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ABSTRACT

Signals are often generated by processes that respect a symmetry group of the
domain they live on. Observed signals are obtained from underlying samples by
some transformation corresponding to a physical process, resulting in a group
action that is often more complicated than the action on the underlying domain.
Learning the symmetry group and the underlying symmetry-based domain are
two intertwined problems of fundamental importance. In this paper, we develop a
method that simultaneously discovers symmetries and symmetry-based domains in
a fully unsupervised setting, without assuming that the group action is transitive.
Our approach is based on a lifting operation inspired by Group Convolutional
Networks, mapping the space of observed features to a domain parametrized
by group elements. By utilizing a powerful locality prior, we are able to learn
symmetry actions such as translations, permutations and frequency shifts, on
datasets with much higher dimensionalities than has been possible before. Since
the domain is hidden, we assume the symmetry group acts directly on the space
of samples, which in the familiar case of natural images means the underlying
pixel translation symmetries to be learned are for a set of images. As well as
discovering the relevant symmetries directly from raw data, our method also offers
a new approach towards solving linear inverse problems. Our code can be found at
Github.

1 INTRODUCTION

The importance of symmetries of data distributions and symmetry-based representations is widely
recognized (Bronstein et al., 2021; Anselmi et al., 2019; Anselmi & Patel, 2022; Higgins et al., 2022;
Tonnaer et al., 2023; 2020; Godfrey et al., 2023; Perin & Deny, 2025; Olanrewaju, 2025). In some
cases such as time series data with time translation symmetry, the action of the relevant symmetry
group and the symmetry-based representation on the natural domain of data are known a priori, but
the discovery of symmetries and the domains where the symmetries manifest remains mostly an
unsolved problem.

Current methods for symmetry discovery are either scalable but require structured input such as
sequential representations related by actions of symmetry group elements (Greydanus et al., 2019;
Alet et al., 2021; Churchill & Xiu, 2023; Sohl-Dickstein et al., 2010; Dehmamy et al., 2021; Koyama
et al., 2023; Miyato et al., 2022; Park et al., 2022; Mitchel et al., 2024; Hou et al., 2024), or are
limited to very low dimensional group representations (Desai et al., 2022; Tombs & Lester, 2022;
Yang et al., 2023b;a). The unsupervised discovery of symmetries and symmetry-based representations
from high-dimensional data without assuming a known domain (in the sense of (Bronstein et al.,
2021)) and without having access to samples related to each other by symmetry operations, remains
a challenge.

The prototypical example of such a problem is the blind discovery of the underlying translation
symmetry of image data. Given a set of natural images turned into vectors, can one discover the
generators of pixel translations, without access to samples related by translations? Even for images of
10× 10 pixels, this would entail a search for 100× 100 matrices representing symmetry generators,
and this search is fraught with difficulties, not the least being a precise formulation of the problem in
the first place.
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Figure 1: Training snapshots from the permuted-translation symmetry experiment. The left panel
shows the model’s input: a bag-of-pixels representation created by randomly shuffling the pixels
of an MNIST digit, thereby destroying its spatial structure. The right panel demonstrates how the
model learns the inverse transformation, progressively restoring the digit and recovering a translation-
invariant representation. To ease visual interpretation, we transposed the entire image.

In this study, we combine the problems of symmetry discovery and symmetry-based domain discovery
(and signal reconstruction) in the relatively modest setting of abelian Lie groups. By performing a
simultaneous search for both the symmetries and the symmetry-based domain using an information-
theoretic approach, we are able to discover the symmetry group and reconstruct signals in the hidden
domain for a challenging set of examples. We demonstrate the efficacy of the method by discovering
the matrices representing pixel translations from a set of raw images (no data augmentation, no
explicitly translated pairs of samples), finding the neighborhood relation and the symmetry generators
in a shuffled case of the Ising model from statistical physics (Külske, 2025), finding the frequency-shift
operator for a synthetic time series dataset that is invariant under frequency shifts, and other related
examples. For cases where the domain is hidden (such as shuffled pixels of images), we demonstrate
that the method is able to discover (unshuffle) the hidden signals while simultaneously finding the
relevant symmetry matrices (see Figure 1 ). All these problems were previously inaccessible in the
fully unsupervised setting.

An essential component of our method is the lifting convolution, adopted from Group Convolutional
Networks (GCNs) (Cohen & Welling, 2016; Bekkers, 2021; Romero & Lohit, 2021; Finzi et al.,
2020; Kondor & Trivedi, 2018) and tailored to unsupervised symmetry discovery. Upon training
by minimizing an information-theoretic loss function, this operation maps the input space where
symmetries are possibly obscure to a new representation space where the symmetries act as simple
translations. The method does not assume that the symmetry group acts on the set of possible
examples transitively. While transitive group actions are fundamental, they do not cover many
real-world examples. A dataset consisting of a given image and all its rotated versions has the rotation
group acting on it transitively, but for a general set of images with an underlying rotation symmetry
(acting on the distribution), it is not possible to obtain an arbitrary image by rotating a given reference
image.

In many physical settings, one does not observe the signal generating mechanism directly, but instead
sees the system through the lens of an observational procedure, or a signal-modifying medium. While
the underlying physical system may have manifest symmetries coupled to the locality of the signal
generation, in the observed versions, the symmetries may be obscure, and the signals may be distorted.
Thus, an unsupervised method for the discovery of symmetries and the representation of the signals
in the hidden domains is, in a sense, closely related to a wide range of inverse problems encountered
in signal processing. We believe our work makes a modest but solid contribution to the problem
of solving linear inverse problems and extracting unobfuscated, natural signal representations by
learning their hidden symmetric structure.

We summarize our core contributions as follows:

Ability to discover the symmetries when they act intransitively: Via using a lifting convolu-
tion inspired from GCNs, our method can discover symmetries when they act each constituent
forming the dataset in different ways. This overcomes a key limitation in unsupervised symmetry-
discovery literature. To formalize briefly, our method can discover symmetries when the group acts
intransitively.
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Discovery of symmetry-based domains: We demonstrate that our framework can successfully infer
the underlying, original signals from distorted input data. This capability opens new horizons for
tackling challenging unsupervised inverse problems.

Scalability to high-dimensional representations: By leveraging locality prior, our method scales
to discover symmetry group representations (irreps) with dimensionalities as high as 272 × 272,
overcoming the scalability barriers of probabilistic inference at high dimensional spaces.

Generalized symmetry representations: Our framework learns representations that act on the space
of all possible samples, moving beyond the limitations of left-regular representations that are confined
to predefined coordinates.

2 RELATED WORK

Various studies explored supervised-learning-based approaches to symmetry discovery. Some exam-
ples include symmetry searches via discovering augmentations of image datasets (Benton et al., 2020),
(Romero & Lohit, 2021), seeking transformations that leave predetermined or learned functions
invariant (Forestano et al., 2023a;b; Krippendorf & Syvaeri, 2020; Moskalev et al., 2022; Ko et al.,
2024) and methods for learning weight-sharing mechanisms that give the best performance for a
group of supervised-learning tasks (Zhou et al., 2020). Although this line ofresearch often results in
robust methods, their task-specificity can also be a limitation; symmetry candidates that are suited to
one supervised learning task is often not appropriate for another, and the requirement of a labeled
dataset is not always satisfied.

A closely related avenue of research is the discovery of the time evolution of dynamical systems
(Greydanus et al., 2019; Alet et al., 2021; Churchill & Xiu, 2023) and evolutions of sequential data
(Sohl-Dickstein et al., 2010; Dehmamy et al., 2021; Koyama et al., 2023; Miyato et al., 2022; Park
et al., 2022; Mitchel et al., 2024). While this auto-regressive or self-supervised setting provide
powerful methods without requiring labeled data in the usual sense, they require domains satisfy-
ing translational-symmetry or sequential data to operate. We are rather focused over discovering
symmetries coupled to domains. In this manner, methods proposed in this line of research has
complementary nature to our method.

In similar spirit to our method, the methods based on distribution invariance also don’t require
structured representation to operate as well as don’t requiring labeled datasets (Desai et al., 2022;
Tombs & Lester, 2022; Yang et al., 2023b;a). They are demonstrated to work with dimensional
irreducible representations up-to 4× 4 dimensions acting over either position coordinates or phase-
space coordinates. For applying their method at higher dimensions, it’s assumed that the symmetry-
representation is in block diagonal form, and the blocks are identical with each other Yang et al.
(2023a).

