
Smoothness Matrices Beat Smoothness Constants:
Better Communication Compression Techniques for

Distributed Optimization

Mher Safaryan
KAUST, Saudi Arabia

mher.safaryan.1@kaust.edu.sa

Filip Hanzely
TTIC, United States

fhanzely@gmail.com

Peter Richtárik
KAUST, Saudi Arabia

peter.richtarik@kaust.edu.sa

Abstract

Large scale distributed optimization has become the default tool for the training
of supervised machine learning models with a large number of parameters and
training data. Recent advancements in the field provide several mechanisms for
speeding up the training, including compressed communication, variance reduction
and acceleration. However, none of these methods is capable of exploiting the
inherently rich data-dependent smoothness structure of the local losses beyond stan-
dard smoothness constants. In this paper, we argue that when training supervised
models, smoothness matrices—information-rich generalizations of the ubiquitous
smoothness constants—can and should be exploited for further dramatic gains, both
in theory and practice. In order to further alleviate the communication burden inher-
ent in distributed optimization, we propose a novel communication sparsification
strategy that can take full advantage of the smoothness matrices associated with
local losses. To showcase the power of this tool, we describe how our sparsification
technique can be adapted to three distributed optimization algorithms—DCGD
[Khirirat et al., 2018], DIANA [Mishchenko et al., 2019] and ADIANA [Li et al.,
2020]—yielding significant savings in terms of communication complexity. The
new methods always outperform the baselines, often dramatically so.

1 Introduction

With the desire to build and train high quality machine learning models comes an increased appetite
for larger models, both in terms of the number of parameters encoding them, and in the amount
of data required to train them. In the big data regime, the data is partitioned among many parallel
machines, which then cooperatively train a single global model, usually orchestrated by a central
server. Distributed training is cast as the distributed optimization problem

min
x∈Rd

f(x) +R(x), f(x) := 1
n

n∑
i=1

fi(x), (1)

where d is the number of parameters of model x ∈ Rd, n is the number of machines participating
in the training, fi(x) is the loss associated with the data stored on machine i ∈ [n] := {1, 2, . . . , n},
f(x) is the empirical loss, and R(x) is a regularizer. Ample research over the past two decades
has shown that first-order methods are highly scalable and as a result are the methods of choice for
distributed optimization problems [Liu and Zhang, 2020]. In particular, a substantial amount of work

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



has been devoted to speeding up the training process by developing efficient methods empowered
with techniques such as compressed communication, variance reduction and acceleration.

Compressed communication. In distributed training, compute nodes have to communicate with
each other, often via a central server, in order to be able to maintain consensus and jointly train a
global model. However, communication of the information pertaining to local progress, which is
typically contained in gradient(s) distilled from local data, is almost invariably the key bottleneck
in distributed training systems [Xu et al., 2020]. One popular way to address this issue is to reduce
the number of bits encoding the vector/tensor to be transferred via the help of a lossy compression
operator. Numerous unbiased gradient compression operators have been proposed for this purpose,
including several types of sparsifications [Wang et al., 2018, Mishchenko et al., 2020, Alistarh et al.,
2018] and quantizations [Alistarh et al., 2017, Zhang et al., 2017, Horváth et al., 2019a, Wu et al.,
2018].

Variance reduction. A marked issue that needs to be addressed by successful distributed optimization
methods has to do with the (potential) “dissimilarity” of the local loss functions f1, . . . , fn, which
in turn is due to the heterogeneity of the training data defining these functions. The higher the
dissimilarity, the harder it is for the devices to find the minimizer of (1). This issue exists even in the
unregularized case (R ≡ 0). Indeed, while in this case 1

n

∑
i∇fi(x∗) = 0 if x∗ is a minimizer of f ,

this does not mean that the individual gradients, ∇f1(x∗), . . . ,∇fn(x∗), are all zero. This shows
that local gradient information alone is not enough for any node to “realize” that a solution has been
found, which encourages further, in this case unnecessary, iterations. If unaddressed properly, an
algorithm is forced to use smaller learning rates, and this leads to unnecessarily slow convergence.
On the other hand, when a fixed learning rate is used, the rate is fast, but convergence stops in a
potentially large neighborhood1 of the optimum x∗. This issue is exacerbated further by the extra
noise coming from gradient compression. Indeed, this noise prevents methods such as Distributed
Compressed Gradient Descent (DCGD) [Khirirat et al., 2018] from converging to x∗ with a constant
learning rate even in the interpolation regime characterized by the identities ∇fi(x∗) = 0 for all i.
Fortunately, these issues can be resolved via carefully designed variance reduction techniques [Gower
et al., 2020]. In particular, the first variance reduction mechanism for removing the variance coming
from compression operators in distributed training is due to Mishchenko et al. [2019], embodied in
their DIANA algorithm. The method was initially analyzed for ternary quantization only [Wen et al.,
2017], and later generalized to handle a general class of unbiased compression operators [Horváth
et al., 2019b, Gorbunov et al., 2020b].

Acceleration. To speed up distributed training even further, it is often possible to employ Nesterov’s
acceleration technique [Nesterov, 1983, 2004] in concert with gradient compression and variance
reduction. For instance, Li et al. [2020] developed the ADIANA method, which adds acceleration
on top of a variant of DIANA that relies on the computation of full-batch gradients on all nodes.
The resulting method offers provable speedups in convex and strongly convex regimes. Another
example is the method ECLK of Qian et al. [2020], which employs compressed communication via
any (possibly biased) compressor satisfying a certain contraction property in combination with a
slightly different variance reduction technique known as error compensation [Stich and Karimireddy,
2019, Karimireddy et al., 2019], while acceleration is offered by a loopless variant of the accelerated
method Katyusha [Allen-Zhu, 2017, Kovalev et al., 2020].

Further tricks. Numerous other techniques are often used to improve some other aspects of
distributed training, including implementing multiple local gradient steps before communication
[Stich, 2020, Karimireddy et al., 2020, Woodworth et al., 2020a], asynchronous communication
protocols [Agarwal and Duchi, 2011, Lian et al., 2015, Recht et al., 2011], in-network aggregation
[Sapio et al., 2021], and performing the distributed training in a decentralized peer-to-peer manner
without the reliance on an orchestrating server [Koloskova et al., 2019, Alghunaim et al., 2019].
However, in this work, we do not explore these directions and focus on the three techniques described
before, namely, compressed communication, variance reduction and acceleration.

