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ABSTRACT

A major bottleneck in scientific discovery consists of narrowing an exponentially
large set of objects, such as proteins or molecules, to a small set of promising can-
didates with desirable properties. While this process can rely on expert knowledge,
recent methods leverage reinforcement learning (RL) guided by a proxy reward
function to enable this filtering. By employing various forms of entropy regulariza-
tion, these methods aim to learn samplers that generate diverse candidates that are
highly rated by the proxy function. In this work, we make two main contributions.
First, we show that these methods are liable to generate overly diverse, suboptimal
candidates in large search spaces. To address this issue, we introduce a novel
unified operator that combines several regularized RL operators into a general
framework that better targets peakier sampling distributions. Secondly, we offer
a novel, robust RL perspective of this filtering process. The regularization can
be interpreted as robustness to a compositional form of uncertainty in the proxy
function (i.e., the true evaluation of a candidate differs from the proxy’s evaluation).
Our analysis leads us to a novel, easy-to-use algorithm we name trajectory general
mellowmax (TGM): we show it identifies higher quality, diverse candidates than
baselines in both synthetic and real-world tasks.

1 INTRODUCTION

The task of scientific discovery centers on discovering novel objects with desirable properties such
as antimicrobial resistance or binding affinity. These objects are often discrete and structured such
that they can be constructed through a sequence of compositional steps, e.g., proteins as sequences
of amino acids, molecules composed of various smaller fragments (Angermueller et al., 2019; Wang
et al., 2023). Due to this compositionality, the number of possible objects grows exponentially with
object size and becomes too large to search exhaustively. Additionally, experimentally evaluating
potential objects can be too technical or too expensive. Nonetheless, in many cases, researchers
have access to a proxy reward model that quantitatively approximates the satisfaction level of the
property of interest (Davis et al., 2018; Du et al., 2022).

A large body of work leverages this proxy reward function to narrow the set of objects to a small subset
of promising candidates to test in a lab (Currin et al., 2015; Gubernatis & Lookman, 2018; Wu et al.,
2021; AI4Science et al., 2023). An alternative approach that has demonstrated growing popularity and
effectiveness is to pose this problem as an RL task (De Cao & Kipf, 2018; Darvariu et al., 2021; Bou
et al., 2024). In what we will denominate discrete compositional processes (DCP), object construction
is viewed as a Markov decision process (MDP) where terminal states correspond to complete objects
and yield a reward given by the evaluation of that object by the proxy reward function. Then, the
learned policy can be used as a generative model that samples promising candidates.

Among these approaches, generative flow networks (GFNs) have shown considerable success (Bengio
et al., 2021; Jain et al., 2023; Zhou et al., 2024; Cipcigan et al., 2024). GFNs learn an amortized policy
and, at optimality, sample objects with probability proportional to the exponential of their reward
(Eq. 2). Connections with maximum-entropy RL have been established, showing that this objective
underpins the diversity of generated samples (Tiapkin et al., 2024; Mohammadpour et al., 2024a;
Deleu et al., 2024). While this exact sampling goal is useful in certain applications, it is problematic
in exponentially large sets: the probability of sampling from a small set of objects with high rewards is
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Figure 1: (Left) Illustrated issue with sampling proportional to reward. The much larger reward of the optimal
sequence (in green) is drowned out by all the rewards in the combinatorial explosion of longer subsequences.
(Right) A DCP for a protein sequence generation task. (A) Starting from an empty string, amino acids are
added sequentially until termination. (B) Then, the full sequence is evaluated by a proxy reward function Φ(x)
whose value is given as reward for the termination action. (C) Over the course of protein generation, uncertainty
accumulates through the δi. (D) The true reward depends on Φ(x) and the accumulated uncertainty.

dominated by the probability of sampling from an exponentially large set of objects with low rewards.
In this work, we leverage the connection between GFNs and regularized RL to use soft RL operators
for scientific discovery. By combining these approaches, we derive an improved operator for the task
and offer a new perspective on regularization. Our contributions can be summarized as follows.

Our contributions: (1) We introduce general mellowmax, an interpolating operator that allows
for a more flexible tradeoff between quality and diversity than previous operators; (2) We derive a
trajectory constraint for this operator, which we refer to as trajectory general mellowmax (TGM).
TGM enables us to propose a GFN-like algorithm for scientific discovery tasks that empirically
finds diverse modes with higher reward than soft mellowmax, GFNs, and other RL baselines; (3)
We provide a robust RL interpretation of these baselines in DCPs. Specifically, we show that the
reward uncertainty sets induced by TGM are more interpretable than those associated with entropy
regularization or GFNs. The analytical techniques we employ pave the way to more general trajectory
constraints through an interpretable equivalence between regularization and reward robust sets.

2 RELATED WORK

The goal of sampling proportional to reward targeted by GFNs was historically tackled using Markov
chain Monte Carlo (MCMC) (Gilks et al., 1995). These methods construct chains through a random
walk: from a set of initial points, new points are proposed and either accepted or rejected based on
their function value (here, their proxy reward). While theoretically appealing, these methods struggle
in high dimensions, in particular when it comes to discovering separate modes (Bengio et al., 2021).

On the other hand, GFNs have demonstrated success in protein design (Jain et al., 2022), drug discov-
ery (Shen et al., 2023), and material design (AI4Science et al., 2023). The standard way to tackle the
excessive smoothness of GFN policies is through temperature conditioning (Zhang et al., 2023; Kim
et al., 2023; Zhou et al., 2024): the GFN target can be posed as learning p(x) ∝ eβr(x) where β is an
inverse temperature parameter. Temperature conditioning involves learning a policy conditionally on
β, with β varying throughout training. It complements our approach, as temperature conditioning can
be used on top of our framework. Mohammadpour et al. (2024b) have also proposed a dynamic regu-
larization coefficient based on the number of actions, for maximum entropy RL. This change can also
be used to address excessive smoothness in GFNs or incorporated through a varying ωs in our Eq. 6.

From an RL perspective, many soft RL methods fit in the regularized framework of Geist et al. (2019).
Other forms of regularization and their corresponding operators include the mellowmax operator
(Asadi & Littman, 2017), which takes the logmeanexp of Q-values instead of the logsumexp, and its
extension, the soft mellowmax operator (Gan et al., 2021). Jiralerspong et al. (2024) also combine a
GFN perspective with RL by developing an adversarial version of the mellowmax operator called
AFlowNets. None of these works use their operators for DCPs, whereas we generalize them, integrate
them with trajectory constraints, and successfully apply these constraints to real DCP tasks.

3 BACKGROUND AND MOTIVATION

MDPs. An MDP is a tuple (S,A, γ, P, r) where S and A are finite state and action spaces respectively,
γ ∈ [0, 1) is a discount factor, P : S × A → ∆S a transition kernel and r : S × A → R a reward
function. Define Π as the set of policy mappings π : S → ∆A. The goal is to find π ∈ Π that
maximizes the value function vπr (s) := Eπ[

∑∞
t=0 γ

tr(st, at) | s0 = s], ∀s ∈ S. The dependence
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of the value function on the reward function is made explicit through the subscript r, as clarified in
the next paragraph. For any policy π ∈ Π, the expected reward is rπ(s) :=

∑
a∈A πs(a)r(s, a) and

the expected transition is Pπ(s, s′) :=
∑

a∈A πs(a)P (s, a, s′). The evaluation Bellman operator
given by Tπ

r v := rπ + γPπv for all v ∈ RS is known to be contracting, admitting vπr as a fixed
point. Similarly, the optimal value function v∗r (s) := maxπ∈Π vπr (s) is the fixed point of the optimal
Bellman operator T ∗

r v(s) := maxπ∈Π Tπ
r v(s),∀v ∈ RS , s ∈ S. An optimal policy can be derived

from iterative Bellman updates, which form the building block of RL (Puterman, 2014).

Robust MDPs. The true reward or transition function of an MDP is rarely known in practice. It may
be estimated from trajectory data, but a small error on the MDP model can alter policy performance
(Mannor et al., 2004). The robust MDP setting addresses this issue by assuming that (P, r) is
unknown, lying in a given uncertainty set. In our applicative setting of DCP where transitions are
fully determined by the performed actions, we reasonably assume that the reward model r ∈ R is the
only uncertain element. Then, we aim to maximize performance for the worst-case model, namely:

vπR(s) := min
r∈R

vπr (s), ∀s ∈ S.

