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ABSTRACT

Single-cell atlases are built by integrating multiple heterogeneous datasets into
a common embedding space. The aim is reducing the dataset-specific biases or
batch effects, while capturing the overall cellular composition and biological vari-
ability. One of the envisioned applications is automated diagnostics, where at-
lases are used as references to predict the phenotype of unseen patients. Here,
we developed a diagnostic tool from a multi-disease atlas of inflammation. More-
over, we provided a benchmark of state-of-the-art integration methods for map-
ping and classifying unseen patients. In our tests, all the methods performed
well when query batch effects are well represented in the reference, but mostly
failed otherwise. Notably, linear integration approaches demonstrated superior
robustness and reduced hyperparameter sensitivity compared to more powerful
variational autoencoder-based methods. These findings highlight two fundamen-
tal challenges: the selection of the optimal integration method and the manage-
ment of previously unobserved batch effects when classifying new query patients.
As a viable solution, we designed and tested a Centralized experimental scenario
where reference and query datasets are generated in the same center, demonstrat-
ing a potential pathway toward reliable atlas-based diagnostics.

1 INTRODUCTION

The rapidly growing availability of single-cell transcriptomic studies (scRNA-seq) Angerer et al.
(2017), combined with the development of computational tools scaling to millions of cells Wolf et al.
(2018), represents an unprecedented opportunity to uncover new cellular biology. Yet, substantial
challenges remain in fully harnessing its potential. Indeed, the publicly available data is composed of
heterogeneous datasets generated under different experimental conditions and from a limited number
of individuals Hrovatin et al. (2025). As a consequence, significant efforts have been devoted into
optimizing and standardizing the integration of multiple studies into a single resource, the so-called
“atlas” Heumos et al. (2023); Hrovatin et al. (2025); Luecken et al. (2022; 2024). A large-scale,
curated atlas is not only a powerful tool to generate more robust and generalizable analyses but also
represents a reference to facilitate the analysis of new studies Lotfollahi et al. (2024).

Integrating multiple studies is a key challenge when building an atlas Lähnemann et al. (2020), as it
requires eliminating technical biases, or “batch effects”, such as those arising from differences in the
chemistry assay or the sequencing platform, while preserving the underlying biological variability.
Data integration methods tackle this issue by learning a harmonized representation space, such as
with Variational Autoencoders Kingma & Welling (2014). Moreover, recently developed tools also
enable mapping new query studies onto an existing reference atlas De Donno et al. (2023); Kang
et al. (2021); Lotfollahi et al. (2022; 2024). Crucially, the data integration method must correct batch
effects in the query to successfully map it onto common atlas representation.
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Single-cell reference atlases serve as a valuable resource for various downstream tasks, including
automating the otherwise time-consuming process of cell annotation. One novel promising applica-
tion is patient classification Rood et al. (2022), which, when applied to unseen query studies, turns
a reference atlas into a diagnostic tool by diagnosing new patients based on the condition of their
corresponding cells. Consequently, effective data integration is fundamental to generalize to new,
unseen patients. However, many challenges must be considered when envisioning and designing
a reference atlas. Indeed, studies usually include a limited number of individuals Hrovatin et al.
(2025), and might contain only one or few diseases, leading to an undesirable overlap between batch
effects and the relevant biological information for the downstream tasks. Accordingly, research on
designing multi-disease, multi-study atlas-based diagnostic tools is still ongoing.

Given the lack of an off-the-shelf solution for building single-cell atlases Hrovatin et al. (2025),
the research community has devoted significant efforts into defining best practices Heumos et al.
(2023); Hrovatin et al. (2025) and benchmarks Luecken et al. (2022; 2024). In particular, existing
data integration methods have been evaluated in the context of reference atlas building Luecken
et al. (2022), but research on effective evaluation metrics is still ongoing Wang et al. (2024). Since
specific use cases for reference atlases require ad-hoc experimental settings and workflows, novel
applications such as patient classification still lack the same level of guideline coverage as more
standard tasks, like cell annotation via label transfer Kang et al. (2021); Lotfollahi et al. (2022).