2 Mining for Smoothness Information

2.1. One size fits all. Arguably, one of the most ubiquitous, if not the most ubiquitous, assumptions
used in the literature on first-order optimization methods is that of L-smoothness [Nesterov, 2004]. A

1In theR ≡ 0 case, this neighborhood is proportional to the variance of the local gradients at the optimum: 1
n

∑n
i=1 ‖∇fi(x

∗)‖2.

2



differentiable function φ : Rd → R is said to be L-smooth if there exists a constant L ≥ 0 such that

φ(x) ≤ φ(y) + 〈∇φ(x), x− y〉+ L
2 ‖x− y‖

2 (2)

holds for all x, y ∈ Rd. However, most works in the area of finite-sum distributed optimization use it
very crudely: they assume that all local loss functions fi as well as their average, f = 1

n

∑
i fi, share

the same smoothness constant L [Tang et al., 2019, Woodworth et al., 2020b, Stich, 2020]. This is
crude because much information is lost. Indeed, assuming that each fi is Li-smooth, it is well known
that f is Lf -smooth with Lf satisfying Lf ≤ 1

n

∑
i Li. In the light of this, the above assumption is

crude as it effectively replaces the values L1, . . . , Ln and Lf with a single parameter L satisfying
L ≥ max{L1, . . . , Ln}. Since the stepsizes and convergence rates of first-order methods depend on
the smoothness constant(s) employed, convergence analysis relying on such crude approximation
may be significantly suboptimal, and the methods too slow when implemented following the theory.

2.2. “According to the work of their hands” (Lam 3:64). Significant theoretical and practical
improvement can often be obtained when taking account of all the smoothness constants involved,
avoiding the practice of replacing them all with a single crude bound. Such analyses are more rare,
but fairly common. For example, [Richtárik and Takáč, 2016a, Hanzely and Richtárik, 2019a].

2.3. “Like treasure hidden in a field, which a man found and covered up” (Mat 13:44). The
starting point of this paper is the observation that there is a hitherto untapped richness of smoothness
information that can be used to construct better distributed optimization algorithms and obtain better
theory. This information is available, but hidden from sight, and is based on the notion of matrix
smoothness.
Definition 1 (Matrix Smoothness). We say that a differentiable function φ : Rd → R is L-smooth if
there exists a symmetric positive semidefinite matrix L � 0 such that

φ(x) ≤ φ(y) + 〈∇φ(y), x− y〉+ 1
2‖x− y‖

2
L, ∀x, y ∈ Rd. (3)

The standard L-smoothness condition (2) is obtained as a special case of (3) for matrices of the form
L = LI, where I is the identity matrix. In particular, if function fi appearing in (1) is often the
average loss over the training data stored on node i, i.e.,

fi(x) = 1
mi

∑mi
m=1 φim(Aimx), (4)

where Aim ∈ Rdim×d is a data matrix, and φim : Rdim → R is a differentiable function (e.g., the
loss over all but the last linear layer of a NN). The following simple result from Qu and Richtárik
[2016b], used therein in the context of randomized coordinate descent methods, states that if the loss
functions φim are smooth in the standard scalar sense, then fi is smooth in the matrix sense.
Lemma 1. If each φim is λim-smooth, then the function fi defined in (4) is Li-smooth with

Li = 1
mi

∑mi
m=1 λimA>imAim. (5)

In cases where the local functions fi are of the form (4)2—and it is clear this structure is ubiquitous—
there is a lot of potentially useful information contained in the matrix smoothness “constant” Li.
If we were to use the scalar smoothness constant of fi instead, we would be effectively tossing
this richness away, and replacing it with Li = λmax(Li); the largest eigenvalue of Li. This seems
wasteful. As we show in this work, it is. However, we offer a fix.

3 Motivation and Contributions

To the best of our knowledge, none of the current distributed optimization methods, including the
methods DCGD [Khirirat et al., 2018], DIANA [Mishchenko et al., 2019] and ADIANA [Li et al.,
2020] discussed in Section 1, are capable of exploiting the inherently rich data-dependent smoothness
structure of the local losses beyond standard smoothness constants. To this effect, we impose the
following assumption throughout the paper:
Assumption 1. The functions fi : Rd → R are differentiable, convex, lower bounded3 and Li-
smooth. Moreover, f is L-smooth with (standard) smoothness constant L := λmax(L).

2Our theoretical results hold for general loss functions fi and do not assume the structure (4)
3Lower boundedness of fi(x) can be dropped if Li � 0 is positive definite. This part of the assumption is

not a restriction in applications as all loss function are lower bounded.

3



Table 1: Original and proposed new methods.

ORIGINAL DCGD DIANA ADIANA

NEW DCGD+
(ALG.1)

DIANA+
(ALG.2)

ADIANA+
(ALG.3)

PROXIMAL 3 3 3
DISTRIBUTED 3 3 3

VARIANCE REDUCED 7 3 3
ACCELERATED 7 7 3

Table 2: Summary of theoretical results obtained in this work with hidden log 1
ε factors and constants.

Below n is the number of machines, d is the number of parameters of model, Lmax = maxi Li, Li =

λmax(Li) and the expected smoothness constant L̃max is defined in (9). The variance of generic
compression operator used in the original methods is denoted by ω. In case of sparsification, we have
ω = d/τ − 1 = O(n) when the expected size of selected coordinates is τ = d/n. Parameters ν1, ν2

and ν describing matrices Li are defined in (13). See Table 6 for further notations.

