
Generative network-based reduced-order model for prediction, data assimilation
and uncertainty quantification

Vinicius L. S. Silva 1 Claire E. Heaney 1 Nenko Nenov Christopher C. Pain 1

Abstract
We propose a new method in which a generative
network (GN) integrate into a reduced-order
model (ROM) framework is used to solve inverse
problems for partial differential equations (PDE).
The aim is to match available measurements and
estimate the corresponding uncertainties associ-
ated with the states and parameters of a numerical
physical simulation. The GN is trained using only
unconditional simulations of the discretized PDE
model. We compare the proposed method with
the golden standard Markov chain Monte Carlo.
We apply the proposed approaches to a spatio-
temporal compartmental model in epidemiology.
The results show that the proposed GN-based
ROM can efficiently quantify uncertainty and
accurately match the measurements and the golden
standard, using only a few unconditional simula-
tions of the full-order numerical PDE model.

1. Introduction
Complex physics and engineering systems are usually
described in terms of partial differential equations (PDE)
that, for most problems of practical interest, cannot be solved
analytically. Then it is necessary to use numerical methods
to solve the governing equations. The discretization of these
equations is usually performed using finite difference, finite
volume, finite element or a combination of these procedures
(Golub et al., 1992; Ames, 2014). Nonetheless, these
methods need a large number of degrees of freedom to solve
the PDEs accurately. This fact can generate prohibitively
expensive simulations in terms of computational time and
memory demand. Furthermore, these models are built on
limited information, which makes their predictions uncertain.
The actual values of the model states and parameters are not

1Applied Modelling and Computation Group, Imperial
College London, UK. Correspondence to: Vinicius L. S. Silva
<v.santos-silva19@imperial.ac.uk>.

LatinX in AI (LXAI) workshop at the 40 th International Conference
on Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023.
Copyright 2023 by the author(s).

known, and usually measurements are sparse in space and/or
time. Therefore, it is necessary to assimilate observed data
(calibrate model states and parameters in order to generate
results that match the measurements) and formally propagate
the uncertainties through the forward numerical simulator. In
this context, reduced-order models (ROM) are computation-
ally appealing and have been attracting significant attention
in the last decades (Rozza et al., 2008; Cardoso et al., 2009;
Hesthaven & Ubbiali, 2018; Xiao et al., 2019). The aim of
a ROM is to reduce the computational burden of numerical
simulations by creating a low-dimensional representation
of a high-dimensional model or discretized system.

In order to quantify the uncertainty in the states and param-
eters of a numerical PDE simulation, one requires multiple
random models that match or are conditional to measure-
ments. After simulating the conditional models, an empirical
distribution of the variables of interest can be obtained (Liu
et al., 2003; Lakshminarayanan et al., 2017). The validity of
the uncertainty quantification depends on the quality of the
generated conditional simulations. Nonetheless, it is often
difficult and computationally expensive to generate a single
conditional model (that honours the measurements), suggest-
ing that the task of quantifying uncertainty must be even more
difficult (Liu et al., 2003; Sudret et al., 2017; Cacuci, 2019).
It is unfeasible to use methods such as rejection sampling
(RS) and Markov chain Monte Carlo (MCMC) to propagate
uncertainty through most practical PDE simulations due to
their computational cost (Oliver et al., 1997; Liu et al., 2003;
Oliver & Chen, 2011; Stordal & Nævdal, 2018). Therefore,
approximate methods need to be used. Among them,
Liu et al. (2003) showed that the randomized maximum
likelihood (RML) (Kitanidis, 1995; Oliver et al., 1996),
also called randomize-then-optimize (RTO) (Bardsley et al.,
2014), performed better than other approximate methods.

In this paper, we propose a new method inspired by the RML
(or RTO) in which a generative network (GN) within a ROM
framework is used to quantify the uncertainty of a numerical
PDE simulation in the presence of measurements. The ROM
uses a low-dimensional space for the spatial distribution
of the simulation states. Then the GN is used to learn the
evolution of the low-dimensional states over time. The
GN is trained using only unconditional simulations of the

Generative network-based reduced-order model for prediction, data assimilation and uncertainty quantification

Figure 1. Diagram of the extended SEIRS model. The diagram
shows how people move between groups and compartments at a
given point in space (or one cell in the grid). The vital dynamics
and the transport via diffusion are not displayed here.

full-order numerical model. After training, the GN-based
ROM can be used to predict the evolution of the spatial
distribution of the simulation states and observed data can
be assimilated. Here, we describe the process required in
order to quantify uncertainty, during which no additional
simulations of the full-order numerical model are required.
We apply these methods to estimate the uncertainty in the
states and parameters of a spatio-temporal compartmental
model in epidemiology, that was constructed in order to
represent the spread of COVID-19 in an idealized town.

The source code, data, hardware configuration, used in
this work are available at https://github.com/
viluiz/gan.

2. Test case description
The test case used here is the spatio-temporal variation of
a virus infection in an idealized town. The extended SEIRS
model used in this work (Silva et al., 2023; Quilodrán-Casas
et al., 2022) extends the traditional theory of the dynamics of
infectious diseases (Anderson et al., 1992; Bjørnstad, 2018;
Bjørnstad et al., 2020) to account for variations not only in
time but also in space. The PDEs describing the test case
can be found in Appendix F.