In this work, we focus on a curated atlas of Peripheral Blood Mononuclear Cells (PBMCs) developed
as part of a broader study on disease-specific inflammatory cell profiles Jiménez-Gracia et al. (2023).
Specifically, we introduce a workflow to classify new patients given a reference atlas. Moreover, we
present the first robust evaluation of state-of-the-art data integration and query-to-reference map-
ping methods from the lenses of patient classification, offering practical guidelines to both improve
the experimental design for reference building and select the most appropriate integration method.
Importantly, the evaluation is performed in two distinct settings with increasing levels of difficulty:
(1) on the “unseen-patients” and (2) the “unseen-studies” datasets, with patients belonging to either
the same or to different studies than the ones in the reference, respectively. In this work, we demon-
strate that the second setting introduces crucial challenges that may affect the atlas-building design
choices. Last, we discuss a centralized dataset scenario as a viable experimental setup for building
complex, multi-disease, multi-study atlas-based diagnostic tools.

2 TOWARDS ATLAS-BASED DIAGNOSTICS

Given the potential of atlases as diagnostic tools Rood et al. (2022), several approaches have been
proposed for patient classification (see appendix A.1). However, given the complexity of the ex-
perimental setup, there is still a lack of best-practices for developing multi-disease, multi-study
atlas-based diagnostic tools. Specifically, we identify three critical challenges that need to be ad-
dressed:

Challenge 1 Single-cell studies usually focus on few diseases, and they do not always include
healthy controls. What is the best method to integrate those studies by removing the dataset-level
variability without eliminating the biological, disease-specific signal?

Challenge 2 A diagnostic tool is expected to correctly classify new patients, potentially with new
sources of batch effects. How should we design reference atlases and patient classifiers to account
for unseen sources of batch effects?

Challenge 3 The choice of the data integration and the query-to-reference mapping approach is cru-
cial. How sensitive are the most widely used methods to the hyperparameters choice when applied
to unseen query data? How should we select the best data integration method to effectively map
unseen sources of batch effects?

3 REFERENCE AND QUERY DATASETS GENERATION

3.1 INFLAMMATION ATLAS AND QUERY DATASETS

The single-cell atlas of inflammation considered here was designed as a comprehensive resource to
enhance the understanding of both physiological and pathological inflammation through the study
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Figure 1: Inflammation atlas and reference-query splits generation for each scenario. (a)
Overview of the atlas of inflammation. (b) Experimental design and data splitting schema for each
of the scenarios: CT-MV validation, query-to-reference mapping benchmark, and centralized ap-
proach. For each split we report the number of patients, conditions, and studies.

of circulating immune cells using single-cell transcriptomic data Jiménez-Gracia et al. (2023). This
project includes data from 1047 patients undergoing acute and chronic inflammatory processes, as
well as healthy donors, covering 20 conditions with over 6.5 million cells. The availability of many
patients with different conditions makes the atlas a perfect setting for designing and evaluating a
diagnostic tool. The list of conditions and details about data sources are available in appendix A.3.

3.2 DATA SPLITTING AND SCENARIOS

Starting from the whole atlas of inflammation, we defined multiple independent splits that were
used as reference and query datasets in different scenarios (fig. 1b). We first split the studies in the
inflammation atlas cohort into two datasets: “CORE” and “unseen-studies”, including 961 and 86
samples (patients), and 20 and 8 conditions, respectively. Next, data quality control was performed
independently for each of the two datasets, which involved removing low-quality libraries, samples,
cells, and underrepresented genes, as well as excluding doublets. Then, the CORE was further
split into “MAIN” and “unseen-patients”, with 817 and 144 samples, respectively, with 20 and 9
conditions each. First, samples were stratified based on their study, chemistry, and disease. From
each of these groups, we then randomly selected 20% of samples to be part of the unseen-patients
dataset, provided they amounted to at least 5 samples. As detailed in the following sections, we will
define a scenario where a five-fold cross-validation on the MAIN dataset generates five reference-
query datasets pairs, and one scenario where the MAIN dataset will be used as a reference and
the unseen-patients and unseen-studies datasets as queries. Given the availability of two studies
sequenced in the same center (with the same chemistry assay and sequencing platform) covering
6 diseases, we also defined a “Centralized” dataset. In this scenario, we defined the reference and
query dataset by stratifying samples based on the pool used to generate the RNA libraries, which
comprised 152 and 56 samples each. The distribution of studies, chemistries, and patients for each
disease and dataset are available in fig. A.1.

