the hyperparameters in ECL?
5.1 Setup
Environments. We select 3 different environments for experimental evaluation. Chemical [29]:
The task is to discover the causal relationship (Chain, Collider & Full) of chemical items which proves
the learned dynamics and explains the behavior without spurious correlations. Manipulation [2]:
The task is to prove the learned dynamics and policy for difficult settings with spurious correlations
and multi-dimension action causal influence. Physical [29]: We also evaluate our method in the
dense mode environment Physical. For the details of environment setup, please refer to Appendix D.2.

Baselines. We compare ECL with 3 causal and 2 dense dynamics methods. CDL [2]: infers causal
relationships between the variables for dynamics learning with Conditional Independence Test (CIT).
ASR [3]: causal structure learning based on regularization, where the causal mask is learned as
trainable parameters. GRADER [8]: generalizing goal-conditioned RL with CIT by variational
causal reasoning. GNN [29]: a graph neural network with dense dependence for each state variable.
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Figure 3: The task learning of episodic reward in three environments.
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Figure 4: The learning curves of episodic reward in three different environments and the shadow is
the standard error.

Monolithic [2]: a multi-layer perceptron (MLP) network that takes all state variables and actions for
prediction. For ECL, we employ both the conditional independence testing (same setup in CDL [2])
and sparse regularization (same setup in ASR [3]) as the causal discovery modules.

Evaluation Metric. In tasks learning, we utilize episodic reward and the task success as evaluation
criteria for downstream tasks. For causal dynamics learning, we employ five metrics to evaluate the
learned causal graph and assess the mean accuracy for dynamics predictions of future states both
In-Distribution (ID) and Out-Of-Distribution (OOD).
5.2 Results
5.2.1 Task Learning

We evaluate each method with the following downstream tasks in the chemical (C), physical (P) and
the manipulation (M) environments. Match (C): match the object colors with goal colors individually.
Push (P): use the heavier object to push the lighter object to goal position. Reach (M): move the
end-effector to the goal position. Pick (M): pick the movable object to the goal position. Stack (M):
stack the movable object on the top of the unmovable object.

As shown in Fig. 3, compared to dense models GNN and MLP, as well as the causal approaches CDL
and REG, ECL-CIT attains the highest reward across 3 environments. Notably, ECL-CIT outperforms
other methods in the intricate manipulation tasks. Furthermore, ECL-ASR surpasses REG, elevating
model performance and achieving a reward comparable to CDL. The proposed curiosity reward
encourages exploration and avoids local optimality during the policy learning process. Additionally,
Figure 4 depicts the learning curves across three environments. Across these diverse settings, ECL
exhibits elevated sample efficiency compared to CDL and higher reward attainment.
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Figure 5: Task success in the collider and manipu-
lation environments.

Sample Efficiency Analysis. After validating
the effectiveness of ECL in reward learning, we
further substantiate the improvements in sam-
ple efficiency of ECL during task learning. As
depicted in Figure 5, we illustrate task success
in both collider and manipulation reach tasks.
The compared experimental results underscore
the efficiency of ECL, demonstrating enhanced
sample efficiency across different environments.
5.2.2 Causal Dynamics learning
Causal Graph Learning. To evaluate the efficacy of ECL for learning causal relationships, we
first conduct experimental analyses across three chemical environments, employing five evaluation
metrics. We conduct causal learning based on the causal discovery with CIT and ASR respectively.
The comparative results using the same causal discovery methods are presented in Table 1, with
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Table 1: Compared results of causal graph learning on three chemical environments.
Metrics Methods Chain Collider Full

Accuracy ECL/CDL 1.00±0.00/1.00±0.00 1.00±0.00/1.00±0.00 1.00±0.00/0.99±0.00
ECL/REG 0.99±0.00/0.99±0.00 0.99±0.00/0.99±0.00 0.99±0.01/0.98±0.00

Recall ECL/CDL 1.00±0.00/0.99±0.01 1.00±0.00/1.00±0.00 0.97±0.01/0.92±0.02
ECL/REG 1.00±0.00/0.94±0.01 0.99±0.01/0.89±0.09 0.90±0.02/0.79±0.01

Precision ECL/CDL 1.00±0.00/1.00±0.00 1.00±0.00/1.00±0.00 0.96±0.02/ 0.97±0.02
ECL/REG 0.99±0.01/0.99±0.01 0.99±0.01/0.99±0.01 0.97±0.03/0.92±0.05

