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ABSTRACT

This paper presents Find+Replace transformers, a family of multi-transformer
architectures that can provably do things no single transformer can, and which
outperform GPT-4 on several challenging tasks. We first establish that tra-
ditional transformers and similar architectures are not Turing complete, while
Find+Replace transformers are. Using this fact, we show how arbitrary programs
can be compiled to Find+Replace transformers, aiding interpretability research.
We also demonstrate the superior performance of Find+Replace transformers over
GPT-4 on a set of composition challenge problems (solving problems 20x longer
on tower of Hanoi, 3% — 100% on multiplication, 72% — 100% on a dynamic
programming problem). This work aims to provide a theoretical basis for multi-
agent architectures, and to encourage their exploration.

1 INTRODUCTION

The first computers — including the difference engine , differential analyzer, Z1, and ABC (Bab-
bage & Babbagel [1825; Bushl |1931; Rojasl 2014} |Atanasoff] [1940) — were not Turing Complete.
Some such machines, like the Hollerith Tabulating Machine (Hollerith} |1889)) and the Harvard Mark
I (Comriel |1946)), even achieved considerable real-world use despite that limitation. However, the
advent of Turing Complete computers (Turing et al.l |1936; |Goldstine & Goldstinel [1946; Kilburn,
1949) fundamentally changed how computers were used and led to the development of more com-
plex, comprehensible, and composable programs (Backus, |1954; [Copeland, [2004)).

As we will show in this paper, current LLMs based on the transformer architecture (Vaswani et al.,
2017) are not Turing Complete. We present an alternative that is.

The fundamental reason transformers are not Turing complete is that, once the architecture of a
transformer is decided, there is a bounded amount of computation that it can do. This guarantees the
model will fail to generalize beyond input of some length and complexity. Such limitations are not
only theoretical, they are supported by a number of recent results on the ability of language models
to generalize to large context lengths (Del’etang et al.l 2022} [Liu et al.| [2023; [Dziri et al., [2023)).

Addressing these deficiencies is nontrivial and requires a fundamental shift in approach. We propose
an approach drawing from multi-agent systems (Messing, [2003};|Stone & Veloso, 2000), particularly
multi-transformer systems. Such systems have recently garnered interest, being employed to gener-
ate simulacra of human behavior (Park et al., [2023)), perform economic simulations (Horton, |2023)),
and demonstrate open-ended exploration in games like Minecraft (Wang et al., 2023a).

This paper presents a family of multi-transformer architectures, and provides theoretical and em-
pirical evidence the family can outperform traditional transformers. We hope this study will ignite
further investigations into architectures that are multi-transformer and Turing complete.

Our contributions are as follows:

* We provide a simple proof that current LLMs are not Turing Complete
* We present Find+Replace transformers, a family of provably Turing Complete architectures
* We introduce a method for turning any program into a Find+Replace transformer

* We show that Find+Replace transformers out-perform GPT-4 on a set of challenge tasks
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2 TRANSFORMERS ARE NOT TURING COMPLETE

2.1 WHAT KINDS OF PROBLEMS ARE TRANSFORMERS UNABLE TO SOLVE BECAUSE THEY
ARE NOT TURING COMPLETE?

It is unusual to use complexity theory to study transformers, so we feel that it is necessary to first
explain why a complexity theoretic analysis of transformers is useful: the computational complexity
of a model determines what kinds of problems the model can generalize to.
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Figure 1: The above table (adapted from an online reference) shows some of the classes of problems
that are considered in complexity theory. If class X is a strict subset of Y, then X is shown below
Y with a dark line connecting them. If X is a subset, but it is unknown whether they are equal sets,
then the line is lighter and dotted. The most computationally complex classes are shown on the left,
and the least complex on the right.

In computational theory, complexity classes are used to categorize problems based on the resources
required for their solution. These resources could be time (how many steps it takes to solve a
problem), space (how much memory is needed), or other computational resources. A list of major
complexity classes and their relationships can be found in Figure[l]

If a model can only learn algorithms in a lower class, it will be unable to generalize to examples in
higher classes. Lookup tables provide a simple illustrative example.

What is the difference between a lookup table and a Turing Machine, and why do we prefer the
latter? In theory, you could store the answer to arbitrarily many problems in a lookup table. The
lookup table is even faster than the Turing Machine; it doesn’t have to compute anything.

However, the inability to compute anything means that the lookup table cannot solve problems
which it has not encountered before. Unless you have stored every possible case you care about, the
lookup table must fail to generalize to new examples. A model with the computational complexity
of a lookup table is only memorizing, not learning the underlying process of the task it was trained
for.