3.3 ANNOTATION

As reported in Jiménez-Gracia et al. (2023), the MAIN dataset and the Centralized reference were
preprocessed and annotated independently.

MAIN The MAIN dataset (Inflammation Atlas) contains 4,435,922 cells, grouped into 15 main
cell populations (level-1, appendix A.3.4) and 64 subpopulations (level-2). The final gene uni-
verse is composed of 8,253 genes, obtained by aggregating: 3,283 Highly Variable Genes (HVGs),
6,868 Differentially Expressed Genes (DEGs) between healthy and each inflammatory condition,
and 1,364 manually curated immune-specific genes.
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Figure 2: CT-MV patient classifier pipeline and chosen data integration approaches. (a) CT-
MV patient classifier pipeline: (1) a chosen integration method is trained on the reference dataset
to define the cell embeddings, (2) new patients are mapped into the reference, (3) cell-types are
transferred from the annotated reference to the query dataset, (4) cell embeddings are aggregated
into patient embeddings, (5) the CT-MV classifier is trained on reference patient embeddings are
then applied to predict the condition of the query ones. (b) Data integration methods used in each
of the three settings: CT-MV validation, query-to-reference mapping benchmark, and centralized
approach.

Centralized reference The Centralized reference consists of 152 patients and 855,417 cells, with
15 main cell populations (level-1). The gene universe is the same as in the MAIN dataset.

4 METHODS

In this section, we outline the key steps of our patient classifier pipeline, which is designed to
function in a multi-disease, multi-study setting (fig. 2a). First, a chosen data integration method is
used to harmonize the annotated studies composing the reference, correcting their batch effects, and
defining the cell embeddings in the learned representation space. The query dataset is then mapped
into the reference to define the query cell embeddings. Since cells in the query dataset are not
annotated, labels are transferred from the reference. After building the reference, we can define the
patient classifier (referred to as CT-MV for Cell-Type Majority Vote), which combines classifiers
applied independently to each cell type through a majority voting scheme. The CT-MV classifier is
first trained on the reference embeddings and then tested on the left-out query ones.

4.1 DATA INTEGRATION, LABEL TRANSFER, AND QUERY-TO-REFERENCE MAPPING

Starting from a reference dataset, we applied four state-of-the-art integration methods, scGen Lot-
follahi et al. (2019), scANVI Lotfollahi et al. (2022), scPoli De Donno et al. (2023), and Har-
mony Korsunsky et al. (2019)) (detailed in appendix A.2), to obtain the batch-corrected embedding
and then map the query datasets. Note that each integration method was applied independently to
each query dataset. Here, the choice of the batch-effect covariate is crucial, as the studies overlap
with the target diseases (see fig. A.1). To preserve disease variability after integration, it may be
beneficial to choose a broader batch covariate that is not confounded by the disease Hrovatin et al.
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(2025). In our approach, unless specified otherwise, we used the broader chemistry assay covariate
(appendix A.3.1) as the primary source of batch effect, instead of the finer study and sample-level
covariates. Integration methods that use cell types to improve integration used level-2, while label
transfer was performed on level-2 and labels were then aggregated into level-1. When using the
Centralized datasets, the only available level-1 was used.

4.2 CT-MV PATIENT CLASSIFIER

4.2.1 PATIENT EMBEDDINGS

After obtaining the corrected embeddings from a data integration approach, cell-wise embeddings
have to be merged into patient-wise embeddings p. The aggregation is performed at the cell type
level (level-1) by computing the mean embedding across cells belonging to the same sample and
cell type. In detail, let cti be the embedding of the i-th cell of cell-type t ∈ T , then the mean cell
type embedding is ct = 1/n

∑n
1 c

t
i. Accordingly, the cell type t embedding is defined as ct := ct

and the default patient embedding (referred to as cell, as based on cell embeddings) is the set of all
cell type embeddings p := {ct}t∈T . In contrast to the other integration methods, scPoli also returns
an embedding at the patient level psc. Consequently, we were able to test two additional alternatives
to the default patient embedding (cell): directly using scPoli’s learned patient embeddings psc, i.e.,
p := psc (sample), and re-defining cell-type embeddings as the concatenation (∥) of each cell-type
mean embedding with the learned patient embedding, that is ct := ct ∥ psc (cell&sample).

