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ABSTRACT

We present a new hybrid quantum-classical recurrent neural network (RNN) archi-
tecture in which the recurrent core is realized as a parametrized quantum circuit
(PQC) controlled by a nonlinear classical feedforward network. The hidden state
is the quantum state of the PQC, residing in an exponentially large Hilbert space
C?" and manipulable using only n qubits. The PQC is unitary by construction,
making the hidden-state evolution inherently norm preserving without external
constraints. To evolve the recurrence, classical embeddings of the current input
are combined with mid-circuit readouts from the previous timestep’s quantum
state and processed by a feedforward network. The resulting outputs parameterize
the PQC, which then evolves unitarily to produce the updated hidden state. This
enables per-timestep readouts while avoiding attempts to emulate nonlinearities
with inherently linear quantum dynamics. We evaluate the model in simulation
with up to 14 qubits on sentiment analysis, MNIST, permuted MNIST, copying
memory, and language modeling, adopting projective measurements as a limiting
case to obtain mid-circuit readouts while maintaining a coherent quantum memory
across timesteps. We also devise a soft attention mechanism over readouts in a
sequence-to-sequence model and show that the network is effective for machine
translation. To our knowledge, this is the first model (RNN or otherwise) grounded
in quantum operations to achieve superior or competitive performance against
strong classical baselines across a broad class of sequence-learning tasks.

1 INTRODUCTION

Recurrent neural networks (RNNs) process sequence data by maintaining a hidden state that is
updated at each timestep, which can create a bottleneck for memory and representational capacity.
While vanilla RNNs have been empirically shown to retain roughly one real value of information
per hidden unit, with the effective task-specific capacity linearly bounded by the number of model
parameters (Collins et al.; 2017), similar limitations extend to gated architectures such as LSTMs and
GRUs (Hochreiter and Schmidhuber; |1997;|Cho et al., [2014), despite their use of gating and explicit
memory cells (Collins et al.,|2017). This means that more complex sequences may exceed what the
hidden state can encode, forcing the model to compress or forget.

Another challenge in training RNNs is the vanishing and exploding gradient problem (Bengio et al.,
1994} |[Hochreiter and Schmidhuber, [1997)), which arises from repeated multiplication through the
recurrent Jacobian. To address this, various strategies have been proposed (Mikolov, |2012; |Pascanu
et al.| 2013} [Le et al., 2015). In particular, unitary and orthogonal RNNs (Arjovsky et al.l 2016}
Jing et al., [2019; Helfrich et al.l 2018} |[Kiani et al.l 2022)) constrain the recurrent weights to be
norm-preserving, allowing gradients to remain stable across timesteps. These models perform well
on synthetic memory tasks, but their results on broader benchmarks vary.

The introduction of the Transformer model (Vaswani et al., 2017) appeared to relegate recurrent
architectures by bypassing the hidden-state bottleneck. Yet there is now renewed interest, with
recent work demonstrating that recurrent inductive bias remains highly competitive and provides
representational advantages that cannot be matched by the Transformer (Gu and Dao)} 2023} |Orvieto
et al., [2023; Bhattamishra et al., [2024; |[Beck et al., [2024).

With the advent of quantum computing (Arute et al.,[2019; Bondesan and Welling| |2020; [Pan et al.,
2023; Reichardt et al., 2024), including quantum backpropgation (Abbas et al., [2023)), parametrized
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Figure 1: Hybrid QRNN architecture. (a) Recurrent core PQC with n = 4 qubits (illustrative) with 16
parametrized gates and a Hilbert space C2". (b) Example RY gate; each gate (either RX or RY) is
parametrized by a rotation angle 6;, 1 <7 < 16. (c) QRNN unrolled for a sequence of length k, where
~ denote qubit measurements. At each step ¢, 1 < ¢ < k, outputs from all measurements at step
t — 1 are aggregated into the readout vector z;_1, which is concatenated with the input embedding x;.
The feedforward network F takes the combined vector (z;—_;: x;) and produces |0;| = 16 parameters
per timestep that control the PQC structure from (a), denoted U (8,).

quantum circuits (PQCs), which are a core component of variational hybrid quantum classical
models, have emerged as an alternative mechanism for structured function approximation (Du et al.|
2019; Schuld et al.| 2021} [Pérez-Salinas et al., |2021; [Yu et al., 2024b). PQCs implement unitary
transformations by construction, which naturally preserve norms (§3.1). Acting on n qubits, they
evolve quantum states within a Hilbert space in C2", enabling expressive transformations over
exponentially large states. Although such spaces are classically intractable beyond moderate n, they
can be manipulated with only n physical qubits on quantum hardware.