2.1. Extended SEIRS model and problem set up

The extended SEIRS model used in this work consists of
four compartments (Susceptible - Exposed - Infections - Re-
covered) and two people groups (Home - Mobile). Figure 1
shows the diagram of how individuals move between com-
partments and groups. The model starts with some individ-
uals in the infectious compartments (Home-I/Mobile-I). The
members of these compartment will spread the pathogen to
the susceptible compartments (Home-S/Mobile-S). Upon
being infected, the members of the susceptible compartments
are moved to the exposed compartments (Home-E/Mobile-E)
and remain there until they become infectious. Infectious in-
dividuals remain in the infectious compartment until they be-
come recovered (Home-R/Mobile-R). Recovered people can
also become susceptible again due to the loss of immunity.

One important factor in dynamics of infectious diseases is
the basic reproduction number (R0), which represents the
expected number of new cases caused by a single infectious
member in a completely susceptible population (Dietz, 1993;
Hethcote, 2000). The R0 controls how rapidly the disease
could spread. Here, we have two R0, one for each group of
people. R01 representing the basic reproduction number of
people at home, and R02 representing the basic reproduction
number of people that are mobile and outside their homes
therefore. For this case, we can also calculate an Effective
R0 representing the R0 seen by the whole population at a
specific time (see Appendix F).

The idealized town and problem set up used in this work
are the same as in Silva et al. (2023) and Quilodrán-Casas
et al. (2022). The simulation comprises 8000 people in an
area of 100× 100km, discretized on a regular grid. The
initial condition is that 0.1% of people have been exposed
to the virus and will thus develop an infection. The model
parameters are the two R0h (home and mobile), and the
model states are the number of people in each compartment
(S, E, I and R) for each people group and for each grid block.
Further information about the discretization and solution
methods of the full-order numerical simulation can be found
in Silva et al. (2023) and Quilodrán-Casas et al. (2022).

3. Method
We propose a novel framework to quantify uncertainties
of numerical PDE simulations. The aim is to condition
the numerical simulation to observed data (usually sparse
in space and/or time) and estimate the corresponding
uncertainties in the model states and parameters. Figure 2
shows the proposed framework. We start by generating the
dataset, running the full-order numerical simulations with
different model parameters. The number of runs used to
generate the dataset is orders of magnitude smaller than what
would be required, if we exclusively rely on the full-order
simulations to calculate the uncertainties. After generating
the dataset, we apply the dimensionality reduction to the
model states at each time step. Having the compressed states
and corresponding model parameters, we can train a genera-
tive model to learn the dynamic of the system over time. The
goal is for the network to learn how to generate a sequence
(in time) of physically plausible compressed states and the
corresponding model parameters. Following the training
of the generative network, we can use it to predict forward
in time (Quilodrán-Casas et al., 2022; Silva et al., 2023), to
find one solution that honour available measurements (Silva
et al., 2023), and/or to find multiple solutions that honour
the measurements and also generates the uncertainties in the
model states and parameters (as proposed here).

In this work, we train a generative adversarial network (DC-
GAN (Radford et al., 2015) with non-saturating loss (Good-

https://github.com/viluiz/gan
https://github.com/viluiz/gan

Generative network-based reduced-order model for prediction, data assimilation and uncertainty quantification

Figure 2. Proposed framework to quantify the uncertainty in the
states and parameters of numerical PDE simulations.

fellow, 2016)) to produce time-sequences of the compressed
states and model parameters of the extended SEIRS model,
from a random distribution as input (see Figure 3). The com-
pression of the model states is performed using proper orthog-
onal decomposition. After training, the prediction (PredGAN
method) is performed in a recurrent way as described in
Appendix C, the data assimilation (DA-PredGAN method)
modifies the prediction process to include the observed data
(see Appendix D), and the uncertainty quantification (UQ-
PredGAN method proposed here) modifies the data assim-
ilation process to work with an ensemble of models instead
of a single realization. Further details about the proposed un-
certainty quantification method can be found in Appendix E.

Figure 3. The generative model is trained to generate a sequence
in time of compressed states and model parameters from the
numerical PDE simulation.

4. Results and discussion
In this section, we apply the proposed framework to solve an
inverse problem for the extended SEIRS model. The goal is
to quantify the uncertainties in the model states and parame-
ters, considering the availability of observed data. The model
represents the spread of COVID-19 in an idealized town
(as in Quilodrán-Casas et al. (2022) and Silva et al. (2023)).
We generate the observed data (“measurements”) from a
full-order numerical simulation (R01 = 7.7, R02 = 17.4)
that was not included in the training set. Observed data was
collected at five points of the domain and the measurements
are available every two days. We measured only infectious
and recovered people, as in Silva et al. (2023). The R0h

are not used as observed data. For generating the priors

Figure 4. Results of the UQ-PredGAN for each group am compart-
ment at one point in space. The red dots represent the observed data
(“measurements”), the grey lines the unconditional simulations
(priors), the blue lines the conditional simulations (posteriors), and
the black line the posterior mean.

(unconditional simulations) 200 model parametersR0h were
sampled from a normal distribution with a mean of 10 and
standard deviation of 4. The mean and standard deviation
were chosen based on Kochańczyk et al. (2020). The 200
model parameters and their corresponding initial conditions
were used to start the UQ-PredGAN process. For each of
the model parameters, one data assimilation was performed
as described in Appendix E. After the data assimilation, 121
realizations were accepted based on their data mismatch
error. It is worth noting that for the whole uncertainty quan-
tification process using the UQ-PredGAN, we required only
40 full-order numerical simulations (for training the GAN).