4.2.2 CT-MV AND HYPERPARAMETER TUNING

For each cell-type t, we train one classifier on the reference’s cell type embeddings ct. Only for
scPoli in the sample embedding setting, we train just one classifier on the learned patient embed-
dings psc. We tested the following classifier types: both the linear and non-linear Support Vector
Classifier (LinearSVC and SVC), and the nearest neighbors classifier (kNN). The final CT-MV
classifier prediction is the majority vote among the cell-type classifiers. In the case of a tie between
different conditions, we conservatively rejected the prediction of the classifiers. Moreover, if a given
query patient does not have any cells annotated in a given cell type, the corresponding prediction is
set as “Not Available”. This label is not taken into account during majority voting, and is considered
a wrong prediction when evaluating the performances of that cell type. For each classifier type, we
trained different hyperparameter configurations (table A.1) and evaluated their performance using
five-fold cross-validation on the reference patient embeddings. The best configurations were se-
lected according to the weighted F1-score (WF1), independently for each cell type. Lastly, the best
classifier is then retrained on the whole reference dataset. Notice that we consider the classifier type
part of the CT-MV hyperparameter tuning.

4.3 SCENARIOS AND QUERY-TO-REFERENCE MAPPING BENCHMARK

Having covered the data splits (section 3.2) and the CT-MV patient classifier, we can now introduce
the three experimental scenarios presented in this work. In the first scenario (CT-MV validation), we
validated our CT-MV classifier on five reference-query combinations obtained through a five-fold
cross-validation on the MAIN dataset, stratifying by disease. Since selecting the best-performing
data integration method and its hyperparameters is computationally expensive and, as we will later
discuss, the best method might not generalize to all types of query dataset, in this scenario we em-
ployed only scANVI with pre-defined hyperparameters (3 layers, 256 hidden nodes, 30 embedding
dimensions), as it is a top-performing method in existing benchmarks Luecken et al. (2022). Af-
ter validating the patient classifier, in the second scenario (Query-to-reference mapping benchmark)
we then benchmarked each of the four selected data integration approaches with multiple hyperpa-
rameter configurations (table A.2). In this second scenario, we first integrated the MAIN reference
and mapped both the unseen-patients and unseen-studies query datasets, respectively. In our last
scenario (Centralied approach), we integrated the Centralized reference and then mapped the Cen-
tralized query onto it. Here, compared to the unseen-patients and unseen-studies query datasets, the
main source of batch effect is given by the library sequencing pool (appendix A.3.1), rather than the
study. As this scenario serves as a proof-of-concept, we again used only our pre-defined scANVI
for integration and mapping.
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Figure 3: CT-MV classifier performance across the three scenarios. (a-c) CT-MV performance
evaluation in the five-fold cross validation, showing (a) distribution of Weighted F1-scores for each
left-out split; (b) F1-score for each combination of cell-type and disease, after aggregating all the
predictions of the left-out folds; (c) Normalized confusion matrices displaying proportion of predic-
tions belonging to each true condition after aggregating all the predictions of the left-out folds. (d
and e) distribution of Weighted F1 and Balanced Accuracy Score for all the configurations of each
data integration approach on the unseen patients and studies scenarios, respectively. (f-h) Perfor-
mance evaluation in the Centralized dataset scenario, showing (f) Weighted F1-scores for left-out
pool observation. Mean and standard deviation of weighted F1 score of 100 random condition as-
signments is reported; (g) F1-score for each combination of cell-type and disease; (h) Normalized
confusion matrices displaying proportion of predictions belonging to each true condition.
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5 RESULTS