F1 Score ECL/CDL 1.00±0.00/0.99±0.01 1.00±0.00/1.00±0.00 0.97±0.01/0.94±0.01
ECL/REG 0.99±0.00/0.96±0.01 0.99±0.00/0.94±0.05 0.93±0.02/0.85±0.02

ROC AUC ECL/CDL 1.00±0.00/0.99±0.01 1.00±0.00/1.00±0.00 0.98±0.01/0.96±0.01
ECL/REG 0.99±0.01/0.99±0.01 0.99±0.01/0.93±0.04 0.95±0.01/0.95±0.01

True causal graph ECL-ASR REG GRADER

Figure 6: The compared causal gragh in the chemical collider environment.

each cell containing the comparative results for that method across different scenarios. These results
demonstrate the superior performance of our approach in causal inference, exhibiting both efficiency
and robustness as evinced by the evaluation metrics of F1 score and ROC AUC. All results exceed 0.90.
Notably, our approach exhibits exceptional learning capabilities in chain and collider environments.

Visualization. Moreover, we visually compare the inferred causal graph with the ground truth graph
in terms of edge accuracy. The results depicted in Figure 6 illustrate the causal graphs of ECL-ASR
compared to REG and GRADER in the collider environment. For nodes exhibiting strong causality,
ECL-ASR achieves fully accurate learning and substantial accuracy enhancements compared to
REG. Concurrently, ECL-ASR elucidates the causality between action and state more effectively.
Furthermore, ECL-ASR mitigates interference from irrelevant causal nodes more proficiently than
GRADER. These findings substantiate that ECL attains superior performance compared to other
causal discovery methods in causal learning. For full experimental results, please refer to Appendix D.
6 Related Work
Empowerment is an intrinsic motivation to improve the controllability over the environment [17, 26].
This concept is from the information-theoretic framework, wherein actions and future states are
viewed as channels for information transmission. In RL, empowerment is applied to uncover more
controllable associations between states and actions or skills [30, 19, 31, 20]. By quantifying the
influence of different behaviors or skills on state transitions, empowerment encourages the agent to
explore further to enhance its controllability over the system [16, 32]. Maximizing empowerment
maxπ I can be used as the learning objective functions, empowering agents to demonstrate intelligent
behavior without requiring predefined external goals and model reconstruction.

7 Conclusion
This study propose an method-agnostic framework of empowerment through causal structure learning
in MBRL to improve controllability and learning efficiency within environments. We maximize
empowerment under causal structure to prioritize controllable information and optimize causal world
models to guide downstream task learning. Further, we propose an intrinsic-motivated curiosity
reward during task learning to prevent overfitting. Extensive experiments across 3 environments
substantiate the remarkable performance. For our future work, we will concentrate on extending this
framework to disentangle directable behaviors.
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A Broader Impact

Our work explores leveraging causal structure to enhance empowerment for efficient policy learning,
enabling better control of the environment in model-based reinforcement learning (MBRL). We
propose a framework that can effectively combine diverse causal discovery methods. This holistic
approach not only refines policy learning but also ensures that the causal model remains adaptable
and accurate, even when faced with novel or shifting environmental conditions. ECL demonstrates
improved learning efficiency and generalization compared to other causal MBRL methods across
three different RL environments. Simultaneously, ECL achieves more accurate causal relationship
discovery, overcoming spurious associations present in the environment.

While ECL demonstrated strengths in accurate causal discovery and overcoming spurious associations,
disentangling controllable behavioral dimensions remains a limitation. Our implicit empowerment
approach enhances the policy’s control over the environment, but does not explicitly tease apart
different behavioral axes. Explicitly disentangling controllable behavioral dimensions could be an
important future work to further improve behavioral control and empowerment. Additionally, our
current approach involves substantial data collection and model optimization efforts, which can
hinder training efficiency. Moving forward, we aim to further streamline our framework to enable
more efficient policy training and causal structure learning. Enhancing computational performance
while maintaining accuracy will be a key focus area for future iterations of this work.

