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Abstract

Commonsense reasoning is an appealing topic001
in natural language processing (NLP) as it plays002
a fundamental role in supporting human-like003
actions of NLP systems. With large-scale lan-004
guage models as the backbone, unsupervised005
pre-training on numerous corpora shows the006
potential to capture commonsense knowledge.007
Current pre-trained language model (PLM)-008
based reasoning follows the traditional prac-009
tice using perplexity metric. However, com-010
monsense reasoning is more than existing prob-011
ability evaluation, which is biased by word012
frequency. This paper reconsiders the nature013
of commonsense reasoning and proposes a014
novel commonsense reasoning metric, Non-015
Replacement Confidence (NRC). In detail, it016
works on PLMs according to the Replaced017
Token Detection (RTD) pre-training objective018
in ELECTRA, in which the corruption detec-019
tion objective reflects the confidence in con-020
textual integrity that is more relevant to com-021
monsense reasoning than existing probability.022
Our proposed novel method boosts zero-shot023
performance on two commonsense reasoning024
benchmark datasets and further seven common-025
sense question-answering datasets. Our anal-026
ysis shows that pre-endowed commonsense027
knowledge, especially for RTD-based PLMs, is028
essential in downstream reasoning.029

1 Introduction030

Commonsense reasoning is the underlying basis031

for human-like natural language understanding of032

machines. Commonsense knowledge endows nat-033

ural language processing (NLP) systems with the034

awareness of implicit background for how human035

inference deals with the physical world. External036

commonsense knowledge created by human has037

been successfully applied to refine NLP systems038

like dialogue (Zhou et al., 2021) and generation039

(Chakrabarty et al., 2021).040

The weather is cold

The weather is cold

The weather is cold

The weather is chilly

The weather is [mask]

cold: 0.75

chilly: 0.25

The weather is cold

confidence: 1.0

The weather is chilly

confidence: 1.0

<weather, cold, HasAttribute>

<weather, chilly, HasAttribute>

Q: I saw my breath when I exhaled 

because the weather is ____.

CLM↑ MLM↑ RTD↓

warm       0.025        0.020        0.114

cold   ✓ 0.033        0.031        0.098

chilly ✓ 0.018        0.021        0.083

(Corpus Distribution)

(Related Commonsense Triplets)

(CLM & MLM)

(RTD)

Figure 1: An instance borrowed from (Niu et al., 2021)
that shows the bias of PLM-based inference to high-
frequency words.

As handcrafted commonsense dataset requires 041

much time and energy from human annotators, 042

many researchers turn to retrieving commonsense 043

knowledge from existing language systems. Large- 044

scale pre-trained language models (PLMs) are de- 045

sirable for retrieval as they have been pre-trained 046

on a wide variety of corpora to learn the interde- 047

pendency between tokens. Petroni et al. (2019) 048

exploit masked language modeling (MLM) strat- 049

egy on BERT (Devlin et al., 2019) as a knowledge 050

base. A series of works (Jiang et al., 2020; Al- 051

ghanmi et al., 2021; Heinzerling and Inui, 2021) 052

follow this process to prompt commonsense infor- 053

mation from PLMs, including GPT-2 (Brown et al., 054
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2020) based on casual language modeling (CLM)055