Figure 4 shows the UQ-PredGAN results for each group and
compartment (model states) at one point in space where ob-
served data was available. The priors (grey lines) are the first
forward march of each data assimilation, and the posteriors
(blue lines) are the last forward march of the accepted real-
izations. The posterior mean (black line) is also shown in the
plots. We can see from these figures that the conditional sim-
ulations (posteriors) generated by the UQ-PredGAN match
the observed data, within some tolerance (we considered a
measurement error of 5%), and the uncertainty is propagated
through the simulation time. The high frequency oscillation
presented in the results corresponds to a daily cycle, when
mobile people leave their homes during the day and return
to them at night. Comparable results were observed at other
points in domain, hence they are not presented here.

In the plots from the first row of Figure 5, we show the
probability density function (PDF) of the R0h (model
parameters) and Effective R0, for the priors and posteriors.
The result shows that the UQ-PredGAN was able to reduce
the uncertainty in the model parameters approaching the
true values used to generate the observed data. Note that
the data assimilation is an inverse and usually ill-posed
problem, hence different values of R0h could match the

Generative network-based reduced-order model for prediction, data assimilation and uncertainty quantification

Figure 5. Probability density functions of the R0h and Effective
R0 at day 12. Comparison of UQ-PredGAN (first row) with the
golden standard MCMC (second row). The ground truth represents
the values in the full-order numerical simulation used to generate
the observed data.

measurements within some tolerance. We have also run a
comparison of the UQ-PredGAN with the golden standard
MCMC (using the Metropolis–Hastings algorithm). The
results from the MCMC are in the plots from the second row
of Figure 5. It is worth mentioning that to run the MCMC,
it took more than a month on a dedicated workstation (more
than 100,000 samples and we stopped because of time
limitations, see Appendix H for the hardware configuration),
while to run the UQ-PredGAN only 12 hours (two days if we
add the GAN training). We can notice from Figure 5 that the
UQ-PredGAN generates uncertainties that have a reasonable
match with the golden standard, but with orders of magnitude
less computational time. In practical terms, it is unaffordable
to run the MCMC for most numerical PDE simulations.

We can notice that the distributions generated by the UQ-
PredGAN have longer “tails” than the ones from the MCMC.
We checked the results from the simulations in that portion
of the distribution and they reasonably match the observed
data. It may indicate that the MCMC has not converged yet,
which means that we would need many more simulation
samples (>100,000) for the MCMC to generate the correct
tails, which makes it impractical. Figure 5 also shows that
the UQ-PredGAN is able to sample the second small mode
of the mobile group R02. It is where the true value of the
R02 used to generate the observed data occurs. We can also
see that for the mobile group, the UQ-PredGAN posterior
PDF does not exactly match the MCMC results as well as for
the home group. This could be because the number of mobile
people is one order of magnitude smaller than the number
of people at home, which gives the latter more importance
during the data assimilation process, and the relative rate of
change of the number of people in the mobile group is much
greater than in the home group, thus small perturbations in
the former can cause huge relative deviations.

Figure 6 shows the prediction of the Effective R0 at day
16, along with the ground truth, for the UQ-PredGAN and

(a) UQ-PredGAN (b) MCMC

Figure 6. Predicted probability density functions of the Effective
R0 at day 16 (the last observed data was at day 12). Comparison
of UQ-PredGAN with the golden standard MCMC. The ground
truth represents the value in the high fidelity numerical simulation
used to generate the observed data.

MCMC. Comparable results were observed for other points
in time. The last observed data used in this experiment was at
day 12. The results demonstrate that the UQ-PredGAN can
generate predictions and uncertainties that accurately match
the ground truth and have a reasonable match to the golden
standard MCMC. Table 1 shows the posterior mean, mode
and standard deviation (STD) for different days. The mode is
calculated based on the histograms. We can notice that going
further in time the posterior uncertainty (the STD) in the
Effective R0 increases, in both methods. This is because the
further away the predictions are from the last observed data,
the greater the uncertainty will be in those predictions. The
difference in the standard deviation of the UQ-PredGAN and
the MCMC is because it was impractical to run the amount
of simulation samples required for the MCMC to represent
the tails of the distributions, as already mentioned.

Table 1. Values of the posterior PDF of the Effective R0 over time.
Comparison of UQ-PredGAN with the golden standard MCMC.

TIME (DAYS) => 12 16 22

GROUND TRUTH 9.52 9.22 9.48
UQ-PREDGAN MEAN 9.86 9.70 9.91
MCMC MEAN 9.89 9.68 9.92

UQ-PREDGAN MODE 11.0 11.0 11.0
MCMC MODE 11.0 11.0 11.0

UQ-PREDGAN STD 1.73 2.44 2.70
MCMC STD 1.39 1.40 1.51

5. Conclusion
We proposed a novel use of generative networks as a
reduced-order model, that is able to solve inverse problems
for numerical PDE simulations. We applied the proposed
method to a spatio-temporal compartmental model in
epidemiology. The results show that the UQ-PredGAN
accurately matches the observed data and efficiently quan-
tifies/reduces uncertainty in the model states (groups and
compartments) and model parameters (basic reproduction
numbers). We compare the UQ-PredGAN with the golden

Generative network-based reduced-order model for prediction, data assimilation and uncertainty quantification

standard MCMC, and show that it can generate predictions
and uncertainties that reasonably match the golden standard,
but with orders of magnitude less computational time. The
proposed method is not limited to the underlying physics
of this application, it is a general framework for quantifying
uncertainties of numerical physical simulations.

