
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RL4CO: AN EXTENSIVE REINFORCEMENT LEARNING
FOR COMBINATORIAL OPTIMIZATION BENCHMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (RL) has recently shown significant benefits in solv-
ing combinatorial optimization (CO) problems, reducing reliance on domain ex-
pertise, and improving computational efficiency. However, the field lacks a uni-
fied benchmark for easy development and standardized comparison of algorithms
across diverse CO problems. To fill this gap, we introduce RL4CO, a unified and
extensive benchmark with in-depth library coverage of 23 state-of-the-art meth-
ods and more than 20 CO problems. Built on efficient software libraries and best
practices in implementation, RL4CO features modularized implementation and
flexible configuration of diverse RL algorithms, neural network architectures, in-
ference techniques, and environments. RL4CO allows researchers to seamlessly
navigate existing successes and develop their unique designs, facilitating the entire
research process by decoupling science from heavy engineering. We also provide
extensive benchmark studies to inspire new insights and future work. RL4CO has
attracted numerous researchers in the community and is open-sourced.1

1 INTRODUCTION

Combinatorial optimization (CO) focuses on finding optimal solutions for problems with discrete
variables and has broad applications, including vehicle routing (Nazari et al., 2018; Kool et al.,
2019a), scheduling (Zhang et al., 2020), and hardware device placement (Kim et al., 2023). Given
that the combinatorial space expands exponentially and exhibits NP-hard characteristics, the op-
erations research (OR) community has traditionally tackled these challenges through the devel-
opment of mathematical programming algorithms (Gurobi Optimization, 2021) and handcrafted
heuristics (Mart et al., 2018). Despite their success, these methods still face significant limitations:
mathematical programming struggles with scaling, while handcrafted heuristics require significant
domain-specific adjustments for different CO problems.

Recently, to address these limitations, neural combinatorial optimization (NCO) has emerged (Ben-
gio et al., 2021b). It employs deep neural networks to automate the problem-solving process and
significantly reduces computation demands and domain expertise requirements. Recent NCO works
mainly leverage the reinforcement learning (RL) paradigm, making significant strides in improving
exploration efficiency (Kwon et al., 2020; Kim et al., 2021), relaxing the needs of obtaining optimal
solutions, and extending to various CO tasks (Zhang et al., 2020; Nazari et al., 2018; Kool et al.,
2019a; Kim et al., 2023). Although supervised learning methods (Drakulic et al., 2023) are shown
to be effective in NCO, they require a large number of high quality solutions, which is unrealistic for
large instances or theoretically hard problems. Therefore, this work focuses on the RL paradigm.

Despite the growing popularity and advancements in using RL for solving CO problems, there re-
mains a lack of a unified benchmark for analyzing past works under consistent implementations and
conditions. The absence of a standardized benchmark hinders NCO researchers’ efforts to make
impactful advancements and leverage existing successes, as it becomes challenging to determine the
superiority of one method over another. Moreover, the significance of NCO lies in its potential for
generalizability across multiple problems without extensive problem-specific knowledge. Variations
in implementation can make it difficult for new researchers to engage with the NCO community, and
inconsistent comparisons obstruct straightforward performance evaluations. These issues pose sig-
nificant challenges and underscore the need for a comprehensive benchmark to streamline research
and foster consistent progress.

1Documentation: https://anonymous.4open.science/w/rl4co-submission/.
Code: https://anonymous.4open.science/r/rl4co-submission/.

1

https://anonymous.4open.science/w/rl4co-submission/
https://anonymous.4open.science/r/rl4co-submission/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison of libraries in reinforcement learning for combinatorial optimization.

Library Environments
#

Baselines†
#

Hardware
Acceleration Availability Modular

Baselines
Open

Community
ORL (Balaji et al., 2019) 3 1 × × × ×
OR-Gym (Hubbs et al., 2020) 9 - × ✓ × ×
Graph-Env (Biagioni et al., 2022) 2 - × ✓ × ×
RLOR (Wan et al., 2023) 2 2 × ✓ ✓ ×
RoutingArena (Thyssens et al., 2023) 1 8 ✓ × × ×
Jumanji (Bonnet et al., 2024) 22 3 ✓ ✓ × ×
RL4CO (ours) 27‡ 23 ✓ ✓ ✓ ✓
† We consider as baselines ad-hoc network architectures (i.e., policies) and RL algorithms from the literature.
‡ We also consider the possible 16 combinations of environments generated by the unified Multi-Task VRP, as they have been

historically considered separate environments in the NCO literature.