In this work, we present a new hybrid quantum—classical RNN (QRNN) grounded in quantum
operations, where the entire recurrent core is realized as a PQC. We introduce a mechanism for
evolving the quantum hidden state while maintaining coherence across timesteps via mid-circuit
measurements, as a limiting case simulated via projective measurements, enabling the state to remain
coherent across time without collapsing and allowing per-timestep readouts. We use a classical
feedforward network to dynamically parametrize the PQC at each step, which provides a principled
way to couple classical nonlinearity with mid-circuit measurements of a unitary quantum recurrent
core, avoiding attempts to emulate nonlinearities with intrinsically linear quantum operations, leaving
the PQC strictly for coherent unitary evolution in an exponentially large Hilbert space.

Fig. [T]illustrates both the PQC (with four qubits shown for illustration) and the unrolled QRNN
architecture:

* The input at step ¢ is mapped to a classical embedding x via a learnable embedding layer.

* A classical feedforward network F takes as input the concatenation of the previous readout
z;_1 and the current input x;. It outputs the circuit parameters 8;. These parameters
configure a PQC with a fixed gate layout (Fig. , denoted U (0;), which is applied at
timestep ¢. For instance, the PQC in Fig. [Ta]comprises 16 parametrized gates (the square
RX and RY boxes)E] Accordingly, the feedforward output vector at step ¢ is 8; € R'°,

"More precisely, each RX gate is a controlled RX gate, activated by a connected qubit.
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1 <t <k, (Fig.[Ld), with each element of 6;, denoted 6,, i € [1,16], assigned to one gate
of the PQC at step t, specifying its rotation angle (Fig. [Tb).

* The quantum state encoded by the PQC evolves unitarily through applications of the
parametrized unitary gates, yielding the updated state. Residing in an exponentially large
Hilbert space, this state provides the core recurrent memory of the model, which persists
across timesteps.

* Mid-circuit readouts z; (or final readouts at the end of the sequence) are applied to extract
classical features from the hidden state. These readouts, obtained via measurements of the
quantum state, serve two purposes: (i) as recurrent feedback z;_ at step ¢; and (ii) as the
input to task-specific classical layers, e.g., for classification.

We develop the models on GPUs, allowing us to simulate and train quantum recurrence via classical
backpropagation, with the expectation that such models will become classically unsimulatable as the
number of qubits increases. To our knowledge, this is the first model rooted in quantum operations
(RNN or otherwise) demonstrated to achieve superior or competitive performance with up to 14
qubits in classical simulation across a set of six realistic sequence modeling tasks. Our results show
QRNN outperforms scoRNN, a classical orthogonal RNN specifically designed for norm preservation,
on five of six tasks, and outperforms LSTM on four of six, while achieving competitive results on
language modeling and machine translation. Experiments also show that classical non-linear control
and feedback is effective, with the non-linear models outperforming their linear counterparts, and we
find that the unitary quantum recurrent core maintains more stable gradients than LSTMs (§4.6).

Our architecture is motivated in part by the memory and gradient problems of RNNs, but its main
aim is to explore a hybrid quantum—classical recurrent model in an idealized proof of principle
that allows us to study its computational behavior under best case conditions across a broad class
of sequence learning tasks. The PQC (Sim et al., 2019) uses only elementary one- and two-qubit
gates that should be supported on any hardware platform. It replaces conventional recurrence with
expressive unitary transformations that are physically grounded. The model performs competitively
in simulation, providing a hardware-aware base case and a plausible path toward future hardware
implementations.

2 RELATED WORK

Bausch (Bausch, |2020) developed a QRNN based on a quantum neuron construction. These quantum
neurons are composed into layers, forming a QRNN with persistent quantum memory. However,
the nonlinearities are emulated within PQCs and incur significant overhead due to probabilistic
repeated-until-success circuit execution and postselection steps. This overhead comes from the
fact that quantum computation is inherently linear, and attempts to emulate nonlinearities within
PQC:s often require substantial complexity, and the available forms of quantum nonlinearity remain
limited (Yan et al.| [2020; Moreira et al., [2023; [Z1 et al.| [2024]).