B Additional Related Works

B.1 Model-based Reinforcement Learning

MBRL involves training a dynamics model by maximizing the likelihood of collected transitions,
known as the world model, as well as learning a reward model [1, 33]. Based on learned models,
MBRL can execute downstream task planning [34, 35], data augmentation [14, 36, 37], and Q-
value estimation [38, 39]. MBRL can easily leverage prior knowledge of dynamics, making it more
effective at enhancing policy stability and generalization. However, when faced with high-dimensional
state spaces and confounders in complex environments, the dense models learned by MBRL suffer
from spurious correlations and poor generalization [2, 19]. To tackle these issues, causal inference
approaches are applied to MBRL for state abstraction, removing unrelated components [40, 8, 41].

B.2 Causality in MBRL

Due to the exclusion of irrelevant factors from the environment through causality, the application
of causal inference in MBRL can effectively improve sample efficiency and generalization [29, 11].
Wang [42] proposes a regularization-based causal dynamics learning method that explicitly learns
causal dependencies by regularizing the number of variables used when predicting each state variable.
GRADER [8] execute variational inference by regarding the causal graph as a latent variable. CDL [2]
is a causal dynamics learning method based on conditional independence testing. CDL employs
conditional mutual information to compute the causal relationships between different dimensions of
states and actions, thereby explicitly removing unrelated components. However, it is challenging to
strike a balance between explicit causal discovery and prediction performance, and the learned policy
has lower controllability over the system.

C Theoretical Analyses

Assumption A.1. (d-separation [21]) d-separation is a graphical criterion used to determine, from a
given causal graph, if a set of variables X is conditionally independent of another set Y, given a third
set of variables Z. In a directed acyclic graph (DAG) G, a path between nodes n1 and nm is said to be
blocked by a set S if there exists a node nk, for k = 2, · · · ,m− 1, that satisfies one of the following
two conditions:

(i) nk ∈ S, and the path between nk−1 and nk+1 forms (nk−1 → nk → nk+1), (nk−1 ← nk ←
nk+1), or (nk−1 ← nk → nk+1).

(ii) Neither nk nor any of its descendants is in S, and the path between nk−1 and nk+1 forms
(nk−1 → nk ← nk+1).
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In a DAG, we say that two nodes na and nb are d-separated by a third node nc if every path between
nodes na and nb is blocked by nc, denoted as na⊥⊥ nb|nc.

Proposition A.2. Under the assumptions that the causal graph is Markov and faithful to the
observations, there exists an edge from ait → sjt+1 if and only if ait ⊥̸⊥ sjt+1|{at \ ait, st}, then
ait → sjt+1.

Proof. We first prove that if there exists an edge from ait to sjt+1, then ait ⊥̸⊥ s
j
t+1|{at \ ait, st}. We

prove it by contradiction. Suppose that ait is independent of sjt+1 given {at \ait, st}. According to the
faithfulness assumption, we can infer this independence from the graph structure. If ait is independent
of sjt+1 given {at \ ait, st}, then there cannot be a directed path from ait to sjt+1 in the graph. Hence,
there is no edge between ait and sjt+1. This contradicts our initial statement about the existence of
this edge.

Now, we prove the converse: if ait ⊥̸⊥ sjt+1|{at \ ait, st}, then there exists an edge from ait to sjt+1.
Again, we use proof by contradiction. Suppose there is no edge between ait and sjt+1 in the graph.
Due to the Markov assumption, the lack of an edge between these variables implies their conditional
independence given {at \ ait, st}. This contradicts our initial statement that ait ⊥̸⊥ s

j
t+1|{at \ ait, st}.

Therefore, there must exist an edge from ait to sjt+1.

Proposition A.3. Under the assumptions that the causal graph is Markov and faithful to the
observations, there exists an edge from sit → sjt+1 if and only if sit ⊥̸⊥ s

j
t+1|{at, st \ sit}.

The proof of Proposition A.3 follows a similar line of reasoning to that of Proposition A.2. Conse-
quently, the two propositions collectively serve as the foundation for deriving Theorem 1.

D Details on Experimental Design and Results

D.1 Experimental environments

We select three different types environments for experimental evaluation, as shown in Figure 7.

Full Chain Collider

(a) Chemical

Increasing weight 

Underlying causal graph

(b) Physical (c) Manipulation

Figure 7: Three experimental environments.