5.1 VALIDATION OF THE CT-MV APPROACH

The CT-MV classification strategy obtained high performance in the cross-validation scenario
(figs. 3a to 3c), achieving an average Weighted F1-score (WF1) of 0.90 ± 0.03 (minimum 0.87)
and Balanced Accuracy Score (BAS) of 0.85± 0.07 (minimum 0.79) across five independent runs.
Flu was the only disease that failed to be classified effectively (Recall: 0.18). Training a classifier
for each cell type separately allowed us to evaluate their relevance in distinguishing inflammatory
diseases, particularly for those with lower overall performance scores. Certain diseases, such as
COVID, COPD, and Asthma, were particularly well classified by lymphoid and myeloid cells. HIV
was best classified by naive lymphoid cells (i.e., Naive CD4 and CD8 T cells, and B cells) with an F1
of 0.83, consistent with the virus’s tropism for infecting mainly CD4 T cells. In contrast, dendritic
cell types (i.e., DC and pDC) did not allow correct disease assignment (F1 of 0.29). Overall, Plasma
cells and UTC showed the lowest BAS (0.53 and 0.67) and WF1 (0.64 and 0.78), underscoring the
strength of our majority voting approach encompassing multiple cell types embeddings.

5.2 CURRENT QUERY-TO-REFERENCE MAPPING APPROACHES FAIL ON UNSEEN STUDIES

In line with our previous results with scANVI, all integration methods demonstrated high perfor-
mance in the unseen-patients dataset (fig. 3d). Specifically, scANVI, scPoli, and scGen achieved
similarly high BAS (> 0.94) and WF1 (> 0.97), followed by Harmony (BAS: 0.92 and WF1: 0.94)
in their best-performing configurations. However, all approaches experienced a decline in predic-
tive power on the unseen-studies dataset (fig. 3e), with Harmony performing best (BAS: 0.24 and
WF1: 0.47). Notably, scPoli achieved the best results on the unseen-studies dataset when the learned
patient-wise embedding (sample) was used for classification (BAS: 0.24 and WF1: 0.46), but the
same model underperformed on the unseen-patients dataset (BAS: 0.37 and WF1: 0.60). This sug-
gests that not all the patient variability is encoded in scPoli-learned embeddings (psc). Additionally,
sample embeddings may be less prone to overfitting due to their smaller dimensionality compared
to the cell and cell&sample patient embeddings. By evaluating different hyperparameters for each
approach, we estimated each method’s sensitivity to the chosen configuration. Harmony emerged
as the best-performing and least sensitive to hyperparameter choices on the unseen-studies dataset,
with a BAS of 0.22±0.03 and a WF1 of 0.41±0.06 across the considered hyperparameters. In con-
clusion, all tools showed limited generalization in the most challenging task of classifying patients
from the unseen-studies dataset, even after hyperparameter adjustments. In settings where hyper-
parameter tuning and validation are not feasible due to the lack of enough data spanning all target
conditions and covariates (challenges 2-3), tools like Harmony and Symphony might be prefer-
able to more complex VAEs. Indeed, while linear approaches have less representational power than
VAEs, they are less prone to overfitting and more robust to hyperparameter choices.

5.3 A CENTRALIZED PATIENT CLASSIFIER

The notable performance decline between the unseen-patients and unseen-studies query datasets
can be attributed to the more pronounced batch effects in the latter, such as differences in chem-
istry assays, sequencing platform, and research centers. Again, the fact that studies contain only
few diseases prevents for directly correcting by the study covariate (challenge 1), leading to our de-
sign choice of correcting by the chemistry assay. These variations hindered the integration methods
trained on the MAIN reference from fully generalizing to the query (challenge 2). Moreover, the
significantly different performance rankings obtained from the two query datasets highlighted the
challenge of selecting an integration method that generalizes across multiple unseen query datasets
(challenge 3). In the final Centralized approach scenario, we investigated a setting where query
data was generated at the same center, using a single chemistry assay and sequencing platform,
but sequenced in a different library pool (figs. 3f to 3h). Although not directly comparable to the
performance on the unseen-studies dataset, the WF1 and BAS increased to 0.56 and 0.53, respec-
tively, demonstrating a notable enhancement in generalization performance. Our preliminary results
indicate that diagnostic tools based on centralized, single-chemistry studies, including both the ref-
erence studies and future ones to be mapped onto it, could offer a superior experimental setup. In
this scenario, the primary sources of batch effects would be shared between the reference and query
datasets, promoting a better classifier generalization (overcoming challenge 2). Similarly, data in-
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tegration could be selected through a cross-validation on the reference, given enough coverage of
diseases across pools (overcoming challenge 3).