The so-called QLSTMs embed PQCs into the gating mechanisms of classical LSTMs (Chen et al.}
2020; |Yu et al [2024a} [Ubale et al., [2025)), replacing dense layers in the LSTM gates with PQCs.
However, all memory and recurrence remain entirely classical, governed by standard hidden and
cell state updates. These architectures are best viewed as classical LSTMs augmented with auxiliary
PQCs, rather than quantum recurrent models.

Li et al.|(2023) and Siemaszko et al.| (2023) also model recurrences with PQCs, while supporting
per-timestep outputs, but they rely entirely on linear quantum dynamics of the PQC without explicit
nonlinearities or classical control.

Experiments of the existing models have primarily focused on domain-specific evaluations such as
fraud detection (Ubale et al., [2025)), low-resource text classification (Yu et al.,|2024a), or scaled-down
MNIST (Bauschl 2020} [Siemaszko et al.,[2023). We instead present the first QRNN to demonstrate
competitive performance across six full-scale sequence modeling tasks.

Another way to interpret our hybrid model is through the lens of fast and slow weights in RNNss,
which provides a mechanism for memory across different timescales (Schmidhuber, [1992; Ba et al.,
2016). The PQC functions as fast weights, controlled and reconfigured at each step by a classical
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feedforward network that plays the role of slow weights. The quantum state evolves under this control
and persists across timesteps under unitary evolution.

3 MODEL

3.1 PQC

Unitary evolution. A PQC is shown in Fig.|[la] where each horizontal line represents a qubit. The
square boxes denote quantum gates, which by definition are always unitary transformations acting
on one or more qubits. Single-qubit gates apply local transformations, while multi-qubit gates can
generate superposition and entanglement between qubitsE] A typical PQC consists of entirely unitary
operations U acting on quantum states |¢)) € C2", with

vtv=1 = |[UW)ll2 = [l1¥)]2,

ensuring norm preservation by construction

Parametrized unitary gates. The unitary gates on a PQC can also serve as learnable transfor-
mations acting on a quantum state and the sequence of gates or unitary matrices is analogous to
“layers” in a neural network, where parametrized gates are defined by unitary matrices with classically
adjustable parameters. The parametric gates in Fig. are the RX and RY rotation gatesE] with the
unitary matrices
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The rotation angles above, when used in a PQC, can be provided and controlled by external inputs,
allowing the quantum computation to incorporate classical data.

Measurements. A PQC typically starts from an initial quantum state, often initialized as all
zero, and applies a series of gates arranged from left to right. To intercept the quantum state, we
perform measurements to obtain real-valued readouts (in the case of our hybrid model, without
collapsing the state). These readouts provide partial observations of the state, and any required
number of measurements, on any of the qubits, can be combined for downstream tasks. For instance,
a measurement through the Pauli-Z observable with the unitary

2= 4)

assigns scalar values (e.g., +1 for |0) and —1 for |1)) in the computational basis in the single-qubit
case. For a general quantum state however, the outcome is probabilistic: it yields +1 with probability
|r|? and —1 with probability | 3|2. The expectation value of this measurement is given by |a|? — |32,
which can be used as a real-valued readout in hybrid quantum-classical models.

Although the outputs obtained via measurement are a nonlinear function of the gate parameters,
particularly those used in parametrized rotation gates such as RX, it is typically a weak form of
nonlinearity (§4).

3.2 HYBRID MODEL

RNNSs parameterize a conditional distribution with a function that depends on a hidden state h;_1,
which compacts the past inputs (X1, ...,x;_1) into a fixed-dimensional representation:

p(Xt \ Xl,-~-7Xt—1) ~ P(Xt | ht—l)-

2See Appendix@for a basic description of qubits and superposition.
3U1 denotes the conjugate transpose (Hermitian adjoint) of U.
*All RX gates only activate conditionally if the connected control qubit in the PQC is in the |1) state

(Fig.[Ta).
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At each timestep t, the hidden state h; is updated based on the previous hidden state h,_; and the
current input x;:
h, = f(h_1,%x4;0),

where f is a transformation (e.g., a basic RNN or LSTM cell) parametrized by ®. In the hybrid
model (Fig.[Ic), we replace the hidden state with a quantum state represented by the PQC in Fig.[Ta]
which is controlled by a classical feedforward network and evolved by applying the unitary gates.

Let x; be the input embedding at timestep ¢, and let z;_; be the measurement-based readout from the
previous timestep. In the most generic form of the hybrid modelE] these values are combined into a
single vector u; = (z;_1, X¢) and passed through a classical feedforward network F with one hidden
layer and a nonlinearity.