Chemical In chemical environment, we aim to discovery the causal relationship (Chain, Collider
& Full) of chemical items which will prove the learned dynamics and explain the behavior without
spurious correlations. Meanwhile, in the downstream tasks, we evaluate the proposed methods by
episodic reward and success rate. The reward function is defined as follows:

Match: match the object colors with goal colors individually:

rmatch =

10∑
i=1

1[mi
t = gi] (13)

where 1 is the indicator function, mi
t is the current color of the i-object, and gi is the goal color of

the i-object.
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Manipulation In manipulation environment, we aim to prove the learned dynamics and policy for
difficult settings with spurious correlations and multi-dimension action causal influence. The state
space consists of the robot end-effector (EEF) location (R3), gripper (grp) joint angles (R2), and
locations of objects and markers (6 × R3). The action space includes EEF location displacement (R3)
and the degree to which the gripper is opened ([0, 1]). In each episode, the objects and markers are
reset to randomly sampled poses on the table. The task reward functions of Reach, Pick and Stack
are followed [2].

Physical In addition to the chemical and manipulation environment, we also evaluate our method
in the physical environment. In a 5 × 5 grid-world, there are 5 objects and each of them has a unique
weight. The state space is 10-dimensional, consisting of x, y positions (a categorical variable over
5 possible values) of all objects. At each step, the action selects one object, moves it in one of 4
directions or lets it stay at the same position (a categorical variable over 25 possible actions). During
the movement, only the heavier object can push the lighter object (the object won’t move if it tries
to push an object heavier than itself). Meanwhile, the object cannot move out of the grid-world
nor can it push other lighter objects out of the grid-world. Moreover, the object cannot push two
objects together, even when both of them are lighter than itself (Dense model mode). The task reward
function is defined as follows:

Push: calculate the average distance between the current node and the target location:

rmatch =
1

5

5∑
i=1

dis(oi, ti) (14)

where dis(·) is the distance between two objects position. oi is the position of current node and ti is
the position of target node.

D.2 Experimental setup

D.2.1 Dynamics learning implementation details

We present the architectures of the proposed method across all environments in Table 2. For all
activation functions, the Rectified Linear Unit (ReLU) is employed. Additionally, we summarize
the hyperparameters for causal mask learning used in all environments for ECL-CIT and ECL-ASR
in Table 3. Regarding the other parameter settings, we adhered to the parameter configurations
established in CDL [2] and REG [42].

The Lcausal of CIT-based causal discovery method used in ECL is :

LCIT
causal =

dS∑
j=1

[
log p̂(sjt+1|{at, st \ sit}) + logp̂(sjt+1|PAsj )

]
(15)

The Lcausal of regularization-based causal discovery method used in ECL is :

LASR
causal = E

D
logP (st+1;t+H |st, at:t+H−1 − λM ||M ||1) (16)

where D is the transition data and λM is regularization coefficient.

D.2.2 Task learning implementation details

We list the downstream task learning architectures of the proposed method across all environments
in Table 4. We outline the parameter configurations for the reward predictor, as well as the settings
employed for the Cross-Entropy Method (CEM) that is applied.

D.3 Results of causal dynamics learning

We compare the performance of causal dynamics learning with CIT-based method GRADER [8],
CDL [2] and regularization-based method REG [42] across different environments. The experimental
results, presented in Table 5, reveal that although GRADER exhibits superior performance in the
chemical full environment, ECL-based methods overall achieve better results than GRADER across
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Table 2: Architecture settings in all environments.

Architecture Environments
Chemical Physical Manipulation

feature dimension 64 128 128
predictive networks [64,32] [128,128] [128,64]

number of transitions 500K 500K 32M
max step of environment 50 100 250

batch size 64
learing rate 1e-4

max sample time 128
prediction step during training 2

Table 3: Hyperparameters for causal mask learning in all environments.

Method hyperparameters Environments
Chemical Physical Manipulation

ECL-CIT

CMI threshold 0.02 0.01 0.002
optimization frequency 10
evaluation frequency 10
evaluation batch size 32

evaluation step 1
prediction reward weight 1.0

ECL-ASR
coefficient 0.002 0.02 0.001

regularization starts after N steps 100K 100K 750K

three chemical environments. In the accuracy assessment metrics, ECL-CIT attains 100% precision,
and across the chain and collider environments, all evaluation metrics achieve perfect 100% scores.
Furthermore, in the physical environment, our proposed methods attain 100% performance. The
result of rigorous evaluation metrics substantiate that incorporating ECL has boosted the dynamics
model performance. These experimental results further validate the effectiveness of the proposed
ECL approach in both sparse and dense modal environments.