This failure to generalize is not limited to lookup tables — any computational model which is not
Turing Complete must fail to generalize to new examples of some problem. Problems higher up in
the hierarchy of complexity classes cannot be solved by computational models which are lower in
the hierarchy. If a model is lower in the hierarchy, it may be able to solve specific instances of the
problem (by memorizing a solution to a simpler class of sub-problems); however, given a problem
of a higher complexity above a certain size, the model will be unable to solve the problem.

Problems in the class REGULAR provide an illustrative example. They are processed by finite
automata, which are computational models that have a finite number of states. They are equivalent
to regular expressions. When processing a string, a finite automaton starts in a specific state, reads
the characters in the string one by one, and transitions between states according to its transition
function. The automaton accepts the string if it ends in an accepting state.
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Let’s consider a simple problem that finite automata cannot solve: recognizing the language L =
{a"b™|n > 0}. This language consists of strings with n *a’s followed by n *b’s.

A regular expression or finite automaton can recognize strings in this language up to a certain length.
For example, the regular expression a*b* can recognize strings in L up to length 2. However, no
regular expression or finite automaton can recognize all strings in L.

This is because regular expressions and finite automata do not have the ability to count, which is
necessary to ensure that the number of ’a’s equals the number of ’b’s. They can only remember a
finite number of things (one for each state). While you can construct larger automata to solve larger
instances of problem, you can never construct an automata which generalizes to all instances.

If your model can only learn finite automata, then it has fundamental limits to how well it can
generalize — regardless of the size of the model or the input data provided.

Del’etang et al.|(2022) explicitly test this hypothesis by training models on tasks from the Chomsky
Hierarchy (Chomsky, [1956), consisting of Type 0-3 languages in Figure[T] and testing on examples
larger than those in the training set. They find that transformers fail to generalize on tasks more
complex than the class REGULAR.

What failures would we expect of models that are stateless in the same way as regular automata?
Their states will branch either at special tokens or at special locations (the beginning and end of
the output). This is precisely the behavior of large language models trained on large contexts:
performance is highest when relevant information occurs at the beginning or end of the context, and
significantly degrades when relevant information is the middle of long contexts (Liu et al.,[2023).

Transformer models have also been shown to have difficulty in compositional tasks where solutions
to sub-problems or simpler problems have to be combined to solve a larger problem (Dziri et al.,
2023).

This behavior is also predicted by computational complexity theory — failures to generalize due to
constraints in computational expressiveness will look like failures of composition.

Suppose we have a model that can only learn algorithms in P. This model would be able to solve
many useful problems, such as sorting a list of numbers or finding the shortest path in a graph.
However, it would not be able to solve NP-complete problems (unless P equals NP).

This limitation would manifest as a failure of composition. For example, consider the problem of
finding a Hamiltonian cycle in a graph (a cycle that visits each vertex exactly once). This problem
is NP-complete.

If we try to solve this problem by composing solutions to simpler problems that are in P, we will fail.
For example, we might try to solve the problem by finding a cycle in the graph (which is in P) and
then checking whether it is a Hamiltonian cycle (which is also in P). However, this approach does
not work, because it requires the model to compose the answers for all possible cycles.

Therefore, a model that can only learn algorithms in P would fail to generalize to this problem. No
matter how it composes solutions to simpler problems, it will always fail on some instances of the
Hamiltonian cycle problem. And although it might solve simpler examples through memorization
or other heuristics, this is a fundamental limitation of models that are not Turing complete.

Definition 2.1. A computational model is said to be Turing-complete if it can be used to simulate
any Turing machine.

Proposition 2.2. [f a model is not Turing Complete, there must be some computation it cannot do.

Proof. Let’s say we have a model m which is not Turing Complete. Because it is not Turing Com-
plete, there exists some Turing Machine ¢ which it cannot implement. That Turing Machine ¢ does
some computation. Therefore, there is a computation which m cannot do. O

Only a Turing complete model can reliably generalize to the most complex problems.
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2.2 A PROOF THAT TRANSFORMERS ARE NOT TURING COMPLETE

2.2.1 INTUITION

Before we jump into the details of the proof, we want to provide an intuition of why transformers are
not Turing complete. Let’s imagine a transformer which keeps generating output from the tokens
it has previously produced. It takes some sequence of characters and outputs some sequence of
characters, then repeats the process on the new sequence. These transformers have some fixed
context length & and some fixed vocabulary v. As such, there are at most v* unique sequences the
model can take in as input, or produce. What happens when a transformer takes in an input it has
seen before? Because transformers are stateless (as is required to train them in parallel on many
sequences), it must produce the same output — resulting in an infinite loop. This implies that the
computation we can perform is limited (either we produce at most v* sequences, or the transformer
is trivially non-halting). In contrast, Turing machines can perform unlimited computation, as Turing
highlighted in his groundbreaking paper (Turing et al.,{1936).