The first transformation maps the input u, to a hidden representation v:
ve = ¢(Wiug + by), ey
where ¢ is a non-linear activation function. The second transformation maps v to
0: = Wyv; + by, @

where 6; € R? represents the parameters that control the PQC’s unitary operations at timestep .
Each element of 6; denoted 6, is mapped to a rotation angle in a parametrized quantum gate within
the PQC (e.g., 1 < i < d and d = 16 in Fig.[Ta).

The PQC itself is defined by a unitary operator U (6;), parametrized by OtE] After the gates in U(6;)
are applied to the quantum state h;_; = [¢);_1), the resulting state hy = U(0;) |;_1) is measured
to obtain classical readouts

z, = Measure(h,), 3)

which serve as a proxy for the quantum state and are combined with the next input x;; to evolve
the recurrence. To preserve coherence across timesteps, we simulate mid-circuit measurements,
allowing recurrent structure without collapsing the full quantum state, retaining the quantum memory
throughout the sequence.

We train the entire hybrid model end-to-end using classical backpropagation, optimizing the pa-
rameters ® = {Wy, by, Wy, by} via standard optimizers, such as Adam (Kingma and Ba,[2014).
Because each z; is real-valued, it can be used both as a per-timestep output and as a contextual
embedding for soft attention in sequence-to-sequence decoding.

4 EXPERIMENTS

We use the ansatz shown in Fig[Ta] (scaled to more qubits when required) as the core circuit for
the QRNN. [Sim et al.| (2019) demonstrate experimentally that this ansatz is expressive, capable of
generating strong entanglement, and able to represent a significant portion of the Hilbert space, even
compared to deeper circuits built from less expressive ans'eitzem We implement and simulate the model
using TorchQuantum (Wang et al.,|[2022), which remains less optimized than classical toolkits
due to the lack of efficient kernels for hybrid operations involving tight classical-quantum feedback,
particularly in recurrent settings. Our ansatz balances expressivity, implementation simplicity, and
simulation efficiency.

For Measure in Eq. E], measurements are performed in each of the Pauli-X, Pauli-Y, and Pauli-Z
observables across all wires in the PQC, and the measurement outcomes are combined to form z;
(Eq.[3). For the feedforward network F (Eq.[I]and Eq.[2), we experimented with ReLU, leaky ReLU,
GLU and GELU non-linearities. |°| For both language modeling and translation, we first transform

SWe may add extra transformations to the measurement outcomes before classifications or feeding them to
the next step; see

%We slightly abuse notation by writing U(6;) to denote all unitary operations composed of multiple
parametrized gates, each acting on one or more qubits with parameters drawn from 6.

"See Appendi for details on the PQC design and expressibility evaluation methodology.

8GLU requires projecting to twice the output dimensionality, effectively increasing the parameter count
compared to standard nonlinearities like ReLU, when all other dimensions are held constant.
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Table 1: Classification accuracy on IMDB. Qubit count g, total measurements m; or hidden state size
h (for RNN, LSTM and scoRNN only); embedding dimension e; parameter count p. { indicates the
LSTM in Dai and Le| (2015]).

Model Val Test gnvh e p
QRNNg.u 87.25 8537 8y 100 52K
QRNNciyrery 8741 87.00 854 100 52K
QRNNGgLy 87.53 86.38 8y 100 52K
"QRNNpiear 8537 8421 8y, 100 52K
QRNNLinear 8421 8322 4y, 100 2.6K
RNN 87.64 86.96 50 50 5K
LSTM 88.40 86.79 25 25 51K
LST™M! — 86.5 1,024 512 62M
"scoRNN 8405 8314 170 100 31K

the measurement outcomes with a separate feedforward layer and use the result both for vocabulary
classification and as input to the next timestep.

All experiments are run on a single A100/A30 GPU and we select the best models on the validation
split across different random seeds, and report the test results. The per-epoch training runtime
ranges from 4 minutes for MNIST (with 10 qubits) to 60 minutes for language modeling (with
14 qubits). Hyperparameters for the hybrid model common to all the tasks, including the Adam
optimizer (Kingma and Bal [2014) (Ir = 1 x 1073, A =1x10"*and e = 1 x 10719) with no
learning rate decay. Dropout, with task-dependent drop probabilities, is applied to the measurement
outcomes from the previous timestep and the current input embedding, which are encoded by the
feedforward network F into the rotation angles of the PQC. We apply full-sequence backpropagation
without truncation, except for language modeling, where sequences are truncated to 35 tokens per
standard practice. No pretrained word embeddings are used. Additional hyperparameters and test set
statistics (mean, min, max across runs) are provided in Appendix Q For scoRNN, we use a hidden
size of 170 and the hyperparameters from Helfrich et al.| (2018]).in[Helfrich et al.|(2018)) throughout.