6 DISCUSSION

Patient classification is a promising application of large-scale reference atlases, which involves pre-
dicting a new patient’s condition from its high-resolution single-cell transcriptomic profile signal.
A powerful atlas-based diagnostic tool can only be introduced if diseases and their batch effects
are well-represented in the reference atlas. However, single-cell studies usually contain few pa-
tients and diseases, requiring careful design of their integration, as study batch effects overlap with
the disease’s biological signal (challenge 1, also discussed in Hrovatin et al. (2025); Willem et al.
(2025)). Moreover, new patients might belong to studies with unseen technological variations, such
as a different chemistry assay or sequencing platform than those in the reference, complicating their
mapping onto the reference (challenge 2). All of these aspects make the choice of integration and
mapping methods crucial. However, we currently lack metrics and guidelines for selecting them in
the context of query-to-reference mapping and diagnostics (challenge 3).

In this work, we conducted an analysis using data from a single-cell atlas of inflammation Jiménez-
Gracia et al. (2023), which, due to its extensive range of inflammatory conditions, serves as an ideal
setting for an atlas-based diagnostic tool. Accordingly, we defined the CT-MV patient classifier
approach and confirmed its good performance on five reference-query combinations of the MAIN
dataset. Considering the large availability of studies and diseases in the atlas, we evaluated two
scenarios using the current state-of-the-art integration and reference mapping approaches with mul-
tiple hyperparameter configurations, named the unseen-patients and unseen-studies query datasets.
While CT-MV performs well across different integration methods for left-out patients belonging to
the same studies included in the MAIN reference, all methods poorly generalize to novel unobserved
studies (challenge 2). We attribute the performance drop to the fact that the unseen-studies dataset
contains batch effects that are under-represented in the reference, preventing the generalization of the
CT-MV classifier. Interestingly, while VAE-based approaches perform well in the easier scenarios,
the linear approach Harmony leads to better performance on the unseen-studies dataset, while also
being less susceptible to the hyperparameter configuration. The performance difference between the
two scenarios highlights the need for large-scale benchmarks and metrics to rank integration and
mapping methods in the context of query-to-reference mapping (challenge 3).

Last, we defined a viable solution for the three challenges where reference and query are sequenced
in the same center, with the main source of batch effect being the library sequencing pool (ap-
pendix A.3.1). While a large-scale atlas with diseases represented across multiple studies would un-
doubtedly improve diagnostic tool performance, we argue that a centralized approach could achieve
similar positive outcomes with fewer patients. Indeed, although not directly comparable, CT-MV
obtained better performance on the Centralized query dataset compared to unseen-studies one, sug-
gesting a lower impact of unseen batch effects than in the first case (overcoming challenge 2). In
a Centralized scenario, samples from different diseases could be sequenced in the same pool to
improve their distribution and break the batch-disease relation (overcoming challenge 1). More-
over, the better representation of batch effects in the reference could ease the selection of the best
integration approach. While cross-validation of the MAIN reference may not adequately represent
integration performance on unseen studies due to insufficient disease-batch variability, this approach
would be more viable in our Centralized scenario (overcoming challenge 3).

We believe that additional efforts should be devoted to standardizing and benchmarking the work-
flow for atlas-based diagnostics. While this work provides an initial benchmark and experimental
design guidelines, additional research is needed to address various contexts, including different dis-
eases, batch effect sources, experimental setups (such as batch covariate selection and baselines),
and evaluation protocols (incorporating custom metrics for diagnostic tools). Interestingly, the atlas-
based approach discussed here represents an alternative to the recent surge of single-cell foundation
models Cui et al. (2024), which leverage the availability of large-scale data to learn both technical
and biological signals. Future research should consider the advantages and disadvantages of both
approaches within the context of automated diagnostics.
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MEANINGFULNESS STATEMENT