We proceed to formalize this intuitive notion by developing a computational model which can be
used to describe transformers.

2.2.2 A MODEL OF COMPUTATION

Language models read in sequences of language tokens as input and produce language tokens as out-
put. Indeed, language modeling can be formalized as modeling argmax P(wg|w;—g41, ..., Wi—1),

we
i.e. predicting the next word from a series of &k prior words. This requires the model to have some
vocabulary of tokens ¥ from which we draw words w.

In this proof, we concern ourselves with a subset of language models, namely fixed-length sequence-
to-sequence models.

Definition 2.3. Given a finite vocabulary of symbols 3 and a sequence length k, a fixed-length
sequence-to-sequence model m is a function m : ¥ — X*. We call the set of all fixed-length
sequence-to-sequence models Mpg.

In order to accurately model practical language models, we also make the following assumption:

Assumption 2.4. 3 contains two special tokens, <eos> which represents the end of a sequence
and <pad> which represents blank spaces in a sequence.

Later in this section, we will formally prove that the most common transformer architectures are in
Mpg. For now, we can intuitively see why M g provides a good way of representing transformers.
The attention mechanism (Bahdanau et al., 2014)) was originally proposed for machine translation,
and the transformer architecture was originally applied to machine translation (Vaswani et al.,|2017)).
As such, these models were formulated to take in an input sequence (the original language) and
return an output sequence (the target language), learning a function from one to the other. When
modeling language, we can predict the next token by taking in a sequence and outputting an updated
sequence

Wi—k+1y -y We—1
P> Wit 2, -y ATGMAX P (Wi Wi gy 1, -0y Wi—1)

wt

Alternatively, we could output a completion, for example a completion with sequence length of
k=25:

As a language model I — have been trained to generate

With such models, we can do computation by the follow procedure:

Definition 2.5. Given an input sequence x € ¥, we can run a model m € Mpg to termination
by repeatedly applying m to x until m™(x) contains an <eos> token. We call n (alternatively,
n(m, x)) the terminating number of m on z.
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Running a hypothetical model mpeip .1 to completion on the following string:

As a language model T

— have been trained to generate

— responses that are intended to

— be help ful and in formative <eos>

In the above case, the terminating number for mpeyrw on the sequence =z =
7 As a language model 17, is 3.

Not all models will terminate on all sequences. Consider a model My, o Which maps any sequence
to a sequence consisting entirely of the symbol a. It never generates an <eos> token, and therefore
never terminates. In such cases, we say the terminating number n(m, z) = oco.

Asking whether models in Mg terminate is the equivalent question of asking whether Turing ma-
chines halt. Can we create an algorithm which decides whether m € Mg terminates?

The following is a well known theorem about Turing Machines:

Theorem 2.6. The halting problem for Turing Machines is undecidable.

Accordingly, the following is true:

Lemma 2.7. If we can create an algorithm which reliably decides whether m terminates for all
m € Mgg, then no model in Mlpg can be Turing Complete.

Proof. Assume we can create an algorithm H which reliably decides whether m terminates for all
m € Mg. Further assume for contradiction that there exists a model m € Mg which is Turing
Complete. By Definition this means that m can simulate any Turing Machine, including a
Turing Machine that doesn’t halt. However, by our assumption, H can decide whether any model
in Mpg terminates. This means we can decide whether m terminates when it’s simulating a non-
halting Turing Machine, which contradicts Theorem [2.6] Therefore, our assumption that there exists
a Turing Complete model in M pg must be false. O

Theorem 2.8. No model in Mg is Turing Complete.

Proof. Every model m € Mipg is parameterized by a vocabulary 3 and a sequence length k.

Given a sequence x, consider the following algorithm:

1. Run m for |X|* iterations on z.

2. If <eos> exists in any of the sequences generated by running m, then return true (i.e. that
m terminates on x).

3. If <eos> does not exist in any of the sequences generated by running m, then return false
(i.e. that m does not terminate on x).