4.1 SENTIMENT ANALYSIS

The IMDB sentiment dataset (Maas et al., 2011) is a balanced binary classification benchmark with
25K labeled reviews each for training and testing. The average review length is 241 tokens, with
a maximum length of 2,500 tokens. We use 7.5K reviews from the training set for validation and
truncate all reviews to a maximum length of 400 tokens across all models.

The hybrid model for this task follows the generic hybrid architecture described in §3.2] At the final
input token, we apply an affine transformation to the measurement outcomes to produce two logits,
which are used for classification via cross-entropy loss. Table [I| summarizes the results. The QRNN
with LeakyReLU nonlinearity achieves the highest test accuracy. Ablating the classical nonlinearity
(Eq.[T) degrades performance, though increasing the number of qubits in the linear model still yields
some accuracy gains. Adding the nonlinearity results in a substantial improvement, outperforming all
baselines. On this task, the orthogonal scoRNN underperforms other models, despite having a larger
hidden state and over five times more parameters.

4.2 MNIST AND PERMUTED-MNIST

We report results on the full MNIST dataset without down-sampling. We use the same model
architecture as for IMDB, except with 10 output classes instead of binary classification. The standard
pixel-by-pixel permuted MNIST (pMNIST) setup (Le et al., 2015} |Arjovsky et al.l 2016) requires
784 steps to process each 28 x 28 digit, which makes simulation prohibitively slow given the current
limitations of the toolkit. Therefore we experimented with a simplified version in which the pixels of
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Table 2: Classification accuracy on MNIST and pMNIST. Qubit count g, total measurements m; or
hidden state size h (for RNN, LSTM and scoRNN only); embedding dimension e; parameter count p.
t indicates the QRNN model of (Bauschl [2020) with 13 qubits and each digit downscaled to 4 x 4
and binarized.

MNIST pMNIST
Model Val Test Val Test gmvh e D
QRNNRgeLy 98.10 97.83 9486 95.05 103 28 39K
QRNNpcagrery  98.01 9796 95.13 94.86 103 28 39K
QRNNGgLY 98.17 98.03 95.38 95.58 103 28 39K
"QRNNpjear  97.06 96.80 9494 9413 103 28 39K
QRNNLinear 9431 93.87 91.10 90.55 55 28 1.3K
QRNNT — 96.70 — — qg=13 1 3.1K
RNN 9742 97.28 95.16 9428 50 28 39K
LSTM 97.61 97.44 9492 9393 20 28 39K
"scoRNN  97.94 97.12 96.86 9556 170 28 16K
1.00
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Figure 3: Test loss (a) and accuracy (b) for the copying memory problem with 7" = 200.

each digit are first permuted and then reshaped back to 28 x 28. In both the standard and permuted
cases, we use the same hyperparameters.

Table[2]shows that QRNNs with three different types of nonlinearity outperform the classical baselines
on both tasks, clearly demonstrating the benefit of adding classical nonlinearities compared to the
QRNNL jnear models (where nonlinearity is ablated). We observe that permutation leads to an accuracy
drop across all models: 2.45% for QRNNggLy, 3.00% for the RNN, 3.51% for the LSTM, and 1.51%
for scoRNN, which achieves comparable performance to QRNNgg y.

4.3 COPYING MEMORY

The copying memory problem tests a model’s ability to retain and recall information over long
sequences (Hochreiter and Schmidhuber, |1997; |Arjovsky et al., [2016). Each input sequence has
T + 20 tokens, where the first £ = 10 are random digits from 1 to 8 (njssses), followed by zeros, and
the last 11 (k 4 1) positions are filled with the digit 9 with the first 9 acting as a delimiter. The model
must learn to detect the delimiter and recall the original digits right after it in the output sequence.
We randomly generated 5K training and 1K test samples with 7' = 200 (for training efficiency of

QRNNSs). A random guess baseline yields a loss of %‘ék*l) ~ 0.095, reflecting the expected

cross-entropy when choosing uniformly from incorrect digits. On this task, QRNN matches the large
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Table 3: PTB word-level language modelling (PPL). Qubit count g, total measurements m; or hidden
state size h (for RNN and LSTM only); embedding dimension e; parameter count p.