strategy.056

While MLM and CLM are the mainstream strate-057

gies for PLM-based commonsense reasoning, there058

still exists a doubt whether these learning objectives059

are competent to fully understand commonsense060

knowledge during pre-training. Niu et al. (2021)061

pointed out that the inference based on word re-062

trieval PLMs (CLM, MLM) is likely to be biased063

by word frequency as presented in Figure 1. The064

word frequency perturbs the inference by assigning065

more positive scores to high-frequency words. The066

perturbance even leads to a wrong inference that067

warm is assigned a higher score than chilly in the068

CLM scenario.069

From the view of human beings, commonsense070

knowledge represents facts in the physical world,071

whose confidence is independent of the statistical072

property in the corpus. The perplexity metric, bi-073

ased to word frequency in the training corpus, is074

inconsistent with this nature. Essentially, the prob-075

lem is caused by the issue that MLM and CLM076

constrain all sentence candidates to share a total077

probability of 1.0. Consequently, more frequent078

words will take a higher proportion of the pos-079

sibility. The mutually exclusive property of per-080

plexity underestimates confidence in other candi-081

dates when high-frequency candidates exist. On082

the other hand, when mentioning commonsense083

reasoning, we refer to confidence in the piece of084

knowledge rather than the existing probability of085

specific textual content. We thus conclude com-086

monsense reasoning to be a discrimination rather087

than a generation (CLM-based generation or MLM-088

based prompting), which is currently done when089

calculating the sentence perplexity for the infer-090

ence.091

Based on the conclusion, we pursue a pre-trained092

discriminator towards better commonsense reason-093

ing. ELECTRA (Clark et al., 2020) is a PLM094

trained by replaced token detection (RTD) in a095

GAN-like scenario. The ELECTRA discrimina-096

tor is trained to detect replaced tokens from an097

adversarial generator. While ELECTRA does not098

always perform better in supervised fine-tuning099

(Clark et al., 2020), we find that the nature of the100

discriminator enables it to achieve significantly su-101

perior performance over other PLMs on zero-shot102

commonsense reasoning. For inference, we pro-103

pose a new metric, Non-Replacement Confidence104

(NRC), to evaluate the integrity of fact descriptions.105

We experiment with NRC on a wide variety of 106

commonsense-related datasets. First, we evalu- 107

ate the commonsense awareness of NRC on tuple 108

and sentence-level descriptions. Then, we apply 109

NRC to seven downstream commonsense question- 110

answering datasets. Experiment results verify NRC 111

to outperform perplexity-based inference by a sig- 112

nificant gap, showing the superiority of RTD-based 113

discriminator to capture commonsense knowledge. 114

NRC is also efficient to calculate as it does not 115

require mask tokens for inference. 116

Our analysis further discloses whether and how 117

commonsense understanding benefits downstream 118

inference. We gather evidence, including statis- 119

tics and cases, to explain the underlying principle 120

of the application of learned commonsense knowl- 121

edge to infer. RTD-based inference is verified to 122

be more critical to components interdependent by 123

commonsense relationships, representing a more 124

human-like reasoning procedure. 125

Our contributions are summarized as follows: 126

• We address the inconsistency of perplexity- 127

based evaluation with commonsense reason- 128

ing and propose the RTD-based inference to 129

instead evaluate the confidence. 130

• We implement a new RTD-based metric, NRC, 131

which better discriminates the commonsense 132

integrity of fact descriptions. Experiments 133

on commonsense reasoning and question- 134

answering verify the superiority of NRC over 135

conventional perplexity-based inference. 136

• Further analyses show NRC to be more capa- 137

ble in not only commonsense reasoning but 138

the application of knowledge for downstream 139

inference as well. 140

2 Related Work 141

2.1 Commonsense Knowledge 142

Commonsense knowledge, also known as back- 143

ground knowledge, is the underlying basis of logic 144

in the inference of humans. As commonsense 145

knowledge is rarely expressed in textual contents 146

(Gordon and Durme, 2013), many datasets (Bol- 147

lacker et al., 2008; Nickel et al., 2011; Yang et al., 148

2015; Li et al., 2016) have been handcrafted to train 149

NLP systems and endow them with the ability to 150

make physical world-based inference. 151

Following the storage system in databases, com- 152

monsense knowledge is generally formalized as a 153
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tuple (LT,RT,REL), e.g. ConceptNet (Li et al.,154