Although methods based on probabilistic invariance is a source of inspiration for us, scalability
problems hinder their applicability to raw data since probabilistic invariance suffers from curse
of dimensionality, and they have been reported to have convergence failures at 7× 7 dimensional
representations (Efe & Ozakin, 2024). The solution to address this problem, assuming that symmetry
representation acts in a block-diagonal form with identical blocks Yang et al. (2023a), is a major
limitation in our setting.

In this study, we address a fundamental complementary problem which is not yet addressed to
our knowledge. We are interested in the symmetry representations that form the domain, such as
translation representations, and this requires addressing different challenges.

3 BACKGROUND

3.1 SYMMETRIES OF THE DATA DISTRIBUTION

We represent the data by a random vector X with distribution pX on a space X. We say that the
distribution of X is invariant under the action of a group G with representation ρ : G→ GL(X) if

pX(ρ(g)x) = pX(x) ∀g ∈ G,x ∈ X.

3
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Our aim is to discover the symmetry group G, and to use it for building a symmetry-based representa-
tion revealing the true nature of data.

3.2 DATA MODEL AND SIGNAL RECOVERY

Data model: We model the underlying process generating the data as a stochastic process on a
Lie group G, which also forms the hidden, symmetry-based domain of the data—in the notation of
(Bronstein et al., 2021) Ω = G. Each sample on this hidden domain is thus a function f : G→ R,
which we think of as an element of a vector space of functions defined on G, e.g., functions that are
square integrable with respect to the Haar measure on G. To state formally, we consider that the
signals f live in the space F given by F(Ω, C) = L2(G,R).

We assume the process generating these samples is invariant (stationary) under the action of G
via left translations, in other words, under (v · f)(u) := f(v−1 · u) where u, v ∈ G. We will take G
to be abelian, and write the group operation as addition, which gives (v · f)(u) := f(u− v).
We consider that the observed signals are not the functions f , but are vectors in the vector space X,
(which we will take to be a Hilbert space), which are obtained from the underlying samples f on G
via a linear transformationM : F = L2(G,R)→ X,M : f 7→ x ∈ X. This transformation is to be
thought of as relating underlying physical samples to the observed samples via a physical process
such as measurement itself.

We assume that the action of G on underlying signals f defines a unitary group representation ρ on
X, i.e.,

M[v · f ] = ρ(v) · M[f ] , (1)

where ρ ∈ GL(X) is a linear map X→ X.

Our aim is to learn the symmetry group action {ρ(g) : g ∈ G} on the space of observed samples X,
and to learn the underlying domain G, together with a map that reconstructs the underlying signals f
on G from observed signals x. Note that this assumesM is an invertible map between the space F
of possible underlying samples and the space of possible observations.

Recovering hidden symmetry-based signals: To describe the process of recovering the hidden,
symmetry-based signals from observed ones, we start with the notion of a Dirac delta function δ on
G satisfying,

f(u) =

∫
G

f(v)δ(v−1u)dµ(v) , (2)

where dµ is the Haar measure on G. For the case of an abelian Lie group G of dimension P with Lie
algebra g, we denote a basis for the Lie algebra g of G by lj , j = 1, . . . , P . The exponential map
allows us to label the group elements by a set of real numbers t = t1, . . . tP , g(t) = exp(

∑
j ljtj).

The corresponding matrix ρ(t) becomes ρ(t) = exp(
∑

j Ljtj) where Lj is the matrix representing
the Lie algebra element li. When ρ is unitary, the Lj are anti-Hermitian. In the special case of an
orthogonal representation, Lj is anti-symmetric. In the case of abelian G, we parametrize the group
using the parameters tj and with an appropriate choice of normalization for dµ, we write the integral
(2) as

f(t) =

∫
f(s)δ(t− s)ds . (3)

We will call the image of δ under the action ofM the origin vector, and denote it by δo =M[δ].
Using (1), we getM[v · δ] = ρ(v) · δo.

Just as any signal on G can be formed by a linear combination of delta functions via (2), any observed
signal can be written as a linear combination of appropriately transformed versions of δo:

x =M[f ] =M
[∫

G

f(v)(v · δ)dµ(v)
]

=

∫
G

f(v)M [v · δ] dµ(v) =
∫
G

f(v)ρ(v) · δodµ(v).

(4)

Note that the last integral is vector-valued.

Our aim is to learn ρ(g) and δo from data, and using this knowledge, reconstruct f , the underlying,
symmetry-based representation of the signal. We next show that f can indeed be reconstructed using

4
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a standard deconvolution approach under certain assumptions. Consider the function z : G → R
defined by projecting an observed signal onto the orbit generated by the group G acting over origin
δo:

z(t) := δo
⊤ρ(−t)x = δo

⊤ρ(−t)
[∫

f(s)ρ(s) · δods
]
=

∫
f(s)[δo

⊤ρ(s− t) · δo]ds

= (f ∗ k)(−t)
where we defined the kernel k(r) := δo

⊤ρ(r) · δo and used the underlying, symmetry-based
representation of the signals f : RP → R. Solving f from z is a deconvolution problem, whose
solution is outlined for the case of a compact G in the Appendix A.1.

As a result of the deconvolution process we obtain f(t) = ϕ⊤ρ(−t)x. This equation tells us that we
can recover the hidden signals on the hidden domain by applying an appropriate projection defined
by the resolution filter, coupled with the action of the group elements. In the Group Convolutional
Network literature, a closely related operation is already defined and named as lifting convolution
(Bekkers, 2021; Romero & Lohit, 2021). Below, we will also consider the case of the lifting operation
for a general ϕ, possibly different from (20) combined with the correct ρ(t).

Formally, for Abelian Lie Groups, we define the lifting operation L : X→ L2(RP ) as;

(Lx)(t) := ϕ⊤ρ(−t)x = f(t) (5)
mapping samples from the space of observed signals to hidden, symmetry-based representations.

3.3 PROPERTIES OF THE LIFTING OPERATION

We next discuss some properties of the lifting operation for a general ϕ⊤ (not necessarily the one
defined by (20)).

Mapping samples to continuous functions: Let x be an observed sample, and t1, t2 ∈ RP two
points in the group parameter space. Then, the values y1 := Lx(t1) and y2 := Lx(t2) of the lifted
function at t1 and t2 cannot be too different when t1 and t2 are close. Namely, one has

|y1 − y2| = |ϕ⊤ρ(−t1)x− ϕ⊤ρ(−t2)x| ≤ ||ϕ⊤|| ||ρ(−t1)− ρ(−t2)|| ||x|| (6)
where ||ρ(−t1)−ρ(−t2)|| denotes a suitable norm. In the practical case of finite-dimensional vectors
x, ρ will be a matrix, and one can take the Frobenius norm. The continuity of the exponential map
ensures that ||ρ(t1)− ρ(t2)||F → 0 when t1 → t2, showing that the lifting operation maps x to a
continuous function over group elements.

Equivariance: However, even when ϕ⊤ is not the correct resolving filter defined by (20), the lifting
map is equivariant under the action of G. We have,

(Lρ(s) · x)(t) = ϕ⊤ρ(−t)ρ(s)x = ϕ⊤ρ(−(t− s))x = (Lx)(t− s) . (7)
Thus, one has L ◦ ρ(s) = Ts ◦ L where Ts denotes the translation operator, acting on functions on G
by (Tsf)(t) = f(t− s).

Converting group invariance to shift-invariance: One of the essential properties of the proposed
lifting operation is that it converts the symmetries of the data distribution into a much more tractable
shift-invariance. If the data distribution pX (for observed signals) is ρ-invariant, then the lifting
Lx(t) = ϕ⊤ρ(−t)x is a stationary (shift-invariant) random field on G (for proof, see Appendix A.2).

In the case where ϕ⊤ is given by (20) and the lifting operation is able to recover the correct underlying
signals, f̂ = f , this relation simply says that the invariance of the distribution of observed signals
under ρ(t) is the same thing as the invariance of the underlying signals on G under the left action of
G.

4 METHODOLOGY

4.1 OVERVIEW

Our method involves two separate networks which work as a whole: the lifting network and the
auxiliary network. The two networks are trained in two separate optimization loops, simultaneously.

5
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The lifting network consists of a single layer which implements the operation described in the
Equation 5, in other words, it maps signals from the input space X to a candidate symmetry-based
representation. It is trained using a loss function that consists of three pieces measuring the quality of
the candidate symmetry-based representation, namely, the shift-invariance, resolution and infomax
terms to be described below.