References
Ames, W. F. Numerical methods for partial differential

equations. Academic press, 2014.

Anderson, R. M., Anderson, B., and May, R. M. Infectious
diseases of humans: dynamics and control. Oxford
University Press, 1992.

Bardsley, J. M., Solonen, A., Haario, H., and Laine, M.
Randomize-then-optimize: A method for sampling
from posterior distributions in nonlinear inverse prob-
lems. SIAM Journal on Scientific Computing, 36(4):
A1895–A1910, 2014.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,
J. M. Automatic differentiation in machine learning: a
survey. The Journal of Machine Learning Research, 18
(1):5595–5637, 2017.

Bjørnstad, O., Shea, K., Krzywinski, M., and Altman, N.
The SEIRS model for infectious disease dynamics. Nature
Methods, 17(6):557–558, 2020.

Bjørnstad, O. N. Epidemics: Models and data using R.
Springer, 2018.

Cacuci, D. G. BERRU Predictive Modeling: Best Estimate
Results with Reduced Uncertainties. Springer, 2019.

Cardoso, M. A., Durlofsky, L. J., and Sarma, P. Development
and application of reduced-order modeling procedures for
subsurface flow simulation. International Journal for Nu-
merical Methods in Engineering, 77(9):1322–1350, 2009.

Chu, C., Zhmoginov, A., and Sandler, M. CycleGAN, a Mas-
ter of Steganography. arXiv preprint arXiv:1712.02950,
2017.

Dietz, K. The estimation of the basic reproduction number
for infectious diseases. Statistical Methods in Medical
Research, 2(1):23–41, 1993.

Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Gold-
berger, J., and Greenspan, H. GAN-based synthetic
medical image augmentation for increased CNN perfor-
mance in liver lesion classification. Neurocomputing, 321:
321–331, 2018.

Golub, G. H., Ortega, J. M., et al. Scientific computing
and differential equations: an introduction to numerical
methods. Academic press, 1992.

Goodfellow, I. Nips 2016 tutorial: Generative adversarial
networks. arXiv preprint arXiv:1701.00160, 2016.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
Deep learning, volume 1. MIT press Cambridge, 2016.

Hesthaven, J. S. and Ubbiali, S. Non-intrusive reduced order
modeling of nonlinear problems using neural networks.
Journal of Computational Physics, 363:55–78, 2018.

Hethcote, H. W. The mathematics of infectious diseases.
SIAM review, 42(4):599–653, 2000.

Karras, T., Laine, S., and Aila, T. A Style-Based Generator
Architecture for Generative Adversarial Networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4401–4410. 2019.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen,
J., and Aila, T. Analyzing and Improving the Image
Quality of StyleGAN. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 8110–8119, 2020.

Kitanidis, P. K. Quasi-linear geostatistical theory for invers-
ing. Water resources research, 31(10):2411–2419, 1995.

Kochańczyk, M., Grabowski, F., and Lipniacki, T. Super-
spreading events initiated the exponential growth phase of
COVID-19 with R0 higher than initially estimated. Royal
Society Open Science, 7(9):200786, 2020.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. Advances in neural information processing
systems, 30, 2017.

Linnainmaa, S. Taylor expansion of the accumulated
rounding error. BIT Numerical Mathematics, 16(2):
146–160, 1976.

Liu, N., Oliver, D. S., et al. Evaluation of Monte Carlo
methods for assessing uncertainty. SPE Journal, 8(02):
188–195, 2003.

Liu, Y., Qin, Z., Wan, T., and Luo, Z. Auto-painter:
Cartoon image generation from sketch by using con-
ditional Wasserstein generative adversarial networks.
Neurocomputing, 311:78–87, 2018.

Oliver, D. S. and Chen, Y. Recent progress on reservoir
history matching: a review. Computational Geosciences,
15(1):185–221, 2011.

Generative network-based reduced-order model for prediction, data assimilation and uncertainty quantification

Oliver, D. S., He, N., and Reynolds, A. C. Conditioning
permeability fields to pressure data. In ECMOR V-5th
European conference on the mathematics of oil recovery,
pp. cp–101. European Association of Geoscientists &
Engineers, 1996.

Oliver, D. S., Cunha, L. B., and Reynolds, A. C. Markov
chain monte carlo methods for conditioning a permeability
field to pressure data. Mathematical geology, 29(1):
61–91, 1997.

Oliver, D. S., Reynolds, A. C., and Liu, N. Inverse theory
for petroleum reservoir characterization and history
matching. Cambridge University Press, 2008.

Quilodrán-Casas, C., Silva, V. L., Arcucci, R., Heaney, C. E.,
Guo, Y., and Pain, C. C. Digital twins based on bidirec-
tional LSTM and GAN for modelling the COVID-19
pandemic. Neurocomputing, 470:11–28, 2022.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Rozza, G., Huynh, D. B. P., and Patera, A. T. Reduced basis
approximation and a posteriori error estimation for affinely
parametrized elliptic coercive partial differential equa-
tions. Arch. Comput. Methods Eng, 15:229–275, 2008.