Regime ∇fi(x∗) ≡ 0 arbitrary∇fi(x∗) arbitrary∇fi(x∗)

Original
Methods

DCGD
[Khirirat et al., 2018]

DIANA
[Mishchenko et al., 2019]

ADIANA
[Li et al., 2020]

Iteration
Complexity

L
µ + ωLmax

nµ ω + Lmax
µ + ωLmax

nµ


ω+ω

√
Lmax
nµ

if n≤ω

ω+

√
Lmax
µ

+

√
ω

√
ωLmax
nµ

√
Lmax
µ

if n>ω

Iteration
Complexity
τ = d/n

Lmax
µ n+ Lmax

µ n+ n
√
Lmax
nµ ≡ n+

√
nLmax

µ

New
Methods

DCGD+
(Algorithm 1)

DIANA+
(Algorithm 2)

ADIANA+
(Algorithm 3)

Iteration
Complexity

L
µ + L̃max

nµ ωmax + L
µ + L̃max

nµ


ωmax+

√
ωmax

L̃max
nµ

if nL≤L̃max

ωmax+

√
L
µ

+

√
ωmax

√
L̃max
nµ

√
L
µ

if nL>L̃max

Iteration
Complexity
τ = d/n

Lmax
nµ + Lmax

dµ

(if ν, ν1 are O(1))

n+ Lmax
nµ + Lmax

dµ

(if ν, ν1 are O(1))

 n+n
(
Lmax
nµ

)1/4
if nL≤L̃max

n+

√
Lmax
nµ

+
(
n
Lmax
µ

)3/8
if nL>L̃max

(if ν,ν2 are O(1) and Lmax/µ is O(nd2))

Reference Theorem 2, Remark 3 Theorem 3, Remark 4 Theorem 4, Remark 5
Speedup

factor (up to) min(n, d) min(n, d)

{ √
d if nL≤L̃max and Lmax/µ=O(nd2)√

min(n,d) if nL>L̃max and Lmax/µ=O(nd2)

In this paper, we argue that when training supervised models, smoothness matrices (see Definition 1)—
information-rich generalizations of the classical and ubiquitous smoothness constants—can and
should be exploited for further dramatic gains, both in theory and practice.

3.1. Unbiased diagonal sketches. We study unbiased diagonal sketches, defined as follows:
Definition 2 (Unbiased diagonal sketch). Let S be a random subset of the set of coordinates/features
of the model x ∈ Rd we wish to train, i.e., S ⊆ [d] := {1, 2, . . . , d}. Let S be proper, i.e.,
pj := Prob(j ∈ S) > 0 for all coordinates j ∈ [d]. We now define a random diagonal matrix (sketch)
C = CS ∈ Rd×d via

C = Diag(c1, . . . , cd), cj =
{

1/pj if j∈S,
0 otherwise.

(6)

Note that given a vector x = (x1, . . . , xd) ∈ Rd, we have (Cx)j =
{
xj/pj if j∈S

0 if j /∈S . So, we can
control the sparsity level of the product Cx by engineering the properties of the random set S. Also
note that E[Cx] = x for all x.

3.2. Data-dependent sparsification operators. In order to further alleviate the communication bur-
den inherent in distributed optimization, we further propose data-dependent sparsification operators
that can take full advantage of the smoothness matrices Li associated with the local losses fi. To the
best of our knowledge, this is in sharp contrast with the design of all existing tractable compression
techniques used in distributed training, which are proposed independently of the training data, and
typically based on intuitive or information-theoretic principles.

4



With each node i we associate an unbiased diagonal matrix Ci of the form (6). We use this and the
smoothness matrix of fi to define a sparsification technique, described next.
Definition 3 (Data-dependent sparsification). In situations when the i-th node wished to communicate
local gradient ∇fi(x), we ask the node to send the sparse (=compressed) vector CiL

†1/2
i ∇fi(x) to

the server instead. The server then constructs (=decompresses) an unbiased estimator of∇fi(x) as:

gi(x) = L
1/2
i CiL

†1/2
i ∇fi(x), (7)

where L
†1/2
i denotes the square root of the Moore-Penrose pseudoinverse of Li.

Notable differences of our proposed communication protocol when compared with standard sparsifi-
cation techniques are: i) we use the smoothness matrix Li, ii) the compressed vector CiL

†1/2
i ∇fi(x)

is not unbiased, iii) we devise a separate decompression mechanism (7), also involving Li, and this
enforces effective unbiasedness.

3.3. Matrix-smoothness-aware redesign of 3 methods. To showcase the power of our approach,
we demonstrate how our matrix-smoothness-aware sparsification technique (7) can be adapted to
DCGD, DIANA and ADIANA, in each case leading to significant communication savings. By doing
so, we show that matrix smoothness can be effectively used to speed up communication compression,
variance reduction and acceleration, respectively. This results in three novel methods: DCGD+,
DIANA+, and ADIANA+; see Table 1.

3.4. Dramatic improvements in complexity results. We perform complexity analyses for our
methods and derive convergence rates under matrix smoothness4 (see Assumption 3) and strong
convexity assumptions (see Theorems 2, 3 and 4). We show that new methods always outperform the
originals/baselines, and often dramatically so.

To illustrate the potential of our sparsification technique (7) embedded in the new methods, let all
machines i ∈ [n] use sketches Ci induced by independent5 samplings Si with probabilities pi;j :=
Prob(j ∈ Si). Then we show that, with optimized probabilities pi;j , DCGD+ can be O(min(n, d))
times faster then DCGD (see Remark 3) and DIANA+ can be O(min(n, d)) times faster than
DIANA (see Remark 4), depending on matrices Li. For the accelerated method, we highlight
improvements when condition numbers of subproblems are O(nd2). We show that ADIANA+ can
be faster than the original ADIANA by a factor of O(

√
d) in high compression regime, and by a

factor of O(
√

min(n, d)) in low compression regime (see Remark 5). Main theoretical results are
summarized in Table 2.

3.5. Single node case. Specializing our theory to the single machine setting (n = 1), we design
new non-distributed algorithms providing an alternative viewpoint to randomized coordinate descent
methods (see Appendix E).

3.6. Lower bounds. Using matrices as linear compression operators, we further investigate the
trade-off between communicated bits and variance induced by the compression (see Appendix F).

3.7. Experiments. We conduct numerical experiments using LibSVM datasets [Chang and Lin,
2011], confirming the effectiveness and superiority of our sparsification protocol (7) over the standard
sparsification scheme (see Section 6 and Section C).