There are only |3|* possible sequences of length k over a vocabulary Y. If m has not terminated
after |X| steps, then by the pigeon hole principle, we have seem at least one sequence . more than
once. z, must be equal to m*(z) for some .

Let’s say we first saw . at step i and then again at step j where j > i. m/~%(x,) = x., which
means that we are in a loop: if we apply m to z, j — ¢ times, we get back to x,. Therefore, if m
has not terminated after ||* steps, it will never terminate — we can decide whether any m € Mpg
terminates on any x.

By Lemma[2.7] this means that no model in Mg can be Turing Complete. O

2.2.3 AUTOREGRESSIVE MODELS

Definition 2.9. A model m is autoregressive if it implements a function f : |J,, . X" — yntl,
parameterized by some ¢, where x +— x || s for some s € 3. Here, || denotes concatenation.
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Using this construction, we can prove that a number of familiar models are not Turing complete.

Lemma 2.10. Any autoregressive model m must be in Mpg
Proof. Given an autoregressive model m, we can construct a model m’ € Mpg as follows:

1. Define k = cand ¥’ = ¥ U {<pad>}.

2. For any input sequence = € X" where n < ¢, pad x with ¢ — n <pad> tokens to create a
sequence ' € Y%,

3. Define m’ : ¥'* — ¥'* such that m’(z’) = m(z) || <pad>F—"~1

It is clear that m/ is a fixed-length sequence-to-sequence model as per Definition and thus
m' € Mpg.

Furthermore, the value of m can be read out of m’ by simply removing the <pad> tokens from the
output of m’. This shows that any computation done by m can also be done by m/, and thus any
autoregressive model m must be in M gg. O

An example of this construction can be seen by running an autoregressive transformer which enu-
merates the letters of the alphabet up to e on the sequence a b c:

abc <pad> < pad >
—abcd < pad >
—abcde

—bcde <eos >

Transformers — both decoder-only and encoder-decoder models — are auto-regressive (this is a well-
known fact, but the curious reader can see Appendix [B.T|for a proof), and accordingly are not Turing
complete. A longer discussion of why models are not Turing complete, including a comparison to
prior literature on the Turing completeness of transformer models can be found in Appendix [A.T]

3 THE FIND+REPLACE TRANSFORMER

3.1 ARCHITECTURE

In Section[2.2] we establish that transformers are not Turing complete. Based on the proof, it appears
that the reason transformers are not Turing complete has to do with the way in which they are used
— in particular, autoregressively generating a sequence limits the amount of computation the model
can do.

It has already been shown that allowing transformers to do more computation allows for better
results (Wei et al., [2022; |Wang et al.| 2022} Yao et al.,|2023)). Recent work has augmented the ways
in which we use models by giving them access to additional forms of memory and tools, creating
Al ‘agents’ (Borgeaud et al., 2021} Bertsch et al., [2023; Modarressi et al., [2023}|Schick et al.; 2023
Wang et al.| 2023Db)).

Agents appear to be a natural solution to the problem that transformers are not Turing Complete —
by changing how we are using the models (giving them access to additional tools or memory) can
we make them Turing complete?

Find + Replace transformers are multi-transformer systems that operate on a sequence of arbitrary
length, which we call the fape. They are comprised of Find Transformers, Replace Transformers,
and a Map which is a function from Replace transformers to ordered sets of Find Transformers.

Find Transformers identify parts of the sequence as input for Replace transformers. They each
have a fixed context length k and look at every k-length sub-sequence of the tape, selecting the
particular sub-sequence which leads to the highest activation in the final layer.
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Replace Transformers take in the sub-sequences identified by Find transformers as input. A replace
transformer r takes as input the concatenation of the sub-sequences identified by the find transform-
ers f € Map(r), then outputs a sequence of length k. So the replace transformer » has a context
length k& + 3~ prap(r) ks> Where ky is the context length of the find head f. The output sequence

of length k then replaces the sequence found by the first find Find transformer in Map(r).

3.2 WHY FIND+REPLACE TRANSFORMERS ARE TURING COMPLETE

We can think of Find+Replace transformers as machines for learning reductions. Consider the
lambda calculus (Church, [1936), the Turing complete system which forms the basis of functional
programming languages. There are only three rules in this language, called reductions:

* Alpha Reduction: This is a renaming of bound variables. It’s used to avoid naming con-
flicts. For example, in the lambda term Az.z, we could alpha reduce it to Ay.y without
changing the meaning.

* Beta Reduction: This is the process of applying a function to its arguments. For example,
in the lambda term (Az.z)y (which represents applying the function Az.z to the argument
1), we could beta reduce it to y.