Silva, V. L., Heaney, C. E., Li, Y., and Pain, C. C. Data
Assimilation Predictive GAN (DA-PredGAN) Applied
to a Spatio-Temporal Compartmental Model in Epidemi-
ology. Journal of Scientific Computing, 94:25, 2023. doi:
10.1007/s10915-022-02078-1.

Stordal, A. S. and Nævdal, G. A modified randomized max-
imum likelihood for improved Bayesian history matching.
Computational Geosciences, 22(1):29–41, 2018.

Sudret, B., Marelli, S., and Wiart, J. Surrogate models
for uncertainty quantification: An overview. In 2017
11th European conference on antennas and propagation
(EUCAP), pp. 793–797. IEEE, 2017.

Tarantola, A. Inverse problem theory and methods for model
parameter estimation. SIAM, 2005.

Wengert, R. E. A simple automatic derivative evaluation pro-
gram. Communications of the ACM, 7(8):463–464, 1964.

Xiao, D., Heaney, C. E., Mottet, L., Fang, F., Lin, W., Navon,
I. M., Guo, Y.-K., Matar, O. K., Robins, A. G., and Pain,
C. C. A reduced order model for turbulent flows in the
urban environment using machine learning. Building and
Environment, 148:323–337, 2019.

Generative network-based reduced-order model for prediction, data assimilation and uncertainty quantification

A. Reduced-order
modelling and dimensionality reduction

The underlying assumption of a ROM is that the solution
of the forward model can be accomplished by using consid-
erably fewer degrees of freedom. One of the most widely
used model reduction methods is the proper orthogonal
decomposition (POD) approach. In this work, we use a
NIROM with POD as a compression method. We have also
tested autoencoders to compress the data; however, the result
using POD was practically the same and it does not need
training or hyperparameter optimisation.

After the first stage (the compression), the second stage
of the NIROM (the evolution in time of the solutions) is
accomplished using a generative network, as shown in
Figure 2. In this work, we use a generative adversarial
network (GAN) as generative model. GANs have received
much attention, after achieving excellent results for their
generation of realistic-looking images (Chu et al., 2017; Frid-
Adar et al., 2018; Liu et al., 2018; Karras et al., 2019; 2020).
Although Long short-term memory (LSTM) networks are
widely recognised as one of the most effective sequential
models (Goodfellow et al., 2016) for times series predictions,
Quilodrán-Casas et al. (2022) compared the performance of
the LSTM and GAN as a NIROM. The GAN was able to learn
better the underlying data distribution and reduce the forecast
divergence, especially when predicting further in time.

B. Generative adversarial network training
Proposed by Goodfellow et al. (2014), GANs are unsu-
pervised learning algorithms capable of learning dense
representations of the input data and are intended to be
used as a generative model. Here, the generator network
G directly produces time-sequences of the compressed
states and model parameters of a numerical PDE simulation
from a random distribution as input (latent vector z). The
discriminator network D attempts to distinguish between
samples drawn from the training data and samples drawn
from the generator, considered as fake. The output of the
discriminator D(y) represents the probability that a sample
came from the data rather than a “fake” sample from the
generator. Figure 3 show a schematic of the GAN training.

In this work, we train the GAN using the non-saturating loss
(Goodfellow, 2016) and use the DCGAN (Radford et al.,
2015) architecture. During the training process the latent
space z is generated as a Gaussian random noise N (0,IL),
where IL is an identity matrix of size L. The loss function
of the discriminator takes as inputs: a time sequence of
compressed states and model parameters from the numerical
PDE simulation (“real” sample), and a time sequence of
compressed states and model parameters generated by the
generator (“fake” sample). The loss function of the generator

only takes the “fake” samples as input. After training, the
discriminator can be discarded since only the generator is
used during the prediction, data assimilation, and uncertainty
quantification processes.

C. PredGAN for time series prediction
After training the GAN to produce data (compressed
simulation states and parameters) at a sequence ofm+1 time
steps, i.e. given a latent vector z, the output of the generator
G(z) will be data at time steps n−m to n, no matter which
point in time n represents, we can use the generator to make
predictions in time in a recurrent way, using a ROM named
Predictive GAN (PredGAN) as described in Silva et al.
(2023); Quilodrán-Casas et al. (2022).

Given known solutions at m consecutive time steps, we can
perform an optimisation to match the first m time levels
in the output of the generator with the known solutions.
After convergence, the last time step, m+1, in the output
of the generator is the prediction. We now can use this last
time level m+1 as a known solution and perform another
optimisation to predict the time step m+ 2. The process
continues until we predict all time steps. Figure 7 illustrates
how the PredGAN works.

Figure 7. Overview of the PredGAN process.

In our case, after training, the output of the generator G(z) is
made up of m+1 consecutive time steps of compressed grid
variablesα (outputs/states of the numerical PDE simulation),
and model parameters µ (inputs of the numerical PDE
simulation). The compressed variables are proper orthogonal
decomposition (POD) coefficients, but could also be latent
variables from an autoencoder. For a GAN that has been
trained withm+1 time levels,G(z) takes the following form

G(zn)=


(αn−m)T ,(µn−m)T

...
(αn−1)T ,(µn−1)T

(αn)T ,(µn)T


(m+1) by (NPOD+Nµ)

(1)
where the compressed grid variables are defined as
(αn)T =[αn

1 ,α
n
2 ,···,αn

NPOD
]. NPOD is the number of principal

components, and αn
i represents the ith POD coefficient

at time level n. The model parameters are represented as
(µn)T =[µn

1 ,µ
n
2 ,···,µn

Nµ
]. Nµ is the number of parameters,

and µn
i represents the ith parameter at time level n.