Model Val Test gmVvh e P

QRNNRger U 131.81 126.69 144, 650 130K
QRNNp cayreru 13141 126.58 144 650 130K
QRNNGgLU 136.62 131.07 144 650 130K

QRNNpcayreru  135.00 13035 105 512 78K
QRNNpayrery 16917 161.09 55 512 39K

RNN 151.96 139.13 256 256 131K
LSTM 12422 12030 128 128 131K

Table 4: Multi-30 German to English translation (BLEU). Qubit count g, total measurements m; or
hidden state size h (for RNN and LSTM only); embedding dimension e; parameter count p.

Model Val Test gmvh e P

QRNNgLy 31.08 3192 133 512 390K
QRNNpLcagreLy  29.22 2899 1339 512 340K
QRNNGgeLy 29.95 29.14 1339 512 340K

"QRNNgy 3016 3151 103 512 360K

QRNNgLy 27.63 29.66 55 512 270K
RNN 29.17 29.20 512 256 390K
LST™M 29.20 32.20 256 124 390K

168K-parameter LSTM (loss 0.07, accuracy 97%) and outperforms the smaller 2.8K LSTM (loss
0.25, accuracy 89.4%). scoRNN, specialized for this task, achieves near-perfect results, highlighting
a performance gap between general-purpose and tailored models.

4.4 WORD-LEVEL LANGUAGE MODELING

The PTB dataset (Mikolov et al., 2011) consists of 929K training tokens, 73K validation tokens, and
82K test tokens. As is standard, we use a vocabulary size of 10K, converting OOV tokens to UNK. We
tested scoRNN on this task but found that it did not converge to a good solution. The LSTM achieved
the best result, with 120.30 perplexity (PPL), followed closely by QRNNgeLy at 126.69.

4.5 MACHINE TRANSLATION

The attention mechanism implemented here follows the additive attention of |Bahdanau et al.| (2015).
At each decoding step, the decoder hidden state is concatenated with encoder outputs, passed through
a tanh activation followed by a linear projection to compute alignment scores. A softmax then
normalizes these scores into attention weights, with masking applied to exclude padded positions.

We applied the model to German-to-English translation using the Multi30k dataset (Elliott et al.,
2016), with vocabulary sizes of 19.2K for German and 10.8K for English, and an average of 11
tokens per sentence in both languages. The training set contains 29K sentence pairs, with 1K each for
validation and testing.

Results in Table[d]show that QRNNgy with ten qubits closely matches the performance of the LSTM
baseline, followed by QRNNgLy with five qubits. For the QRNN, it is somewhat surprising that
intermediate readouts can still support mechanisms like soft attention, since these readouts capture
only partial projections of the quantum state rather than the full hidden state. This suggests that,
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Figure 4: Normalized per-timestep gradient norms ||0L/90h;||> during training, averaged over one
mini-batch containing samples of identical 7" (batch size = 16). Curves are normalized by the final
timestep (¢t = T') gradient to compare decay shape; higher gradient values closer to 7' = 0 indicate
less vanishing. (a) IMDB, T' = 400. (b) pMNIST, T" = 28.

despite intermediate measurements, sufficient information is retained and propagated across timesteps.
We qualitatively interpret the learned soft alignments in Appendix

4.6 HIDDEN STATE GRADIENTS

We measure per-timestep gradient norms on IMDB (7" = 400) and pMNIST (7" = 28) by retaining
gradients on the per-timestep readouts (QRNN) and hidden states (LSTM) during training from
saved checkpoints and computing ||0L/dh;||2. For each mini-batch we normalize the curve by the
last-step norm ||0L/dhr || to compare decay shape, then average across samples in a mini-batch. As
shown in Fig. ] the QRNN curves remains consistently above the LSTM curves on both IMDB and
pMNIST, indicating slower decay and less vanishing through time toward the start of the sequences.
Both curves reach 1.0 at t = T by construction (normalization), but the relative elevation of the
QRNN curve at earlier timesteps demonstrates better gradient propagation.