The auxiliary network contains subnetworks that estimate the loss terms of the lifting network.
This involves estimating KL-divergences between the symmetry-based representation and its shifted
versions, and estimating the overall entropy of the symmetry-based representation and the marginal
entropies of its components. The auxiliary network has two loss terms whose optimization improves
the quality of estimated KL-divergences and entropies.

4.2 LIFTING NETWORK

4.2.1 STRUCTURE

Lie algebra basis parametrization The lifting operation is performed using matrices {Li}Pi=1 ∈
Rd×d representing the action of the Lie algebra of the symmetry group on the space of observations.
The lifting network parametrizes these matrices, which we call the Lie algebra basis, as real antisym-
metric matrices which commute with each other, the antisymmetry ensuring the orthogonality of
the representation ρ via the exponential map. We ensure commutativity by expressing Li in terms
of their eigendecomposition, using shared eigenvectors but allowing the eigenvalues to differ (see
Appendix C.2). Thus, the network is tasked with learning the shared eigenvectors and the eigenvalues
of Li.

Symmetry-based representation Given Li and we form a discrete symmetry-based representation
yn by lifting the samples x via the operation

yn := (Lx)(tn) = ϕ⊤ρ(−tn)x. (8)

Here, ρ(−tn) is the group element exp
∑

j Litni
, and tn is the parameter vector specifying group

elements, given as tn = ( n1

N1
, n2

N2
, . . . , nP

NP
) where Ni specifies the discretization resolution of ith

group dimension. The resulting discrete symmetry-based representation yn is thus of the form
yn : ZP → R. We limit the integers ni to the interval [−Ni

2 ,
Ni

2 ]. To form yn, the network needs to
learn Li and ϕ⊤, which is simply a vector.

We implement this otherwise computationally expensive structure in an efficient manner by diagonal-
ization based procedure. For details, see Appendix .

4.2.2 THE LIFTING LOSS

The loss for the lifting network is given by

Llifting = Linvariance + αLresolution + βLinfomax.

Each term quantifies a different aspect of the quality of the symmetry-based representation obtained
by lifting: the invariance term enforces shift invariance, the resolution term induces a notion of

6
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locality, and the information maximization helps preserve information and avoid trivial solutions.
All three terms are information-theoretic quantities with entropy-based formulations, which helps
with hyperparameter tuning. We next describe these terms, assuming one has access to the relevant
entropy-based quantities, which will be estimated by the auxiliary network.

Invariance The shift invariance loss is based on the Jensen-Shannon divergence DJS(P∥Q) be-
tween two distributions P and Q, which is simply the symmetrized form of the KL divergence:
DJS(P∥Q) = 1

2 (DKL(P∥M) +DKL(Q∥M)). For each group dimension l = 1, . . . , P , we de-
fine the l-shifted version y(l) of the symmetry-based representation by y(l)n := yn+el

, where el ∈ RP

denotes the l-th standard basis vector. In other words, we shift the lth component of a symmetry-based
representation y by one unit to obtain y(l). Using capital letters to denote the corresponding random
variables, we define the invariance loss as the average JS-divergence between Y and Y(l):

Linvariance :=
1

P

P∑
l=1

DJS (PY||PY(l)) , (9)

where PY and PY(l) denote the distributions of the random vectors Y and Y(l), respectively. This
quantity is minimized when the joint (P -dimensional) distribution of a candidate symmetry-based
representation is invariant under shifts of its component indices nl by one. The estimation of Linvariance
is described below.

Resolution To reveal the hidden real-world signals in an unsupervised manner, learning the symmetry
group representation is not sufficient by itself, one also needs to learn the resolving filter. To do
this, we use a loss term that forces independence across the components of the symmetry-based
representation as much as possible. This is done via total correlation minimization Hyvärinen & Oja
(2000) which is defined for Y, the random vector representing the symmetry-based representation as

Lresolution :=
∑
n

h(Yn)− h(Y) (10)

where h(Yn) and h(Y) are component-wise and joint entropies, respectively. This term is a powerful
regularizer since it can probe any linear, non-linear, and higher-order dependency between the
components of Y. It will be shown in Section A.2.1 that due to the smoothness property of lifting
(see Section 3.3), which forces close components being correlated, Lresolution induces information
locality along the symmetry axes.

Information maximization To ensure that lifting preserves information and does not uncontrollably
collapse the data, we maximize the joint entropy of the symmetry-based representation. In other
words, we minimize

Linfomax := −h(Y) (11)

In Section 4.3.2 below, we will describe an adaptive-rank approach to entropy estimation, which will
lead this loss term to help the group orbits in X to initially span a small but high-entropy subspace,
and then gradually expand it to span the whole space of possible signals. This procedure helps guide
the optimizer along an effective trajectory, and prevents getting stuck in local minima. Minimizing
Linfomax can also be seen as maximizing the mutual information between the input and the output of
the lifting map (see the infomax principle (Linsker, 1988; Bell & Sejnowski, 1995)).

4.3 AUXILIARY NETWORK

4.3.1 KL DIVERGENCE ESTIMATION

The invariance loss (9) is given in terms of the KL divergence between two distributions. To estimate
KL divergence, we use the duality formula Sreekumar & Goldfeld (2022); Donsker & Varadhan
(1975) giving the KL divergenceDKL(R||S) between two probability distributionsR,S as a solution
to the optimization problem

DKL(R||S) = sup
θ∈Θ

{
Ex∼R[fθ(x)] − logEx∼S [exp fθ(x)]

}
(12)

where fθ : RN → R and θ parametrizes all functions Donsker & Varadhan (1975).

7
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We approximate the search over all fθ using a neural network, with θ describing the network
parameters, and using (12) to define the loss. To approximate the expectation values in (12), we
use averaging over batches. For the network architecture, we use a CNN with additional learnable
position embeddings, which turns out to work rather efficiently. See Appendix C.5.2 for details.
Since each JS-divergence involves two KL-divergence estimates, we use two identical networks with
separate weights for each term in the loss (9), and train these networks using the optimization loop
given in Figure 2b.

4.3.2 ENTROPY ESTIMATION

To estimate the loss terms (11) and (10), we need to estimate the componentwise entropies and the
joint entropy for the symmetry-based representation Y.

Component-wise Entropies We estimate {h(Yn)} via Gaussian mixture-based trainable estimators
as described in Pichler et al. (2022) where Yn denotes the random variable representing single
component of the symmetry-based representation. This approach estimates the parameters of a
Gaussian mixture while using an entropy-based loss. We use 4 Gaussians per component of symmetry-
based representation. See Appendix C.3 for details.

Joint Entropy We estimate the joint entropy of the symmetry-based representation by making a
multivariate Gaussian approximation to the distribution, using the cross-covariance matrix of each
batch to get the parameters of the relevant Gaussian. We use a low-rank approximation for the entropy
and control the rank during the course of training. By initially starting from the lowest rank and
increasing gradually to full rank, this method provides a favorable optimization path (see Appendix
B). Considering the scaling properties of entropy with respect to rank, we use “per-rank entropy” via
dividing estimated entropy to the rank of approximation.

5 EXPERIMENTS

5.1 SETUPS

One-parameter translation symmetry experiments First, we evaluated our method on a synthetic
63-dimensional translation-invariant dataset. Each sample was generated by superposing multi-
ple functions randomly selected from a family of smooth, compact signals H := {hθ}, where θ
paramterizes the signal shape. We specifically employed two families for H: Gaussian functions
and Associated Legendre Polynomials. This setting forms a preliminary test to method’s ability
for discovering symmetries when the dataset doesn’t involve identical samples those are globally
translated versions of each other. In other saying, we aim to see if the model can learn the symmetries
when the group acts intransitively. For more details, see Appendix G.

(a) DST evolution (b) Symmetry generator for permuted ISING.

Figure 3: In Figure 3a, we show the training snapshots for a matrix that represents the lifting
operation for frequency-shift symmetric distribution. Optimization follows a continuous trajectory,
progressively building the inverse DST-I transformation. On the right, Figure 3b shows the inverse
permutation matrix learned in the shuffled MNIST experiment.

One-parameter frequency-shift symmetry experiments To evaluate our model on a dataset with
frequency shift symmetry, we applied DST-I transformation over the translation invariant dataset
generated in Section 5.1. This allows us to test our method on symmetries that are less obvious to the
human eye, thereby validating its bias-free nature.