Generative network-based reduced-order model for prediction, data assimilation and uncertainty quantification

In each iteration of the PredGAN, one new time step is pre-
dicted. Assuming the GAN has already been trained, and
we have solutions at time levels from n−m to n−1 for the
POD coefficients, denoted by {α̃k}n−1

k=n−m, and also have the
model parameters over all time steps µ̃k, then to predict the
solution at time levelnwe perform an optimisation defined as

zn=argmin
zn

Lp(G(zn)), (2)

Lp(G(zn))=

n−1∑
k=n−m

(
α̃k−αk

)T
Wα

(
α̃k−αk

)
+

n−1∑
k=n−m

ζµ
(
µ̃k−µk

)T
Wµ

(
µ̃k−µk

)
,

(3)

where Wα is a square matrix of size NPOD whose diagonal
values are equal to the weights that govern the relative
importance of the POD coefficients, all other entries being
zero. Wµ is a square matrix of size Nµ whose diagonal
values are equal to the model parameter weights, and the
scalar ζµ controls how much importance is given to the
model parameters compared to the compressed variables.
The values for all the weighting terms are the same as
in Silva et al. (2023). The tilde (·̃) over the variables
represents the known solutions. It is worth noticing that
other genenative models (other than GANs) would also work
with the PredGAN algorithm, since it only needs a generator
and a way to optimise its output to match known solutions.

Only the time steps from n − m to n − 1 are taken into
account in the functional (Eq. (3)) which controls the
optimisation of zn. After convergence, the newly predicted
time leveln is added to the known solutions α̃n =αn, and the
converged latent variables zn are used to initialize the latent
variables at the next optimisation to predict time step n+1.
The process repeats until all time levels are predicted. The
gradient of Eq. (3) is calculated by automatic differentiation
(Wengert, 1964; Linnainmaa, 1976; Baydin et al., 2017),
which means backpropagating the error generated by the
loss function in Eq. (3) through the generator.

Figure 8 shows one example of prediction using the
PredGAN. The results represent the evolution, in one cell
of the grid (one point in space), of the number of people in
each group (home, mobile) and compartment (S, E, I and
R) over time. The green circles are the known solutions
used to start the prediction process, and the blue and
orange lines represent the prediction and the ground truth,
respectively. Each cycle in the graphs corresponds to a
period of one day, when mobile people leave their homes
during the day and return at night. After the first nine time
iterations the PredGAN does not see any data from the
full-order numerical simulation, and relies completely on
the predictions from PredGAN. Data from the full-order
numerical simulation is only required as a starting point.

Figure 8. Prediction using the PredGAN. The green circles are the
known solutions used to start the prediction process. The blue and
orange lines are the prediction and the ground truth, respectively.

D. DA-PredGAN for data assimilation
Data assimilation is a type of inverse problem that aims to
incorporate observed data into mathematical models. To
perform data assimilation using the PredGAN process, Silva
et al. (2023) proposed the Data Assimilation Predictive GAN
(DA-PredGAN) that involves three changes to the PredGAN.
(i) One additional term is included in the loss function in
Eq. (3) to take account of the data mismatch between the
observed data and the generated values. (ii) The aim of
the data assimilation is to match the observed data and to
determine the model parameters µk (inputs of the numerical
PDE simulation). Therefore, they are not known a priori, as
in the prediction. (iii) The forward marching in time is now
replaced by forward and backward marching.

The optimisation at each time step n of the forward march
is given by

zn=argmin
zn

Lda(G(zn)), (4)

Lda(G(zn))=
∑
k

(
α̃k−αk

)T
Wα

(
α̃k−αk

)
+
∑
k

ζµ
(
µ̃k−µk

)T
Wµ

(
µ̃k−µk

)
+
∑
k

ζobs
(
dk−dk

obs

)T
W k

obs

(
dk−dk

obs

)
, (5)

where k∈{n−m,n−m+1,···,n−1}. The observed data
at each time step k is stored in the vector dk

obs of size Nobs.
dk is the generated data calculated based on the output of the
generator at time step k. In our case, it represents measured
data (model states) at some points in the grid and it can
be calculated through the POD coefficients αk and stored
eigenvectors. W k

obs is a square matrix of size Nobs whose
diagonal values are equal to the observed data weights, and
the scalar ζobs direct controls how much importance is given
to the data mismatch. The values in the diagonal of W k

obs are
set to zero where we have no observation. After convergence,

Generative network-based reduced-order model for prediction, data assimilation and uncertainty quantification

the newly predicted time level n is added to the known
solutions α̃n = αn, and different from the prediction, we
also update the model parameters using the newly predicted
time step µ̃n = µn. After the forward march, the process
continues with a backward march. For the latter instead of
working forward in time, the process goes backwards in time,
from the last time step to the first. The loss function for the
optimisation at each iteration (backward time step) n of the
backward march is defined as in Eq. (5), but now for the
backward march k∈{n+m,n+m−1,···,n+1}.