4 New Communication-Efficient Methods Exploiting Matrix Smoothness

Consider the problem (1) with the smoothness Assumption 1 and for strongly convex f .
Assumption 2 (µ-convexity). f : Rd → R is µ-convex for some µ > 0, i.e., for all x, y ∈ Rd

f(x) ≥ f(y) + 〈∇f(x), x− y〉+ µ
2 ‖x− y‖

2.

We present our new distributed methods, redesigned for matrix smoothness, and their convergence
guarantees. Each node i ∈ [n] generates diagonal sketches Ci independently from others via an

4The closest to our result is work of Hanzely and Richtárik [2019b] and their ISEGA method which is able to
exploit diagonal smoothness matrices. To the best of our knowledge, we are the first to fully exploit smoothness
matrices of arbitrary structure, and elevate them as a new tool at the disposal of algorithm designers.

5Sampling Si is called independent if pi;jl := Prob({j, l} ⊆ Si) = pi;jpi;l for all j, l ∈ [d] such that j 6= l.

5



arbitrary sampling Si and, togther with its smoothness matrix Li, composes the compression matrix
CiL

†1/2
i . Probability matrices Pi, P̃i associated with the sampling Si and sketch Ci are defined as

Pi = (pi;jl)
d
j,l=1, P̃i = (p̃i;jl)

d
j,l=1 pi;jl = Prob({j, l} ⊆ Si), p̃i;jl =

pi;jl
pi;jjpi;ll

− 1. (8)

Next, we introduce the key quantity, L̃max, describing the joint contribution of our sparsification (7)
to the complexities of the three proposed methods:

L̃max = max1≤i≤n L̃i, L̃i = λmax(P̃i ◦ Li), (9)

Above, ◦ stands for the Hadamard (i.e. element-wise) product.

4.1 DCGD+

We now present our matrix-smoothness-aware sparsification technique by adapting DCGD algo-
rithm [Khirirat et al., 2018]. Upon receiving the current model xk from the server, each node
computes L

†1/2
i ∇fi(xk) based on local training data and smoothness matrix. Next, sparsified up-

dates Ck
i L
†1/2
i ∇fi(xk) are sent back to the server, which then averages decompressed updates

L
1/2
i Ck

i L
†1/2
i ∇fi(xk) and performs proximal step to get a new model xk+1.

Algorithm 1 DCGD+
1: Input: Initial point x0 ∈ Rd, current point xk, step size γ, diagonal sketch Ck

i
2: on server
3: send xk to all nodes
4: get sparse updates Ck

i L
†1/2
i ∇fi(xk) from each node

5: xk+1 = proxγR(xk − γgk), where gk = 1
n

∑n
i=1 L

1/2
i Ck

i L
†1/2
i ∇fi(xk)

With this method we get convergence up to a neighborhood due to compressoin noise.
Theorem 2 (see G.3). Let Assumptions 1 and 2 hold and assume that each node generates its own
diagonal sketch Ci independently from others. Define σ∗ := 1

n

∑n
i=1 L̃i‖∇fi(x∗)‖2L†i

. Then, for the

step-size 0 < γ ≤ 1

L+ 2
n L̃max

, the iterates {xk} of Algorithm 1 satisfy

E
[
‖xk − x∗‖2

]
≤ (1− γµ)

k ‖x0 − x∗‖2 + 2γσ∗

µn . (10)

4.2 Variance reduction: DIANA+

Next, we apply our sparsification technique to the variance reduced method DIANA [Mishchenko
et al., 2019]. In this method, each node maintains an auxiliary control vector hki , called shift, which
helps to reduce the variance coming from the sparsification. Moreover, the central server keeps track
of only the averaged shift hk. Then, the model xk as well as control vectors hki , h

k are updated by
decompressing sparse information ∆k

i using matrices Li.

Algorithm 2 DIANA+
1: Input: Initial point x0 ∈ Rd, initial shifts h0

i ∈ Range(Li), current point xk, step size parameter
γ and α, sketch Ck

i and Ck
i := L

1/2
i Ck

i L
†1/2
i , current shifts hk1 , . . . , h

k
n and hk := 1

n

∑n
i=1 h

k
i .

2: on each node
3: get xk from the server
4: send sparse update ∆k

i = Ck
i L
†1/2
i (∇fi(xk)− hki )

5: update local gradient and shift ∆k
i = L

1/2
i ∆k

i , g
k
i = hki + ∆k

i , h
k+1
i = hki + α∆k

i
6: on server
7: get sparse updates ∆k

i from each node
8: ∆k = 1

n

∑n
i=1 ∆k

i = 1
n

∑n
i=1 L

1/2
i ∆k

i , gk = ∆k + hk = 1
n

∑n
i=1 Ck

i

(
∇fi(xk)− hki

)
+ hki

9: xk+1 = proxγR(xk − γgk), hk+1 = hk + α∆k

6



In this case we get rid of the neighborhood and provide linear convergence to the exact solution x∗.
Throughout the paper, we use Õ notation to ignore log 1

ε factors and constants.
Theorem 3 (see G.4). Let Assumptions 1 and 2 hold and assume that each node generates its own
diagonal sketch Ci independently from others. Then, for the step-size γ = 1

L+ 6
n L̃max

, Algorithm 2

guarantees E
[
‖xk − x∗‖2

]
≤ ε after

Õ
(
ωmax + L

µ + L̃max

nµ

)
(11)

iterations, where ωmax = max1≤i≤n ωi and ωi = max1≤j≤d p
−1
i;j −1 is the variance of compression

operator induced by sketch Ci.
Remark 1 (Variance Reduction: ISEGA+). In Appendix I we apply our redesign to another variance
reduced method called ISEGA [Mishchenko et al., 2020, Hanzely and Richtárik, 2019b]. At the core
of ISEGA, the mechanism for variance reduction is based on SEGA method [Hanzely et al., 2018].
The key difference between ISEGA and DIANA is that ISEGA updates the control variates h more
aggressively using projection instead of the mere α-step towards the projection used in DIANA. The
method is presented as Algorithm 7 in Appendix I. Theorem 22 provides the result – we can see that
the worst case complexity is identical to DIANA+. However, in terms of the practical performance,
we expect ISEGA+ to outperform DIANA+ due to the more aggressive update rule of control variates.
Remark 2 (Variance Reduction with Bi-directional Compression: DIANA++). As an extension to
DIANA+, in Appendix J we apply our sparsification technique both for nodes and for the central
server, thus compressing gradients in both directions of communication. We develop and analyze
DIANA++ (see Algorithm 8), for which the central server applies compression in its turn with sketch
C independently. To converge in a linear rate, DIANA++ maintains an additional control vector to
reduce the variance coming from the master’s sparsification. Our convergence theory (Theorem 23)
recovers the same complexity (11) of DIANA+ if no compression is applied by the master.