Contributions. To bridge this gap, we introduce RL4CO, the first comprehensive benchmark with
multiple baselines, environments, and boilerplate from the literature, all implemented in a modular,
flexible, accelerated, and unified manner. Our aim is to facilitate the entire research process for the
NCO community with the following key contributions: 1) Simplifying development through modu-
larizing 27 environments and 23 existing baseline models, allowing for flexible and automated com-
binations for effortless testing, switching, and achieving state-of-the-art performance; 2) Enhancing
the training and testing efficiency through the customized unified pipeline tailored for the NCO com-
munity based on advanced libraries such as TorchRL (Bou et al., 2024), PyTorch Lightning (Falcon
and The PyTorch Lightning team, 2019), Hydra (Yadan, 2019), and TensorDict (Moens, 2023); 3)
Standardizing evaluation to ensure fair and comprehensive comparisons, enabling researchers to au-
tomatically test a broader range of problems from diverse distributions and gather valuable insights
using our testbed. Overall, RL4CO eliminates the need for repetitive heavy engineering in the NCO
community and fosters seamless future development by building on existing successes, enabling
advanced innovation and progress in the field.

2 RELATED WORKS

Neural Combinatorial Optimization. Neural combinatorial optimization (NCO) utilizes machine
learning techniques to automatically develop novel heuristics for solving NP-hard CO problems.
We classify the majority of NCO research from the following perspectives: 1) Learning Paradigms:
researchers have employed supervised learning (Vinyals et al., 2015; Hottung et al., 2020; Sun and
Yang, 2023; Drakulic et al., 2023; Luo et al., 2024a) to approximate optimal solutions to CO in-
stances. Further research leverages reinforcement learning (Bello et al., 2017; Nazari et al., 2018;
Kool et al., 2019a; Kwon et al., 2020), and unsupervised learning (Min et al., 2023) to ease the dif-
ficulty of obtaining (near-)optimal solutions. 2) Models: various deep learning architectures such as
recurrent neural networks (Vinyals et al., 2015; Chen and Tian, 2019; Li et al., 2023), graph neural
networks (Joshi et al., 2019; Min et al., 2023), Transformers (Kool et al., 2019a; Kwon et al., 2020),
diffusion models (Sun and Yang, 2023), and GFlowNets Zhang et al. (2023); Kim et al. (2024) have
been employed. 3) Problems: NCO has demonstrated great success in various problems, including
vehicle routing problems (VRPs) (e.g., traveling salesman problem (TSP) and capacitated VRP),
scheduling problems (e.g., job shop scheduling problems (Zhang et al., 2020)), hardware device
placement (Kim et al., 2023), and graph-based CO (Zhang et al., 2023). 4) Heuristic Types: in
general, the learned heuristics can be categorized as constructive in an autoregressive (Kool et al.,
2019a) or non-autoregressive (Joshi et al., 2019) way, and improvement heuristics that leverage tra-
ditional heuristics (Wu et al., 2021; Ma et al., 2024) and meta-heuristics (Song et al., 2020). We refer
to Bengio et al. (2021b) for a comprehensive survey. In this paper, we focus on the reinforcement
learning paradigm due to its effectiveness and flexibility. Notably, the proposed RL4CO is versatile
to support most combinations of models, problems and heuristic types, making it an apt library and
benchmark for future research in NCO.