5 DISCUSSION AND CONCLUSION

Different quantum hardware platforms currently require distinct control stacks and implementations
and architectural choices do not translate one-for-one across devices. Our goal is not to prescribe a
hardware roadmap but to analyze a hardware-realistic base case in an idealized simulator to isolate
the computation performed by the architecture. The PQC gate set is native on most platforms and
involves no nonstandard gates. We model mid-circuit observation using projective measurements
as a limiting case. With better simulation toolchain and budgets allowing more qubits (e.g., future
multi-GPU toolkits based on cuQuantum (Bayraktar et al.l [2023))), direct projective reads can
be replaced by an ancilla-mediated scheme, in which extra auxiliary qubits are entangled with the
PQC, measured, and reset if needed, while the memory register remains coherent. Such mid-circuit
measure-and-reset operations are already supported on several platforms (DeCross et al.| 2022; [Lis
et al.,[2023; Norcia et al., | 2023) and align naturally with our design.

This paper contributes to sequence learning by demonstrating recurrent networks grounded in quantum
operations, with a recurrent core implemented as a parametrized unitary quantum circuit and a
lightweight classical controller that steers the recurrent evolution. The unitary dynamics preserve
norms, promoting stable gradient propagation, while the classical controller injects nonlinearity and
task adaptivity needed for expressiveness. The result is a compact, principled architecture that unifies
unitary recurrence, partial observation, and classical control. As simulation techniques improve
and quantum hardware matures, this points toward practical, hardware-realistic quantum models for
sequential learning.
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A  QUANTUM STATES AND SUPERPOSITION

Unlike a classical bit, a qubit exists in a superposition of the states 0 and 1 in a two-dimensional
complex Hilbert space: |1} = «|0) + 5|1) = [« 5]T € C%and |0) = [1 O]T and |1) = [0 1]T
are elements of the computational basis for the Hilbert space. The coefficients o and /3 are complex
numbers referred to as the amplitutes that satisfy |a|* + |3|> = 1. For a state [1)) = «|0) + 3|1), the
probability of obtaining |0) is ||, and the probability of obtaining |1) is |3]?.

B PQC TEMPLATE

We have chosen the PQC template based on the benchmarking study in|Sim et al.| (2019)), which
evaluates 19 different parametrized quantum circuits (PQCs) up to depth 5 (i.e., the base circuit
repeated up to five times and used a single PQC). Each PQC is assessed using two key metrics:
expressibility and entangling capability. The architecture referred to as ansatz-14 in|Sim et al.| (2019)
which we use here in a single layer configuration was shown to score highly on both. This gives a
good balance of simulation cost and "goodness" of the PQC.

Expressibility is quantified by comparing the distribution of pairwise fidelities between states gener-
ated by the PQC to the theoretical fidelity distribution of Haar-random states, which represent uniform
randomness over the composite Hilbert space (the tensor product of individual qubit spaces). Instead
of generating Haar-random states directly, the method in (Sim et al., 2019) uses the analytical form
of the Haar fidelity distribution as a reference. PQC output states are obtained by sampling random
parameters, and their pairwise fidelities are used to construct an empirical distribution. The KL
divergence between this empirical distribution and the Haar reference provides a scalar expressibility
score, with lower values indicating greater expressiveness.

C EXPERIMENTAL SETTINGS AND TEST ACCURACY STATISTICS ACROSS
RUNS

Table 5: Hyperparameters: batch size b, dropout rate d; embedding initialization e;y,;¢.

Task b d Cinit

IMDB 200 0.25 Xavier Uniform
MNIST 200 0.0 -

PTB 64 0.5 Xavier Uniform
Multi-30 64 0.25 Xavier Uniform

Table 6: Accuracy statistics on IMDB test set across 100 runs for each nonlinearity variant. Qubit
count g, total measurements m; embedding dimension e; parameter count p. Among all tasks, IMDB
showed the greatest variability in QRNN performance across random seeds in development. This
behavior may align with known sensitivities in training variational PQCs (Grant et al.,|2019). We
therefore also report stats where we remove failed runs (< 70% accuracy, well below simple baselines
such as BoW), indicated by *. For the three nonlineariteis 40, 42 and 25 failed runs were observed
each. The results also indicate that GELU nonlineartiy reduces the senstivity compared with the other
two.