4.3 Acceleration with variance reduction: ADIANA+

Finally, we redesign the accelerated method ADIANA [Li et al., 2020] to effectively exploit local
smoothness matrices. The algorithm develops four sequences {xk, yk, zk, wk} of models, which are
layered via convex combinations, proximal steps and probabilistic assignments. In each iteration,
nodes receive models xk and wk from the server, and send back sparse updates ∆k

i and δki using
local data and control vectors hki . Then, decompressing these sparse vectors with matrices Li, nodes
update their shifts hki and the server updates all four models along with averaged shift hk.

Algorithm 3 ADIANA+
1: Input: Initial points x0 = y0 = z0 = w0 ∈ Rd, initial shifts h0

i ∈ Range(Li), current point
xk, parameters γ, α, β, η, θ1, θ2, q, sketch Ck

i and Ck
i := L

1/2
i Ck

i L
†1/2
i , current shifts hk1 , . . . , h

k
n

and hk = 1
n

∑n
i=1 h

k
i

2: on server
3: xk = θ1z

k + θ2w
k + (1− θ1 − θ2)yk, send xk and wk to all nodes

4: on each node
5: send sparse updates ∆k

i = Ck
i L
†1/2
i (∇fi(xk)− hki ) and δki = Ck

i L
†1/2
i (∇fi(wk)− hki )

6: update local gradient ∆k
i = L

1/2
i ∆k

i , g
k
i = hki +∆k

i and shift δki = L
1/2
i δki , h

k+1
i = hki +αδki

7: on server
8: get sparse updates ∆k

i and δki from each node
9: ∆k = 1

n

∑n
i=1 L

1/2
i ∆k

i , δk = 1
n

∑n
i=1 L

1/2
i δki , gk = ∆k + hk

10: hk+1 = hk + αδk, yk+1 = proxηR(xk − ηgk)

11: zk+1 = βzk + (1− β)xk + γ
η (yk+1 − xk), wk+1 =

{
yk with probability q,
wk with probability 1−q.

Clearly, ADIANA+ enjoys the accelerated rate, which is strictly better then the one for DIANA+.
Theorem 4 (see G.5). Let Assumptions 1 and 2 hold and assume that each node generates its
own diagonal sketch Ci independently from others. Then, the iteration complexity of Algorithm 3

7



guaranteeing E
[
‖zk − x∗‖2

]
≤ ε is

Õ
(
ωmax +

√
ωmax

L̃max

µn

)
if nL ≤ L̃max

Õ

(
ωmax +

√
L
µ +

√
ωmax

√
L̃max

µn

√
L
µ

)
if nL > L̃max.

(12)

5 Improvements Over the Original Methods

To compare the proposed methods with originals and highlight improvement factors, we choose
independent sampling for all nodes. For Algorithms 1 and 2, we optimize probabilities of the
samplings based on the complexities we found.

5.1. Parameters describing matrices Li. Define parameters ν, νs describing local smoothness as

ν :=
∑n
i=1 Li

maxi∈[n] Li
, νs := maxi∈[n]

∑d
j=1 L

1/s
i;j

maxj∈[d] L
1/s
i;j

, (13)

where Li = λmax(Li) and s = 1 or s = 2. Let Lmax := max1≤i≤n Li and Li;j be the jth diagonal
element of matrix Li. Note that parameters ν ∈ [1, n] and νs ∈ [1, d] describe the distribution over
the nodes and coordinates respectively. If Li are distributed uniformly, then ν = n and νs = d. On
the other extreme, when the distribution is extremely non-uniform, we have ν � n and νs � d.
These parameters are used to highlight the range of iteration complexities new methods can provide.

5.2. Importance sampling for DCGD+. Let τ = E [|Si|] =
∑d
j=1 pi;j be the expected mini-batch

size for the samplings Si, where pi;j = pi;jj . Notice that convergence rate of Algorithm 1 depends on
L̃max = max1≤i≤n L̃i. Since each node i ∈ [n] generates its own diagonal sketch Ci independently
from others, each node can optimize L̃i = λmax(P̃i ◦ Li) independently based on local smoothness
matrix Li. In general, minimizing λmax(P̃i ◦ Li) with respect to probability matrix P̃i is hard.
However, when each node uses an independent sampling, which means pi;jl = pi;jpi;l if j 6= l, then

λmax(P̃i ◦ Li) = max1≤j≤d

(
1
pi;j
− 1
)

Li;j , (14)

for which we can find the optimal probabilities pi;j . To minimize the maximum term in (14), we
should have (1/pi;j − 1) Li;j = ρi for some ρi ≥ 0. Then the solution is

pi;j =
Li;j

Li;j+ρi
, (15)

where ρi ≥ 0 is the unique solution to
∑d
j=1

Li;j
Li;j+ρi

= τ . While the latter does not allow closed
form solution for ρi, it can be computed numerically using one dimensional solvers. Thus, we can
efficiently compute the optimal probabilities (15).
Proposition 5 (Optimality). The independent sampling with probabilities (15) is the optimal inde-
pendent sampling for the rate (10).
Remark 3 (Improvement over DCGD [Khirirat et al., 2018]). With probabilities (15) we show in
Appendix H.1 that

L
µ + L̃max

nµ ≤
(
ν
n + ν1

τn

)
Lmax

µ . (16)

In the interpolation regime (i.e. ∇fi(x∗) = 0 for all i ∈ [n]), the iteration complexity of DCGD is
Õ(Lµ + ωLmax

nµ ) for general compression operator with variance parameter ω. In case of sparsification,
it is known that τ = d/n is the optimal choice under standard (scalar) smoothness assumption
[Mishchenko et al., 2019]. If we specialize compression to sparsification with τ = d/n entries
(which gives ω = d/τ − 1 = n − 1), we get Õ(Lmax

µ ). Notice that, in this regime, Theorem 2 also

provides linear convergence with iteration complexity Õ(Lµ + L̃max

nµ ). Based on (16), it is bounded

by Õ(( νn + ν1
d )Lmax

µ ), which is always better than Õ(Lmax

µ ) and can be as small as Õ( Lmax

min(n,d)µ ).