After performing a forward and backward march using
Eqs. (4), the average of the data mismatch (last term on the
right of Eqs. (5)) at the end of all iterations n is calculated.
If the average mismatch has not converged or the maximum
number of iterations is not reached, the process continues
with a new forward and backward march. A relaxation
factor is also introduced to stabilize the process of marching
forward and backward in time as in Silva et al. (2023).

Figure 9. Overview of the DA-PredGAN. Each march represents
going through all time steps. The last forward march is optional
(mostly for parameterised problems).

Figure 10. Two different data assimilations (top and bottom) using
the DA-PredGAN. The circles in red are the observed data (the same
in both cases), the lines in grey the initial conditions (first forward
march), and the blue lines the final results (last forward march).

Figure 9 shows an overview of the DA-PredGAN process
and Figure 10 shows two data assimilation results (top and
bottom plots). The results show the evolution in time of the
simulation states in one cell of the grid (one point in space).
We generate observed data from a full-order numerical
simulation that was not included in the training set of the
GAN. We also added 5% noise to the chosen data. We note
that for both cases (top and bottom plots) the observed data
is honoured, although their results are slightly different. We

only show here the home group in order to save space, the
results for the mobile group are similar.

E. UQ-PredGAN
for Uncertainty Quantification

The computation of a single model that matches the observed
data is usually insufficient to quantify risks and uncertainties.
Data assimilation is generally an ill-posed inverse problem
(Tarantola, 2005; Oliver et al., 2008), hence several models
can match the observed data, within some tolerance (as in
Figure 10). In order to quantify uncertainty, we propose in
this work a ROM named Uncertainty Quantification Predic-
tive GAN (UQ-PredGAN). This method is inspired by the
RML (or RTO) as a way of sampling a posterior distribution
conditioned to observed data. In the RML/RTO, the numeri-
cal simulation is used to predict forward, and for each sample,
an optimisation (data assimilation) is performed to condition
the models to the observed data. The challenge is usually
to perform the optimisation, since the full-order numerical
simulation needs to be run several times and usually adjoints
are not present. In this work, the proposed method UQ-
PredGAN can compute uncertainties relying just on a set of
unconditioned numerical simulations. The prediction, data
assimilation and uncertainty quantification are performed
using the inherent adjoint capability present within neural
networks, and no additional full-order numerical simulations,
other than those used for training the GAN, are required.

The idea is to generate several models that match the
observed data and can quantify the uncertainty in the
model states and model parameters. To this end, we
perform several data assimilations using the DA-PredGAN
algorithm with the modified optimisation process for each
forward/backward time step,

zn=argmin
zn

Luq,j(G(zn)), (6)

Luq,j(G(zn))=
∑
k

(
α̃k

j −αk
)T

Wα

(
α̃k

j −αk
)

+
∑
k

ζµ
(
µ̃k

j −µk
)T

Wµ

(
µ̃k

j −µk
)

+
∑
k

ζobs
(
dk−dk

obs+εkj
)T

W k
obs

(
dk−dk

obs+εkj
)
, (7)

where for the forward march k∈{n−m,n−m+1,···,n−1}
and for the backward march k∈{n+m,n+m−1,···,n+1}.
Considering Ns as the number of data assimilations to be
performed, then j=1,...,Ns. In this work, Ns=200. This
value was chosen based on previous experience using the
RML/RTO. The observed data error is represented by the
random vector ε, and we consider that all measurement

Generative network-based reduced-order model for prediction, data assimilation and uncertainty quantification

errors are uncorrelated, thus they are sampled from a
normal distribution with zero mean and standard deviation
equal to 5% of the corresponding observed data. For each
data assimilation j, we use a different prior µ̃k

j with the
corresponding initial condition {α̃k

j }mk=0, and a different
perturbation on the observed data εkj .

The UQ-PredGAN is proposed as follows:

1. Sample the model parameters µ̃j from a normal
distribution N (µ,Cµ), where Cµ is the covariance
matrix of the model parameters, and µ is the model
parameter mean vector.

2. Sample the measurement error εj from a normal
distribution N (0,Cd), where Cd is the covariance
matrix of the measurement error.

3. Assimilate data using the DA-PredGAN process, but
using Eqs. (6) and (7) for the forward and backward
marches.

4. Repeat the process until the final number of data
assimilation samples Ns is reached.

After performing Ns steps of the UQ-PredGAN, accept all
realizations that obtained an acceptable level of data mis-
match. It is worth mentioning that for the RML/RTO, when
the case is linear and normal distributions are used to sample
the model parameters and measurement error, the RML/RTO
samples the corrected posterior distribution (Oliver et al.,
1996; Bardsley et al., 2014; Stordal & Nævdal, 2018). In this
work, we also use normal distributions to sample the model
parameters and measurement error; however, the test case
is nonlinear, and the weighting terms are seen as tuning pa-
rameters (as in Stordal & Nævdal (2018)). Thus, the results
are an approximate sample of the posterior distribution.