Model min  maxr min® ¥ gm € D

QRNNRgeLU 4955 8596 71.18 71.74 83.11 8y 100 5.2K
QRNNpcayreLy  49.63  87.00 70.23 7577 83.44 8y 100 52K
QRNNGgGgLU 4998 86.38 77.18 70.39 83.75 8y 100 5.2K
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While parametrized quantum circuits (PQCs) can suffer from vanishing gradients in deep or wide
settings due to the barren plateau phenomenon (McClean et al.,[2018)), there is no general impossibility
theorem that barren plateaus must occur in all parametrized quantum circuits; their presence and
severity are known to depend on the ansatz, cost function, initialization, training strategy, and noise,
and remain an empirical matter at practical scales. Several studies provide insights into how it arises
or design principles that prevent or mitigate plateaus (Cerezo et al.,2019; |Grant et al., 2019 |Patti et al.|
2021§Sack et al.} 2022). These results indicate that barren plateaus are not inevitable, and that careful
design yields a tractable and stable training landscape in practice. In particular, some architectures
such as quantum convolutional neural networks avoid barren plateaus by construction (Pesah et al.}
2021)), which supports the view that appropriate architectural choices can produce stable and trainable
quantum models.

Table 7: Accuracy statistics on MNIST and pMNIST test sets across 50 runs for each nonlinearity
variant. Qubit count ¢ and total measurements m; embedding dimension e; parameter count p.

MNIST pMNIST
Model min max n min max m qm e p
QRNNgeru 97.51 98.25 97.84 9433 9531 94.83 103 28 39K
QRNNLeayreLy  97.42  98.15 97.88 9433 9538 94.80 103 28 39K
QRNNGgLy 97.62 98.22 97.96 9472 9558 95.12 103 28 39K

Table 8: BLEU evaluations on the Multi-30 German to English test set across 20 runs for each
nonlinearity variant. Qubit count g, total measurements m; embedding dimension e; parameter count

p.

Model min  maxr [ qm e p

QRNNgLU 19.83 3192 27.88 133 512 390K
QRNNpcayrery  24.52 29.87 2855 133 512 340K
QRNNGeLU 2571 3029 29.09 133 512 340K

D NON-MONOTONIC ALIGNMENTS

To qualitatively analyze the model’s learned soft attention alignments we selected four sentences
from test set which required non-monotonic alignments and interpreted the hybrid model translations
and alignments (Fig. [5).

We observe that the hybrid model can manage spatial and syntactic shifts while capturing clause-level
structure and semantics through its measurement-driven hidden states and soft attention as well
as the LSTM baseline. It is evident that the model handles compound verb constructions and
semantic expansion, in sentences like “Diese Band bereitet sich auf einen Auftritt vor Publikum
in einer Kirche vor” (Fig.[5a) and “Zwei griin gekleidete Mdnner bereiten in einem Restaurant
Essen zu” (Fig.[5b), where German separable verbs— “bereitet ... vor” and “bereiten ... zu”—are
correctly reconstructed into the English verb phrases “is preparing to perform” and “preparing”,
respectively. The soft attention allowed the model to attend across non-contiguous source tokens,
enabling reassembly of verb phrases. Additionally, lexical expansions such as “Publikum” — “a
crowd of people” (Fig.[5a) and “gekleidete Mcnner” — “men in green outfits” (Fig.[5b) demonstrate
contextually appropriate semantic elaboration beyond literal translation.

The model also displays syntactic reordering and clause realignment, necessitated by divergences
between German and English word order. This is shown in both “Diese Band ... vor Publikum . ..
vor” and (Fig.[5a) “Menschen, die vor einem groffen Gebdiude im Kreis sitzen” (Fig.[5c). In the
former, German’s verb-final structure is reorganized into a mid-sentence English verb phrase, while
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Figure 5: Non-monotonic alignments produced by the QRNN encoder-decoder model.

handling nested prepositional phrases. In the latter, the relative clause “die ... sitzen” is compressed
into the participial phrase “sitting”, dropping auxiliaries and pronouns to better fit English syntactic
norms. Similarly, the location and positional phrases “im Kreis” and “vor einem grofien Gebdude”
are reordered into “in a circle in front of a large building”

Lastly, for multi-clause coordination, tense adaptation, and long-range dependency tracking,
as seen in “Acht Mdnner spielen auf der Biihne, wahrend ein Gitarrist im Scheinwerferlicht spielt”
(Fig.[5d). The model successfully disentangles two coordinated clauses and renders them with the
correct English conjunction “while”, while adjusting verb forms from German’s uniform “spielen”
to “are playing” and “plays”, based on subject plurality. Finally, this ability to flexibly adapt clause
boundaries and maintain coherence is also reflected in the “Menschen ... im Kreis sitzen” example
(Fig.[5), where the model tracks relative clause dependencies and maps them onto compact English
constructions.
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E LLM USAGE

We used LLMs to assist with spelling, grammar, and wording improvements.
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