Furthermore, we analyze the prediction accuracy performance of the causal dynamics constructed
by our proposed method. The multi-step (1-5 steps) prediction experimental results across four
environments are illustrated in Figure 8. ECL-CIT and CDL exhibit smaller declines in accuracy
as the prediction steps increase, benefiting from the causal discovery realized based on conditional
mutual information. Compared to REG, ECL-ASR achieves a significant improvement in accuracy
under different settings. Concurrently, we find that the outstanding out-of-distribution experimental
results further corroborate the strong generalization capability of our proposed method. Overall, we
can demonstrate that the proposed ECL framework realizes efficient and robust causal dynamics
learning.

D.4 Visualization on the learned causal graphs

We conduct a detailed comparative analysis by visualizing the learned causal graphs. In each causal
graph, these are dS rows and dS + 1 columns, and the element at the j-th row and i-th column
represents whether the variable sjt+1 depends on the variable sit+1 if j < dS + 1 or at if j = dS + 1,
measured by CMI for CIT-based methods and Bernoulli success probability for Reg. First, the causal
graph learning scenario in the chemical chain environment is shown in Figure 9. Compared to CDL
and REG, ECL-CIT accurately uncovers the causal relationships among crucial elements, such as all
different dimensions between states and actions, outperforming the other two methods. Moreover, we
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Table 4: Hyperparameters for downstream task learning in all environments.

Method hyperparameters Environments
Chemical Physical Manipulation

Reward Predictor

training step 300K 1.5M 2M
optimizer Adam

learing rate 3e-4
batch size 32

CEM number of candidates 64 128
number of iterations 5 10

number of top candidates 32
action_noise 0.03

Table 5: Compared results of causal graph learning on three chemical and physical environments.
Metrics Methods Chain Collider Full Physical

Accuracy
ECL-CIT 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
ECL-ASR 0.99±0.00 0.99±0.00 0.99±0.01 1.00±0.00
GRADER 0.99±0.00 0.99±0.00 0.99±0.00 -

Recall
ECL-CIT 1.00±0.00 1.00±0.00 0.97±0.00 1.00±0.00
ECL-ASR 1.00±0.00 0.99±0.01 0.90±0.02 1.00±0.00
GRADER 0.96±0.03 0.99±0.02 0.96±0.02 -

Precision
ECL-CIT 1.00±0.00 1.00±0.00 0.96±0.02 1.00±0.00
ECL-ASR 0.99±0.01 0.99±0.01 0.97±0.03 1.00±0.00
GRADER 0.94±0.04 0.90±0.05 1.00±0.00 -

F1 Score
ECL-CIT 1.00±0.00 1.00±0.00 0.97±0.01 1.00±0.00
ECL-ASR 0.99±0.00 0.99±0.00 0.93±0.02 1.00±0.00
GRADER 0.95±0.03 0.94±0.03 0.98±0.01 -

ROC AUC
ECL-CIT 1.00±0.00 1.00±0.00 0.98±0.01 1.00±0.00
ECL-ASR 0.99±0.01 0.99±0.01 0.95±0.01 1.00±0.00
GRADER 0.94±0.02 0.99±0.01 0.96±0.01 -

achieve extensive elimination of causality between irrelevant factors. These results demonstrate the
accuracy of the proposed method in causal inference within the chemical chain environment.

Furthermore, for the chemical collider environment, the compared causal graphs are depicted in
Figure 10. We can observe that both CDL and ECL-CIT achieved optimal discovery of causal
relationships. Moreover, in contrast to the REG method, ECL-CIT is not impeded by interference
from irrelevant causal factors. For the chemical full environment, the causal graph is illustrated in
Figure 11. Compared to CDL, ECL-CIT better excludes interference from irrelevant causal factors.
In comparison with the REG method, ECL-CIT attains superior overall performance in discovering
causal relationships. Additionally, ECL-CIT reaches optimal learning performance when provided
the true causal graph.