To solve this max-min problem, one can resort to robust Bellman operators Tπ
Rv := minr∈R Tπ

r v
and T ∗

Rv := maxπ∈Π Tπ
Rv, ∀v ∈ RS . Indeed, both are contracting and admit the robust value vπR

and the optimal robust value v∗R as fixed points, respectively (Iyengar, 2005; Wiesemann et al., 2013).

Regularized MDPs provide a general framework for regularization in RL, recovering celebrated algo-
rithms such as soft Q-learning (Haarnoja et al., 2017). A regularized MDP is an MDP (S,A, γ, P, r)
combined with a family Ω := (Ωs)s∈S of convex functions Ωs : ∆A → R. At each state s ∈ S, Ωs

defines a policy regularizer Ωs(πs), for πs ∈ ∆A. The regularized Bellman operator is given by:

[Tπ,Ωv](s) := Tπ
r v(s)− Ωs(πs), ∀v ∈ RS , s ∈ S.

and its greedy equivalent by [T ∗,Ωv](s) := maxπs∈∆A [T
π,Ωv](s) (Geist et al., 2019). Derman et al.

(2021) have established an equivalence between policy-regularized and robust Bellman operators, thus
highlighting a formal motivation for regularized RL. The statement below is a direct reformulation of
(Derman et al., 2021, Thm. 3.1).
Theorem 3.1 (Derman et al. (2021)). Assume that the reward function r is uncertain and satisfies
rs ∈ Rs := r0(s, ·) + R̃s, where R̃s ⊆ [−R,R]A is closed and convex for all s ∈ S. Then, for any
π ∈ Π, the robust value function vπR is the fixed point of the regularized Bellman operator Tπ,Ω with
Ωs(πs) := maxrs∈R̃s

⟨−πs, rs⟩. In other words, it holds that vπR(s) = Tπ
r0v

π
R(s)−Ωs(πs), ∀s ∈ S .

Discrete compositional processes (DCP) are special instances of standard MDPs with deterministic
transitions. They can fully be described by a tuple (G,Φ), where G is a directed acyclic graph with a
single source state s0 and a set of terminal states X (see Fig. 1). Each node in the graph corresponds
to a set of parts, s0 being the empty set. An edge (s → s′) represents either adding a part to the set s
to get s′ or a termination action if s′ ∈ X . Each completed object x ∈ X has an associated reward
Φ(x) given by the proxy reward model Φ : X → R.

In standard RL, the goal is to maximize the discounted cumulative reward. Instead, for scientific
discovery, we are interested in finding the most promising set of k candidates that are sufficiently
distinct from one another (Jain et al., 2022). In practice, an imperfect but computationally efficient
proxy score Φ is used to estimate the usefulness of each candidate, so naively maximizing usefulness
can be problematic. Instead, given some metric d between completed objects, practitioners aim to
approximately find a diverse and novel (w.r.t. the training set) set of candidates {x1, . . . xk} with a
high score (Jain et al., 2022). This goal can be formalized as maximizing the average mode reward
(for simplicity, we only formalize the diversity constraint):

max
{x1,...xk}⊂X

1

k

k∑
i=1

eΦ(xi) subject to d(xi, xj) > δ, ∀i ̸= j . (1)

3.1 LIMITATIONS OF GFLOWNETS IN SCIENTIFIC DISCOVERY

Under a GFN perspective, the exponential of the proxy reward function can be viewed as an
unnormalized probability mass. Then, the goal is to learn a per-state policy πs whose sequential

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Distribution of exponential rewards from 1 million uniformly randomly drawn samples for various
tasks compared to the distribution sampled by TGM at the end of training.

application samples objects proportionally to this function. Formally, if we denote by T (x) all
trajectories in G ending at terminal state x ∈ X and πτ(x) the probability of picking all edges from
a trajectory τ(x) under policy π, the objective is to match the following distribution:

p(x) :=
∑

τ(x)∈T (x)

πτ(x) ∝ eβΦ(x), ∀x ∈ X . (2)

where β is the inverse temperature. We argue this objective is suboptimal for solving Eq. 1.

Motivating example. The main issue with Eq. 2 is that it yields a distribution assigning higher
probability to a large number of suboptimal reward objects rather than to a small number of high-
reward objects. To demonstrate this, consider a DCP (illustrated in Fig. 1) where the goal is to
generate sequences of maximum length d from a vocabulary of size B. Suppose a sampler is at an
optimal sequence s∗ of length n < d. The sampler’s policy then needs to decide whether to terminate
and return x∗, or to add more tokens and harm the usefulness of the sequence. In doing so, it weighs
eΦ(x∗) against the reward of all sequences starting with s. There are Ω(Bd−n) such sequences.
Suppose the sampler perfectly matches (2) and these sequences have rewards lower bounded by
r > 0. Then, π(x∗ | s) ≤ eΦ(x∗)

/r·Bd−n, and the probability of returning the optimal sequence at s
decreases exponentially in d− n . The problem occurs in many applications, as almost all objects
have non-negligible reward (see Fig. 2). When these empirical distributions are representative, GFNs
may conservatively estimate the probability of sampling a promising candidate.

4 ALTERNATIVE OPERATORS

To address this limitation, we propose taking a regularized RL perspective and modifying the operator
used by GFNs. To simplify the discussion, we examine the case where G in the DCP is a tree. In such
settings, there is a direct equivalence between the GFN flow operator and the soft Bellman operator
with temperature ω = 1. Denoting Qs[a] := vsa + r(s, a) (with sa being the state reached by taking
action a from s) and the vector of Q-values at a state by Qs, the soft Bellman operator is given by:

T SBvs :=
1

ω
logsumexp(ωQs). (3)

Recursively applying this operator in a DCP, as you go from the leaves of G to the root, causes value
to accumulate. At optimality, the value of a state is the logsumexp of the rewards of all objects that
can be reached from that state. The accumulation of the value of a large number of suboptimal objects
can overwhelm one high-reward object.

Instead of taking the sum, we could take the logmeanexp of the Q-values. Doing so yields the
mellowmax operator (Asadi & Littman, 2017):

TMMvs :=
1

ω
log

∑
a∈Ch(s)

1

|Ch(s)|
eωQs(a). (4)

While the mellowmax operator solves the accumulation issue, it is liable to the opposite issue, dilution.
Due to this averaging, the high reward of an object deep in the tree can get diluted by lower reward
objects as we approach the root (since we divide by the number of children at each state).

Luckily, we can alleviate the dilution issue by weighting the elements of the sum proportionally to
their value. In particular, we can use the softmax of the Q-values as weights (instead of an equal
weighting) and thus obtain the soft mellowmax operator (Gan et al., 2021):

T SMMvs =
1

ω
log⟨softmax(αQs), e

ωQs⟩, (5)

where α controls the temperature of the softmax. Ultimately, we want to be able to trade off
accumulation and dilution while maintaining a soft operator.
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4.1 GENERAL MELLOWMAX

The operators mentioned above can be viewed through the lens of regularized MDPs. On one hand,
the soft Bellman operator corresponds to regularizing by the Shannon entropy. On the other hand
given a distribution ds ∈ ∆A, the mellowmax/soft mellowmax operators result from regularization
by KL(πs, ds) where ds is the uniform distribution or softmax(αQs) respectively.

We define the general mellowmax (GM) regularizer by interpolating between these regularizers.
Then, we can recover these operators as special cases and also trade off their respective effects. We
denote the general regularizer by Ωq

ds
and the case ds = softmax(αQs) by Ωq

α.

Ωq
ds
(πs) :=

1

ω
[qKL(πs, ds) + (1− q)(−H(πs))] , ∀s ∈ S, πs ∈ ∆A, ω ∈ R>0, q ∈ [0, 1]. (6)

Notably, unlike other regularizers, Ωq
α depends on the Q-values of the current state. Consequently,

the associated operator is not a convex conjugate and deviates from the framework of (Geist et al.,
2019). Nonetheless, we can still derive the associated operator using similar techniques (see App. D):

Ωq,∗
α (Qs) =

1

ω
log⟨softmax(αQs))

q, eωQs⟩. (7)

Using the regularized interpretation, q trades off between maximizing the policy’s entropy and having
a policy that is close to the softmax of the Q-values. α allows us to put more or less weight on actions
with high Q-values while ω controls the weight of regularization. In particular, setting q = 0 allows
us to recover the standard entropy-regularized / GFN operators and policy. On the other hand, by
setting q = 1, we recover the soft mellowmax operator (with α = 0 we recover the mellowmax
operator). The interpolated operator captures three important soft RL operators and allows us to
smoothly control the tension between accumulation/dilution using q and α.