One-parameter permuted translation experiments We tested our model over the synthetic dataset,
generated by widely recognized ISING model. First we randomly assigned it spin configurations

8
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Model input Model output Hidden signal

Model input Model output Hidden signal

Figure 4: Waveform samples for one-parameter group experiments. At left we see transformed
samples and the model undercovers the signal by learning the inverse transformation.

Table 1: Cosine similarities between the learned symmetry generators and the true, minimal genera-
tors.

Signal Input
Dimensions

Batch
Size Epochs Invariance Generator

A
Generator

B
Input-Output
Correlation

1D Gaussian 63 5000 10000 Translation 0.979 – 0.915
1D Legendre 63 5000 10000 Translation 0.993 – 0.998
1D Gaussian 63 5000 10000 Frequency shift 0.984 – 0.789
1D Legendre 63 5000 10000 Frequency shift 0.988 – 0.979
1D Ising 33 5000 7500 Shuffled translation – 0.910 0.995
1D Ising 33 5000 7500 Linearly distorted translation – – 0.992
MNIST (15 x 15) 225 5000 20000 Translation 0.961 0.963 0.995
MNIST (15 x 15) 225 5000 20000 Shuffled translation 0.976 0.970 0.994
MNIST (27 x 27) 729 5000 30000 Shuffled translation 0.675 0.722 0.710

to 33 dimensional lattice with entries in {−1,+1}. We draw the coupling strength β uniformly for
sample from a given range [1.0, 5.0]. The spins are then updated iteratively for a 10 Gibbs sweeps,
where at each position the probability of flipping is determined by the local field (sum of neighboring
spins) passed through a sigmoid function scaled by β. Afterwards, the resultant dataset is permuted
by a random permutation matrix.

One-parameter approximate translation experiments For evaluating whether it’s possible to
recover more challenging non-orthogonal distortions, we corrupted the data with a systematic random
linear transformation, whose singular values are limited to the range [0.75, 1.33] for preventing
information loss. Since the model is tailored for orthogonal group representations, we gave it a degree
of freedom by plugged in a linear map K : X→ Rd, before the lifting operation is applied.

Two-parameter translation symmetry experiments To test our method over two-parameter groups
and it’s scaling properties we used MNIST dataset. To enforce translation invariance, we first pad
each image with zeros to a size of 84×84 pixels. We then generate two different datasets by randomly
cropping with 15× 15 and 27× 27 patches, and flatten each patch into a 225 and 729-dimensional
vectors, disrupting spatial structure.

Two-parameter permutation symmetry experiments As in Section 5.1 we ensure translation
invariance by padding and randomly cropping. Then we apply a random permutation to each sample,
converting them into bag of pixels. Finally, each patch is flattened into a 225 or 729-dimensional
vector, requiring our model to autonomously reconstruct the spatial domain as a result of learning the
transformed symmetry representation.

6 DISCUSSION

In this paper, we developed a symmetry and symmetry-based domain learning method for commuta-
tive Lie groups by using a representation learning perspective. We showed in variety of synthetic
experiments that the developed method can learn symmetries on variety of experimental settings.
Besides this, it can also invert mild distortions, recovering underlying domain. These problems have
not been addressed previously in the unsupervised setting, by using symmetry, and we believe that
this makes a unique contribution, opening new horizons.

However, currently the method is limited to abelian Lie groups, and it should be generalized to more
general non-commutative symmetries to manifest it’s full potential. Besides, our experiments show
that datasets with Gaussian distributions are challenging for the current implementation. We have
probed the origin of this problem as covariance based joint entropy approximation, which we plan to
address in future studies.

9
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A PROOFS AND DERIVATIONS

A.1 DECONVOLVING SYMMETRY-DOMAIN SIGNALS

Solving f from z is a deconvolution problem, whose solution we next outline in the case of a compact
G, i.e., assuming G is a P -dimensional torus TP = S1× . . .× S1, parametrized so that tj ≡ tj +2π.

Let um be the eigenvectors of the Lie group representations. We will denote eigenvalues as a
vector θm :=

(
θ
(0)
m , θ

(1)
m , ..., θ

(P )
m

)
. Then for any group element parametrized by t, we can express

its representation as ρ(t) =
∑

m umu†
me

iθm·t. The unitary irreducible representations (irreps)
of an abelian Lie group are 1-dimensional and they can be labeled by grid of integers, with each
corresponding to a P-dimensional irrep with rm ∈ Z. We will denote θm as rm ∈ ZP similar to the
one dimensional case.

The Fourier coefficients of a function g(t) is given by G̃n = 1
(2π)P

∫ 2π

0
e−in·tg(t)dt, where t and n

are vectors. While coefficients n ∈ ZP form a grid, t ∈ RP is a vector defined over the parameter
space.

With this, we get,

Z̃n =
1

(2π)P

∫ T

0

δ⊤o ρ(−t)x e−in·t dt (13)

= δ⊤o

[∑
m

1

(2π)P

∫ 2π

0

umu†
m e−it·rme−in·t dt

]
x (14)

= δ⊤o

[∑
m

umu†
m δn+rm

]
x (15)

Similarly,

K̃n =
1

(2π)P

∫ ⊤

0

δo
⊤ρ(−t)δoe−in·tdt = δo

⊤

[∑
m

umu†
mδn+rm

]
δo . (16)
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Then, the symmetry-based signal f can be recovered by the inverse transform giving us the following
expression;

f(t) =
∑
m

δo
†umu†

mx

δo
†umu†

mδo
exp (−it · rm) (17)

=

[∑
l

δoulu
†
l

δo
†ulu

†
l δo

][∑
m

umu†
m exp (−it · rm)

]
x (18)

= ϕ†ρ(−t)x. (19)

In the last equation, we defined the resolution filter ϕ ∈ X as

ϕ⊤ :=
∑
m

δo
†umu†

m

δo
†umu†

mδo
. (20)

A.2 CONVERTING GROUP INVARIANCE TO SHIFT INVARIANCE

The invariance of a random field under a transformation is defined in terms of the invariance of its
finite-dimensional distributions. We restrict our attention to the case of continuous distributions.
For a selection t1, . . . , tM of points on the group parameter space, the joint probability density of
(f̂1, . . . , f̂n) := (f̂(t1), . . . , f̂(tn)). is given by

pt1,...,tm(f̂1, . . . , f̂M ) =

∫
X
pX(x)

M∏
i=1

δ
(
f̂i − ϕ⊤ρ(−ti)x

)
dx.

Consider a shift of the group parameter values tj by a vector a ∈ RP . The value of pM at the shifted
values is given by

pt1+a,...,tm+a(f̂1, . . . , f̂M ) =

∫
pX(x)

M∏
i=1

δ(f̂i − ϕ⊤ρ(−(ti + a))x)dx

Applying the change of variables x′ = ρ(−a)x and noting that the orthogonality of the representation
implies dx′ = dx, we get:

pt1+a,...,tm+a(f̂1, . . . , f̂M ) =

∫
pX(ρ(a) · x′)

M∏
i=1

δ(f̂i − ϕ⊤ρ(−ti)x′)dx′.

By the assumption of G-invariance, pX(ρ(a) · x′) = pX(x′), therefore:

pt1+a,...,tm+a(f̂1, . . . , f̂M ) =

∫
pX(x′)

M∏
i=1

δ(zi − ϕ⊤ρ(−ti)x′)dx′

= pt1,...,tm(f̂1, . . . , f̂M )

proving stationarity under translations.

A.2.1 ON THE EFFECT OF RESOLUTION TERM

In this section, we will argue how resolution term favors the symmetry-based representation to
resemble Markov field of lowest order. Currently, we will limit our setup for one-parameter groups
for simplicity.

Let Y denote the d-dimensional output representation learned by the model. Using the chain rule for
entropy, the joint entropy of Y can be written as h(Y) =

∑d
i=1 h(Yσ(i)|Yσ(<i)) where σ represents

any permutation of the components. Yσ(<i) denotes the components {Yσ(1),Yσ(2), . . .Yσ(i−1)}
when σ(i > 1), and for Yσ(<1), it simply means no conditioning is applied. We define the following
mth order approximation to the chain rule formula that only uses m components for conditioning:

h(m)
σ (Y) =

∑
i

h(Yσ(i)|Yσ([i−1,i−m])) (21)
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where Yσ([i− 1, i−m]) denotes the random variables {Yσ(j)}i−m≤j≤m−1.