Hence, for mini-batch τ = d/n, DCGD+ (Algorithm 1) guarantees the same Õ(Lmax

µ ) complexity in
the worst case, but could provide up to min(n, d) times speedup. An anologous observation can be
made between standard sparsificaiton with uniform probabilites and our sparsification with uniform
probabilities (see Remark 7 for the details).

8



5.3. Importance sampling for DIANA+. To find optimal probabilities for DIANA+, we minimize
ωmax + L̃max

µn part of the complexity (11), which is in turn equivalent to minimize

max1≤j≤d

(
1
pi;j
− 1
)

L′i;j , L′i;j :=
Li;j
µn + 1, (17)

which can be solved in the same way as (14) yielding

pi;j =
L′i;j

L′i;j+ρ
′
i

=
Li;j+µn

Li;j+(1+ρ′i)µn
. (18)

Proposition 6 (Optimality). The independent sampling with probabilities (18) is the optimal6 inde-
pendent sampling for the complexity (11).

Remark 4 (Improvement over DIANA [Mishchenko et al., 2019, Horváth et al., 2019b]). The
iteration complexity of DIANA, with τ = d/n is Õ(n+ Lmax

µ ). With probabilities (18) we upper bound
the iteration complexity (11) in Appendix H.2 as follows

ωmax + L
µ + L̃max

µn ≤
2d
τ +

(
ν
n + 2ν1

τn

)
Lmax

µ . (19)

Therefore, with τ = d/n, DIANA+ (Algorithm 2) guarantees the same Õ(n+ Lmax

µ ) complexity in the

worst case, but could provide up to min(n, d) times speedup with complexity Õ(n+ Lmax

min(n,d)µ ).

5.4. Independent sampling for ADIANA+. Clearly, if we sparsify with uniform probabilities
pi;j = τ/d, then Algorithm 3 recovers the rate of ADIANA.

Remark 5 (Improvement over ADIANA [Li et al., 2020]). To show that the rate could be significantly

better in some cases, consider the following choice pi;j =

√
L′i;j

L′i;j+ρ
′′
i
, L′i;j =

Li;j
µn + 1, where ρ′′i

is determined uniquely from
∑d
j=1 pi;j = τ . Then, with these probabilities and for Lmax/µ =

O(nd2), we show in Appendix H.3 that Lµ ≤
νLmax

nµ , ωmax = O
(
ν2d
τ

)
, Lmax

µn = O
(
ν2d
τ

√
Lmax

nµ

)
.

Furthermore, assuming both ν and ν2 are O(1), choosing τ = d/n we get Lµ ≤ O
(
Lmax

nµ

)
, ωmax =

O (n) , Lmax

µn = O
(√

nLmax

µ

)
. Then, the complexity (12) of ADIANA+ reduces to{
n+n(Lmax

nµ )
1/4

if nL≤L̃max,

n+
√
Lmax
nµ +(nLmax

µ )
3/8

if nL>L̃max,

which, compared to the complexity of ADIANA with ω = O(n) compression, gives
√
d times

improvement in the first case and
√

min(n, d) times improvement in the second case (ignoring the
first summand n of the complexities).

6 Experiments

We numerically compare the proposed matrix-smoothness-aware sparsification strategy (7) with
the usual sparsification scheme. We devise three different experiments on logistic regression with
LibSVM data [Chang and Lin, 2011]. Due to space limitations, only two of them is presented in the
main part. Further numerical results alongside with their experimental details are in Appendix C.

Experiment: Proposed and usual sparsification techniques for the 3 distributed methods. We
compare six different methods: well-established DCGD, DIANA, ADIANA and our methods DCGD+,
DIANA+, ADIANA+, all with uniform sampling for τ = 1. In order to highlight the importance of
the variance reduction, in this experiment we choose the starting point to be close to the optimum.

Figure 1 demonstrates that: i) methods with matrix-aware sparsification (i.e., DCGD+, DIANA+,
ADIANA+) outperform their baselines (i.e., DCGD, DIANA, ADIANA) ii) acceleration almost

6In the sense that it minimizes a quantity, which is the complexity of DIANA+ up to some constant factor.

9



0 500 1000 1500 2000
Coordinates sent to server

100

8.6 × 10 1

8.8 × 10 1

9 × 10 1

9.2 × 10 1

9.4 × 10 1

9.6 × 10 1

9.8 × 10 1

Re
la

tiv
e 

su
bo

pt
im

al
ity

a1a

ADIANA+
DIANA+
DCGD+
ADIANA
DIANA
DCGD

0 5000 10000 15000 20000
Coordinates sent to server

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Re
la

tiv
e 

su
bo

pt
im

al
ity

duke

ADIANA+
DIANA+
DCGD+
ADIANA
DIANA
DCGD

0 500 1000 1500 2000
Coordinates sent to server

100

7 × 10 1

8 × 10 1

9 × 10 1

Re
la

tiv
e 

su
bo

pt
im

al
ity

madelon

ADIANA+
DIANA+
DCGD+
ADIANA
DIANA
DCGD

0 500 1000 1500 2000
Coordinates sent to server

100

8 × 10 1

9 × 10 1

Re
la

tiv
e 

su
bo

pt
im

al
ity

mushrooms

ADIANA+
DIANA+
DCGD+
ADIANA
DIANA
DCGD

0 500 1000 1500 2000
Coordinates sent to server

100

4 × 10 1

6 × 10 1

Re
la

tiv
e 

su
bo

pt
im

al
ity

phishing

ADIANA+
DIANA+
DCGD+
ADIANA
DIANA
DCGD

0 500 1000 1500 2000
Coordinates sent to server

100

8 × 10 1

9 × 10 1

Re
la

tiv
e 

su
bo

pt
im

al
ity

a8a

ADIANA+
DIANA+
DCGD+
ADIANA
DIANA
DCGD

Figure 1: Comparison of the original methods DCGD [Khirirat et al., 2018], DIANA [Mishchenko
et al., 2019] and ADIANA [Li et al., 2020] with the proposed new methods DCGD+ (Alg. 1),
DIANA+ (Alg. 2) and ADIANA+ (Alg. 3). All methods use uniform sampling with τ = 1.