We also observe that Ωq
ds

is equivalent to a KL between a policy and a tilted softmax, as stated below.

Proposition 4.1. For all q ∈ [0, 1], Ωq
ds
(πs) =

1
ω KL(πs, d

(q)
s ) − 1

ω log(Zq(ds)), where Zq(ds) :=∑
a∈A ds(a)

q and d
(q)
s = d

q
s/Zq(ds) is the q-tilted softmax distribution.

4.2 TRAJECTORY GENERAL MELLOWMAX

Instead of training on transitions, it is possible to leverage trajectory-level constraints that relate
policy/value functions over multiple steps to recover training algorithms that use subtrajectories
as data units. In soft RL, this connection was first formalized in Nachum et al. (2017) through
path consistency learning (PCL) for maximum entropy RL. Path consistency objectives have since
been derived for Tsallis entropy (Chow et al., 2018) as well as the general class of α-divergences
(Brekelmans et al., 2022).

Trajectory-level constraints have been shown to be crucial to the performance of methods in DCP
tasks. Trajectory balance (TB) (Malkin et al., 2022) and subtrajectory balance (Madan et al., 2023)
are consistently used in GFNs, as DCP tasks only have terminal rewards. By connecting the policy at
early states to this terminal reward, these constraints are noticeably better at propagating signal and
thus improving credit assignment.
Theorem 4.1 (Trajectory GM). For any DCP (G,Φ), let (π∗, Q∗) be the unique optimal value/policy
functions for Ωq,∗

α . Then, for a given Q-function Qθ, the two following statements are equivalent

softmax([αq+ ω]Qθ
s) = argmax

πs

⟨πs, Q
∗
s⟩ − 1

ωΩ
q
α(πs), for all states s ∈ G . (8)

v∗0 +

n∑
i=0

1

ω

(
log softmax([αq+ ω]Qθ

si)[ai]− q log softmax(αQθ
si)[ai]

)
= r(x),

for all trajectories s0
a0−→ · · · an−1−−−→ sn

an−−→ x in the DCP.

 (9)

We derive a novel, equivalent trajectory constraint for the general mellowmax operator. In particular,
Thm 4.1 explicits that satisfying the trajectory constraint Eq. 9 on all trajectories yields Qθ such that
softmax([αq+ ω]Qθ) is the optimal policy for the regularized problem. See App. D.2 for the proof.
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Trajectory general mellowmax (TGM). We now instantiate the interpolated regularizer as a
practical algorithm for use in DCPs. Specifically, we make three design decisions.

(1) Using the general mellowmax operator with ds = softmax(αQs). Doing so allows us to use
TGM both on-policy and off-policy and does not require a separate ds. Instead, the policy seeks
to maximize reward while being close to a softmax of the learned Q-values.

(2) Aiming to satisfy a novel trajectory constraint derived in App. D.2. Doing so recovers the benefits
of trajectory constraints for DCPs.

(3) Training a single network Qθ of Q-values through the VarGrad objective of Richter et al. (2020);
Zhang et al. (2023). It can be shown that minimizing the trajectory constraint Eq. 9 is equivalent
to minimizing the following loss (where σt denotes the softmax with inverse temperature t):

LTGM,Qθ
(τ) = Var

[
1

ω

(
n∑

i=1

log σqα+ω[Q
θ
si(ai)]− q log σα[Q

θ
si(ai)]

)
− βr(x)

]
.

From Qθ, the optimal policy is easily computed. The resulting algorithm is easy to implement,
efficient (particularly for transformers), and is equivalent to GFN training when q = 0, ω = 1.

5 DISCRETE COMPOSITIONAL GENERATION VIA ROBUST RL

In this section, we offer a robust RL interpretation of regularized operators for DCPs. As described in
Thm. 3.1, regularized MDPs are known to be equivalent to robust MDPs with uncertain reward. In the
context of scientific discovery, since the reward is the evaluation of objects by a proxy function, we
can conceptually consider the existence of a hidden true reward r∗ that we would like to maximize1.
The filtering process can be interpreted as an attempt to robustly maximize the proxy reward Φ,
accounting for the difference δ between Φ and r∗. Thus, the goal is to solve:

max
p∈∆X

min
δ∈R

Ex∼p[Φ(x) + δ(x)] (10)

where R ∈ R|X | is the uncertainty set. The question then remains of how this uncertainty should be
modeled in G. Traditionally, the reward in a DCP is identically 0 everywhere except for terminating
actions. However, assuming that uncertainty only exists at the last action misses the compositional
nature of the task. Instead, we decompose δ(x) into a sum of perturbations occurring at each step
of the generation process. More precisely, given a trajectory s0

a0−→ · · · an−1−−−→ sn = x, we have

δ(x) =

n∑
i=0

δi[ai], where δi ∈ Rsi . (11)

In this formulation, the uncertainty on Φ is split between all actions taken to construct the object,
instead of only existing at the final action, as illustrated in Fig. 1. From a robust RL perspective, this
uncertainty set structure corresponds to the common assumption of state-rectangularity (Wiesemann
et al., 2013; Gadot et al., 2024). The following section makes this model of uncertainty more explicit
and analyzes the uncertainty sets of different operators. In particular, we show that the reward
uncertainty set entailed by GFNs is inadequate, whereas the set induced by the soft mellowmax
operator provides a more meaningful notion of uncertainty.

5.1 FENCHEL-ROBUST FORMULATION OF REGULARIZED MDPS

In this subsection, we use the robust MDP notations introduced in § 3. The following result provides
an explicit mapping between reward-robust MDPs, as defined in (11), and regularized MDPs, through
equivalent value functions.
Theorem 5.1 (Fenchel-Robust MDP). For any state s ∈ S, let Ωs : ∆A → R̄ be a proper convex
regularization function. Denote by Ω∗

s its convex conjugate which is known to be proper and convex.
For any s ∈ S, define the reward set

Rs := r0(s, ·) +
{
rs ∈ RA : Ω∗

s(−rs) ≤ 0
}
.

Then, denoting the robust operator for Rs by Tπ
Rs

and the regularized operator for Ωs by Tπ,Ωs :

Tπ
Rs

v = Tπ,Ωsv, ∀π ∈ Π, v ∈ RS .
1This reward would correspond to the effective properties of interest measured in a lab.
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Figure 3: (Left) Regardless of ω, the uncertainty set never contains Φ(x). As a result, the soft Bellman/GFN
operator is only robust to increases in reward. (Middle) For the soft mellowmax operator, for different values
of α with ds[1] > ds[2], the uncertainty set contains Φ(x). Thus, the operator is robust to decreases in reward
of one object (but not both at the same time). When α = 0 (mellowmax), there is a symmetry in this tradeoff,
while increasing α skews it such that the object with higher ds only admits a small decrease in reward. (Right)
The uncertainty sets for GM interpolate between the two effects. While the uncertainty set for 0 < q < 1 does
not contain Φ(x), it does contain points corresponding to decreases in reward.

Based on this theorem, solving Eq. 10 is equivalent to solving the associated regularized MDP.
Thm. 5.1 uses convex conjugacy in the context of dynamic programming. Similar results can be
found in previous works (Eysenbach & Levine, 2021; Husain et al., 2021; Brekelmans et al., 2022;
Derman et al., 2021), but as we carefully detail in Appx. A.5, they do not directly apply to our setting.

5.2 ROBUST SETS INDUCED BY COMMON REGULARIZERS

Given this perspective, we now analyze the uncertainty sets corresponding to the regularizers we
considered above. Since each is a special case of GM, we first give the uncertainty set of GM:

Rs := r0(s, ·) +
{
rs ∈ RA : 1

ω

∑
a∈A ds(a)

qe−ωrs(a) ≤ 1
}
. (12)

A proof is in App. A.4. As opposed to (Derman et al., 2021), the fact that our uncertainty sets are
state-rectangular makes them independent of the executed policy, which results in a formulation that
fits with the standard robust MDP setting (Wiesemann et al., 2013).