Since conditioning can only reduce entropy (Cover, 1999) we have

h(Y) ≤ h(d−1)
σ (Y) ≤ · · · ≤ h(1)σ (Y) ≤ h(0)σ (Y) . (22)

Using Equation 22, Total correlation C(Y) can be written as sum of conditional mutual information
terms;

C(Y) =

d−1∑
m=0

hmσ (Y)− hm+1
σ (Y) (23)

=
∑
m=0

∑
i=0

h(Yσ(i)|Yσ([i−1,i−m]))− h(Yσ(i)|Yσ([i−1,i−m−1])) (24)

=
∑
m=0

∑
i=0

I(Yσ(i);Yσ(i−m−1)|Yσ([i−1,i−m])) (25)

=
∑
i=0

I(Yσ(i);Yσ(i−1)) +
∑
m=1

∑
i=0

I(Yσ(i);Yσ(i−m−1)|Yσ([i−1,i−m])) (26)

Hence giving us;∑
m=1

∑
i=1

I(Yσ(i);Yσ(i−m−1)|Yσ([i−1,i−m])) = C(Y)−
∑
i=0

I(Yσ(i);Yσ(i−1)) (27)

However, lifting operation puts a lower bound to the covariance between any two components
Yi and Yj of the symmetry-based representation, depending on the distance of two group ele-
ments in the parameter space. Taking E[Yi] = 0 for convenience, we can exchange the covariance
Cov(Yσ(i), Yσ(i−1)) between two components Yσ(i) and Yσ(i−1) by the average of squared distance

d2σ(i),σ(j) := E
[
d2σ(i),σ(i−1)

]
= Var(Yσ(i)) + Var(Yσ(i−1)) − 2Cov2(Yσ(i), Yσ(i−1)). For con-

venience, we assume that Var(Yσ(i)) is constant, which we denote by α ∈ R and α > 0. This
assumption is also favored by the shift-invariance term. Then the average squared distance simplifies
to d2σ(i),σ(j) = 2α(1− rσ(i),σ(i−1)).

Additionally, we know that distance between two components is upper bounded from the continuity
argument 3.3. Then

d2σ(i),σ(i−1) = 2α(1− rσ(i),σ(i−1)) ≤ ||ϕ||2|ρ(tσ(i))− ρ(tσ(i−1))||2F ||x||2

=⇒ rσ(i),σ(i−1) ≥ 1− ||ϕ|| ||x||
2α

||ρ(tσ(i))− ρ(tσ(i−1))||2F

For simplicity, lets define the distance Dij :=
||ϕ|| ||x||

2α ||ρ(ti)− ρ(tj)||2F . Assuming that components
Yi are Gaussian, lower bound to correlation introduces a lower bound to mutual information such
that I(Yσ(i);Yσ(i−1)) ≥ −

∑
i
1
2 log(1 − r

2
σ(i),σ(i−1)). Since we want to find the greatest lower

bound for mutual information I(Yσ(i);Yσ(i−1)), we will only consider the permutations such that
Dσ(i),σ(j) ≤ 1. In this case we have

r2σ(i),σ(i−1) ≥
[
1−Dσ(i),σ(i−1)

]2
=⇒ I(Yσ(i);Yσ(i−1)) ≥ −

∑
i

log(1−
[
1−Dσ(i),σ(i−1)

]2
)

= −
∑
i

log((2−Dσ(i),σ(i−1))Dσ(i),σ(i−1)).

This result shows that lower bound to mutual information I(Yσ(i);Yσ(i−1)) becomes greatest when
Dσ(i),σ(i−1) → 0, hence ||ρ(ti)− ρ(tj)||2F → 0 under the non-zero variance α assumption. Then,
there exists a set of permutations {σ∗l}, which gives the highest lower bound to mutual information,
and this will form continuous trajectories minimizing

∏
i ||ρ(tσ∗(i)) − ρ(tσ∗(i−1))||F among the
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parameter space. For any of these permutations we can express the least upper bound for the sum of
other conditional mutual information terms∑

m=1

∑
i=1

I(Yσ∗(i);Yσ∗(i−m−1)|Yσ∗([i−1,i−m])) ≤ C(Y)− Iσ∗ (28)

where Iσ∗ := −
∑

i log((2−Dσ(i),σ(i−1))Dσ(i),σ(i−1)) is the lower bound for mutual information
I(Yσ(i);Yσ(i−1)).

Consequently, greatest upper bound for the sum of conditional mutual information terms is for
the permutations σ∗ that form continuous trajectories. Then, minimizing resolution favors Total
correlation C(Y) to be close to the tightest lower bound Iσ∗. This means that conditional mutual
information terms

∑
m=1

∑
i=1 I(Yσ∗(i);Yσ∗(i−m−1)|Yσ∗([i−1,i−m])) favors to be zero for this σ∗.

For one-parameter case, which we limited our scope, trajectories can be guessed since there is only
one continuous trajectory among the points of parameter space. This shows that for one-parameter
groups, resolution loss term favors the symmetry-based representation to resemble a first order
Markov field. Empirically, we observe that favors lowest order Markov field in general.

A.3 TRANSFORMATION OF SYMMETRY WITH ORTHOGONAL MAPS

For all x ∈ Rd and g ∈ G the invariance of the density pX under the group action ρ for G is given as
pX (x) = pX (ρ(g) · x) (29)

The application of an orthogonal transformation Q ∈ Rd×d to the data leads to a distribution which
is invariant under the new group action ρ′

p(x) = p(ρ(g) · x) =⇒ p(Qx) = p(Qρ(g) · x) (30)

p(x′) = p(Qρ(g) ·Q−1 · x′) =⇒ ρ′(g) = Qρ(g)Q−1 (31)
where we defined x′ = Qx.

A.4 TRANSFORMATION OF ORIGIN WITH ORTHOGONAL MAPS

Based on the data model proposed in Section 3.2, applying an orthogonal transformation both changes
the origin δo ∈ X as well as the symmetry representation.

To see, lets multiply both sides of the Equation 32 with Q ∈ Rd × Rd

Qx =

∫
G

f(v)Qρ(v)δodµ(v) (32)

=

∫
G

f(v)Qρ(v)Q⊤Qδodµ(v) (33)

=

∫
G

f(v)ρ̃(v)Q⊤δ̃odµ(v) (34)

where ρ̃(v) := Qρ(v)Q⊤ and δ̃o := Qδo.

This result also aligns with the Appendix A.3.

B TRAINING DETAILS

We trained all models on NVIDIA A100 GPUs. Unless otherwise specified, we used the Adam
optimizer with default hyperparameters (Table 3). The learning rate followed an exponential decay
schedule, decreasing smoothly from the initial value to the final value listed in Table 2.

C IMPLEMENTATION DETAILS

C.1 EFFICIENT IMPLEMENTATION FOR LIFTING

To compute (8) efficiently, we use the basis transformation U that simultaneously diagonalizes Li:

yn = ϕ⊤e−
∑P

i=1 tni
Lix = ϕ⊤Ue−

∑P
i=1 tni

DiU†x = ϕ̃
†
e−

∑P
i=1 tni

Di x̃ (35)
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Table 2: Experiment details.

Experiment Dataset
size Duration Epochs Eigendecomposition

algorithm Batch size Primary
initial lr

Auxiliary
initial lr

Lrinitial
Lrfinal

Invariance
weight

Resolution
weight

Infomax
weight

Noise(std)
Signal(std)

Gaussian
translation

63 timesteps
500k 11 hrs 10000 SVD 5000 10−4 10−3 0.1 1.0 0.25 0.25 0.05

Legendre
translation

63 timesteps
500k 11 hrs 10000 SVD 5000 10−4 10−3 0.1 1.0 0.25 0.25 0.05

Gaussian
frequency shift
63 timesteps

500k 11 hrs 10000 SVD 5000 10−4 10−3 0.1 1.0 0.25 0.25 0.05

Legendre
frequency shift
63 timesteps

500k 11 hrs 10000 SVD 5000 10−4 10−3 0.1 1.0 0.25 0.25 0.05

MNIST 15x15
translation 500k 41 hrs 20000 SVD 5000 10−4 10−3 0.1 1.0 0.2 0.2 0.00

MNIST 15x15
permuted
translation

500k 41 hrs 20000 SVD 5000 10−4 10−3 0.1 1.0 0.2 0.2 0.00

MNIST 27x27
permuted
translation

500k 132 hrs 30000 EIG 5000 10−4 10−3 0.1 1.0 0.10 0.10 0.00

Table 3: Optimizer hyperparameters.