Related Benchmark Libraries. Despite the variety of general-purpose RL software libraries
(Brockman et al., 2016; Liang et al., 2017; Raffin et al., 2021; Weng et al., 2022) there is a lack
of a unified and extensive benchmark for CO problems. Balaji et al. (2019) propose an RL bench-
mark for OR that comes only with a PPO baseline (Schulman et al., 2017). Also, Hubbs et al.
(2020) and Biagioni et al. (2022) implement a collection of OR environments, but do not provide

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

any baselines to solve them. Wan et al. (2023) propose an RL for OR library that benchmarks the
canonical TSP and CVRP environments using different configurations of the attention model (Kool
et al., 2019a). Despite having a different focus, we also mention the work of Prouvost et al. (2020)
here, who develop an API to use RL for controlling traditional MILP solvers (Linderoth et al., 2010),
rather than using RL directly to learn solutions. Besides their narrow scope, a major downside of
the above libraries is that they cannot be massively parallelized due to their reliance on the OpenAI
Gym API (Brockman et al., 2016), which can only run on CPU. In contrast, RL4CO is based on
TorchRL (Bou et al., 2024), a recent official PyTorch (Paszke et al., 2019) library for RL that enables
hardware-accelerated execution of both environments and algorithms.

In contrast to the works above, Routing Arena (Thyssens et al., 2023) provides multiple neural and
classical baselines, but benchmarks these only on the CVRP. The most related recent work is Jumanji
(Bonnet et al., 2024), which provides a variety of CO environments written in JAX (Bradbury et al.,
2018) that can be hardware-accelerated alongside an actor-critic baseline. While Jumanji is an RL
environment suite, RL4CO is a full-stack library that integrates environments, policies, and RL
algorithms under a unified framework. As such, baselines in RL4CO are modular and applicable to
all suitable CO problems, whereas in Jumanji, policies are tailored to a specific environment.

3 RL4CO: TAXONOMY

We describe the RL4CO taxonomy, categorizing components into Environments, Policies, and RL
Algorithms. Then, we translate the taxonomy to implementation in § 4.

Environments. Given a CO problem instance x, we formulate the solution-generating procedure as
a Markov Decision Process (MDP) characterized by a tuple (S,A, T ,R, γ) as follows. State S is
the space of states that represent the given problem x and the current partial solution being updated
in the MDP. Action A is the action space, which includes all feasible actions at that can be taken at
each step t. State Transition T is the deterministic state transition function st+1 = T (st, at) that
updates a state st to the next state st+1. Reward R is the reward function R(st, at) representing
the immediate reward received after taking action at in state st. Finally, γ ∈ [0, 1] is a discount
factor that determines the importance of future rewards. Since the state transition is deterministic,
we represent the solution for a problem x as a sequence of T actions a = (a0, . . . , aT−1). Then,
the total return

∑T−1
t=0 R(st, at) translates to the negative cost function of the CO problem.

Policies. The policies can be categorized into constructive policies, which generate a solution from
scratch, and improvement policies, which refine an existing solution.

Constructive policies. A policy π is used to construct a solution from scratch for a given problem
instance x. It can be further categorized into autoregressive (AR) and non-autoregressive (NAR)
policies. An AR policy is composed of an encoder f that maps the instance x into an embedding
space h = f(x) and a decoder g that iteratively determines a sequence of actions a as follows:

at ∼ g(at|at−1, ..., a0, st,h), π(a|x) ≜
T−1∏

t=1

g(at|at−1, . . . , a0, st,h). (1)

A NAR policy encodes a problem x into a heuristic H = f(x) ∈ RN
+ , where N is the number of

possible assignments across all decision variables. Each number in H represents an (unnormalized)
probability of a particular assignment. To obtain a solution a from H, one can sample a sequence
of assignments from H while dynamically masking infeasible assignments to meet problem-specific
constraints. It can also guide a search process, e.g., Ant Colony Optimization (Dorigo and Stützle,
2019; Ye et al., 2023; Kim et al., 2024), or be incorporated into hybrid frameworks (Ye et al., 2024b).
Here, the heuristic helps identify promising transitions and improve the efficiency of finding an
optimal or near-optimal solution.