Fig. 3 shows the uncertainty sets induced by three regularizers: negative Shannon entropy, soft
mellowmax, and GM. For this illustration, we consider a single-step generation process with 2
possible objects and associated proxy rewards [1, 1]. Similarly to (Brekelmans et al., 2022), we find
that the entropy regularized Bellman operator (left) fails to capture a meaningful notion of robustness.
Indeed, the uncertainty set never contains the proxy Φ(x), although higher values of ω do bring the
set closer to the proxy reward. This problem is significantly exacerbated in a DCP with multiple
steps: at each layer, the uncertainty set becomes further away from the proxy reward (see App. C).

6 EXPERIMENTS

Our experiments aim to answer three main questions:

[Q1] How does the parameter q affect the peakiness of sampling in small and synthetic environments?
[Q2] Does TGM find better candidates than standard methods in large biological design DCP tasks?
[Q3] How robust is TGM to changes in hyperparameter settings?

6.1 IMPACT OF q IN SMALL AND SYNTHETIC ENVIRONMENTS [Q1]

TF-Bind-8. Originally proposed in (Trabucco et al., 2022), TF-Bind-8 generates DNA sequences
of length 8 to find those with high binding activity to human transcription factors. The reward is
the experimental binding activity of the sequence from (Barrera et al., 2016). As there are only 48

such sequences, the search space is small enough to compute the optimal value for each operator.
We compare the optimal sampling densities of each algorithm in Fig. 4 for β = 4, α = 2 and ω = 2.

Bit sequence. Proposed in (Malkin et al., 2022), the bit sequence task is significantly larger with 2120

possible sequences. The goal is to generate bit sequences of length n by adding k bits at a time. M
modes are selected semi-randomly and the reward is given by r(x) = 1−miny∈M d(x, y)/n where
d is the Levenshtein edit distance (Levenshtein et al., 1966). Loosely, the reward of a sequence is the
negative normalized edit distance to the nearest mode.
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Figure 4: (Left) Comparison of the optimal sampling distribution of GFN and variants of TGM for TF-Bind-8
rewards. For the same β = 4, TGM concentrates significantly more mass on the upper quantiles of the reward
distribution. (Middle) Number of modes found by TGM and GFN. The increased peakiness of the TGM sampling
does not harm its ability to find different modes. (Right) Average (over modes) of the distance of the closest
sample found for each mode. On average, increasing q allows TGM to find closer samples to the true modes.

TGM (ours) Valid.

SAC PPO GFN q = 0 q = 0.25 q = 0.5 q = 0.75 q = 1.0 Max

UTR 3.82±.03 3.46±.02 4.12±.00 4.19±.01 4.15±.01 4.25±.00 4.27±.01 4.17±.01 4.26
AMP 5.69±.35 9.79±.02 10.04±.04 10.13±.04 9.93±.03 9.82±.02 10.43±.07 10.29±.05 9.96
GFP — 0.66±.02 1.90±.03 2.44±.09 2.95±.08 2.66±.12 2.34±.11 2.05±.11 3.63

Table 1: Average mode reward of TGM compared to baselines on the biological sequence design tasks. We
report the average and standard error over 15 seeds. In all domains, variants of TGM either match or outperform
GFN/PPO/SAC with a particularly pronounced difference in GFP, the largest domain. Valid. max refers to the
object with the highest proxy reward in the validation set of the dataset used to train the proxy function.

As we have access to the ground-truth modes in this case, we evaluate methods according to the
following metrics: (1) the number of modes found, where a mode is deemed found if a sample is
generated within distance δ = 28 of that mode; (2) for each mode, we track the distance to the closest
sample generated during training. We report the average of this number over the M modes for the
best performing hyperparameters (see App. E.3 for further details). While the best GFN run matches
q = 0, the increased peakiness of non-zero q-values yields noticeable benefits. The best-performing
runs of q > 0 find samples that are much closer to the modes while also discovering more of them.

6.2 BIOLOGICAL SEQUENCE DESIGN [Q2]

We now focus on tasks based on real-world domains, where proxy rewards are trained on actual
datasets. The tasks are based on the setup of Malkin et al. (2022) and use the datasets from Trabucco
et al. (2022). For each, a transformer Φ is first trained on the training set (either for classification or
regression). The transformer output is normalized before being used as a proxy reward (see App. E.4).

5’ Untranslated Region Sequence (UTR). 5’ UTR is an mRNA region that regulates transcription of
the main coding sequence. The goal of the task is to find a UTR sequence of length 50 that maximizes
predicted gene expression level. We take the dataset of 280 000 filtered sequences from Trabucco
et al. (2022) and associated ribosome loads. We train a transformer as a regressor to predict the
ribosome load from a sequence. The vocabulary consists of 4 nucleotides.

Antimicrobial Peptide (AMP). Antimicrobial peptides are short sequences of amino acids that have
effects on microbes (bacteria, viruses, etc.). The goal is to discover novel peptides that are likely
to have antimicrobial properties. The DBAASP database has collected known peptides with and
without antimicrobial activity (Pirtskhalava et al., 2021). We use the dataset (sourced from Trabucco
et al. (2022)) of 9222 non-AMP sequences and 6438 AMP sequences and train a binary classifier
(predicting whether a sequence has antimicrobial properties or not). We use the normalized logit of
the classifier as proxy reward. The vocabulary for this task consists of the 20 amino acids, plus a token
corresponding to sequence termination. We mask the tokens such that the minimum sequence length
is 14 and the maximum sequence length is 60. This is the only task where we allow variable-length
sequences (as it is the only one whose dataset contains sequences of variable length).

Green Fluorescent Protein (GFP). The green fluorescent protein is a length-237 protein whose
fluorescence has numerous applications in biology. The goal of this task is to discover other proteins
with high predicted fluorescence. We take the processed dataset from Trabucco et al. (2022), which
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Figure 5: Spread of final average mode rewards for various algorithms from a grid sweep over learning rates, β
and ω. TGM on average performs better in AMP and GFP and similarly in UTR.

contains 56086 variations of the original sequence and their measured fluorescence. We train a
regressor to predict the measured fluorescence, and the vocabulary consists of the 20 amino acids.

Evaluation. Each method is trained for 100 000 generated samples during which we regularly
evaluate the learned network. By varying the temperature coefficient of the policy, we can move
along a quality/diversity curve for each sampler. To approximately evaluate Eq. 1, we generate a
set of samples for a range of temperature coefficients. We then aggregate the samples and aim to
approximately determine the best k distinct samples (i.e., such that the minimum distance is δ) found
by the policy. While this problem is NP-complete Karp (2009) (it can be seen as an instance of
finding a maximal independent set), a greedy approach appears to work well in practice. For each
method, a sweep is performed over hyperparameters. The best performing setting (based on the final
average mode reward) is then run with 15 different seeds. See App. E.4 for further details.

Results. As illustrated in Tab. 1, for all three tasks, all variants of TGM either roughly match
or exceed the performance of GFN, soft actor-critic (SAC) (Haarnoja et al., 2018), and proximal
policy optimization (PPO) (Schulman et al., 2017). Similarly to what was found in (Malkin et al.,
2022; Madan et al., 2023), SAC and PPO perform relatively poorly. We hypothesize that the credit
assignment problem from terminal rewards is a significant issue for these methods. In AMP, where
generating shorter sequences is possible, PPO is able to achieve similar results to TGM/GFN. The
difference between TGM and GFN is most pronounced in the largest environment GFP, where TGM
finds modes with significantly higher reward than the mean in Fig. 2. We hope this result shows
the potential scalability of TGM. Interestingly, the effect of q is more varied in these environments,
showing the benefits of interpolation in the GM operator. The best performing variants balance
dilution and accumulation by using q ∈ (0, 1).

6.3 HYPERPARAMETER ROBUSTNESS [Q3]

The best runs for Tab. 1 were selected from grid sweep over learning rates {0.00001, 0.0001, 0.001},
β ∈ {4, 16, 64, 256} and inverse temperature parameters ω ∈ {1, 4, 16}. For SAC and PPO, we set
the entropy coefficient to 1/ω. For GFN, we set the sampling temperature of the policy to 1/ω. To
ensure an equal number of runs per method, we fix α = 1 and only vary ω for TGM. Varying α as
well would likely be beneficial. We plot the performance distribution of this sweep in Fig. 5.