Parameter Value
Beta 1 (β1) 0.9
Beta 2 (β2) 0.999
Epsilon (ϵ) 1× 10−7

Weight Decay 0
Amsgrad False

where we defined ϕ̃ := U†ϕ and x̃ := U†x in the last expression, and Di ∈ Cd×d are the diagonal
eigenvalue matrices for Li. This implementation ensures both numerical stability and efficiency by
exchanging the matrix exponential with scalar operations.

C.2 LIE BASIS PARAMETRIZATIONS

For Abelian Lie groups, Lie basis elements must share eigenvectors. To ensure this we parametrize
all eigenvectors by using a single anti-symmetric matrix. Eigenvalues for each Lie basis element are
parametrized seperately as real vectors {αi ∈ Rd : i = 1, . . . , P}.
To parametrize the Lie basis eigenvectors, we use a single learnable anti-symmetric matrix A ∈ Rd×d

and obtain the eigenvectors U ∈ Cd×d by diagonalization. Eigenvalues {ϕi} for each basis are
parametrized as seperate purely-imaginary vectors, and then exponentiated for obtaining eigenvalues
of different group elements.

However, this parametrization require us to ensure that each Lie basis Li := Ue(iϕi), is an orthogonal
matrix. This requires ensuring that seperatey parametrized eigenvalues and their corresponding
eigenvectors form conjugate pairs.

To ensure this, we define a permutation matrix Pij := u⊤
i uj , which shuffles elements of any vector

such that each component with index j is mapped to the index satisfying ui = u∗
j . Then we get

properly ordered conjugate eigenvalue phases ϕi by applying the following operation

ϕi = αi − Pαi (36)

where αi is the parameterization for the i’th Lie basis.

C.3 COMPONENT-WISE ENTROPY ESTIMATION

We estimate component-wise entropies using trainable Gaussian mixture models for each compo-
nent, following Pichler et al. (2022). This approach models the probability distribution p̂ for each

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

component of y-representation as:

p̂n(x) =

M∑
m=1

wn;m

σn;m
√
2π

exp

(
− (x− µn;m)2

2σ2
n;m

)
(37)

where n = (n1, n2, . . . , nk), with mixture weights satisfying
∑

m wn;m = 1 and wn;m ≥ 0. We use
M = 4 Gaussian components per mixture.

The component-wise entropy hn is computed via:

hn = −Ey∼P [log p̂n(yn)] .

For training probability estimators, we minimize the average entropy 1
d

∑
n hn across all components

where d denotes the total number of components.

C.4 JOINT ENTROPY ESTIMATION

To estimate the multidimensional differential entropy of the symmetry-based representation y, we
use a multivariate Gaussian approximation. For a multivariate Gaussian with covariance matrix C
whose eigenvalues are λl, the total entropy h(y) is given, up to a constant shift, by h(y) =

∑
l hl

where hl = log(λl).

For each batch, we flatten the symmetry-based representation and compute the sample covariance
matrix cpr = cov(yi(p), yj(r)) where p and r correponds to flattened indexes. Then we apply
eigendecomposition and sort its eigenvalues in descending order. Rank-k approximation to the
entropy as a weighted average of the per-component contributions to entropy is calculated as follows

h̄k ≜

∑d
l=1 wki log(λl)∑d

l=1 wkl

(38)

where the weights provide a soft thresholding at l = k.

We compute weights using the sigmoid function via

wkl =
1

eα(l−k) + 1
(39)

with α a hyperparameter determining the smoothness of the transition. Our experiments have shown
consistent results for various values of α > 1 (we chose α = 3.3).

Due to the normalization, (38) should be thought of as a per-rank version of the low-rank entropy. In
particular, when combining h̄k with the marginal entropies of yi during the computation of the total
correlation loss of the Section 4.2.2, it is more appropriate to combine the former with the average
marginal entropy rather than the total marginal entropy.

C.5 JS-DIVERGENCE ESTIMATORS

C.5.1 OVERVIEW

In general, we probe shift-invariance by estimating the Jensen-Shannon (JS) divergence between the
probability distribution of the y-representation and its shifted versions along each axis.

To estimate JS divergence, first we estimate 2 KL divergence term of each group axis, leveraging
the dual representation which is given in Equation 12. Then use the KL divergences to compute JS
divergence by a simple identity. This approach requires 2 networks for each group dimension. This
approach enables us to formulate KL-divergence estimation as a highly efficient downstream task.

We use CNNs due to their stability and convergence speed, while we use position embeddings to
improve their expressive capacity. For one-parameter 63 dimensional datasets, we also apply a
coarse-grained symmetry-based representation, and estimate JS-divergence in two scales. Details to
the coarse-graining procedure is given in Appendix C.5.3.
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Figure 5: Estimator network figure toy model.

Figure 6: Dataset parameters

Parameter Value
Feature type Gaussian
Sigma min 0.5
Sigma max 1.5
Amplitude Min 0.5
Amplitude Max 1.5
Noise std 0.05
Batch size 2500

C.5.2 POSITION EMBEDDINGS

The dual representation for KL divergence requires solving the optimization problem in Equation 12
over the space of all functions f : Rd1×d2×···×dk → R. In principle, deep multilayer perceptrons
(MLPs) appear suitable for this task as they lack inductive biases. However, our experiments reveal
that MLPs exhibit slow convergence, inducing instabilities in our method.

While Convolutional Neural Networks (CNNs) converge faster and more stably than MLPs, they can
only represent translation-equivariant functions. To improve expressive capacity while preserving
convergence efficiency, we introduce learnable position embeddings. The augmented y-representation
becomes:

yembed
n1,n2,...,nk;e

:= yn1,n2,...,nk
+ pn1,n2,...,nk;e (40)

where p ∈ Rd1×d2×···×dk×de denotes the learnable position embedding tensor, and de = 4 is the
embedding dimension used throughout our experiments.

C.5.3 COARSE-GRAINING

Experiments indicate that high dimensionality along an axis can cause optimization challenges, such
as optimizers becoming trapped in local minima. To mitigate this issue, we introduce a coarse-grained
version of the y-representation and employ an additional JS-divergence estimator, running in lower
dimensional symmetry-based representation.

The coarse-graining procedure consists of two steps:

1. Partition the y-representation into patches along each axis

2. Randomly select one component within each patch

This operation is formalized in Equation 41, where the coarse-grained representation ycoarse is
indexed by positive integers (n1, n2, . . . , nk). For each sample, we independently generate random
integer offsets {ri} uniformly distributed in {0, 1, . . . , qi − 1}, where qi denotes the dilation factor
along axis i for i = 1, . . . , k. The indices (n1, n2, . . . , nk) range over (1, 2, . . . , ⌊d1/q1⌋) × · · · ×
(1, 2, . . . , ⌊dk/qk⌋).

ycoarse
n1,n2,...,nk

:= yn1q1+r1,n2q2+r2,...,nkqk+rk (41)
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C.5.4 ARCHITECTURES OF KL-DIVERGENCE ESTIMATORS

Our networks are standard CNN downstream networks, with the additional position embedding
at input. At each layer, we either use strides or pooling layer to downsample the features along
spatial axis. Additionally, we constrain the spectral norm of each network to 10., by applying a
layerwise spectral norm limitation which translates to 10

1
#layers for each layer. This is required since

exponentiation operation given in the dual representation leads to saturated estimations otherwise.

To reduce the computational costs, we use strides in the first few layer of the each network, since
these are the most compute intensive parts. In the remaining layers we use stochastic pooling Zeiler
& Fergus (2013) to battle with the curse of dimensionality.

In two-parameter experiments, we use 2 networks for each group dimension, making 4 identical
networks in total. For one-parameter 63 dimensional experiments we form an additional coarse-
grained representation, and quantify shift-invariance at two levels. To obtain a coarse-grained
representation, we form patches of 7 components, and then randomly pool single component from
each patch leading to 9 component coarse-grained representation.

In Figure 7a we see the structure of KL-divergence estimator network which runs over the whole
symmetry-based representation. Figure 7b KL-divergence estimator for the coarse-grained represen-
tation. Due to lower dimensions, estimator running over the coarse-grained representation has very
little computational costs.

In Figure 7d and Figure 7d, we see the structures of KL-divergence estimators for 15x15 and 27x27
dimensional MNIST datasets. In both cases, we use 4 identical networks, 2 networks for each axis.
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D ANALYZING THE EFFECT OF HYPERPARAMETERS

D.1 ABLATION STUDIES

We conducted ablation studies over 1D, 63 dimensional datasets which are composed of Gaussian
features. Results imply that all terms togather learn the symmetry and symmetry-based representation.
Learned generators can be found in Figures 8.