always outperforms the non-accelerated variant, often dramatically so and iii) variance reduction never
hurts the convergence, but often stabilizes the oscillation of the non-variance reduced counterpart.

Experiment: Variance reduction with new sparsification and importance sampling. We now
comment on the experiment illustrated in Figure 2. We examine three sparsification schemes (two
variants of our strategy and the usual sparsification) and their influence on convergence using six
different datasets. Considered schemes are i) DIANA+ with importance sampling (18), ii) DIANA+
with uniform sampling, and iii) DIANA with uniform sampling, i.e., uniform sparsification unaware
of smoothness matrices. In all three cases we fixed the sampling size τ = 1.

0 1000 2000 3000 4000 5000
Coordinates sent to server

10 1

100

Re
la

tiv
e 

su
bo

pt
im

al
ity

a1a

importance+
uniform+
uniform

0 5000 10000 15000 20000
Coordinates sent to server

10 2

10 1

100

Re
la

tiv
e 

su
bo

pt
im

al
ity

duke

importance+
uniform+
uniform

0 1000 2000 3000 4000 5000
Coordinates sent to server

100

8.6 × 10 1

8.8 × 10 1

9 × 10 1

9.2 × 10 1

9.4 × 10 1

9.6 × 10 1

9.8 × 10 1

Re
la

tiv
e 

su
bo

pt
im

al
ity

madelon

importance+
uniform+
uniform

0 1000 2000 3000 4000 5000
Coordinates sent to server

10 3

10 2

10 1

100

Re
la

tiv
e 

su
bo

pt
im

al
ity

mushrooms

importance+
uniform+
uniform

0 1000 2000 3000 4000 5000
Coordinates sent to server

10 2

10 1

100

Re
la

tiv
e 

su
bo

pt
im

al
ity

phishing

importance+
uniform+
uniform

0 1000 2000 3000 4000 5000
Coordinates sent to server

10 1

100

Re
la

tiv
e 

su
bo

pt
im

al
ity

a8a

importance+
uniform+
uniform

Figure 2: Comparison of our sparsification strategy of size τ = 1 for DIANA+ (Algorithm 2)
using i) importance sampling with probabilities (18), ii) uniform sampling with pi;j = 1

d and iii)
DIANA [Mishchenko et al., 2019] using standard sparsification scheme with uniform sampling. All
methods are run with stepsizes as dictated by theory.

As expected, Figure 2 confirms our theoretical findings. First, it demonstrates that our sparsification (7)
always outperforms the naive/direct sparsification, sometimes by a large margin. Second, it shows
the benefit of importance sampling (18) over the uniform sampling.

10



References
Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In

J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 24, pages 873–881. Curran
Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper/2011/file/
f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf.

Sulaiman Alghunaim, Kun Yuan, and Ali H Sayed. A linearly convergent proximal gradient algorithm
for decentralized optimization. In Advances in Neural Information Processing Systems, volume 32,
pages 2848–2858. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/e9fd7c2c6623306db59b6aef5c0d5cac-Paper.pdf.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. In Advances in Neural Information Process-
ing Systems 30, pages 1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. In Neural Information Processing
Systems Conf. (NeurIPS), 2018.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. J. Mach.
Learn. Res., 18(1):8194–8244, January 2017. ISSN 1532-4435.

Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel coordinate descent
for L1-regularized loss minimization. In Proceedings of the 28th International Conference on
Machine Learning, 2011.

Chih-Chung Chang and Chih-Jen Lin. LibSVM: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of SGD: Variance reduction,
sampling, quantization and coordinate descent. In The 23rd International Conference on Artificial
Intelligence and Statistics, 2020a.

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly converging
error compensated sgd. In 34th Conference on Neural Information Processing Systems (NeurIPS
2020), 2020b.

Robert M. Gower and Peter Richtárik. Randomized iterative methods for linear systems. SIAM J.
Matrix Anal. Appl., 36:1660–1690, 2015.

Robert M. Gower, Mark Schmidt, Francis Bach, and Peter Richtárik. Variance-reduced methods for
machine learning. Proceedings of the IEEE, 108(11):1968–1983, 2020.

Filip Hanzely and Peter Richtárik. Accelerated coordinate descent with arbitrary sampling and best
rates for minibatches. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings of
Machine Learning Research, volume 89 of Proceedings of Machine Learning Research, pages 304–
312. PMLR, 16–18 Apr 2019a. URL http://proceedings.mlr.press/v89/hanzely19a.
html.

Filip Hanzely and Peter Richtárik. One method to rule them all: Variance reduction for data,
parameters and many new methods. preprint arXiv:1905.11266, 2019b.

Filip Hanzely, Konstantin Mishchenko, and Peter Richtarik. SEGA: Variance reduction via gradient
sketching. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 31, pages 2082–2093.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
fc2c7c47b918d0c2d792a719dfb602ef-Paper.pdf.

Samuel Horváth, Chen-Yu Ho, Ludovít Horváth, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. CoRR, abs/1905.10988, May 2019a.
URL http://arxiv.org/abs/1905.10988.