Improvement policies. A policy can be used for improving an initial solution a0 = (a00, . . . , a
0
T−1)

into another one potentially with higher quality, which can be formulated as follows:

ak ∼ g(a0,h), π(aK |a0,x) ≜
K∏

k=1

g(ak|ak−1, ...,a0,h), (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

reset()

Autoregressive Policy

Instance

Encoder Decoder

Policy

Env

Solution

Solution
Improvement

step() action
reset()

Instance

Encoder

Env

Solution

Solution
Improvement

heuristics

Solution
Construction

Policy
Non-Autoregressive Policy Instance

Solution

Env

Encoder Decoder

Local
Search

action

Policy

step()

reset()

Constructive Methods Improvement Methods

Figure 1: Overview of different types of policies and their modularization in RL4CO.

where ak is the k-th updated solution and K is the budget in terms of the number of improvements.
This process allows continuous refinement over time to improve the quality of the solution.

RL Algorithms. The RL objective is to learn a policy π that maximizes the expected cumulative
reward (or equivalently minimizes the cost) over the distribution of problem instances:

θ∗ = argmax
θ

Ex∼P (x)

[
Eπ(a|x)

[
T−1∑

t=0

γtR(st, at)

]]
, (3)

where θ is the set of parameters of π and P (x) is the distribution of problem instances. Eq. (3)
can be solved using algorithms such as variations of REINFORCE (Sutton et al., 1999), Advantage
Actor-Critic (A2C) methods (Konda and Tsitsiklis, 1999), or Proximal Policy Optimization (PPO)
(Schulman et al., 2017). These algorithms are employed to train the policy network π, by trans-
forming the maximization problem in Eq. (3) into a minimization problem involving a loss function,
which is then optimized using gradient descent algorithms. For instance, the REINFORCE loss
function gradient is given by:

∇θLa(θ|x) = Eπ(a|x) [(R(a,x)− b(x))∇θ log π(a|x)] , (4)
where b(·) is a baseline function used to stabilize training and reduce gradient variance. We also
distinguish between two types of RL (pre)training: 1) inductive and 2) transductive RL. In inductive
RL, the focus is on learning patterns from the training dataset to generalize to new instances, thus
amortizing the inference procedure. Conversely, transductive RL (or test-time optimization) opti-
mizes parameters during testing on target instances. Typically, a policy π is trained using inductive
RL, followed by transductive RL for test-time optimization.

4 RL4CO: LIBRARY STRUCTURE

RL4CO is a unified reinforcement learning (RL) for combinatorial optimization (CO) library that
aims to provide a modular, flexible, and unified code base for training and evaluating RL for CO
methods with extensive benchmarking capabilities on various settings. As shown in Fig. 2, RL4CO
decouples the major components of an RL pipeline, prioritizing their reusability in the implementa-
tion. Following also the taxonomy of § 3, the main components are: (§ 4.1) Environments, (§ 4.2)
Policies, (§ 4.3) RL algorithms, (§ 4.4) Utilities, and (§ 4.5) Baselines Zoo.

{ }
PyTorch

Instance Policy Env
TorchRL

{ }action

{ }statesTensorDict

RL Algorithm

Env Configs

Policy Configs

RL Configs

Configs

reset

......

Figure 2: Overview of the RL4CO pipeline: from configurations to training a policy.

4.1 ENVIRONMENTS

Environment Interface. Environments in RL4CO fully specify the CO problems and their logic in
a stateless manner. That is, all static and dynamic information about the environment like the cur-
rent state st, actions at, and rewards rt are passed to and retrieved from the environment’s reset
and step functions through a TensorDict (Moens, 2023). This not only enables modular in-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

teractions between environments and policies, but also allows for seamless integration with various
components without the need for environment-specific adaptations. Further, a key advantage com-
pared to other libraries is that environments in RL4CO can take batches of instances and process
them in parallel on a GPU. Instances x are provided through a modular generator to the envi-
ronment, and different generators can be used to generate different data distributions, facilitating the
generalization of trained policies.

RL4CO’s environments are based on the RL4COEnvBase class that extends the EnvBase of
TorchRL (Bou et al., 2024) with additional features and efficiency improvements. For instance,
RL4CO’s step method brings a decrease of up to 50% in latency and halves the memory impact
by keeping only required transitions in the stateless TensorDict. Additionally, our environment
API contains several functions, such as render and check_solution_validity, helping to
analyze generated solutions, select_start_nodes for multi-start methods like POMO (Kwon
et al., 2020) and local_search for iterative solution improvement.

