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Abstract

Neural networks can solve behavioral tasks requiring memory either by remembering the full
content or through active manipulation that retains a simplified version. Yet, distinguishing
between these two memory retention mechanisms in recurrent neural networks (RNN)
remains underexplored. To bridge this gap, we studied RNNs performing delayed cue
discrimination (DCD) tasks and asked whether they retain raw continuous-valued input
cues or their task-relevant binary representations. Using linear probes trained on neural
activities during the delay period, we tested whether RNNs eventually collapse the retained
cue values into compact, binary representations. Even though RNNs were trained only
using binary cues, we consistently observed high reconstruction fidelity of continuous cue
inputs across diverse experimental conditions and learned memory mechanisms. Overall,
our results provide evidence that RNNs can find solutions preserving the contents of past
memories with high fidelity, favoring representational completeness over efficiency, even
when not demanded by the task.
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Recurrent neural networks (RNNs) have become a central tool in computational neuro-
science for studying neural circuitry and circuit–behaviour relationships (Finkelstein et al.,
2021; Mante et al., 2013; Yang et al., 2019; Masse et al., 2019; Dubreuil et al., 2022; Perich
and Rajan, 2020; Barak, 2017; Dinc et al., 2025). A common approach is to train RNNs
either as virtual twins of neural recordings or on neuroscience-inspired tasks, using them
as model systems to explore the dynamics that might underlie neural computation (Perich
et al., 2021; Valente et al., 2022; Dinc et al., 2023; Kurtkaya et al., 2025). To interpret the
resulting networks, researchers have turned to dynamical systems theory, geometry, and
topology, revealing rich structure in how RNNs evolve over time (Sussillo and Barak, 2013;
Langdon et al., 2023; Perich et al., 2025). These analyses have shed light on the mech-
anisms by which RNNs maintain information across delays (Rajan et al., 2016; Kurtkaya
et al., 2025), yet a fundamental question remains unresolved: do these networks retain the
full stimulus, or do they compress it into the minimal representation required for the task?

In cognitive science, a similar question is well studied in the sense of short-term memory
(STM) and working memory (WM) distinction. Mainly, STM refers to passive retention
of information, whereas WM involves active manipulation of the data into task-relevant
codes (Baddeley and Hitch, 1974; Cowan, 2008, 2014; D’Esposito, 2007; Aben et al., 2012;
Engle et al., 1999; Goldman-Rakic, 1995). Although these two processes can support similar
behaviors, they imply very different internal representations. A related question emerges in
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Figure 1: Overview of our experimental setup. A) A recurrent neural network trained
to perform the delayed cue discrimination task needs to remember and output
the presented (red) cue information after a brief delay. B) To probe the memory
retention capabilities of the trained network, we first present a non-zero value in
the dormant (blue) cue, and then reconstruct it with a linear probe trained on
the neural activities during the delay period.

artificial neural networks: RNNs trained to solve delayed tasks can achieve high performance
using diverse internal mechanisms (Kurtkaya et al., 2025). Yet, despite this diversity, prior
work has focused mainly on the dynamics of how information is maintained, rather than
on what form of information is being stored. In other words, even when an RNN solves a
memory task successfully, it still remains unclear whether it is retaining the raw stimulus
values or collapsing them into abstract decision codes.

In this work, we investigate whether RNNs trained on delayed cue discrimination (DCD)
task preserve the full information of the cue or collapse it into a binary decision variable. To
answer this, we introduce a simple mechanistic probe: a linear decoder applied to hidden
activity during the delay period to test whether continuous-valued cue inputs can be recov-
ered. Although the task only requires binary discrimination and thus could be solved by
collapsing stimulus values into categorical representations, we consistently find the opposite:
across hyperparameters, network sizes, and different dynamical regimes, RNNs retain high-
fidelity representations of the original continuous cue values throughout the delay period.
This result suggests that, rather than favoring efficient or minimal representations, RNNs
overwhelmingly favor representational completeness. Such behavior has important implica-
tions for both neuroscience and machine learning: it highlights that memory solutions in
trained RNNs may reflect inductive biases toward preserving detailed information, rather
than collapsing it. These findings raise questions about how memory representations emerge
in biological circuits and how artificial systems might be guided toward more efficient codes.

Methods. Our dataset (Table S1) combines firing-rate trajectories obtained from pub-
licly available RNNs trained on the DCD task (Kurtkaya et al., 2025) with additional models
of smaller neuron counts that we trained to extend the parameter range (Figure 1A). The
networks use update rule:

τ ṙ(t) = −r(t) + tanh
(
W recr(t) +W inut + b+ ϵ

)
, (1)
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Figure 2: The dormant cue value can be reconstructed during the delay window
across diverse hyperparameters and learned mechanisms. Shown are L1
reconstruction errors of separately trained linear probes (same architecture and
training settings), applied at each timestep to RNNs trained with different A)
learning rates, B) delay lengths, C) network sizes, and D) dynamical regimes.
For detailed model parameters, see Table S1.

where r(t) ∈ RN denotes the hidden firing rates, τ the time decay constant, W rec the
recurrent weight matrix, W in the input weight matrix, b ∈ RN the bias term, ut ∈ R2 the
external cue input, and ϵ small additive noise.