TGM variants seem relatively robust to these hyperparameter variations. The average SAC run is
relatively stable but performs poorly. PPO is very sensitive to hyperparameter settings, with the best
runs achieving strong performance in AMP. The mean average mode reward of TGM is higher than
GFN across q and environments. Remarkably, TGM with q = 1 in AMP has little variability, with
almost all runs performing well despite the significantly different hyperparameters. For GFP, there is
significantly more variability, with the best performances coming from outliers for each method.

7 CONCLUSION

In this paper, motivated by the inadequacy of sampling proportional to reward, we generalize various
soft RL operators and propose GM as an interpolated regularizer. From this regularizer, we develop
a novel algorithm (TGM) and show it is consistently able to outperform GFNs on a variety of DCP
tasks. Finally, we adapt the reward-robust RL framework to DCP tasks where rewards are given
for entire trajectories to offer a new perspective on regularization in these problems. Ultimately, we
believe TGM has the potential to be a more general and effective framework for finding promising
candidates in scientific discovery applications.
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8 ETHICS STATEMENT

The purpose of this work is algorithmic in nature, and we do not aim to produce actual applicable
models. Nonetheless, the ideas in this work could potentially be used to improve the training of
models used in protein or other biological sequence design applications. While there are numerous
beneficial applications for these types of models, they could also be used to design sequences that
could eventually be harmful to humans. This harm could come from bad actors or even accidentally
by over-optimizing to a single metric (e.g, antimicrobial resistance) and not considering potential
harmful effects on the body. The extension of this work to multi-objective settings is a fruitful
direction for future work.

In addition, the contribution of this work also has applications in language (another sequence design
task). As such, it has the potential to improve the performance of large language models (LLMs) on
both useful and nefarious tasks. Given the recent improvements in the abilities of these models, this
potential effect is especially relevant.

9 REPRODUCIBILITY STATEMENT

To promote transparency and reproducibility, we share our code implementation as well as checkpoints
of the proxy reward functions we use. These allow for the reproduction of our results and fair future
comparisons with new methods. We describe in ample detail the hyperparameters we use and
design decisions we made in App. E as well as Sec. 6. See the supplementary material for the
code/checkpoints.
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APPENDIX

A ROBUSTNESS-REGULARIZATION DUALITY

A.1 CONVEX ANALYSIS

Before proving our results, we briefly recall notions of convex analysis below Bertsekas (2009).
Definition A.1 (Convex conjugate). Let a function f : Rn → R̄ with domain dom(f) ⊆ Rn. The
convex conjugate of f is defined as

f∗(y) := sup
x∈dom(f)

⟨x, y⟩ − f(x).

Definition A.2 (Infimal convolution). Given two functions f, g : Rn → R̄, the infimal convolution of
f and g is defined as:

[f□g](x) := inf
z∈Rn

{f(x− z) + g(z)}.

Property A.1 (Operations on conjugate transforms). Let two functions f1, f2 : Rn → R̄ and a
positive real number ω > 0.

(i) Defining g(x) := ωf1(x), the convex conjugate of g satisfies g∗(y) = ωf∗
1 (

y
ω ).

(ii) For κ ̸= 0 and h(x) := f1(κx), the convex conjugate of h satisfies h∗(y) = f∗
1 (

y
κ ).

(iii) The convex conjugate of the sum f1 + f2 is the infimal convolution of their conjugates
f∗
1□f∗

2 , namely:

[f1 + f2]
∗(y) = [f∗

1□f∗
2 ](y), ∀y ∈ Rn.

A.2 APPLICATION TO POLICY DIVERGENCE

For Shannon entropy and KL divergence, the convex conjugate can be derived in closed form and is
known to be a logsumexp function, so we omit the proof Geist et al. (2019); Derman et al. (2021).
Proposition A.1 (Shannon conjugate). Define the negative Shannon entropy −H : Rn → R̄ as
[−H](x) :=

∑n
i=1 xi log(xi) over the simplex domain ∆n. It is a convex function, and its convex

conjugate is the logsumexp:

LSEn(y) := log

(
n∑

i=1

eyi

)
, ∀y ∈ Rn.

Proposition A.2 (KL conjugate). Let d ∈ Rn be such that d > 0 and define the KL-divergence
function KLd(x) :=

∑n
i=1 xi log

(
xi

di

)
, ∀x ∈ ∆n. It is a convex function, and its convex conjugate

is the weighted logsumexp:

WLSEn,d(y) := log

(
n∑

i=1

die
yi

)
, ∀y ∈ Rn.

We are now interested in deriving the Fenchel conjugate of a convex combination of Shannon entropy
and KL divergence. Its explicit form is described below.
Proposition A.3 (Shannon-KL conjugate). For any q ∈ [0, 1], the convex combination (1−q)(−H)+
qKLd satisfies:

[(1− q)(−H) + qKLd](x) =

n∑
i=1

xi log

(
xi

(di)q

)
, ∀x ∈ Rn.

and admits as convex conjugate the function:

[(1− q)(−H) + qKLd]
∗(y) = log

(
n∑

i=1

(di)
qeyi

)
, ∀y ∈ Rn.
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Proof. The first statement comes from elementary algebra:

[(1− q)(−H) + qKLd](x) = (1− q)

n∑
i=1

xi log(xi) + q

n∑
i=1

xi log

(
xi

di

)

= (1− q+ q)

n∑
i=1

xi log(xi)− q

n∑
i=1

xi log(di)

=

n∑
i=1

xi log(xi)−
n∑

i=1

xi log((di)
q)

=

n∑
i=1

xi log

(
xi

(di)q

)
= KLdq(x).

For the second statement, we simply apply Prop. A.2 to obtain that

[(1− q)(−H) + qKLd]
∗(y) = WLSEn,dq(y) = log

(
n∑

i=1

(di)
qeyi

)
.

A more involved proof would combine notions of infimal convolution with the respective conjugates
of the two divergences. We omit it for brevity.

A.3 PROOF OF THM. 5.1

We provide a slightly general proof below, with an arbitrary ϵs-level set instead of just 0.
Theorem A.1 (Fenchel-Robust Regularized MDP). For any s ∈ S, define the reward set

Rs := r0(s, ·) + {rs ∈ RA : f∗
s (−rs) ≤ ϵs},

and the regularization function Ωs(πs) := fs(πs) + ϵs, ∀s ∈ S. Then, for any policy π ∈ Π,
Tπ
Rv = Tπ,Ωv, ∀v ∈ RS , and vπR = vπ,Ω.

Proof. First, we establish the support function of a set R̃s := {r′s ∈ RA : f∗
s (r

′
s) ≤ ϵs} at any state

s ∈ S. By definition, for any policy πs ∈ ∆A, we have

max
r′s∈R̃s

⟨πs, r
′
s⟩ = max

{r′s∈RA:f∗
s (r

′
s)≤ϵs}

⟨πs, r
′
s⟩

= fs(πs) + ϵs.

Next, we compute the robust Bellman operator associated with the uncertainty set R = ×sRs:

Tπ
Rv(s) = min

rs∈Rs

rπ(s) + γPπv(s)

= min
rs∈r0(s,·)+R̃s

rπ(s) + γPπv(s)

= rπ0 (s) + min
r′s∈R̃s

⟨πs, r
′
s⟩+ γPπv(s)

= rπ0 (s)− max
r′s∈R̃s

⟨πs,−r′s⟩+ γPπv(s)

= Tπ
r0v(s)− max

r′s∈R̃s

⟨πs,−r′s⟩.

It remains to compute

max
r′s∈R̃s

⟨πs,−r′s⟩ = max
r′s

⟨πs,−r′s⟩ s. t. f∗
s (−r′s) ≤ ϵs

= max
r̄s

⟨πs, r̄s⟩ s. t. f∗
s (r̄s) ≤ ϵs

Employing the above expression of the support function enables us to write:

max
r̄s

⟨πs, r̄s⟩ s. t. f∗
s (r̄s) ≤ ϵs = fs(πs) + ϵs

so that Tπ
Rv = Tπ,Ωv, ∀v ∈ RS . The unique fixed point of each operator is vπR and vπ,Ω,

respectively, which leads to the conclusion.
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Equation 12 comes from combining Thm. 5.1 with Prop. A.3. We can similarly obtain the uncertainty
set resulting from KL and negative Shannon regularizations, based on their corresponding dual
described in Sec. A.1. This leads us to the following table, summarizing the different regularizers
used in this paper along with their corresponding uncertainty sets.