» Eta Reduction: This is a simplification of functions and arguments. If you have a function
like A\x.(fz), and z does not appear in f, then this can be eta reduced to just f.

Each of these reductions is quite simple — the individual reductions can even be done statelessly
and therefore implemented by a discrete finite automaton. Repeatedly applying such reductions,
however, can be used to do any computation. The computational simplicity of the individual rules
allows them to be learned efficiently, but their use in concert makes them Turing complete. Many
Turing complete systems work by doing similar kinds of “find and replace” operations.

A formal proof proceeds in Appendix by using Find+Replace transformers to implement a
specific set of reductions that have been shown to be Turing complete: tag systems (Post, [1943]).

3.3 PROGRAMS & FIND+REPLACE TRANSFORMERS

Because Find+Replace transformers are Turing complete, they are capable of expressing any pro-
gram or programming language. We demonstrate a practical example of this in Appendix [C] where
we show how any program in a low-level language implementing a Turing machine can be con-
verted to a Find+Replace transformer. Because other languages (e.g. python) can be compiled into
this language, it also allows the conversion of almost any program into a Find+Replace transformer.
Alternatively, a language like llvm (which is already the compilation target of many languages)
could be compiled into Find+Replace transformers.

The ability to turn transformers into programs has a number of potential uses. For example, trans-
formers created in this way can encode priors about how practitioners think a problem should be
solved, allowing for the initialization of non-random weights and faster convergence during train-
ing.

Lindner et al.| (2023)) similarly provide a method to convert programs into transformers, detailing
how such a technique can be used in mechanistic interpretability research. By creating a model
whose mechanisms are known, we can test interpretability techniques to determine whether they
re-derive the original mechanism.

Such reductions can also be implemented in parallel and could benefit from many of the tools de-
veloped around programming. For example, large numbers of small transformers could implement
changes in parallel over a sequence, orchestrated by systems similar to those used for efficient com-
pilation of functional languages (see e.g. the G-Machine (Augustsson, |1984; Kieburtz, |1985)).

This gives us confidence that Turing complete and multi-agent architectures are beneficial not only
because they improve the ability of models to generalize, but because they provide an opportunity
for greater cross pollination between Al and traditional computer science.
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Table 1: Largest Tower of Hanoi problems solved by each model. The problems start with all disks
on the left, with the goal of moving all the disks to the right. The number of disks is the “problem
size”. A problem with size n has a solution of length 2™ — 1. F+R was tested until problems of
size 7, then testing was stopped, as it could continue to solve problems indefinitely and the problem
grows exponentially.

Model Name Problem Size  Solution Length
TEXT-DAVINCI-003 0 0
GPT-3.5-TURBO 0 0
GPT-4 3 7
F+R 7% 127

4 EXPERIMENTS

In Sections 2 and 3, we provide theoretical evidence that the complexity class of a model determines
its ability to generalize, that transformers are not Turing complete, and that Find+Replace trans-
formers are. Accordingly, Find+Replace transformers should generalize better to difficult tasks on
which existing state-of-the-art transformers fail. In this section, we run experiments to verify that
this is true and to prove that Find+Replace transformers can still be trained efficiently despite being
Turing complete.

For each task, we finetune several copies of a pre-trained 100M parameter model to serve as either
find heads or replace heads. The models are finetuned on examples of each step of the task. When
a find head is trained on a sequence, it is trained to provide an output of all Os when run on a
subsequence not containing relevant information and all 1s when run on a subsequence that should
be passed to a replace transformer. Replace transformers are trained on the selected outputs of the
find transformers and the subsequence they replace the replacable subsequence with. We compare
to GPT-3, GPT-3.5-Turbo, and GPT-4.

4.1 TOWER OF HANOI

When GPT-4 (OpenAl, 2023) was released, researchers from Microsoft Research published a paper
detailing a series of early experiments with GPT-4, titled Sparks of Artificial General Intelligence
(Bubeck et al, [2023). In this paper, they also highlighted some of the limitations of this “early
AGI”, specifically homing in on limitations of autoregressive architecture highlighted by GPT-4
(see Section 8 of that paper).

A problem they use to illustrate the limitations of the architecture is the Tower of Hanoi problem. It
is an example of a complex reasoning problem, and the failure of GPT-4 to solve this problem was
used to highlight the lack of planning that current transformers face when reasoning.