Task: Delayed cue discrimination (DCD) task is a standard paradigm for probing mem-
ory in neuroscience (Fuster and Alexander, 1971). Each training trial begins with an input
phase (Tinp) presenting a binary cue (1, 0) or (0, 1), followed by a delay phase (Tdelay), a
reaction phase (Tresp) in which the network must reproduce the cue. While Kurtkaya et al.
(2025) also considers an optional post-reaction phase (Tpost), we are not interested in this
time interval in this work. Formally, the inputs (ut) and outputs (ôt) are

ut =

{
(1, 0) or (0, 1), t ∈ Tinp,

(0, 0), otherwise,
ôt =

{
uTinp , t ∈ Tresp,

(0, 0), otherwise.
(2)

While the RNNs were trained on binary cues, during probing we supplied real-valued inputs
for the dormant cue (e.g., 0.1–0.6 instead of 0) to differentiate the memory encoding and
maintenance strategies employed by the networks; notably, this modification did not affect
the final outputs produced by the RNNs.

Linear probe: To examine the information stored in the RNN during the delay, we
attach a linear model to the hidden state. At each timestep t, the hidden activity ht ∈ RN

is mapped to a two-dimensional cue prediction by a linear layer with sigmoid activation
(Figure 1B):

ũt = σ(Wtht + b), Wt ∈ R2×N , b ∈ R2. (3)

A decoder is trained independently at each timestep using the L1 loss between ũt and the
true cue uTinp , without updating the RNN weights. This approach tests whether the RNNs
internal states retain raw memories of the inputs or their binary representations.

To interpret the performance of the linear probe, we established two reference points
(Figure S2). The lower bound was obtained by training the decoder on hidden states dur-
ing the input phase, when cue information is explicitly present; near-perfect reconstruction
is therefore expected (see Appendix S1.2). The upper bound was derived from synthetic
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random activity that preserved only binary cue identity, but not the continuous values pre-
sented (see Appendix S1.3). Together, these bounds provide a reference range for evaluating
the representation of memory information during the delay period.

Results. To test the memory retention strategies in RNNs, we trained linear probes
independently at each timestep of the delay interval and tested them on held-out trials (Fig-
ure 1B). This approach allowed us to assess not only whether the continuous value of the
cue remained maintained, but also how reconstruction fidelity evolved over the delay period.
Our key finding was that linear probes consistently achieved high reconstruction accuracy
across all tested conditions, indicating that RNNs retained detailed input information rather
than abstract task codes (Figures 2, S1). This pattern held remarkably robust across mul-
tiple variables. Training dynamics had no impact: networks trained with different learning
rates (0.1, 0.01, 0.001) all preserved cue traces equally well once task performance con-
verged (Figures 2A, S1A). Temporal demands were also irrelevant: longer delays (0.24ms
vs. 0.08ms) did not degrade reconstruction quality, demonstrating stable internal represen-
tations throughout the memory period (Figures 2B, S1B). Network architecture showed
similar invariance: even small networks (10–20 neurons) supported near-perfect decoding,
with larger networks (50–100) providing no additional advantage (Figures 2C, S1C). Most
strikingly, this pattern transcended the types of solutions learned, i.e., RNNs with both
limit cycles showing oscillatory dynamics and slow-point manifolds showing near-stationary
attractors preserved detailed cue information, converging on the same short-term memory
strategy (Figures 2D, S1D).

Conclusion. In our experiments, RNNs trained on the DCD tasks consistently adopted
to preserve the continuous input traces, not just the binary task outputs. This pattern has
held robustly across training conditions, network architectures, and dynamical regimes. Re-
markably, RNNs have spontaneously developed these richer representations despite having
no explicit training objective to preserve continuous cue values. So that, networks could
have simply collapsed input information into binary decision codes, instead they learned to
retain detailed information.

This finding challenges conventional assumptions about computational efficiency in neu-
ral networks (Sussillo et al., 2015). Rather than adopting the minimal representation
necessary for task success, RNNs trained on the DCD tasks appear to have favored full
information preservation. This preference for representational completeness has broader
implications for both neuroscience and machine learning, suggesting the need for a new line
of research studying whether real memory systems may have implicit biases for retaining
the full STM content by default.

Finally, the method itself offers a straightforward tool for diagnosing representational
strategies in neural networks. By testing whether networks maintain raw sensory traces
or task-relevant outputs, researchers can better understand the computational principles
underlying memory in both artificial and biological systems. Future work should explore
whether more complex tasks or architectural constraints encourage working memory-like
abstraction, and how these mechanisms generalize across different domains and network
types.
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Appendix S1. Implementation details

S1.1. Training of the Linear Probe

The linear probe was trained on firing-rate activity generated by RNNs during inference.
At each timestep of the delay interval, the probe received the firing rate activity as input
and was tasked with reconstructing the original cue from the input phase (Figure 1B).
Training data included trials with a fixed high cue value of 1 and a variable lower value
(e.g., 0.1, 0.2, . . . , 0.6).