Problems. We include benchmarking for 27 environments divided into four areas. 1) Routing:
Traveling Salesman Problem (TSP) (Lawler et al., 1986), Capacitated Vehicle Routing Problem
(CVRP) (Bodin, 1983), Orienteering Problem (OP) (Laporte and Martello, 1990; Chao et al., 1996),
Prize Collecting TSP (PCTSP) (Balas, 1989), Pickup and Delivery Problem (PDP) (Kalantari et al.,
1985; Savelsbergh and Sol, 1995) and Multi-Task VRP (MTVRP), which includes 16 problem vari-
ants, namely the basic VRPTW, OVRP, VRPB, VRPL and VRPs with the respective constraint com-
binations (Liu et al., 2024a; Zhou et al., 2024; Berto et al., 2024); 2) Scheduling: Flexible Job Shop
Scheduling Problem (FJSSP) (Brandimarte, 1993), Job Shop Scheduling Problem (JSSP) (Rand,
1982) and Flexible Flow Shop Problem (FFSP); 3) Electronic Design Automation: multiple De-
cap Placement Problem (mDPP) (Kim et al., 2023); 4) Graph: Facility Location Problem (FLP)
(Drezner and Hamacher, 2004) and Max Cover Problem (MCP) (Khuller et al., 1999). A detailed
description of the environment implementations for these problems can be found in Appendix B.

4.2 POLICIES

Policies in RL4CO are subclasses of PyTorch’s nn.Module and contain the encoding-decoding
logic and neural network parameters θ. Drawing on our taxonomy in § 3, RL4CO pro-
vides different metaclasses like AutoregressivePolicy, NonAutoregressivePolicy,
or ImprovementPolicy that the different policies in the RL4CO “zoo” can inherit from.
RL4CO modularize components to process environment specific features into the embedding space
via parametrized functions. First, node embeddings ϕn : RN×mn → RN×h transform mn raw
features for the N nodes of problem x from the feature space to the embedding space h. Further,
edge embeddings ϕe : RE×me → RE×h transform me edge features of instance x from the fea-
ture space to the embedding space h, where E is the number of edges. Lastly, context embeddings
ϕc : Rmc → Rh capture contextual information not related to a specific node or edge by transform-
ing mc context features from the current decoding step st from the feature space to the embedding
space h. Overall, Fig. 3 illustrates a generic constructive AR policy in RL4CO, where the feature
embeddings are applied similarly to other types of policies. Feature projections can be automatically
selected by RL4CO at runtime by simply passing the environment to the policy. Additionally, we
allow for granular control of any higher-level policy component , such as encoders and decoders.

4.3 RL ALGORITHMS

RL algorithms in RL4CO are used to learn the parameters θ of the Policy by interact-
ing with the Environment and its problem instances. The parent class of algorithms is the
RL4COLitModule, inheriting from PyTorch Lightning’s pl.LightningModule (Falcon and
The PyTorch Lightning team, 2019). This allows for granular support of various methods includ-
ing the [train, val, test]_step, automatic logging with several logging services such as
Wandb via log_metrics, automatic optimizer configuration via configure_optimizers
and several useful callbacks for RL methods such as on_train_epoch_end. RL algorithms
are additionally attached to an RL4COTrainer, a wrapper we made with additional optimizations
around pl.Trainer. This module seamlessly supports features of modern training pipelines, in-
cluding logging, checkpoint management, mixed-precision training, various hardware acceleration
supports (e.g., CPU, GPU, TPU, and Apple Silicon), and multi-device distribution (Li et al., 2020b).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Node Features