In Table[I} we compare the performance of several models in solving full Tower of Hanoi problems.
The difficulty of these problems increases exponentially with size: problems of size n have 2" —
1 steps in their solution. Find+Replace transformers out-perform all other models on this task,
including generating correct solutions at least 18x longer than GPT-4 (at which point we terminated
the experiment).

Tower of Hanoi is just one problem presented in Bubeck et al.| (2023) with which GPT-4 strug-
gles. However, many of the other problems presented there are difficult to evaluate; for example,
the failure to generate poetry satisfying certain constraints. In order to show that the Find+Replace
transformer beating GPT-4 is not a one-off occurence, but rather a reflection of its abilities to gener-
alize, we evaluate its performance on additional reasoning problems.

4.2 SOLVING THE FAITH AND FATE TASKS

Dziri et al.| (2023) provide a series of composition challenge problems in which large language
models can solve simple versions of a problem, but fail to generalize to more complex forms of the
same problem. The problems include Multiplication and Dynamic Programming.
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Table 2: Performance of various models on the Faith and Fate tasks |Dzir1 et al.| (2023). In the
case of multiplication, problem size indicates the number of digits in the multiplicands. In dynamic
programming, it indicates sequence length. Fine-tuned models, few-shot models, and CoT models
all see examples of size 2/3 in multiplication or 4/5 in dynamic programming and are evaluated on
examples of the task with a greater size.

MULTIPLICATION [ DYNAMIC PROGRAMMING
PROBLEM SIZE 2 3] 4 5] 4 5] 6 7 8
GPT-3 ZERO-SHOT 76 15 0 0 11 4 4 0 0
4-SHOT 82 18 0 0 33 18 10 4 0
CoT 86 2 2 0 58 22 15 8 2
FINETUNED 99 55 1 0| 100 100 22 14 8
GPT-4 ZERO-SHOT 99 59 4 0 58 43 36 28 12
4-SHOT 99 63 21 3 77 71 58 55 42
CoT 99 68 25 3 94 91 88 84 72
F+RT FINETUNED 100 100 | 100 100 | 100 100 | 100 100 100

Results of this experiment are shown in Table[2] On every task, as we increase the size of the prob-
lem, the Find+Replace transformer out performs the traditional transformers. This is not due to the
fact that the Find+Replace transformer has been trained on this task — even the fined-tuned version
of GPT-3 fails to generalize to large examples of complex composition problems. The difference in
performance is particularly remarkable because the Find+Replace transformer is several orders of
magnitude smaller than any of the transformers against which it is being compared. Accordingly,
this improvement results from the higher computational class of the Find+Replace transformer.

5 CONCLUSION

In this paper, we prove that single transformers are not Turing complete, demonstrate that multi-
transformer systems can be Turing complete by introducing the Find+Replace transformer (an ex-
ample of such a Turing complete system), and use this system to out-perform state-of-the-art trans-
formers like GPT-4. In this final section, we want to dwell on the implications of our results.

Wei et al.|(2022) introduced Chain-of-Thought (CoT) prompting methods. The introduction of these
methods allowed for a vast improvement in the reasoning abilities of large language models —leading
to rapid progress on tasks such as math problem solving (Cobbe et al.,[2021;|Hendrycks et al.,|2021)),
logical reasoning (Saha et al.2018};|Geva et al., 2021)), and programming (Zelikman et al., 2022]).

We can think of Chain-of-Thought prompting as a kind of algorithm for thought: produce a linear set
of steps to reach a conclusion. Additional works have produced other such algorithms, for example
self-consistency (Wang et al.}[2022) or Tree-of-Thought prompting (Yao et al.,[2023)), which achieve
better results by using more complex algorithms for thought. The computational complexity of a
model determines the kind of algorithms it can learn. In order to have more complex algorithms for
thought, we then need more computationally expressive models.

This becomes clearest when examining the most difficult problems — often we don’t know whether
they have solutions, let alone how long it will take to reach a solution. Such open-ended problems
require open-ended exploration — open-ended computation. We cannot solve them with a bounded
amount of time. Accordingly, unless a model is Turing complete, there are some algorithms for
thought which it can never implement, and therefore some problems to which it can never generalize.

Single transformers are not Turing complete. Collections of transformers — Al agents — are.

We hope this provides a theoretical foundation for Al models capable of computing any function and
therefore being vastly more intelligent, and encourages more work into multi-transformers systems
and the algorithms they can implement.
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A  NOTES ON COMPUTATIONAL COMPLEXITY

A.1 WHY AREN’T TRANSFORMERS TURING COMPLETE?