Moreover, for the manipulation environment, the experimental results are presented in Figures 12
and 13. From the results in Figure 6, we can discern that ECL-CIT achieves around 90% overall
fitting degree with the true causal graph and accurately learns the causal association between state
and action. Compared to CDL shown in Figure 13, ECL-CIT learns more causal associations from
relevant causal components related to the gripper, movable states, and actions. Conversely, in contrast
to REG, ECL-CIT better excludes interference from irrelevant causal factors, such as unmovable
and marker states. In summary, the proposed method achieves more accurate and efficient learning
performance in causal dynamics learning.
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Figure 8: Multi-step prediction performance for all environments. (Left) prediction on in distribution
states. (Right) prediction on out of distribution states.
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Figure 9: Causal graph for the chemical chain environment learned by the ECL, CDL and REG.
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Figure 10: Causal graph for the chemical collider environment learned by the ECL, CDL and REG.
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Figure 11: Causal graph for the chemical full environment learned by the ECL, CDL and REG.
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Figure 12: Causal graph for the manipulation environment learned by the true graph and ECL.
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Figure 13: Causal graph for the manipulation environment learned by CDL and REG.
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D.5 Downstream tasks learning

As illustrated in Figures 14 and 15, ECL-CIT attains the highest reward across three environments
when compared to dense models like GNN and MLP, as well as causal approaches such as CDL and
REG. Notably, ECL-CIT outperforms other methods in intricate manipulation tasks. Furthermore,
ECL-ASR surpasses REG, enhancing model performance and achieving a reward comparable to
CDL. The proposed curiosity reward encourages exploration and avoids local optimality during the
policy learning process. Moreover, ECL excels not only in accurately uncovering causal relationships
but also in enabling efficient learning for downstream tasks.
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Figure 14: The task learning of episodic reward in three environments with ECL-CIT (ECL-C),
ECL-ASR (ECL-A) and baselines.
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Figure 15: The task learning of episodic reward in three manipulation and pyhsical environments.

Sample efficiency analysis. We perform comparative analysis of downstream tasks learning across
all environments. As depicted in Figure 16 for experiments in three chemical environments, we
can find that ECL-CIT and ECL-ASR achieve outstanding performance in all three environments.
Furthermore, the policy learning exhibits relative stability, reaching a steady state after approximately
400 episodes. Additionally, Figure 17 illustrates the reward learning scenarios in the other four
environments. Within the intricate manipulation environment, ECL-CIT facilitates more expeditious
policy learning. Moreover, in the dense physical environment, ECL-CIT and ECL-ASR also exhibit
the most expeditious learning efficiency. The experimental results demonstrate that the proposed
methods outperform CDL. Moreover, compared to CDL, ECL enhances sample efficiency, further
corroborating the effectiveness of the proposed intrinsic-motivated empowerment method.
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Figure 16: The task learning curves of episodic reward in three chemical environments and the
shadow is the standard error.

D.6 Property analysis

Training steps analysis. For property analysis, we set different training steps for causal dynamics
learning of ECL-CIT. As depicted in Figure 18, in the chemical chain environment, we observe that
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Figure 17: The task learning curves of episodic reward in four environments and the shadow is the
standard error..
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Figure 18: The mean accuracy of prediction with different training steps in chemical environments.

the mean prediction accuracy reaches its peak at 300k training steps. A similar trend is observed in the
collider environment, where the maximum accuracy is achieved at 150k training steps. Although in
the full environment, ECL attains its maximum accuracy at 600k steps, which is higher than the 500k
steps used for training CDL, we notice that at 500k steps, ECL has already achieved performance
comparable to CDL. These results substantiate that our proposed causal action empowerment method
effectively enhances sample efficiency and dynamics performance.

Hyperparameter analysis. We further analyze the impact of the hyperparameter λ introduced
in the downstream task reward function with CUR. We compare four different threshold settings,
and the experimental results are depicted in Figure 19. From the results, we observe that when the
parameter is set to 1, the policy learning performance is optimal. When the parameter is set to 0, the
introduced CUR cannot encourage exploratory behavior in the policy. Nonetheless, it still achieves
reward performance comparable to CDL. This finding further corroborates the effectiveness of our
method for dynamics learning. Conversely, when this parameter is set excessively high, it causes the
policy to explore too broadly, subjecting it to increased risks, and thus more easily leading to policy
divergence. Through comparative analysis, we ultimately set this parameter to 1. In our future work,
we will further optimize the improvement scheme for the reward function.
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Figure 19: The episodic reward with different hyperparameter λ in three chemical environments.