A.4 PROOF OF PROP. 4.1

Proposition A.4. For all q ∈ [0, 1], Ωq
s(πs) =

1
ωs

KL(πs, d
(q)
s )− 1

ωs
log(Zq(ds)), where Zq(ds) :=∑

a∈A ds(a)
q and d

(q)
s = dqs/Zq(ds) is the q-tilted softmax distribution.

Proof. By definition,

ωsΩ
q
s(πs) = [qKL(πs, ds) + (1− q)(−H(πs))]

= q
∑
a∈A

πs(a) log

(
πs(a)

ds(a)

)
+ (1− q)

∑
a∈A

πs(a) log(πs(a))

= −q
∑
a∈A

πs(a) log(ds(a)) +
∑
a∈A

πs(a) log(πs(a))

=
∑
a∈A

πs(a) log

(
πs(a)

ds(a)q

)
=
∑
a∈A

πs(a) log

(
πs(a)

ds(a)q/Zq(ds)

)
−
∑
a∈A

πs(a) log(Zq(ds))

=
∑
a∈A

πs(a) log

(
πs(a)

ds(a)q/Zq(ds)

)
− log(Zq(ds)),

which yields the desired result.

Table 2: Summary table of policy regularizers.

Neg. Shannon KL divergence GSM General convex

Regularizer
Ωs −H(πs)

KL(πs, ds) 1

ωs
(qKL(πs, ds)

+(1−q)(−H(πs)))

fs(πs) + ϵs

Conjugate
Ω∗

s LSEA(qs)
WLSEA,ds(qs) ω−1

s WLSEA,d
q
s
(ωsqs) f∗

s (qs)− ϵs

Reward
Uncer-
tainty {rs : Ω∗

s(−rs) ≤ 0} {rs : Ω∗
s(−rs) ≤ 0} {rs : Ω∗

s(−rs) ≤ 0} {rs : f∗
s (−rs) ≤ ϵs}

A.5 COMPARISON WITH OTHER REGULARIZED RL WORKS

Eysenbach & Levine (2021) focuses on Shannon entropy, while we encompass a broad class of
regularizers. Husain et al. (2021); Brekelmans et al. (2022) analyze robustness from the LP-dual
perspective of RL. Although equivalent at optimum, this approach may not hold for any given policy.
The notion of occupancy measure is also obscure in the context of DCP where transitions are fully
determined by the agent’s decisions and the time horizon is finite. Differently, Thm. 5.1 establishes
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a robustness-regularization equivalence for any policy via Bellman evaluation operators. It thus
provides a principled identity between robust dynamic programming in the sense of (Iyengar, 2005)
and regularized MDPs in the sense of (Geist et al., 2019). Finally, the research motivation of Derman
et al. (2021) being different, they proceed the opposite way from ours: they deduce a regularizer from
generic uncertainty sets, whereas we deduce uncertainty sets from generic regularizers. This enables
us to clarify the robustness properties caused by regularization.
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B ADDITIONAL RESULTS

B.1 IMPACT OF β ON GFN PERFORMANCE

Another potential solution to the issue of sampling proportional to eΦ(x) consists of modifying the
reward function. In particular, the reward exponent hyperparameter β could be used to arbitrarily
increase the value of high-reward objects, hopefully overwhelming even an exponential amount of
low-reward objects. To test this hypothesis, we perform an additional grid sweep for GFNs using
higher values of β. We sweep over the same learning rates {0.00001, 0.0001, 0.001} and sampling
temperatures {1, 4, 16} but also over β ∈ {512, 1024, 2048, 4096, 8192}. We plot the final average
mode reward of the best performing setting for each β in Fig. 6.

Going past 256 worsens performance for UTR and AMP but does noticeably improve performance
for GFP. However, for all values of β, GFNs do not manage to reach the best-performing TGM
setting. This discrepancy indicates TGM is exploring meaningfully different peaky distributions with
better quality and diversity. Surprisingly, GFNs still perform decently even with very high β values
(up to 8192). It seems that gradient clipping and the VarGrad objective are enough to ensure some
level of training stability at these high β values. These values yield equally high losses, reaching
values in the millions for β = 8192 on GFP.
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Figure 6: Average mode reward of best GFN setting for different values of β compared to the best
performing setting of TGM.

B.2 COMPUTATIONAL COMPLEXITY

TGM is a generalization of TB but nearly identical in terms of computational complexity (essentially
just requires an additional log-softmax in the loss computation). In particular, for sequence tasks
with transformers, by acting on trajectories, TGM/TB are significantly faster than methods that act on
transitions. The loss computation only requires a single forward pass per batch of trajectories instead
of a forward pass per batch of transitions. We’ve included a table of training speed on an L40s GPU
below. TGM/TB are roughly 10x faster than PPO/SAC when the latter splits generated trajectories
into minibatches. TGM is only slightly more complicated to implement than GFNs, and simpler to
implement than PPO (see the code submission for details).

Table 3: Wallclock training speed on an L40s for various methods on biological sequence tasks.

Algorithm UTR (samples/s) ↑ AMP (samples/s) ↑ GFP (samples/s) ↑
SAC 115 92 5
PPO 191 144 8
TGM/TB 1680 1216 120
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C MULTI-STEP UNCERTAINTY SETS

While Fig. 3 examines the case of uncertainty sets for a single step, we now seek to explore the values
that can be taken by δi throughout a trajectory and how this affects the final uncertainty set. For the
entropic regularizer, if ωs is the same for all s, then Rsi is the same at every state. However, the final
uncertainty set R for an object x = s1s2 . . . sn is given by

∑
i Rsi (i.e. the Minkowski sum of the

individual uncertainty sets).

We extend the binary generation example to a DCP consisting of a sequence generation task with two
tokens (i.e. a binary tree) and length d. Then, using Prop C.1, in Fig. 7, we illustrate how the sum of
uncertainty sets change as the depth of the tree increases for different operators.
Proposition C.1. For a convex regularizer f and associated robust set
Rf = {δ ∈ R|A| : f∗(δ) ≤ 0}, we have that:

k∑
i=1

Rf = {r ∈ R|A| : kf∗
( r
k

)
≤ 0}. (13)

Proof. We seek to show that, for a given r ∈ R|A|, there exists δ1, δ2 . . . δk such that
∑k

i=1 δi = r

and δi ∈ Rf if and only if kf∗ ( r
k

)
≤ 0.

[⇒] Since f is convex, so is f∗. Thus, using Jensen’s inequality, we get that:

kf∗
( r
k

)
= kf∗

(∑
i δi
k

)
≤
∑
i

f∗(δi) ≤ 0,

where the last inequality stems from δi ∈ Rf =⇒ f∗(δi) ≤ 0.

[⇐] Taking δi =
r
k for all δi, we have that

∑
i δi = r. Then, kf∗ ( r

k

)
≤ 0 =⇒ ∀i : f∗(δi) =

f∗ ( r
k

)
≤ 0 and thus δi ∈ Rf .
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Figure 7: Illustration of sum of uncertainty sets along a trajectory. (Left) The final uncertainty set
shifts farther away from (0, 0) as we increase d. As such, for objects that are deeper in the tree, the
operator is only robust to them having much higher reward than their proxy evaluation. This behavior
provides an alternative viewpoint for the preference of the soft Bellman operator for longer objects.
(Middle) On the other hand, the SMM operator stays centered around (0, 0) and becomes increasingly
robust to decreases in rewards. (Right) The final uncertainty set of the GM operator stays close to
(0, 0) and is robust to some decreases in reward.
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D TRAJECTORY GENERAL MELLOWMAX

Notation: We denote by Ch(s) the set of possible actions from state s. στ (Qs) :=
eτQs∑

a′∈Ch(s) e
τQs[a′] is the softmax with inverse temperature τ . For a DCP and a given state s, we

denote by s′a the state reached by taking action a (unique since transitions are deterministic). We
denote by E the set of edges in G, each of which represents a transition (s, a, s′a). Finally, for
convenience, we denote

g(Qs, a) :=
1

ω
log σqα+ω(Qs)[a]− q log σα(Qs)[a],

g∗(Qs) :=
1

ω
log⟨σα(Qs)

q, eωQs⟩.