To some readers, the proposition that transformers are not Turing complete may be surprising. This
is especially the case because several papers have previously claimed that transformers are Turing
compete (Dehghani et al., |2018; [Pérez et al., 2019; |Bhattamishra et al., [2020; |[Pérez et al., 2021}
Giannou et al.;[2023). It is worth clarifying where our analysis differs from theirs.

Previous works show that given a specific instance of a problem, a transformer exists which can
solve it. We show that there exist certain problems for which no transformer can solve every specific
instance.

This difference arises from a difference in the assumptions used to analyze transformers — previ-
ous works assume a limit on the number of steps required to solve a problem (Pérez et al., 2019;
Bhattamishra et al.| 2020; |Pérez et al., |2021)) or the amount of memory used (Giannou et al.| 2023;
Dehghani et al.|[2018)). This constraint on the problem allows a transformer to be constructed which
can solve it.

The way in which we conduct our analysis is also more typical in traditional computational theory
— in theory we can make larger and larger discrete finite automata (DFA) to solve any particular
instance of a problem; however, there is no DFA which generalizes to all problems and it is this
limitation which relegates the languages recognizable by DFAs (the class REGULAR) to the lowest
complexity class commonly studied (Figure [T). Turing complete models are needed for general-
ization. As we will show in Section 4] by constructing models which are Turing complete, we can
generalize more effectively in real-world problems.

The result that transformers are not Turing complete is also surprising for another reason, however.
Many systems are accidentally Turing complete, such as Conway’s game of life (Gardener, |1970) or
playing card games (Churchill et al.| 2019). If Turing completeness emerges so readily in systems
not intended to be Turing complete, is there a specific reason transformers are not Turing complete?

A potential explanation arises from the “parallelism tradeoff” introduced by Merrill & Sabharwal
(2022). They show (assuming transformers with log-precision floats), that transformers implement
algorithms in the complexity class T'C” (the class of efficiently parallelizable algorithms). This
complexity class is a subset of P (unless L = P), meaning that even very basic algorithms could not
be expressed by transformers. This tradeoff arises from the need for efficient training of models on
large quantities of data, the very property which made transformers successful at language modeling.
This problem is exacerbated by the way in which transformers are used (auto-regressive generation),
both of which limit the computational expressiveness of transformers.

B ADDITIONAL PROOFS

B.1 TRANSFORMERS ARE AUTO-REGRESSIVE, AND THEREFORE NOT TURING COMPLETE

A corollary of Theorem [2.8]is the following:

Corollary B.1. Both decoder-only and encoder-decoder transformers are not Turing Complete.

Proof. Let us start with decoder-only transformers.

The decoder-only transformer, introduced in [Liu et al| (2018) and popularized by Radford
& Narasimhan| (2018) & [Radford et al| (2019), is a language modeling architecture which
implements a function using the decoder block from (Vaswani et al., 2017). They model
sequence-transduction language modeling task (m?!,...,m™) — (y!,...,y") as w!, ..., w1t =
(ml,...,m" 8,y ...,y"), where § is a separator token. The key fact is that the tokens y* are gener-

ated autoregressively from the input tokens and the previous tokens, up to the max length ¢ = n +n.

Because the decoder-only transformer is auto-regressive, by Lemma [2.10] the decoder-only trans-
former is in Mpg. And by Theorem 2.8] it is not Turing Complete.

Now, let us proceed to the case of the encoder-decoder architecture (Vaswani et al.,[2017)).
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In this architecture, a hidden state is first computed from the input sequence, then the hidden state
is used to generate a series of autoregressively sampled tokens. The hidden state is generated by a
series of identical transformer blocks. Each transformer block is a fixed-length sequence to sequence
function. As such, the encoder can do a bounded amount of information.

Because the hidden state has a fixed size, it can be modeled as a single token at the beginning of the
sequence. For example, if there are h different possible hidden states which the model can output,
then we can add h tokens to the vocabulary of the model, and start the autoregressive decoding
with an additional token representing the hidden state prepended to the input. As the decoder-only
transformer is in M g g, the encoder-decoder transformer must also be in Mz g. O]

B.2 FIND+REPLACE TRANSFORMERS ARE TURING COMPLETE

Definition B.2. A tag system is a triple (m, X, P) where m is a positive integer called the deletion
number, ¥ is a finite alphabet of symbols — all finite strings on ¥ (i.e. J,, oy X") are called words
—and P is a set of production rules P : ¥ — |J >.™ that assigns a word (called a production) to
each symbol in X.

neN

To use tag systems for computation, we also assume the presence of a special symbol:

Assumption B.3. ¥ contains a special symbol, <halt> which represents the end of a sequence. A
word is halting if it begins with <halt> or if it has length < m.