The probe was implemented as a single linear layer mapping from the hidden dimension
(N neurons) to the two cue channels, followed by a sigmoid nonlinearity (Figure 1B). Each
timestep was trained independently using an L1 loss between predicted and true cues. The
RNN parameters remained frozen throughout; only the probe weights were optimized.

For reproducibility, all probes were trained for 50,000 epochs using the Adam optimizer
with a learning rate of 3×10−4 and weight decay of 1×10−7 (other parameters at PyTorch
defaults). An additional L1 regularization term with coefficient 0.001 was applied. Training
was performed on CPU (Apple M1 chip).

S1.2. Lower Bound

The lower bound was defined by training and evaluating the linear probe on firing rates
recorded during the input phase rather than the delay phase of an RNN. Because the
cue is explicitly present at this stage, the network’s hidden state contains complete and
direct information about the stimulus. As a result, accurate reconstruction by the inverse
model is expected, and the performance achieved here serves as a practical reference point
(Figure S2).

This lower bound thus represents the best-case scenario for decoding: the probe has
access to firing-rate patterns that directly reflect the presented cue, with no memory main-
tenance required. By comparing delay-period reconstructions against this benchmark, we
can quantify how much information about the cue persists once external input is removed. In
essence, the lower bound anchors probe performance, allowing us to interpret whether suc-
cessful decoding during the delay indicates faithful preservation of input traces or whether
information has degraded or transformed over time.

S1.3. Upper Bound

To establish an upper bound, we generate synthetic neural activity that preserves only the
dominant cue’s categorical identity. Specifically, we construct the activity vector by setting
half of the neurons to a constant value of one, with the position indicating which cue is
dominant: if the dominant cue is (1, 0), the first half is set to one; if the dominant cue is
(0, 1), the second half is set to one. The remaining half is sampled from a standard Gaussian
distribution. We then apply the tanh nonlinearity to bound the overall activity to [−1, 1]:

rsynthetic(t) =

tanh
(
[1N/2, z(t)]

)
if dominant cue is (1, 0),

tanh
(
[z(t), 1N/2]

)
if dominant cue is (0, 1),

z(t) ∼ N (0, IN/2), (S1)
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where 1N/2 ∈ RN/2 denotes a vector of ones and [·, ·] denotes concatenation. This design
ensures that only abstract categorical information is preserved, while precise amplitude
information is lost. As a result, the inverse model cannot recover detailed input values
from such activity (Figure S2). Performance under this condition thus provides a ceiling:
if delay-period decoding approaches this level, it implies that RNNs reduce memory to
categorical abstractions; if performance remains closer to the lower bound, the networks
instead preserve detailed stimulus traces.
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Figure S1: Linear probes reveal robust recovery of cue values. Reconstruction ac-
curacy remains stable across changes in A) learning rate, B) delay duration,
C) network size, and D) Dynamical Regimes (slow manifolds vs. limit cycles),
indicating that networks preserve cue information regardless of how they are
trained or what memory mechanism they learn.
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Figure S2: A linear probe reveals what information is present in hidden states.
We validate the probe by testing it on firing rates during the input period (lower
bound), where the full cue is guaranteed to be available and thus correctly de-
coded. As a contrast, we apply the same probe to synthetic firing rates that en-
code only which cue is dominant, but contain no information about the dormant
cue (upper bound), demonstrating that the probe cannot recover information
that is not represented in the activity.

Figure Neuron Count Parameters Seeds
Fig. 2a 100 LR = 0.1, Delay = 0.16 1,3,4,5,6,23,32,39,46,48

100 LR = 0.01, Delay = 0.16 0,1,2,3,5,6,7,8,11,12
100 LR = 0.001, Delay = 0.16 0,1,2,3,4,5,6,7,8,11

Fig. 2b 100 LR = 0.01, Delay = 0.08 0,1,2,3,4,5,6,7,8,11
100 LR = 0.01, Delay = 0.16 0,1,2,3,5,6,7,8,11,12
100 LR = 0.01, Delay = 0.24 0,1,2,5,7,10,26,38,52,57

Fig. 2c 10 LR = 0.01, Delay = 0.16 1,2,3,5,6,9,10,12,14,17,19
20 LR = 0.01, Delay = 0.16 0,1,2,3,5,6,7,8,11,12,13,14,15,16,18,19
50 LR = 0.01, Delay = 0.16 0,1,2,3,4,6,8,10,12,14,16,17,18,19
100 LR = 0.01, Delay = 0.16 0,1,2,3,5,6,7,8,11,12

Fig. 2d 100 LR = 0.001, Delay = 0.10 0,1,2,3,4,5,6,7,8,9

Table S1: Model parameters and random seeds used for Figure 2. Seeds are chosen such
that the counts of Limit Cycle and Slow-Point Manifold regimes are balanced.
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