F. Extended SEIRS model
The extended SEIRS model used in this work consists of
four compartments (Susceptible - Exposed - Infections -
Recovered) and two people groups (Home - Mobile). Figure
1 shows the diagram of how individuals move between
compartments and groups. The model starts with some in-
dividuals in the infectious compartments (Home-I/Mobile-I).
The members of these compartment will spread the pathogen
to the susceptible compartments (Home-S/Mobile-S). Upon
being infected, the members of the susceptible compartments
are moved to the exposed compartments (Home-E/Mobile-E)
and remain there until they become infectious. Infectious
individuals remain in the infectious compartment until
they become recovered (Home-R/Mobile-R). Recovered
people can also become susceptible again due to the loss
of immunity. Modelling the movement of people is of the
utmost importance in the spread of infectious diseases, such

as COVID-19. Therefore, the goal of the extended SEIRS
model is to reproduce the daily cycle of night and day, in
which there is a pressure for mobile people to go to their
homes at night, and there will be many people leaving their
homes during the day and thus joining the mobile group.
To this end, the extended SEIRS model uses a diffusion
term (last term on the right of Eq. 8) and an interaction term
(penultimate term on the right of Eq. 8) to model this process:

∂Sh

∂t
=ηhNh−

Sh

∑
h′(βhh′Ih′)

Nh
+ξhRh−νShSh

−
H∑

h′=1

λS
hh′Sh′+∇·(kSh∇Sh), (8a)

∂Eh

∂t
=

Sh

∑
h′(βhh′Ih′)

Nh
−σhEh−νEh Eh

−
H∑

h′=1

λE
hh′Eh′+∇·(kEh ∇Eh), (8b)

∂Ih
∂t

=σhEh−γhIh−νIhIh−
H∑

h′=1

λI
hh′Ih′

+∇·(kIh∇Ih), (8c)

∂Rh

∂t
=γhIh−ξhRh−νRh Rh−

H∑
h′=1

λR
hh′Rh′

+∇·(kRh ∇Rh), (8d)

whereH represents the number of groups. Here, we have two
groups of people, hence H=2, one representing people at
home h=1, and the second representing people that are mo-
bile h=2 and outside their homes therefore. Nh represents
the total number of individuals in each group, βhh′ is the
transmission rate between groups, σh is the rate of exposed
individuals becoming infectious, γh is the recovered rate, and
ξh is the rate recovered individuals return to the susceptible
group due to loss of immunity. The vital dynamics are rep-
resented by ηh and νh, where ηh is the birth rate and νh is the
death rate. The diffusion coefficient is represented by kh and
describes the movement of people around the domain. The
interaction terms, λhh′ , control how people move between
groups, for example, how people that are in the mobile group
move to the home group. When moving between groups
people remain in the same compartment, and when moving
between compartments, people remain in the same group.

One important factor in dynamics of infectious diseases is
the basic reproduction number (R0), which represents the
expected number of new cases caused by a single infectious
member in a completely susceptible population (Dietz, 1993;

Generative network-based reduced-order model for prediction, data assimilation and uncertainty quantification

Hethcote, 2000). The R0 controls how rapidly the disease
could spread and for each group it is define as

R0h=
σh

(σh+νh)

βhh′

(γh+νh)
, (9)

where we assume βhh′ =0 when h ̸= h′ because people in
their homes never directly meet mobile people (who are
outside their homes). For this case, we can also calculate
an Effective R0 representing the R0 seen by the whole
population at a specific time. It can be calculated as

Effective R0=

∑
hShR0h∑

hSh
, (10)

G. Dataset and training process
For the training process 40 full-order numerical simulations
were performed in order to generate the training dataset.
Each simulation consists of two differentR0h, one for people
at home and another for mobile people. The spatial domain
of the numerical simulation is a regular grid of 10×10 (100
cells). Considering that each type of people (people at home
and mobile) has the four quantities of the extended SEIRS
model (susceptible, exposed, infectious and recovered), there
will be eight variables for each cell in the grid per time step,
which gives a total number of 100×8=800 variables (model
states). Proper orthogonal decomposition is performed in the
800 variables, in order to work with a low dimensional space
in the GN-based ROM. The first 15 principal components
were chosen and they capture >99.99% of the variance held
in the time snapshots. Hence the GAN is trained to generate
the 15 POD coefficients (αn) and the two R0h (µn) over
a sequence of 10 time steps. We choose this time length
because it represents a cycle (one day) in the results.

The GAN architecture is based on DCGAN (Radford et al.,
2015) and all the codes are implemented using Python and
TensorFlow (Apache 2.0 license). We choose the size of the
latent vector z to be 100. The networks receive/generate the
10 time levels as a two-dimensional array ("an image", Eq.
(1)) with 10 rows and 17 columns. Each row represents a time
level and each column comprises the 15 POD coefficients
and the two R0h. We choose this configuration, instead
of a linear representation, to exploit the time dependence
captured in the two-dimensional array. We also carried out
initial tests using a linear representation of the time level
outputs and a multi-layer perceptron as a generator and
discriminator. However, it generated worse results than the
two-dimensional representation.

H. Hardware configuration
A Linux (Ubuntu 18.04.6 LTS) workstation was used to
train the machine learning models and run all the numerical
simulations. Table 2 shows the hardware configuration.

Table 2. Hardware configuration.
Description Quantity

16GB DDR4 3200 MHz RAM Memory 16
Samsung 970 EVO PLUS 2TB SSD/Solid State Drive 1
Seagate IronWolf PRO 4TB SATA HDD/Hard Drive 3
Nvidia Quadro RTX 4000 Video Card 1
AMD 32 Core 2nd Gen EPYC 7452 CPU/Processor 2
AMD EPYC 7000 EATX Gigabit Server Motherboard 1