D.1 PROOF OF OPTIMALITY

Proposition D.1. In a DCP (G, r), for any state s,

v∗s := max
πs

⟨πs, Qs⟩ − 1
ωΩ

q
α(πs) =

1

ω
log⟨σα(Qs)

q, eωQs⟩ = g∗(Qs), (14)

and
π∗
s = σqα+ω(Qs). (15)

is the unique maximizer of the state-wise regularized problem.

Proof. Unlike the case of a generic π, (14) is not a convex conjugate since Qs appears in both the
dot product and Ω. Nonetheless, Ω is still convex in π. Thus, similarly to (Nachum et al., 2017), we
consider the Lagrangian:

L(πs, λ) = ⟨πs, Qs⟩ − 1
ωΩ

q
α(πs) + λ(1− ⟨1, πs⟩).

Since Ω is convex, the overall function to optimize is concave. Given that Slater’s condition holds,
the KKT conditions are both sufficient and necessary for optimality. Due to the lack of cycle in DCPs,
we have that ∇πs

Qs = 0. Hence, the KKT conditions yield the following system of equations:

0 = Qs −
1

ω
(q[log πs − log πQs + 1] + (1− q)[log πs + 1])− λ (16)

1 = ⟨πs,1⟩ (17)

where we denote πQs := σα(Qs). Solving for πs in the first, we get that the optimal policy π∗
s is

given by:
π∗
s = exp([Qs − λ]ω + q log πQs − 1)

which ensures that πs ≥ 0. Replacing the above in (17), we have that:

λ∗ =
1

ω

log
∑

a∈Ch(s)

e(αq+ω)Qs[a] − q log
∑

a∈Ch(s)

eαQs[a]

 =
1

ω

(
log⟨σα(Qs)

q, eωsQs⟩ − 1
)
.

We note the similarity of λ∗ and the maximal value (14). Plugging λ∗ back in to π∗
s , we get

π∗
s = σqα+ω(Qs). (15)

Finally, plugging π∗
s in ⟨πs, Qs⟩ − 1

ωΩ
q
α(πs) with some straightforward algebraic manipulations, we

obtain (14). Since both the KL divergence and the negative entropy are strictly convex, (15) is the
unique maximizer.

Corollary D.1. For any DCP (G,Φ), the GM operator has unique optimal value/policy functions
(v∗, π∗).

Proof. We show this by induction on an inverse topological sorting s0, s1 . . . , sn of the states of G.
For a state with no children, the optimal value is defined to be 0 and there is no policy. Then, assume
each state si, i < N has a unique optimal value/policy. By the properties of the topological sorting,
all the children of sN have a unique optimal value/policy. Then, by Prop. D.1, (v∗sN , π∗

sN ) is also
uniquely defined.
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Lemma D.1. For any Qs and a, we have that
g(QS , a) = Qs[a]− g∗(Qs). (18)

Proof. By simple algebra,
g(Qs, a)

= 1
ω (log σqα+ω(Qs)[a]− q log σα(Qs)[a])

= 1
ω ((qα+ ω)Qs[a]− qαQs[a])

− 1

ω

log
∑

a′∈Ch(s)

e(qα+ω)Qs[a
′] − log

 ∑
a′∈Ch(s)

eαQs[a
′]

q
=

1

ω
(ωQs[a])−

1

ω
log

 ∑
a′∈Ch(s)

eqαQs[a
′]eωQs[a

′](∑
a′∈Ch(s) e

αQs[a′]
)q


= Qs[a]−
1

ω

(
log⟨σα(Qs)

q, eωsQs⟩
)

= Qs[a]− g∗(Qs)

Lemma D.2. For any state s in a DCP, the following are equivalent:
σαq+ω(Q

θ
s) = argmax

πs

⟨πs, Q
∗
s⟩ − 1

ωΩ
q

σα(Q∗
s),s

(πs), (19)

∀a ∈ Ch(s) : v∗s′a = v∗s + g(Qθ
s, a)− r(s, a). (20)

Proof.

[ (19) ⇒ (20)] Since π∗
s is unique, by (19) and (15), by the properties of the softmax, we have

that σαq+ω(Q
θ
s) = σqα+ω(Q

∗
s) and σα(Q

θ
s) = σα(Q

∗
s). Then, for any a ∈ Ch(s):

v∗s + g(Qθ
s, a)

= v∗s + 1
ω

(
log σqα+ω(Q

θ
s)[a]− q log σα(Q

θ
s)[a]

)
= 1

ω

(
log⟨σα(Q

∗
s)

q, eωsQ
∗
s ⟩+ log σqα+ω(Q

∗
s)[a]− q log σα(Q

∗
s)[a]

)
Using (14).

= 1
ω

(
log

∑
a′∈Ch(s) e

(qα+ω)Q∗
s [a

′]∑
a′∈Ch(s) e

αQ∗
s [a

′]
+ log σqα+ω(Q

∗
s)[a]− q log σα(Q

∗
s)[a]

)

=
1

ω

(
log e(qα+ω)Q∗

s [a] − q log eαQ
∗
s [a]
)

= Q∗
s[a]

= v∗s′a + r(s, a) Using the definition of Qs[a].

[ (19) ⇐ (20)] For any a ∈ Ch(s), we have that:

v∗s′a = v∗s + g(Qθ
s, a)− r(s, a)

⇐⇒ v∗s′a = v∗s +Qθ
s[a]− g∗(Qθ

s)− r(s, a) Using (18)

⇐⇒ v∗s − g∗(Qθ
s) = Q∗

s[a]−Qθ
s[a]

Since the above equality holds for all actions and v∗s and g∗(Qθ
s) do not depend on a, we have that

Q∗
s[a]−Qθ

s[a] must be equal for all actions. Thus, ∀a ∈ Ch(s) : Q∗
s[a]−Qθ

s[a] = c which implies

Qθ
s[a] = Q∗

s[a]− c, (21)
for some action independent value c. Finally, we have

σαq+ω(Q
θ
s) = σαq+ω(Q

∗
s − c) = σαq+ω(Q

∗
s),

by the properties of the softmax.
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D.2 PROOF OF THEOREM 4.1

We note that it is straightforward to derive the equivalent subtrajectory constraint.

Theorem D.1 (Trajectory GM). For any DCP (G,Φ), let (v∗, π∗) be the unique optimal value/policy
functions for the GM operator. Then, for a given Q-function Qθ,

σαq+ω(Q
θ
s) = argmax

πs

⟨πs, Qs⟩ − 1
ωΩ

q
α(πs), (8)

holds for all states s if and only if

v∗0 +

n∑
i=0

1

ω

(
log σqα+ω(Q

θ
si)[ai]− q log σα(Q

θ
si)[ai]

)
︸ ︷︷ ︸

g(Qθ
si

,ai)

−r(si, ai) = 0, (9)

holds for all full trajectories s0
a0−→ · · · an−1−−−→ sn

an−−→ x in the DCP.

Proof. Similarly to (Nachum et al., 2017), we aim to show that optimality implies consistency and
vice versa. A refresher of relevant notation can be found at the start of App. D.

Optimality implies consistency [ (8) ⇒ (9)] From Lemma D.2, for any given trajectory, we have
that (20) holds for all transitions in the trajectory. Then, (9) follows straightforwardly by expanding
(20) over that trajectory in a recursive manner.

Consistency implies optimality [ (8) ⇐ (9)] Consider an inverse topological sorting s1, s2 . . . sM

of G such that for any state si, any child sj of si has index j < i.

Now, we seek to show by induction over this sorting that the following holds for any state s and
subtrajectory s0 → s1 . . . → sn → s ending in s:

v∗0 +

n∑
i=0

1

ω

(
log σqα+ω(Q

θ
si)[ai]− q log σα(Q

θ
si)[ai]

)
− r(si, ai) = v∗s . (22)

For the base case s1, s1 must be a leaf and belong to X . Then, by assumption vs1 = 0 and (22) holds
by (9). Now, suppose that (22) holds for any si, i < N . Then, by the definition of the sorting, for
all a ∈ Ch(sN ), (22) holds for sa where sN

a−→ sa.