11

https://proceedings.neurips.cc/paper/2011/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e9fd7c2c6623306db59b6aef5c0d5cac-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e9fd7c2c6623306db59b6aef5c0d5cac-Paper.pdf
http://proceedings.mlr.press/v89/hanzely19a.html
http://proceedings.mlr.press/v89/hanzely19a.html
https://proceedings.neurips.cc/paper/2018/file/fc2c7c47b918d0c2d792a719dfb602ef-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/fc2c7c47b918d0c2d792a719dfb602ef-Paper.pdf
http://arxiv.org/abs/1905.10988


Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik.
Stochastic distributed learning with gradient quantization and variance reduction. preprint
arXiv:1904.05115, 2019b.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signSGD and other gradient compression schemes. In International Conference on Machine
Learning, pages 3252–3261. PMLR, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning.
In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 5132–5143.
PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/karimireddy20a.
html.

Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with
compressed gradients. In arXiv preprint arXiv:1806.06573, 2018.

Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization
and gossip algorithms with compressed communication. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 3478–3487. PMLR, 09–15 Jun
2019. URL http://proceedings.mlr.press/v97/koloskova19a.html.

Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don’t jump through hoops and remove those
loops: Svrg and katyusha are better without the outer loop. In Aryeh Kontorovich and Gergely Neu,
editors, Proceedings of the 31st International Conference on Algorithmic Learning Theory, volume
117 of Proceedings of Machine Learning Research, pages 451–467, San Diego, California, USA, 08
Feb–11 Feb 2020. PMLR. URL http://proceedings.mlr.press/v117/kovalev20a.html.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtarik. Acceleration for compressed gradient
descent in distributed and federated optimization. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 5895–5904. PMLR, 13–18 Jul 2020. URL
http://proceedings.mlr.press/v119/li20g.html.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient
for nonconvex optimization. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 28, pages 2737–2745.
Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
452bf208bf901322968557227b8f6efe-Paper.pdf.

Ji Liu and Ce Zhang. Distributed Learning Systems with First-Order Methods, volume 9. Foundations
and Trends in Databases, 2020. doi: 10.1561/1900000062.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. In arXiv preprint arXiv:1901.09269, 2019.

Konstantin Mishchenko, Filip Hanzely, and Peter Richtárik. 99% of worker-master communication
in distributed optimization is not needed. In Jonas Peters and David Sontag, editors, Proceedings
of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), volume 124 of Proceedings
of Machine Learning Research, pages 979–988. PMLR, 03–06 Aug 2020.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
gence O(1/k2). In Doklady AN USSR, volume 269, pages 543–547, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer Academic
Publishers, 2004.

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22:341–362, 2012.

12

http://proceedings.mlr.press/v119/karimireddy20a.html
http://proceedings.mlr.press/v119/karimireddy20a.html
http://proceedings.mlr.press/v97/koloskova19a.html
http://proceedings.mlr.press/v117/kovalev20a.html
http://proceedings.mlr.press/v119/li20g.html
https://proceedings.neurips.cc/paper/2015/file/452bf208bf901322968557227b8f6efe-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/452bf208bf901322968557227b8f6efe-Paper.pdf


Julie Nutini, Issam Laradji, and Mark Schmidt. Let’s make block coordinate descent go fast: Faster
greedy rules, message-passing, active-set complexity, and superlinear convergence. arXiv preprint
arXiv:1712.08859, 2017.

X. Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed SGD can be accelerated.
arXiv: Optimization and Control, 2020.

Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling II: expected separable
overapproximation. Optimization Methods and Software, 31:858–884, 2016. doi: 10.1080/
10556788.2016.1190361.

Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling I: algorithms and
complexity. Optimization Methods and Software, 31:829–857, 2016a.

Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling II: algorithms and
complexity. Optimization Methods and Software, 31:858–884, 2016b.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 24, pages
693–701. Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper/
2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144:1–38, 2014.

Peter Richtárik and Martin Takáč. On optimal probabilities in stochastic coordinate descent methods.
Optim Lett, 10:1233–1243, 2016a. doi: https://doi.org/10.1007/s11590-015-0916-1.

Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimization.
Mathematical Programming, 156:433–484, 2016b.

Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication com-
pression in distributed and federated learning and the search for an optimal compressor. preprint
arXiv:2002.08958, 2020.

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon Kim, Arvind
Krishnamurthy, Masoud Moshref, Dan R. K. Ports, and Peter Richtárik. Scaling distributed machine
learning with in-network aggregation. In The 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’21 Fall), 2021. URL http://arxiv.org/abs/1903.06701.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International Conference
on Learning Representations, 2020.

Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
SGD with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350,
2019.

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. DoubleSqueeze: Parallel stochastic
gradient descent with double-pass error-compensated compression. In Int. Conf. Machine Learning,
volume PMLR 97, pages 6155–6165, 2019.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. Atomo: Communication-efficient learning via atomic sparsification. In Advances in
Neural Information Processing Systems, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in Neural
Information Processing Systems, page 1509–1519, 2017.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcmahan,
Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In Hal Daumé III
and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 10334–10343. PMLR, 13–18
Jul 2020a. URL http://proceedings.mlr.press/v119/woodworth20a.html.

13

https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
http://arxiv.org/abs/1903.06701
http://proceedings.mlr.press/v119/woodworth20a.html


Blake E. Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs Local SGD for Heteroge-
neous Distributed Learning. Advances in Neural Information Processing Systems 33, 2020b.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized SGD
and its applications to large-scale distributed optimization. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 5325–5333, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/wu18d.html.

Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos
Karatsenidis, Marco Canini, and Panos Kalnis. Compressed Communication for Distributed
Deep Learning: Survey and Quantitative Evaluation. Technical report, KAUST, Apr 2020. URL
http://hdl.handle.net/10754/662495.

Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. ZipML: Training linear
models with end-to-end low precision, and a little bit of deep learning. In Proceedings of the 34th
International Conference on Machine Learning, volume 70, page 4035–4043, 2017.

14

http://proceedings.mlr.press/v80/wu18d.html
http://hdl.handle.net/10754/662495


Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section B.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Section G.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] We use
LibSVM data, which is publicly available. The code is submitted in the supplemental
material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 6.
(b) Did you mention the license of the assets? [Yes] We cite the original work introducing

the public dataset we use in out paper.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

The code will be submitted in the supplemental material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15