Edge Features

Instance

Encoder
Hidden
States

Decoder

Action

Action Probabilities

Env

States

<latexit sha1_base64="bLBbICTRLGXqCQjr/QOksRqzCBs=">AAAB9XicdVBLSwMxGMzWV62vqkcvwSp4WrK2ar0VvHisYB/QriWbzbah2c2SZNWy9H948aCIV/+LN/+N2XYFFR0IGWa+j0zGizlTGqEPq7CwuLS8Ulwtra1vbG6Vt3faSiSS0BYRXMiuhxXlLKItzTSn3VhSHHqcdrzxReZ3bqlUTETXehJTN8TDiAWMYG2km74nuK8mobnS++mgXEF29dygDpFdQwg5KCeoCh0bzVABOZqD8nvfFyQJaaQJx0r1HBRrN8VSM8LptNRPFI0xGeMh7Rka4ZAqN52lnsJDo/gwENKcSMOZ+n0jxaHKopnJEOuR+u1l4l9eL9FB3U1ZFCeaRmT+UJBwqAXMKoA+k5RoPjEEE8lMVkhGWGKiTVElU8LXT+H/pH1sO6f2yVWt0jjI6yiCPbAPjoADzkADXIImaAECJHgAT+DZurMerRfrdT5asPKdXfAD1tsnpFCTMA==</latexit>x

<latexit sha1_base64="3saSBBIa0oIFBwIbHvma5Fahqto=">AAAB+XicdVDNS8MwHE3n15xfVY9eglPwVFI3dd4GXjxOcB+wlZKm2RaWpiVJB6PsP/HiQRGv/ife/G9Mtwoq+iDk8d7vR15ekHCmNEIfVmlldW19o7xZ2dre2d2z9w86Kk4loW0S81j2AqwoZ4K2NdOc9hJJcRRw2g0mN7nfnVKpWCzu9SyhXoRHgg0ZwdpIvm0PgpiHahaZK1NzX/t2FTm1a4MGRE4dIeSigqAadB20QBUUaPn2+yCMSRpRoQnHSvVdlGgvw1Izwum8MkgVTTCZ4BHtGypwRJWXLZLP4alRQjiMpTlCw4X6fSPDkcrDmckI67H67eXiX14/1cOGlzGRpJoKsnxomHKoY5jXAEMmKdF8ZggmkpmskIyxxESbsiqmhK+fwv9J59xxL52Lu3q1eVLUUQZH4BicARdcgSa4BS3QBgRMwQN4As9WZj1aL9brcrRkFTuH4Aest0+qzpRD</latexit>st

Context
Embedding

Decoder
Layers

Node Embedding Encoder
Layers

Edge Embedding
step()reset()

<latexit sha1_base64="VpGWfH5cRjbbpNECBZ9D6TNP0tA=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CVbB05K1Veut4MVjRfsB7VKyadqGZrNLkhXK0p/gxYMiXv1F3vw3pu0KKvpg4PHeDDPzglhwbTD+cHJLyyura/n1wsbm1vZOcXevqaNEUdagkYhUOyCaCS5Zw3AjWDtWjISBYK1gfDXzW/dMaR7JOzOJmR+SoeQDTomx0i3pmV6xhN3ypUUVYbeCMfZwRnAZeS6eowQZ6r3ie7cf0SRk0lBBtO54ODZ+SpThVLBpoZtoFhM6JkPWsVSSkGk/nZ86RcdW6aNBpGxJg+bq94mUhFpPwsB2hsSM9G9vJv7ldRIzqPopl3FimKSLRYNEIBOh2d+ozxWjRkwsIVRxeyuiI6IINTadgg3h61P0P2meut65e3ZTKdWOsjjycACHcAIeXEANrqEODaAwhAd4gmdHOI/Oi/O6aM052cw+/IDz9gmfNo3z</latexit>at

<latexit sha1_base64="CPOPbaXrFO/oXM6itqO1X5HdjJQ=">AAAB9XicdVBLSwMxGMz6rPVV9eglWAVPS9ZWrbeCF48V7APatWSz2TY0myxJVilL/4cXD4p49b9489+YbSuo6EDIMPN9ZDJBwpk2CH04C4tLyyurhbXi+sbm1nZpZ7elZaoIbRLJpeoEWFPOBG0aZjjtJIriOOC0HYwuc799R5VmUtyYcUL9GA8EixjBxkq3vUDyUI9je2XDSb9URm7lwqIGkVtFCHloTlAFei6aogzmaPRL771QkjSmwhCOte56KDF+hpVhhNNJsZdqmmAywgPatVTgmGo/m6aewCOrhDCSyh5h4FT9vpHhWOfR7GSMzVD/9nLxL6+bmqjmZ0wkqaGCzB6KUg6NhHkFMGSKEsPHlmCimM0KyRArTIwtqmhL+Pop/J+0TlzvzD29rpbrh/M6CmAfHIBj4IFzUAdXoAGagAAFHsATeHbunUfnxXmdjS4485098APO2yeMAJMg</latexit>