Meaningful representations can be defined through the principle of compression. Specifically, a
meaningful representation of an input can be viewed as its lossy compression. During the learning
process, the target task is crucial in identifying which information is relevant and should be pre-
served, and which can be discarded. The integration of single-cell datasets aims to compress them
into a representation that retains only the biological signal, eliminating the technical and stochastic
noise. A key challenge addressed in this work is developing a generalizable compression method
that retains the disease signal in single-cell transcriptomic data even on new unseen query datasets.
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A APPENDIX

A.1 PATIENT CLASSIFIERS

To date, multiple approaches for patient classification have been proposed Boyeau et al. (2024);
De Donno et al. (2023); Litinetskaya et al. (2024); Martorell-Marugán et al. (2025); Xiong et al.
(2023). Notably, few of them are designed to handle both data integration and classification Boyeau
et al. (2024), while also enabling query-to-reference mapping on either transcriptomic De Donno
et al. (2023) or multi-omic data Litinetskaya et al. (2024).

A.2 DATA INTEGRATION METHODS

scGEN. scGen is defined by two main components: a Variational AutoEncoder (VAE) and a latent
space arithmetic method. After training the VAE on the reference dataset, the latent space arithmetic
corrects for the batch effect induced by the chemistry assay used. Within each cell type, scGen first
selects the mean µmax of the most populated batch, and then corrects each batch with mean µ0 by
adding δ = µmax − µ0 to each cell’s embedding. The final corrected count matrix corresponds to
the generated count matrix from the arithmetic-corrected embeddings. Following scGen’s tutorials,
we will refer to corrected embeddings to those obtained by using the corrected expression matrix
as input. To perform scGen’s batch correction on the query dataset, we first need to transfer the
annotation from the reference. Following a similar approach employed in the Human Lung Cell
Atlas Sikkema et al. (2023) and introduced in Lotfollahi et al. (2022), we transfer the labels using
(approximate) nearest neighbor Dong et al. (2011). Query cells are annotated with the most probable
cell type on the 10 nearest neighbors in the annotated reference.
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scANVI. scANVI is an extension of the VAE-based scVI Lopez et al. (2018) model that also
exploits cell-type information to perform self-supervised learning. We first trained scVI and scANVI
sequentially on the reference dataset. Then, we fine-tuned1 scANVI on the query dataset to transfer
the labels and extract the query cell embeddings.

scPoli. In contrast to other VAE-based integration methods such as scANVI, scPoli encodes both
the chemistry covariate and the sample as a learnable conditional embedding, and characterizes each
cell-type as a prototype in the latent embedding to facilitate label transfer. First, scPoli is pre-trained
on the reference dataset and its conditions, and then fine-tuned to optimize the prototypes. In the
query mapping phase, we freeze the model and learn the new conditional embeddings belonging to
the query dataset. The label transfer is performed by simply assigning the cell type corresponding
to the closest prototype in the latent embedding space.

Harmony and Symphony. Harmony and Symphony Kang et al. (2021) are two related methods
for data integration and query-to-reference mapping. In contrast to the previous three methods,
these are not VAE-based, but instead compute batch-corrected embeddings in the Principal Com-
ponent Analysis (PCA) space. Each cell is first assigned to one or more soft-clusters, favoring
clusters representing multiple datasets. Cluster-specific linear correction factors are then applied
to the corresponding cells as a linear mixture model, leading to batch-corrected embeddings. Sym-
phony computes soft-cluster assignments for the query cells based on their proximity to the reference
cluster centroids, and then corrects their embeddings using Harmony’s mixture model. Following
Symphony’s defaults, annotations are transferred to the query dataset using nearest neighbors in the
embedding space.

A.3 INFLAMMATION ATLAS

A.3.1 CHEMISTRY ASSAYS AND SEQUENCING POOLS

In this project, we are considering only data generated using 10x Chromium Next GEM single-cell
kits, which include 3′ or 5′ mRNA amplification chemistry assays. Specifically, we are using version
2 and version 3 for the 3′ assays, and version 1 and version 2 for the 5′ assays. Sequencing pools
refer to libraries where multiple samples have been pooled together and processed with a single 10x
kit.