(a) Without resolution term (b) Without invariance term (c) Without infomax term

Figure 8: Ablation experiments conducted over 1D 63 dimensional Gaussian dataset. We see that
training fails if any of the loss terms are dropped. However, it’s interesting to see that without shift-
invariance term, model is able to recover a noisy version of symmetry generator. To our interpretation,
this implies the strength of locality prior.

D.2 SENSITIVITY ANALYSIS

We applied Morris Sensitivity analysis over a toy model working trained over 15 dimensional dataset
formed from Gaussian basis signals. We run 32 experiments and varied estimator learning rate,
model learning rate, learning rate decay, shift-invariance, resolution and information maximization
hyperparameters. Estimator network architecture and dataset properties can be found in Figure 6 and
Table 5.

The result of sensitivity analysis implies that model learning rate and resolution term has more
dominant importance compared to other terms. Other loss weights are almost insignificant. This
finding also aligns with the relative ease of hyperparameter tuning. See Table 5 for the experiment
parameters and their performance evaluation (cosine similarities).

Table 4: Morris sensitivity analysis results

Parameter µ µ∗ σ µ∗ confidence
estimator_lr -0.048042 0.055294 0.065549 0.045945
model_lr 0.301463 0.301463 0.171484 0.133418
lr_decay 0.017997 0.068293 0.094078 0.044539
uniformity -0.044748 0.089709 0.104208 0.043226
resolution 0.122241 0.122241 0.067775 0.061329
infomax -0.004228 0.025048 0.033888 0.015398

E COMPUTATIONAL COMPLEXITY

Our model has polynomial computation complexity of d3

B due to diagonalization, where d is the
dimensionality of input and B is batch size. However, since they are applied in a per-batch manner,
we didn’t encounter any hindering effect till MNIST 27x27 dataset.

For MNIST 27x27, we reduced the computational cost by exchanging SVD with eigendecomposition
algorithms. However, this leads to compromising accuracy, possibly due to SVDs higher stability.

Except the per-batch diagonalization algorithms, other components of our model is scalable to higher
dimensions. Table 6 summarizes the complexities.
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Table 5: Sensitivity experiment parameters and experiment results.

Estimator LR
(×10−3)

Model LR
(×10−3)

LRinitial/
LRfinal

Invariance
weight

Resolution
weight

InfoMax
weight

Cosine
similarity

0.0008 0.0001 0.1071 0.7857 0.0500 0.1357 0.7167
0.0008 0.0001 0.1071 0.7857 0.0500 0.1357 0.9802
0.0008 0.0001 0.1071 1.3571 0.0500 0.1357 0.8758
0.0008 0.0001 0.1071 1.3571 0.0500 0.1357 0.8932
0.0008 0.0001 0.1071 1.3571 0.1071 0.1357 0.9811
0.0014 0.0001 0.1071 1.3571 0.1071 0.1357 0.9899
0.0014 0.0001 0.1071 1.3571 0.1071 0.0786 0.9638
0.0014 0.0001 0.0500 1.3571 0.1071 0.0786 0.9609
0.0006 0.0001 0.1071 1.3571 0.0786 0.1357 0.7789
0.0006 0.0001 0.1071 1.3571 0.1357 0.1357 0.7947
0.0006 0.0001 0.1071 1.3571 0.1357 0.1357 0.8055
0.0012 0.0001 0.1071 1.3571 0.1357 0.1357 0.7252
0.0012 0.0001 0.0500 1.3571 0.1357 0.1357 0.6410
0.0012 0.0001 0.0500 1.3571 0.1357 0.0786 0.6682
0.0012 0.0001 0.0500 1.3571 0.1357 0.0786 0.9420
0.0012 0.0001 0.0500 0.7857 0.1357 0.0786 0.9986
0.0008 0.0001 0.0500 0.9286 0.1500 0.0643 0.9957
0.0008 0.0001 0.0500 0.9286 0.1500 0.1214 0.9838
0.0008 0.0001 0.0500 0.9286 0.0929 0.1214 0.8701
0.0008 0.0001 0.0500 1.5000 0.0929 0.1214 0.8519
0.0008 0.0001 0.0500 1.5000 0.0929 0.1214 0.6165
0.0008 0.0001 0.1071 1.5000 0.0929 0.1214 0.5494
0.0014 0.0001 0.1071 1.5000 0.0929 0.1214 0.5503
0.0014 0.0001 0.1071 1.5000 0.0929 0.1214 0.5551
0.0008 0.0001 0.1214 0.6429 0.0643 0.0929 0.8883
0.0008 0.0001 0.1214 0.6429 0.1214 0.0929 0.9968
0.0008 0.0001 0.1214 0.6429 0.1214 0.1500 0.9985
0.0008 0.0001 0.1214 0.6429 0.1214 0.1500 0.9263
0.0008 0.0001 0.1214 0.6429 0.1214 0.1500 0.8951
0.0008 0.0001 0.0643 0.6429 0.1214 0.1500 0.8671
0.0014 0.0001 0.0643 0.6429 0.1214 0.1500 0.8096
0.0014 0.0001 0.0643 1.2143 0.1214 0.1500 0.8696

Table 6: Computational complexity

Component
entropy

estimators

KL-divergence
estimators

Joint entropy
estimator Lifting

O(d) O(d) O(d2 + d3

B ) O(d2 + d3

B )

F CAVEATS

F.1 WEIGHTING JS-DIVERGENCE ESTIMATIONS

F.1.1 SCALING PROPERTIES OF JS-DIVERGENCE

In our method, we quantify shift-invariance by estimating the Jensen-Shannon (JS) divergence
between the probability distribution P of the y-representation and its shifted variants along each
axis. However, when axes have substantially different dimensionalities as a result of coarse graining,
averaging JS divergences without accounting for dimensional effects could degrade performance.

To address this, we weight JS divergence estimates based on their scaling behavior with respect to
dimensionality. We assume the y-representation is the discrete version of a rectangular region of a Lie
manifold which is reflected in data distribution. Under this assumption, increasing the dimensionality
along an axis corresponds to nothing more than increasing resolution, allowing us to estimate the
scaling behavior of JS divergence.

Formally, we can parametrize P with real parameters θ such that a small shift in y-representation
corresponds to a perturbation δθ in parameter space. Expanding the JS divergence in a Taylor series
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to second order at θ0 we have

JS
(
P (θ0) ∥ P (θ0 + δθ)

)
= JS

(
P (θ0) ∥ P (θ0)

)
(42)

+
∑
i

∂

∂θi
JS
(
P (θ0) ∥ P (θ)

)∣∣∣
θ=θ0

δθi (43)

+
1

2

∑
i,j

∂2

∂θi∂θj
JS
(
P (θ0) ∥ P (θ)

)∣∣∣
θ=θ0

δθiδθj (44)

+O(∥δθ∥3) (45)

. Since JS
(
P (θ0) ∥ P (θ0)

)
= 0 and the first derivative vanishes at the global minimum θ = θ0, we

obtain the second-order approximation:

JS
(
P (θ0) ∥ P (θ0 + δθ)

)
≈ 1

2

∑
i,j

∂2

∂θi∂θj
JS
(
P (θ0) ∥ P (θ)

)∣∣∣
θ=θ0

δθiδθj (46)

Under Equation 46, scaling the shift magnitude by s > 0 (which scales δθ → sδθ for small continuous
shifts) yields:

JS
(
P (θ0) ∥ P (θ0 + sδθ)

)
≈ s2 · JS

(
P (θ0) ∥ P (θ0 + δθ)

)
, (47)

demonstrating quadratic scaling of JS divergence with shift magnitude.

Since we estimate JS(P ∥ Pl) for each axis l where Pl is the one-component shifted version of
P along l’th axes, and we assume that increasing dimensionality merely changes the resolution,
magnitude of one-component shift should be proportional to 1/dl. Then from Equation 47, we
conclude that JS(P ∥ Pl) ∝ 1/d2l while everything else kept the same.

To maintain consistency with the use of per-dimension entropy in Total Correlation and Infomax
losses, we further divide by JS-divergences by the total dimension d :=

∏k
i=1 di. This weighting is

on the same footing with other loss term which is justified by considering the mutual information
form of JS divergence

JS(P ∥ Pl) = h(P )− h
(
P

∣∣∣∣ P + Pl

2

)
(48)

where the per-dimension expression 1
d JS(P ∥ Pl) =

1
dh(P ) −

1
dh

(
P

∣∣ P+Pl

2

)
includes joint and

conditional entropies per dimension.