D.7 Ablation Studies

To further validate the effectiveness of the various components comprising the proposed ECL method,
we designed a series of ablation experiments for verification. First, we implement the method without
offline model learning, simultaneously conducting causal model and task learning (w/i Sim) to
verify the effectiveness of the proposed three-stage optimization framework. Second, we replace the
curiosity reward introduced in the task learning with a causality motivation-driven reward (w/i Cau)
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Figure 20: Learning curves of ablation Studies in three chemical environments and the shadow is the
standard error. w/i represents with. w/o represents without.

rcau = E(st,at,st+1∼D) [KL (Ptrue||Pϕ)−KL (Ptrue||Pϕc)] , and a method without reward shaping
(w/o Sha), respectively, to verify the effectiveness of incorporating the curiosity reward.

The results presented in Figure 20 clearly demonstrate the superior performance of the ECL over all
other comparative approaches. ECL achieves the highest reward scores among the evaluated methods.
Moreover, when compared to the method with Sim, ECL not only attains higher cumulative rewards
but also exhibits greater stability in its performance during training. Additionally, ECL significantly
outperforms the methods with Cau and method without Sha, further highlighting the efficacy of our
proposed curiosity-driven exploration strategy in mitigating overfitting issues. By encouraging the
agent to explore novel states and gather diverse experiences, the curiosity mechanism effectively
prevents the policy from becoming overly constrained.

In summary, ECL facilitates effective and controllable policy learning for agents operating in complex
environments. The curiosity-driven reward enables the agent to acquire a comprehensive understand-
ing of the environment while simultaneously optimizing for the desired task objectives, resulting in
superior performance and improved sample efficiency.

E Details on the Proposed Framework

Algorithm 1 lists the full pipeline of ECL below.

F Experimental Platforms and Licenses

F.1 Platforms

All experiments of this approach are implemented on 2 Intel(R) Xeon(R) Gold 6444Y and 4 NVIDIA
RTX A6000 GPUs.

F.2 Licenses

In our code, we have utilized the following libraries, each covered by its respective license agreements:

• PyTorch (BSD 3-Clause "New" or "Revised" License)
• Numpy (BSD 3-Clause "New" or "Revised" License)
• Tensorflow (Apache License 2.0)
• Robosuite (MIT License)
• CausalMBRL (MIT License)
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Algorithm 1 Towards Empowerment Gain through Causal Structure Learning in Model-Based RL
Input: policy network πe, πθ, transition collect policy πcollect, epoch length of dynamics model train-
ing, causal empowerment and downstream task policy learning Hdyn, Hcau, and Htask, evaluation
frequency for causal mask learning feval

Step 1: Offline Model Learning

for each environment step t do
Collect transitions {(si, ai, ri, s′i)}

|Denv|
i=1 with πcollect from environment

Add transitions to replay buffer Dcollect

end for
for epoch = 1, · · · , Hdyn do

Sample transitions {(si, ai, s′i)}
|Ddyn|
i=1 from Dcollect

Train dynamics model ϕc with {(si, ai, s′i)}
|Ddyn|
i=1

if epoch % feval == 0 then
Sample transitions {(si, ai, s′i)}

|Dcau|
i=1 from Dcollect

Learn causal dynamics model with causal mask ϕc−dyn with different causal dis-
covery methods

end if
Sample transitions {(si, ai, ri, s′i)}

|Drew|
i=1 from Dcollect

Train reward model φr with {(si, ai, ri, s′i)}
|Drew|
i=1 and ψ(·)

end for

Step 2: Online Model Learning

Collection transitions {(si, ai, ri, s′i)}
|Demp|
i=1 with policy πe

for epoch = 1, · · · , Hcau do
Maximize (Eϕc(st+1)− Eϕ(st+1)) with transitions sampled from Demp for policy πe
learning
Add transitions sampled with πe to Demp

if epoch % feval == 0 then
Optimize causal mask M with fixed ϕc and transitions sampled from Demp

end if
end for

Step 3: Policy Learning

for epoch = 1, · · · , Htask do
Collect transitions {(si, ai, ri, s′i)}

|Dtask|
i=1 with πθ

Compute predicted rewards rtask by learned reward predictor
Calculate curiosity reward rcur by Eq. 11
Calculate r ← rtask + λrcur
Optimize policy πθ by the CEM planning

end for
return policy πθ
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