2016). Here, LT , RT , REL respectively refer to155

the left term, the right term, and the relationship156

between two terms. While tuples are efficient for157

storage, they are incompetent to represent relation-158

ships with more than 2 terms. Wang et al. create159

a sentence-level commonsense dataset, which vali-160

dates the integrity of commonsense in real context.161

2.2 Commonsense Reasoning with PLMs162

Large-scale pre-trained language models like163

BERT have drawn the most attention from the NLP164

community since their introduction. PLMs show165

their potential to significantly boost performance166

on NLP tasks across fields. Since PLMs have167

been trained on a large-scale corpus to learn in-168

terdependency between components, mining from169

PLMs for commonsense knowledge becomes a new170

method to create knowledge databases (Petroni171

et al., 2019; Alghanmi et al., 2021; Kassner et al.,172

2021). LAMA (Petroni et al., 2019) makes the173

first try to gather knowledge from PLMs by gen-174

erative prompts. Later works follow this process175

to provide partial information in the commonsense176

knowledge tuple and require PLMs to complete the177

rest of the tuple.178

The commonsense knowledge and understand-179

ing of PLMs inspire researchers to directly apply180

PLMs for downstream inference without super-181

vised fine-tuning. Commonsense question answer-182

ing (Roemmele et al., 2011; Zellers et al., 2018;183

Talmor et al., 2019, 2022; Kocijan et al., 2020)184

is commonly used to test the zero-shot inference185

ability of PLMs. Similar to commonsense reason-186

ing, prompts are applied to transform the question-187

answer pair into a syntactically plausible sentence.188

PLM-based perplexity is calculated for those trans-189

formed sentences and the sentence with the low-190

est perplexity is used to select the corresponding191

question-answer pair (Trinh and Le, 2018; Bosse-192

lut et al., 2021; Tamborrino et al., 2020). Besides193

direct reasoning on answer candidates, researchers194

have also tried to sample extra candidates from195

generators and use pre-trained semantic similar-196

ity evaluator for answer selection. (Shwartz et al.,197

2020; Niu et al., 2021; Bosselut et al., 2021)198

Current mainstream PLMs, BERT or GPT2, ap-199

ply the conventional perplexity metric to use the200

probability of generating components based on the201

context. This will incorporate lexical properties202

like word frequency as perturbance to the infer-203

ence. Based on the nature of commonsense reason- 204

ing, we propose a pre-trained discriminator, like 205

ELECTRA, to be an alternative for better perfor- 206

mance. 207

3 PLM-based Metric 208

3.1 Casual Language Model 209

GPT2 is a PLM for text generation, which can also 210

be applied for inference based on the perplexity of 211

selection candidates. The training objective, CLM, 212

is optimized based on context-based next-word pre- 213

diction. 214

L ≜ CELoss(PLMθ(w1:i−1),One-hot(wi)) 215

where CELoss is the cross-entropy loss, and One- 216

hot refers to the one-hot encoding. θ, w respec- 217

tively refer to PLM parameters and words. The 218

inference procedure also takes next-word predic- 219

tion for perplexity (PPL) calculation. 220

pi = p(wi|PLMθ, w1:i−1)

PPL =
1

n

n∑
i=1

(− log(pi))
221

where n is the length of the sentence. GPT2 calcu- 222

lates PPL by scoring answer choices and selecting 223

a candidate with the lowest perplexity. 224

3.2 Masked Language Model 225

MLM is the training objective for most bidirec- 226

tional PLMs like BERT and RoBERTa (Liu et al., 227

2019). MLM is similar to CLM as it also uses word 228

retrieval as the training objective. The difference 229

is MLM leverages the bidirectional context for the 230

prediction. 231

L ≜ CELoss(PLMθ(w1:i−1;i+1:n),One-hot(wi)) 232

Likewise, the inference step for MLM is revised 233

as follows: 234

pi = p(wi|PLMθ, w1:i−1;i+1:n) 235

3.3 Replaced Token Detection 236

RTD differs from the word retrieval-targeted train- 237

ing procedure above as it sets binary classification 238

as the objective. The PLM involves a discrimina- 239

tor which discerns replaced words in the sentence 240

following an adversarial architecture. 241
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L ≜ BCELoss(PLMθ(w1:n), fB(wi))242

where fB is a Boolean function that returns whether243

wi is corrupted by the replacement or not.244

We then introduce the Non-Replacement Confi-245

dence (NRC) metric for confidence evaluation.246

pi = PLMθ(w1:n)

NRC =
1

n

n∑
i=1

(− log(pi))
247

3.4 Metric Comparison248

PPL and NRC are both calculated based on nega-249

tive log probability. While PPL evaluates the ex-250

isting probability of a sentence, NRC reflects the251

confidence of contextual integrity. Thus, lower252

PPL and higher NRC on legal language indicate253

more human-like choices.254

Commonsense reasoning expects to understand255

the underlying interdependency between abstract256

concepts rather than their lexical properties. Thus,257

evaluating confidence in the piece of commonsense258

knowledge should include not only words in the259

original sentence but their contextual synonyms as260

well.261

pCS(w1:n) =
∑

w∈syn(wi)

p(Ci)p(w|Ci)262

where pCS is the commonsense-targeted confi-263

dence. Ci = w1:i−1;i+1:n refers to the context for264

wi and syn returns the contextual synonyms of wi.265

As wi ∈ syn(wi), pCS(w1:n) > p(w1:n) = PPL266

when the number of synonym candidates is more267

than 1, indicating that perplexity always under-268

estimates the commonsense-targeted confidence.269

The underestimation becomes more severe when270

wi is a low-frequency word. Furthermore, as271 ∑
w∈dict(p(w)) = 1 (dict is the whole dictionary272