Let s0 → s1 . . . → sn → sN be a trajectory ending in sN . From the induction hypothesis,
∀a ∈ Ch(s) :

v∗0 +

n∑
i=0

g(Qθ
si , ai)− r(si, ai) + g(Qθ

sN , a)− r(sN , a) = v∗sa

v∗0 +

n∑
i=0

g(Qθ
si , ai)− r(si, ai)− g∗(Qθ

sN ) = Q∗
sN [a]−Qθ

sN [a] Using (18).

Similarly to the proof of Lemma D.1, we have that the LHS is independent of a but must be equal to
Q∗

sN [a]−Qθ
sN [a] for all a. As such, we are guaranteed

Qθ
sN [a] = Q∗

sN [a]− c

for some action independent value c and all a ∈ Ch(sN ). Then, it is straightforward to compute
g∗(Qθ

sN ) = g∗(Q∗
sN − c) = g∗(Q∗

sN )− c. Plugging both back in and canceling c, we get

v∗0 +

n∑
i=0

g(Qθ
si , ai)− r(si, ai) = g∗(Q∗

sN ) = v∗sN

and the induction is complete. Finally, it remains to show that σαq+ω(Q
θ
s) is optimal for all s.

If s has no children, optimality holds trivially. If s has at least one child a, take a trajectory
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s0 → s1 . . . → sn → s ending in s. From (22), we have that both:

v∗0 +

n∑
i=0

g(Qθ
si , ai)− r(si, ai) = v∗s

∀a ∈ Ch(s) : v∗0 +

n∑
i=0

g(Qθ
si , ai)− r(si, ai) + g(Qθ

s, a)− r(s, a) = v∗sa .

By subtracting the first from the second, we get that, ∀a ∈ Ch(s):

g(Qθ
s, a)− r(s, a) = v∗sa − v∗s

v∗s + g(Qθ
s, a)− r(s, a) = v∗sa .

By Lemma D.2, σαq+ω(Q
θ
s) is thus optimal at s and we are done.
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E EXPERIMENTAL DETAILS

E.1 ALGORITHMS

We follow most of the hyperparameter decisions of (Malkin et al., 2022). For each method, we train a
transformer with 3 layers, 8 attention heads, and an embedding dimension of 64. We set dropout to
0.1 and use causal masking. Each output head uses a fully-connected network with 2 hidden layers of
dimensions 256.

We use weight decay of 10−4 and use gradient clipping with a threshold of 10 to help stabilize
training at higher β values. When generating samples for training, we use a policy corresponding to a
mixture of the method’s policy and a uniform policy (with weight 0.01). Each method is trained with
Adam (Kingma, 2014) with ϵ = 10−5.

TGM/GFN: Since GFNs correspond to a specific hyperparameter setting for TGM, training details
are essentially identical between the two methods. Both methods are trained online with a batch size
of 16 trajectories and have a single head that outputs logits. We sample trajectories by taking the
tempered softmax of the logits, using the temperature αq + ω from the optimal policy (15). For
GFNs, ω affects the sampling policy but not the actual training objective as this ensures the network
is learning the actual GFN objective.

SAC: For SAC, we use three networks: two Q networks (to reduce overestimation bias) and a
policy network, following the implementation of (Christodoulou, 2019; Huang et al., 2022). We use a
replay buffer of size 100 000 and a batch size of 1 024 transitions. Generation/training is adjusted to
have a replay ratio of 1.0. The entropy coefficient is fixed at 1/ω, and we use target networks (for the
Q networks), which get updated every 10 iterations.

PPO: For PPO, we use two networks: a policy network and a value network, following the
implementation of (Huang et al., 2022). We follow the hyperparameter settings of (Huang et al.,
2022) and use a generalized advantage estimator λ of 0.95 and γ = 1 to avoid discounting. The
clipping epsilon is 0.1 and the value coefficient is 0.5. During online training, 16 trajectories are
generated, and the resulting transitions are split into 4 minibatches for training. The entropy coefficient
is set to 1/ω.

E.2 SEQUENCES

For each sequence generation task, we add the following 3 tokens to the vocabulary: BOS, PAD, EOS.
Sequences are padded to be of length equal to the maximum length for the task, with an added BOS,
EOS. Sequences look like the following: [BOS, x1, . . . , xn,PAD, . . . ,PAD,EOS]. When generating
sequences, they start with BOS, and tokens are added until a terminating action is chosen, at which
point PAD/EOS are added automatically. The terminating action is masked until the task’s minimum
length is reached.

E.3 SYNTHETIC TASKS

TF-Bind-8. Hyperparameters are as described in the paper. We sample 10 000 sequences for each
method using their respective optimal policy. Fig. 4 is the kernel density estimate computed using
these samples with the default parameters used by seaborn (Waskom, 2021).

Bit sequence. We use n = 120 and k = 8 with M = 60 modes and force sequences to be of length
120 through action masking. The modes are sampled randomly and fixed across runs to ensure there
is no variation from certain runs having harder-to-find modes. Each method is trained for 200 000
samples.

E.4 BIOLOGICAL SEQUENCE DESIGN

For each task, once the proxy reward model is trained, we compute the mean and standard deviation
of the logits on the validation set. Then, we use the following normalized value as reward
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r(x) = βΦ(x) = β
ϕ(x)− µval

σval
, (23)

where ϕ(x) is the logit output by the trained model. To train the proxy reward models, we follow the
hyperparameters used by (Malkin et al., 2022).

UTR: Using the described dataset, we train a transformer with 4 layers, 8 attention heads, and an
embedding dimension of 64. 80% of the data is used for training and the rest for validation. We train
for 250 epochs with early stopping (using a patience of 15). The learning rate is set to 10−4, and we
use a batch size of 128 and weight decay of 1e-6. We set both the minimum and maximum length to
50 since all sequences in the dataset are of length 50.

AMP: We use the same hyperparameters for training the model as UTR. Since the dataset has
sequences of variable length, we set the minimum length to 14 and the maximum length to 60. Unlike
the other tasks, the model is trained for binary classification, and we use the logit passed to the
sigmoid as ϕ(x).

GFP: GFP is the largest task. We train a transformer with 3 layers, 8 attention heads, and an
embedding dimension of 128. Since all sequences are of length 237, we set both the minimum length
and maximum length to 237.

E.4.1 EVALUATION

For evaluation of the average mode reward, we sweep over inverse temperature modifiers t ∈
{0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5} (i.e. if the regular sampling policy was π ∝ eτx, we
sample using π′ ∝ eτtx) and generate 512 samples for each. We then aggregate the samples and
greedily find the top 100 samples such that they are at least at a distance δ of each other. We use the
Levenshtein edit distance as metric (Levenshtein et al., 1966) and set δ = 0.25 · minLen+maxLen

2 (i.e.
δ = 13 for UTR, δ = 10 for AMP and δ = 60 for GFP). The constraint can be roughly interpreted
as requiring at least 25% of a sequence to be different for it to be considered distinct. In Tab. 1, we
report the max of this value achieved over the course of training.

E.5 COMPUTE RESOURCES

Experiments were conducted on a cluster with a mix of GPUs. All experiments were run using jobs
that requested 1xL40s, 24G of RAM, and 4 CPUs. The cluster allows for dozens of jobs to be run in
parallel. Overall, the experiments (including all the hyperparameter sweeps, baselines, and various
seeds) used roughly:

• Bit Sequence: 35 GPU hours.
• UTR: 48 GPU hours.
• AMP: 48 GPU hours.
• GFP: 300 GPU hours.

for a total of roughly ≈ 20 GPU days. In particular, the entire codebase uses Jax (Bradbury et al.,
2018) and a parallelized environment allowing for fast generation. Since we use transformers,
training on a generated trajectory for TGM/GFNs only requires a single forward/backward pass.
This significantly speeds up training (roughly 4x faster) compared to the PPO/SAC baselines, which
operate on individual transitions (though there are potential engineering optimizations to improve the
speed of these baselines).

E.6 LLM USAGE DECLARATION

LLMs were very lightly used by the authors for polishing/formatting as well as routine coding
applications (e.g. plotting, creating scripts, etc.).
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