Thus, we assign the weight wl := d2l /d to the JS divergence along axis l. For coarse-grained
representations, we exchange dl with dl/ql and d with

∏k
i=1 di/qi which is actually dimensions

after the coarse-graining took place. This scheme ensures consistent hyperparameter settings across
experiments when the stated assumptions hold.

Consequently, we rescale the JS-divergence terms DJS (PY||PY(l))→ wlDJS (PY||PY(l)).

F.2 CONTROLLING THE RANK OF THE JOINT ENTROPY ESTIMATION

To help facilitate efficient optimization by first fitting to the gross features of the data, and refining
over time, we use a time-dependent rank parameter k for the entropy estimator (39). To adjust k
during training, we use a normalized notion of training time tn measuring the “amount of gradient
flow” via

tn =

∑n
s=1 lr(s)∑T
s=1 lr(s)

(49)

where lr(s) is the learning rate used at the training step (batch) s, and n and T are the current training
steep, and the total number of training steps, respectively. We control the rank k of the low-rank
entropy estimator by setting k = ceil(d× tn) so that by the end of the training, the rank is at d.
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F.3 PADDING

We use padding for the symmetry generator and the filter in the sense that the symmetry matrix and
the filter have dimensionality that is higher than the dimensionality of the data, but we centrally crop
the matrix and the filter before applying them to the data. This is done to deal with finite size (edge)
effects, and after experimenting with padding sizes of 6 to 63, we saw that the results are not sensitive
to padding size. Working with a cyclic/periodic symmetry would make the padding unnecessary, but
this would mean working with a restrictive assumption on the underlying symmetry.

F.4 INITIALIZATION OF EIGENVALUE PHASES

We initialize the norm of Lie basis eigenvalues using a normal distribution with σ = 10−3 and µ = 0.
Using smaller standard deviations did not affect performance, however, significantly larger σ values
may lead to corrupt the optimization trajectory.

F.5 NOISE INJECTION TO THE RESOLUTION FILTER

We initialize the resolving filter with zeros and add Gaussian noise during the early stages of training
before computing the loss for each batch.

ψ ← ψ +N (µ = 0, σ = 0.1) exp(−(t/τ)) (50)

The amplitude of the noise is set to decay exponentially with a short time constant (of τ = 10 epochs).
As mentioned previously, to compute the transformed data y, we use a normalized version of θ at
each step: ψ̂ = ψ/||ψ||2

G FURTHER RESULTS

(a) Ideal and learned symmetry generators (b) Ideal and learned group convolution tensors

Figure 9: Training results for the 1D frequency-shift-invariant dataset obtained via randomly placing
Associated Legendre Polynomials in frequency space. On the left, we see the minimal generator
of the frequency shift transformation, which transforms a sinusoidal basis signal to the next one
according to the order in frequency. On the right, we see the group convolution matrix formed by
repeatedly applying the frequency-shift generator to the resolving filter. This matrix is the (transpose
of the) DST-I transformation matrix. In order to recover the symmetry-based local representation, the
model learned to negate the transformation, recovering the domain where the signals are transparently
local and symmetric.

In the 1D case, the ideal symmetry generator for the translation-invariant dataset is the 1-step
translation operator, which is simply a shift matrix, with entries just below (or above) the diagonal
equaling 1, all other entries being zero. In Figure 10a, we see that this matrix is learned to a
high degree of accuracy except in some regions. This problem is due to the decimation procedure
developed for computational efficiency. The group convolution matrix that gives the symmetry-based
representation for translation symmetry is simply the identity operator. In Figure 10b, we see that this
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(a) Ideal and learned symmetry generators (top) and
error distributions (bottom).

(b) Ideal and learned group convolution matrices (top)
and error distributions (bottom).

Figure 10: Results for the 1D translation invariant data distribution obtained from Associated
Legendre polynomials.

(a) Ideal and learned symmetry generators (top) and
error distributions (bottom).

(b) Ideal and learned group convolution matrices (top)
and error distributions (bottom).

Figure 11: The symmetry generators for the cropped MNIST dataset with permuted pixels. The
dataset is invariant and local under the action of the powers of this permuted x-axis and y-axis
translations.

operator, which is formed by combining the powers of the group generator with the learned resolving
filter, is also learned with decent accuracy. However, there is a discontinuity in the intermediate
segment, which is also due to the decimation procedure.

For the 2D case with a permuted-translation symmetry (obtained by applying a fixed permutation to
the flattened, cropped MNIST samples), we see that there aren’t any dominating flaws and errors are
more homogenously distributed 11. We see the two complementary generators are indeed learned.

H DATASETS

H.1 1D DATASETS

Data Generation Procedure The synthetic samples were generated through the following procedure:

• For each sample x, first determine the number of constituent signals by drawing P ∼
U{0, 1, . . . , Pmax} with Pmax = 10.

• For each signal n = 1 to P , draw shape parameters θn ∼ U(Θ) and draw a translation
τn ∼ U [−L,L].
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• Construct the discrete-time signal via superposition: x[i] =
∑P

n=1 hθn(ti − τn) for i =
1, . . . , 63, where ti defines a discrete time grid restricted between [−L/2, L/2] to prevent
boundary effects distorting translation invariance.

• Finally, we add Gaussian noise to the sample (with σ = 0.05).

This procedure can give us any symmetry that is related to component translations via a similarity
transformation. See Figures 12a and 12b, which involve samples from datasets with different kinds
of symmetries.

(a) Gaussian Samples of Translation-Invariant Data
Distribution

(b) Legendre Samples of Frequency-Shift Invariant
Data Distribution

Figure 12: Invariant Data Distributions: Gaussian vs. Legendre

(a) Ideal and learned symmetry generators (b) Ideal and learned group convolution tensors

Figure 13: Training results for the 1D frequency-shift-invariant dataset obtained via randomly placing
Associated Legendre Polynomials in frequency space. On the left, we see the minimal generator
of the frequency shift transformation, which transforms a sinusoidal basis signal to the next one
according to the order in frequency. On the right, we see the group convolution matrix formed by
repeatedly applying the frequency-shift generator to the resolving filter. This matrix is the (transpose
of the) DST-I transformation matrix. In order to recover the symmetry-based local representation, the
model learned to negate the transformation, recovering the domain where the signals are transparently
local and symmetric.

Basis Signal Types Gaussian signals fgaussian(z;A, µ, σ) are parametrized by amplitude A, center
µ, and width σ. The input z is an integer ranging from −32 to 32, labeling the components of the
raw sample vectors. We sample the center µ uniformly from the extended (tripled) range −97 to 97,
and then crop the resulting signals to the z range of −32 to 32 to allow for the possibility of signals
that contain only a tail of a Gaussian. A and σ are sampled from the ranges given in Table 7.

Legendre signals are given in terms of the associated Legendre polynomials and give localized
waveforms that can change signs. The relevant parameters are center c, scale s, amplitude A, and
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the orders l, m: f (l,m)
legendre(z;A, c, s) = APm

l

(
cos

(
z−c
s

))
. We crop these signals to the range

|x− c|/s ≤ π, i.e., set the values outside this range to zero.

Once again, z becomes the discrete dimension index, ranging from−32 to 32. For the l,m parameters,
we use l = 2,m = 1 and l = 3,m = 1, with equal probability for each sample. We sample the
centers as in the Gaussian case, and the sampling of the other parameters is described in Table 7.

Table 7: The synthetic datasets prepared for experiments. The parameters for each basis signal are
sampled from a uniform distribution with the indicated ranges.

Signal
Type

Input
dimensions Transform Amplitude

range
Scale
range

Gaussian 63 Identity [0.5, 1.5) [0.5, 2.5)
Legendre (l=2-3, m=1) 63 DST-I [0.5, 1.5) [6.0, 25.0)

H.2 2D DATASETS

We obtain 2D datasets by zero-padding the MNIST dataset within each axis on two sides with 28
pixels, leading to an image with size 84× 84. Then, we crop this image by using a random window
to 15× 15 or 27× 27 patches, ensuring uniform sampling along translations. Since this introduces
too many blank samples (where all elements are zero), we drop images according to a maximum
element via simple thresholding (10−7) for efficient training. However, the model works without
dropping the blank samples as well.

After cropping, we obtain versions whose distribution is invariant under different operations: trans-
lation and permuted translation. We obtain the latter by randomly shuffling pixels of the image,
completely destroying neighborhood information.
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