for candidate selection), the correlation between273

confidence on synonym candidates is −1, which274

is contradicted to the fact that synonym supports275

each other for validation.276

In contrast, NRC does not require all candidates277

to share the distribution but evaluates individual278

confidence in each candidate. Thus, there is no279

underlying synonym candidate that leads to an un-280

derestimation or bias toward high-frequency words.281

The individual evaluation also changes the corre-282

lation between synonym candidates to positive as283

Metric Time Complexity

PPLCLM O(1)
PPLMLM O(n)
NRC O(1)

Table 1: Time complexity of different PLM-based met-
rics. The complexity counts the number of PLM for-
warding.

Metric ConceptNet SemEvalA SemEvalB

PPLGPT2-XL 65.4 78.1 58.1

PPLGPT2-M 49.6 50.1 40.3
PPLBERT 66.2 76.2 54.4
PPLRoBERTa 69.9 79.9 62.4
NRC 71.2 80.5 64.3

Table 2: Experiment results on tuple and sentence-level
commonsense reasoning. Bold: The best performance
on the dataset. Underline: The result is significantly
better than the second-best result. (α = 0.01)

PLMs project contextually similar components to 284

near positions in the latent space (Devlin et al., 285

2019). Thus, NRC is a more competent metric for 286

commonsense reasoning than PPL. 287

We also compare the time complexity of differ- 288

ent metrics in Table 1. Our NRC is as efficient as 289

the CLM-based inference since token masking is 290

not needed to calculate the metric, which limits the 291

efficiency of MLM-based inference. 292

4 Commonsense Reasoning 293

To mitigate the unfair comparison caused by the 294

scale of parameters, this paper compares among 295

large models with the same number of layers and 296

hidden sizes, namely BERTLarge, RoBERTaLarge, 297

GPT2Medium and ELECTRALarge
1 (24-layer, 298

1024-hidden size). We also include GPT2XLarge 299

(48-layer, 1600-hidden size) for further compari- 300

son. Towards a strict unsupervised inference, we 301

do not use any development dataset for hyperpa- 302

rameter selection. 303

4.1 Commonsense Probing 304

4.1.1 Tuple-level Probing 305

ConceptNet2 uses deep neural networks to re- 306

trieve commonsense candidates from corpus, which 307

are validated by human annotators. Its training 308

1https://huggingface.co/google/electra-large-
discriminator

2https://home.ttic.edu/ kgimpel/commonsense.html
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dataset contains more than 600, 000 tuples with dif-309

ferent confidences. Its test dataset requires models310

to discern between true commonsense tuples and311

adversarial fake ones.312

We follow LAMA (Petroni et al., 2019) to create313

prompts3 for tuples in the test dataset that can be314

directly represented by natural languages. Then,315

we differentiate the prompts by PLM-based metrics316

and use accuracy to evaluate the results.317

Our experiment results are presented in Table 2,318

NRC significantly outperforms both CLM and319

MLM-based PPL on commonsense tuple reason-320

ing. Considering that transformed tuple relation-321

ships are simple and unified in syntactic structures,322

the discriminating ability is attributed to the under-323

standing of commonsense. Thus, the results are324

convincing evidence for the superiority of NRC in325

commonsense validation.326

4.1.2 Sentence-level Probing327

SemEval20204 collects natural language state-328

ments related to commonsense expression. We329

experiment with two reasoning subtasks. A: Select330

a statement that is against the commonsense. B:331

Select a reason for why the statement is against332

the commonsense. We continue evaluating and se-333

lecting statements and explanations according to334

different metrics.335

As the results in Table 2, NRC is verified to per-336

form significantly better than PPL on both differ-337

entiating and explanation, validating the superior338

evaluating capability of sentence-level common-339

sense of NRC. PPLRoBERTa is a competitive metric340

for differentiating since most statements use basic341

vocabulary in high frequency. Also, negative cases342

in SemEval are very anti-commonsense, which re-343

strains the underestimation effect of PPL. When it344

comes to explanation, the gap between NRC and345

PPLRoBERTa becomes more significant since expla-346

nation requires a more complex inference ability.347

The comparison of sentence-level commonsense348

reasoning supports NRC to be a more competent349

metric for commonsense reasoning (differentiating350

and explanation) than PPL.351

4.2 Commonsense Question Answering352

For commonsense reasoning, we are interested in353

not only how well models understand common-354

3All prompts in our experiments can be found in Ap-
pendix B

4https://github.com/wangcunxiang/SemEval2020-Task4-
Commonsense-Validation-and-Explanation