Tag systems implement transformations which take non-halting words to new words in the following
manner

t: U DI U 5" =21, ., 2 ||S — S||P(21)
neN neN
That is to say, given a word, they produce a new word by removing the first m symbols and append-
ing the production of the first symbol.

We can use tag systems to do computation by iterating the transformation ¢, starting from some
initial word and and halting when a halting word is produced.
Tag systems are useful to us because of a result from Minsky| (1961):

Theorem B.4. Any Turing machine can be represented as a tag system, i.e. tag systems are Turing
complete.

In particular, we will use the following result (Cocke & Minskyl, [1964)) to prove that Find + Replace
transformers are Turing Complete:

Theorem B.5. Any Turing machine can be represented by a tag system with deletion number m = 2.
In particular, we can simulate a universal Turing machine with 2 symbols and r states by a 2-tag
system with |X| = 17r symbols and productions of length at most 3.

Our proof is as follows:

Theorem B.6. Find+Replace Transformers are Turing Complete.

Proof. We will proceed by proving that, given any 2-tag system with productions of length at most
3, we can be create a Find+Replace Transformer which implements that tag system.

Consider such a tag system (m, 3, P). Let us create a new vocabulary for our find and replace
transformer: T' = X | J{< bos >, < eos >}. We can then represent any word .S of symbols in 3 as
atape S’ =<bos> || S || <eos>.

We create 2 find heads, the first f;, with a context length 2 and the second f. with context length 1.
Then, we create two replace heads r4 with output length 1 and rp with output length 4. We also
define a M ap as follows

{(fo)} ifr=rq

Map(r) = {{(fe,fb)} itr =rp
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Let f;, always identify the <bos> token and the token immediately following. Let f, always identify
the <eos> token. Let rq always return the < bos > token. Let rp always return P(f,(S"))|| <
€os >.

Given a tape
< bos > ||z1, ..., Tm||S]| < eos >
applying this Find+Replace transformer produces the string

< bos > ||S||P(z1)]| < eos >

Which is precisely the transformation implemented by the original tag system, once the <bos> and
<eos> tags are removed.

Applying Theorem we see that Find+Replace transformers can implement a universal Turing
machine and are therefore Turing complete. O

C CONVERTING PROGRAMS TO FIND+REPLACE TRANSFORMERS

As an example of converting programs into Find+Replace transformers, we can use a simple Turing
complete language. Take, for example, Brainfuck (Miiller, |1993)).

Brainfuck is an esoteric programming language created in 1993 by Urban Miiller. It is known for its
extreme minimalism, with only eight simple commands, a data pointer and an instruction pointer.

The eight commands of the Brainfuck language are:

i

e ”+”: Increments the value at the current cell by one.

ITERT I

: Decrements the value at the current cell by one.

99,99

: Moves the data pointer to the next cell (to the right).

* ”;” : Moves the data pointer to the previous cell (to the left).
e 7”1 Outputs the ASCII value at the current cell (i.e., prints the character on the screen).
e 7”7 Accepts one byte of input, storing its value in the current cell.

e ”’[” : If the value at the current cell is zero, skips to the corresponding ”]” command.
Otherwise, move to the next command.

e 717 : If the value at the current cell is zero, move to the next command. Otherwise, jump
back to the corresponding [’ command.

Brainfuck is closely related to P”, a language created by Corrado Bohm in 1964 to describe the
smallest universal Turing machine. P” was explicitly based on the Turing machine. Accordingly,
Brainfuck provides a simple example of how a Turing machine can be implemented through a series
of reductions.

Such a system has already been implemented by |Brandli| (2017). They show how a Brainfuck
interpreter can be implemented using a Find and Replace Regex.

We can convert the regex into a transformer by first converting it into a Discrete Finite Automaton
(DFA), then auto-regressively taking in a sequence and maintaining the state of the DFA in the
sequence while consuming the sequence.

Then, using the transformers created in this way, we can implement the Find and Replace operations,
allowing us to implement a Brainfuck interpreter. Any program in brainfuck can then be executed
on a Find+Replace transformers, and so too for any program in a language which can be compiled
to Brainfuck.

This provides two distinct methods to turn transformers into programs: 1) to turn the underly-
ing langauge into a Find+replace, and 2) to turn the operations implementing the program into a
Find+Replace transformer.
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