A.3.2 INFLAMMATORY CONDITIONS

Most of the samples were processed in-house, including patients with the following conditions:
Rheumatoid Arthritis (RA), Psoriatic Arthritis (PSA), Crohn’s Disease (CD), Ulcerative Colitis
(UC), Psoriasis (PS), Systemic Lupus Erythematosus (SLE), Asthma, Chronic Obstructive Pul-
monary Disease (COPD), Breast Cancer (BRCA), Cirrhosis, Colorectal Cancer (CRC), and COVID-
19. Additionally, publicly available datasets were incorporated to complete the cohort, covering
conditions the following conditions: Sepsis, Head and Neck Squamous Cell Carcinoma (HNSCC),
Hepatitis B Virus (HBV), Multiple Sclerosis (MS), Nasopharyngeal Cancer (NPC), and Human Im-
munodeficiency Virus (HIV), COVID-19, and flu. Both public and in-house data included healthy
controls.

A.3.3 SOURCES

In-house data sources Vall d’Hebron Research Institute within the DoCTIS consortia (https:
//doctis.eu/), Institut Hospital del Mar d’Investigacions Mèdiques, University Medical Cen-
ter Groningen, Vall d’Hebron Institute of Oncology, Biomedical Research Institut Sant Pau,
Katholieke Universiteit Leuven, Biomedical Research Institut Sant Pau.

Public datasets Reyes et al. (2020); Jiang et al. (2020); Cillo et al. (2020); Zhang et al. (2023);
Schafflick et al. (2020); Liu et al. (2021); Palshikar et al. (2022); Wang et al. (2020); Perez et al.

1We followed the tutorial in https://docs.scvi-tools.org/en/stable/tutorials/
notebooks/scrna/query_hlca_knn.html
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(2022); Savage et al. (2021); Mistry et al. (2019); Ramachandran et al. (2019); Martin et al. (2019);
Ahern et al. (2022); Ren et al. (2021); Terekhova et al. (2023).

A.3.4 CELL TYPE (level-1)

Peripheral blood mononuclear cell (PBMCs) includes myeloid and lymphoid compartments. The
Lymphoid compartment includes B cells, Plasma cells, T CD4 Naive cells, T CD4 Non-Naive cells,
T CD8 Naive cells, T CD8 Non-Naive cells, Unconventional T Cells (UTC), and Innate Lymphoid
Cells (ILC). While the myeloid compartment includes plasmacytoid Dendritic Cells (pDC), Den-
ditric Cells (DC), and Monocytes (Mono).

A.4 APPENDIX FIGURES

Method Parameter Search Space

sklearn.svm.LinearSVC
scaler [True, False]

fit_intercept [True, False]
class_weigth [balanced, None]

C [1e−3, 1e−2, . . . , 1e5]

sklearn.svm.SVC
scaler [True, False]
kernel [sigmoid, rbf, poly]

class_weight [balanced, None]
C [1e−3, 1e−2, . . . , 1e5]

sklearn.neighbors.KNeighborsClassifier

scaler [True, False]
metric [cosine, euclidean]

class_weight [uniform, distance]
n_neighbors [1, 2, 3, . . . , 5]

Table A.1: CT-MV classifier hyperparameter configurations. Hyperparameter configurations
for each classifier method employed for the CT-MV classifier hyperparameter tuning. Note that
the classifier method itself is considered as a hyperparameter. By scaler, we are referring to
sklearn.preprocessing.StandardScaler.

Method Parameter set Configurations

scANVI (n_latent, n_hidden) (256, 20), (256, 30), (256, 50), (256, 100), (512, 200)
scGen n_latent 20, 30, 50, 100, 200
scPoli (embedding_dims, latent_dim) ([3, 20], 20), ([3, 50], 20), ([3, 100], 20),

([3, 20], 30), ([3, 100], 30),
([3, 20], 50), ([3, 100], 50),
([3, 20], 100), ([3, 100], 100)([3, 100], 200)

Harmony n_comps 20, 30, 50, 100, 200

Table A.2: Data integration methods configurations. Configurations for each data integration
method employed in the query-to-reference mapping benchmark scenario.
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Figure A.1: Patient distribution. Distribution of patients across different datasets categorized by
disease type and study ID. The main dataset, unseen-patient dataset, unseen-studies dataset, and
centralized dataset are shown with their respective patient counts and chemistry data.
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