Method Trg CSQA ARCE ARCC

Self-Talk - 32.4 - -

PPLGPT2-XL
A 40.0 48.9 28.7
QA 42.2 51.0 28.8

PPLGPT2-M
A 34.9 42.5 26.5
QA 35.7 43.9 26.9

PPLBERT

Q 42.4 37.8 27.5
A 30.7 34.8 25.3
QA 35.0 37.2 24.7

PPLRoBERTa

Q 45.7 38.6 33.7
A 31.2 33.8 27.7
QA 40.0 37.7 31.9

NRC
Q 49.5 47.4 36.8
A 47.4 47.3 37.1
QA 51.8 51.7 38.4

Table 3: Experiment results on phrase selection.

sense but also how well models leverage the un- 355

derstanding for downstream inference. Common- 356

sense question answering is a commonly used 357

downstream task for the practice of commonsense 358

understanding. We also include sampling-based 359

baselines5 (Self-Talk (Shwartz et al., 2020), CGA 360

(Bosselut et al., 2021), SEQA (Niu et al., 2021)) 361

and other strong baselines to see if NRC achieves 362

state-of-the-art performance. 363

4.2.1 Phrase Selection 364

CommonsenseQA6 (CSQA) provides remark- 365

able resources for commonsense-targeted question 366

answering since it builds question-answer pairs 367

based on ConceptNet. The annotators create ad- 368

versarial choices based on the subgraphs in Con- 369

ceptNet. Specifically, negative choices are sampled 370

from terms related to the question in ConceptNet, 371

making differentiating confusing for models with- 372

out strong commonsense understanding. 373

ARC7 is a commonsense question answering 374

challenge that also selects phrases for science ques- 375

tions. The difficulty of questions is at the grade- 376

school level and the dataset is split into the easy 377

part (ARCE) and the challenging part (ARCC). 378

We follow previous works (Shwartz et al., 2020; 379

Niu et al., 2021) to calculate the metrics on differ- 380

ent targeted components (Question (Q), Answer 381

5These methods generate many answer candidates from
GPT2 to support the selection. They are more complex and
time-consuming.

6https://www.tau-nlp.org/commonsenseqa
7https://allenai.org/data/arc
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Method Trg COPA Swag

Self-Talk - 68.6 -
CGA - 72.2 -
SEQA - 79.4 -

PPLGPT2-XL
A 73.6 65.3
QA 71.6 64.9

PPLGPT2-M
A 68.4 59.7
QA 66.6 59.1

PPLBERT

Q 64.2 44.5
A 61.2 63.4
QA 64.2 64.1

PPLRoBERTa

Q 70.6 48.1
A 68.4 71.0
QA 75.2 74.5

NRC
Q 82.6 24.5
A 71.2 77.4
QA 78.4 75.4

Table 4: Experiment results on sentence selection.

(A), Question+Answer (QA)) for inference. The382

selection results in depicted in Table 3. NRC out-383

performs PPL based on PLM on the same scale384

by a large margin (6.1, 7.8, 4.7 accuracy score),385

indicating NRC to be also superior in using com-386

monsense for inference. For the easy part of ARC387

(ARCE), large-scale models like GPT2XL seem to388

be able to compensate for bias in metric. However,389

when the questions become more challenging in390

ARCC, the gap again reaches about 10.0 accuracy391

scores, showing the inherent differences between392

NRC and PPL in commonsense reasoning ability.393

4.2.2 Sentence Selection394

COPA8 is a simple commonsense-targeted ques-395

tion answering dataset. COPA is interested in en-396

tailing a sentence by choosing a possible cause or397

effect of it.398

Swag9 is a large-scale commonsense question399

answering dataset with more than 20, 000 test data.400

The question is formulated as entailment that aims401

to satisfy the contextual integrity in commonsense.402

Experiment results on sentence selection are pre-403

sented in Table 4. NRC again shows superior per-404

formance over PPL (7.4 on COPA, 2.9 on Swag),405

validated by the large Swag dataset. This verifies406

the superiority of NRC in the application of phrase407

and sentence-level commonsense understanding408

for downstream inference. Compared to sampling-409

8https://people.ict.usc.edu/ gordon/copa.html
9https://rowanzellers.com/swag/

Method Trg SCT SQA CQA

Self-Talk - 70.4 47.5 36.1
CGA - 71.5 45.4 42.2
SEQA - 83.2 47.5 56.1

PPLGPT2-XL
A 70.6 41.4 35.5
QA 71.5 41.4 31.1

PPLGPT2-M
A 54.0 35.6 27.0
QA 55.4 35.4 18.2

PPLBERT

Q 63.5 35.7 32.9
A 58.2 35.4 30.7
QA 61.2 38.5 29.6

PPLRoBERTa

Q 61.5 37.1 38.6
A 67.3 41.4 36.1
QA 71.7 41.5 36.5

NRC
Q 65.0 42.8 41.2
A 74.7 43.0 41.9
QA 77.1 45.1 44.3

Table 5: Experiment results on context-based selection.

based methods, the outstanding performance of 410

NRC also boosts state-of-the-art. The question 411

part of Swag is not very useful for NRC probably 412

because these questions are not dependent on the 413

answer choices on the view of ELECTRA, which 414

prefers to use the answer part of this dataset for 415

inference. But when evaluating the whole question- 416

answer pair (QA), NRC always performs better 417

than PPL. 418

4.2.3 Context-based Selection 419

StoryClozeTest10 (SCT) is a story entailment 420

dataset that collects 5-sentence stories with multi- 421

ple ending candidates. We use the first three sen- 422

tences as context and the fourth as the question. 423

SocialiQA11 (SQA) contains questions about in- 424

teractions of people in social activities. The con- 425

text describes a social circumstance with related 426

aspects, and the question asks the model to select a 427

proper interaction. 428

CosmosQA12 (CQA) is similar to COPA as it 429

also asks the cause and effect of events. The dif- 430

ference is that CosmosQA provides an event back- 431

ground as the context for the question. Also, the 432

answer of CosmosQA is longer than other datasets, 433

which increases the difficulty for inference. 434

As in Table 5, NRC outperforms PPL based on 435

PLMs in the scale and the large-scale GPT2XLarge 436

10https://cs.rochester.edu/nlp/rocstories/
11https://leaderboard.allenai.org/socialiqa/submissions/public
12https://wilburone.github.io/cosmos/
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Method CSQA ARCE ARCC COPA Swag SCT SQA CQA

PPLGPT2-M 35.7 (0.0) 42.8 (-1.1) 27.5 (0.6) 69.4 (1.0) 59.3 (0.2) 53.2 (-2.2) 33.7 (-1.9) 26.9 (-0.1)
PPLBERT 42.1 (-0.3) 36.3 (-1.5) 27.1 (-0.4) 66.6 (2.2) 63.5 (-0.6) 63.0 (-0.5) 36.7 (-1.8) 32.1 (-0.8)
PPLRoBERTa 45.0 (-0.7) 37.3 (-1.8) 33.2 (-0.5) 74.4 (-0.8) 73.2 (-1.3) 72.1 (0.4) 41.2 (-0.3) 38.6 (0.0)
NRC 52.3 (0.5) 51.9 (0.2) 39.8 (1.4) 84.2 (1.6) 74.6 (-2.8) 76.6 (-0.5) 46.6 (1.5) 44.5 (0.2)

Table 6: Effect of the removal of stop words. Underline: The removal results in a significant improvement.

Method Accuracy (↑) Affected Ratio (↓)

PPLGPT2-M 47.2 30.4
PPLBERT 58.0 30.2
PPLRoBERTa 64.4 25.6
NRC 72.4 22.4

Table 7: Affect of synonym replacement on different
inference methods. Accuracy is the ratio of correct
selections after the replacement. Affect Ratio refers to
the ratio of previous correct selections that are turned
into faults by the replacement.

by a significant gap. On datasets with a long con-437

text (SCT and CQA), the gap becomes larger, re-438

flecting the capability of NRC to understand the439

interdependency between terms in more complex440

contexts. On context-based selection, the sampling-441

based method on GPT2XLarge still holds state-of-442

the-art, which indicates that larger-scale language443

models still encode more knowledge in the network444

with much more parameters. However, the genera-445

tive nature limits the understanding of the knowl-446

edge and sampling is essential to generate multiple447

candidates to fully retrieve the knowledge from448

the network. We believe that better performance449

and efficiency will be achieved by a larger-scale450

ELECTRA, which is left for future work.451

5 Further Analysis452

5.1 Source of Reasoning Ability453

Stop Word For models that leverage common-454

sense to infer, stop words actually add noise to the455

inference as humans rarely use them for common-456

sense reasoning. Thus, we remove the scores calcu-457

lated on stop words and test whether this will boost458

the performance of PLM-based metrics. We sam-459

ple stop words from the pool provided by SpaCy to460

set articles and pronouns as stop words.461

Shown in Table 6, NRC benefits the most from462

the removal of stop words, which leads to (signifi-463

cant) improvement on 6 (4) out of 8 datasets. We464

thus conclude that NRC better takes advantage of465

the non-trivial components to infer.466

∆W PPLGPT2-M PPLBERT PPLRoBERTa NRC

0.00 35.7 42.4 45.7 51.8
0.25 35.5 41.8 45.0 51.9
0.50 35.9 41.2 44.8 52.2
0.75 35.7 40.6 44.0 51.7
1.00 35.7 40.2 43.6 51.7

Table 8: Benefits of extra weights on question concepts.
Bord: Best performance of each PLM.

Synonym Replacement We verify the advantage 467

of NRC-based inference facing words with multi- 468

ple synonyms by testing the accuracy of answer 469

selection after synonym replacement. For imple- 470

mentation, we sample synonyms from Wordnet in 471

NLTK for 10% words in each question and answer 472

text of the COPA dataset. 473

The results of our experiments are presented in 474

Table 7. Our NRC retains the highest performance 475

compared to other metrics and still keeps a large 476

margin. Also, NRC is the least likely to be affected 477

by the replacement. Thus, the superiority of NRC 478

over PPL facing synonyms is verified. 479

Question Concept CommonsenseQA annotates 480

the commonsense-related phrase in each question. 481

These phrases are connected to answer candidates 482

in ConceptNet. For models adept at using common- 483

sense for inference, a higher weight on the phrase 484

should be beneficial for the inference. We thus add 485

extra weights (∆W ) and investigate the effect on 486

different metrics. 487

Table 8 presents the effect of concentration on 488

question concepts. Extra weight negatively con- 489

tributes to the inference of MLM-based PLMs, in- 490

dicating that they are unsuccessful in applying com- 491

monsense understanding to infer. As the negative 492

candidates are also sampled from the neighbors 493

of the question concept in the ConceptNet, these 494

models are confused by ambiguity. Compared to 495

PPLGPT2-M, ELECTRA-based NRC benefits more 496

from the extra weight. This verifies our claim that 497

a discriminator better models commonsense knowl- 498

edge and leverages them to infer. 499
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Figure 2: Distribution of the word-level differences in
log probability. Dashed line: Average difference.

PPLBERT; PPLRoBERTa; NRC;

10 20 30 40

−0.2

0

0.2

0.4

Figure 3: Relationship between word frequency and its
contribution to the inference.

5.2 Specific Statistics500

Difference Distribution We depict the differ-501

ence distribution of log probability on COPA in502

Figure 2. We compare the predicted probability on503

the question part when it is attached by a positive or504

negative choice. Words are viewed as voters whose505

contribution to the positive choice is reflected by506

the difference. PPLGPT2-M is not included since507

the answer makes no difference for the question508

component for unidirectional PLMs. Compared to509

NRC, PPL difference is more likely to distribute510

around 0.0, indicating its lower differentiating abil-511

ity. Also, the average value of NRC difference is512

greater than PPL difference, again supporting the513

stronger inference ability of NRC.514

Contribution v.s. Frequency We continue515

studying the contributions of word voters. We516

count the frequency of words in the COPA dataset517

and show the relationship with their contributions518

in Table 3. On words with frequency < 10, NRC519

evaluation provides more positive and stable sup-520

port to the right answer. The results verify our521

claim that NRC better evaluates the semantics of522

low-frequency words. The advantage of NRC over523

PPL decreases when the frequency rises, but NRC524

still holds the superiority as high-frequency words525

also suffer from the confidence taken by synonyms.526

Method CSQA COPA SCT

PPLGPT2-M 33.8 (-1.1) 61.0 (-7.4) 52.5 (-1.5)
PPLBERT 23.0 (-7.7) 59.8 (-1.4) 59.0 (0.8)
PPLRoBERTa 35.2 (4.0) 64.2 (-4.2) 65.4 (-1.9)
NRC 43.9 (-3.5) 74.8 (3.6) 81.5 (6.8)

Table 9: Performance of conditional probability-based
method. Results in bracket are the difference between
answer-based probability.

5.3 Conditional Method 527

Using the conditional probability of PPL 528

(MutualInfo-QA) is a conventional way to mitigate 529

the lexical bias in PPL calculation (Niu et al., 530

2021). Namely, p(A|Q)
p(A) is used instead of p(A) for 531

inference. p(A) is divided to reduce the effect of 532

the lexical property of the answer. We experiment 533

with MutualInfo-QA on CSQA, COPA, and SCT 534

datasets. For comparison, we also adapt NRC 535

to conditional NRC by using confidence as the 536

probability to calculate p(A|Q)
p(A) . 537

The results in Table 9 reflect the performance 538

of conditional probability on three commonsense 539

question-answering datasets. Conditional NRC still 540

outperforms other conditional metrics on all three 541

datasets. On COPA and SCT, NRC significantly 542

benefits from using a conditional version, while 543

PPL only receives a minor improvement or even 544

a drop-down in performance. This shows the re- 545

moval of initial probability is beneficial to NRC 546

since the confidence might vary among different 547

consistent texts. The conditional probability of 548

NRC backfires on CSQA, which can be explained 549

by the length (1.5 on average) of answers on CSQA 550

datasets. As the answer is much shorter than the 551

text used for ELECTRA pre-training, the value of 552

p(A) will add much noise to the inference. In sum- 553

mary, while conditional probability occasionally 554

benefits PPL, it will benefit NRC more unless the 555

answer text is too short. 556

6 Conclusion 557

This paper suggests replacing perplexity with con- 558

fidence to make the commonsense-targeted reason- 559

ing. We investigate the bias in the application 560

of perplexity for inference. We propose a supe- 561

rior alternative, RTD-based non-replacement confi- 562

dence, for better evaluation. Experiments on a wide 563

range of commonsense reasoning and question- 564

answering datasets provide a comprehensive analy- 565

sis for the superiority of NRC. 566
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Dataset NInst NA LQ LA LC

CSQA 1140 5 13.2 1.5 -
ARCE 2376 4 19.6 3.7 -
ARCC 1172 4 20.6 5.0 -
COPA 500 2 6.1 5.0 -
Swag 20005 4 12.4 11.2 -
SCT 1571 2 8.9 7.4 26.4
SQA 3525 3 11.2 5.0 19.6
CQA 6510 4 12.0 7.4 43.9

Table 10: Statistics of datasets in our experiments.
Ninst, NA: Number of instances and answer candidates.
LQ, LA, LC : Average length of the question, answer,
and context.

Rel. Prompt

IsA A is a B .
CapableOf A is able to B .
NotCapableOf A is unable to B .
UsedFor A is used to B .
MadeOf A is made of B .
PartOf A is part of B .
HasAttribute A is very B .
HasA A has a B .

Table 11: Prompts used in experiments on ConceptNet.

A Dataset Statistics770

The statistics of datasets in our experiments are771

presented in Table 10.772

B Prompts773

The prompts we used in experiments on Concept-774

Net are listed in Table 11. For SemEvalB, we use775

the prompt "A" is not true because B. to select an776

explanation for unreal commonsense expression.777

Prompts for question answering follow the previ-778

ous configuration (Niu et al., 2021) by attaching779

the answer after the question.780

C Rank of the Choice781

The accuracy only counts the matching between782

the golden answer and the first-rank choice. We783

show the ranking distribution of selected answers in784

Table 4 to further investigate the inference results.785

On the easy subsets of ARC, there does not exist786

a prominent advantage of NRC according to the787

second-rank choice rates. But when the questions788

become challenging, the rate of golden answers789

PPLGPT2-M; PPLBERT; PPLRoBERTa; NRC;

1st 2nd 3rd

20

40

ARCE

1st 2nd 3rd

20

30

40

ARCC

Figure 4: Ranks of PLM-based selection on easy and
challenging ARC.

in the second rank rises, reflecting the superior 790

capability of NRC in more challenging question 791

answering. 792
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