h

<latexit sha1_base64="ZPryeZLMO5pU/9Aqf67SQfEUi1w=">AAAB6HicdVDLSgMxFM3UV62vqks3wSq4GjJDW9tdwY3LFuwD2qFk0jttNPMgyQhl6Be4caGIWz/JnX9j+hBU9EDI4Zx7ufcePxFcaUI+rNza+sbmVn67sLO7t39QPDzqqDiVDNosFrHs+VSB4BG0NdcCeokEGvoCuv7d1dzv3oNUPI5u9DQBL6TjiAecUW2kVjAslohN3FqF1DGxXfO5FUMqxKlX69ixyQIltEJzWHwfjGKWhhBpJqhSfYck2suo1JwJmBUGqYKEsjs6hr6hEQ1Bedli0Rk+N8oIB7E0L9J4oX7vyGio1DT0TWVI9UT99ubiX14/1UHNy3iUpBoithwUpALrGM+vxiMugWkxNYQyyc2umE2opEybbAomhK9L8f+k49pO1S63yqXG2SqOPDpBp+gCOegSNdA1aqI2YgjQA3pCz9at9Wi9WK/L0py16jlGP2C9fQIz8o0i</latexit>

f
<latexit sha1_base64="MI5WPCrENhovQtTDlIOfVxSnuo4=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxih4GnqGJCa3gBePCZgFkiH0dGqS1p6F7h4hDPkCLx4U8eonefNv7CyCij4oeLxXRVU9PxFcaUI+rNza+sbmVn67sLO7t39QPDzqqDiVDNosFrHs+VSB4BG0NdcCeokEGvoCuv7d1dzv3oNUPI5u9DQBL6TjiAecUW2k1nhYLBHbrZB6zcHEJgaua0iFOPVqFTsLhZASWqE5LL4PRjFLQ4g0E1SpvkMS7WVUas4EzAqDVEFC2R0dQ9/QiIagvGxx6AyfG2WEg1iaijReqN8nMhoqNQ190xlSPVG/vbn4l9dPdVDzMh4lqYaILRcFqcA6xvOv8YhLYFpMDaFMcnMrZhMqKdMmm4IJ4etT/D/puLZTtcutcqlxtoojj07QKbpADrpEDXSNmqiNGAL0gJ7Qs3VrPVov1uuyNWetZo7RD1hvnxdIjQ4=</latexit>g

Figure 3: Overview of modularized RL4CO policies. Any component such as the encoder/decoder structure
and feature embeddings can be replaced and thus the model is adaptable to various new environments.

For instance, using mixed-precision training significantly decreases training time without sacrificing
much convergence and enables us to leverage recent routines, e.g., FlashAttention (Dao et al., 2022;
Dao, 2023), which we investigate in Appendix E.7.2.

4.4 UTILITIES

Configuration Management. Optional, but useful, RL4CO utilizes Hydra (Yadan, 2019), a
framework that enables hierarchical configuration management. This not only makes it easy to
define complex configurations and manage lots of experiments with different (hyperparameter) set-
tings, but also facilitates reproducability of experiments by freezing experimental setups in configu-
ration files. We outline the process of configuration management with Hydra in Appendix D.3.1.

Decoding Schemes. Decoding schemes define the logic of translating from the model’s unnormal-
ized log-probabilities to actions. Specifically, they handle the transformation from the unnormalized
log-probabilities to probabilities P (A) by masking infeasible actions and optionally applying tanh
clipping (Bello et al., 2017) prior to softmax normalization. Subsequently, different decoding strate-
gies can be employed to determine the action based on the probability distribution: 1) Greedy, which
selects the action with the highest probability; 2) Sampling, which samples from the masked proba-
bility distribution of the policy, where different sampling strategies like softmax temperature scaling
τ , top-k sampling (Kool et al., 2019b), and top-p (or Nucleus) sampling (Holtzman et al., 2019) can
be used; 3) Multistart, which enforces diverse starting actions as demonstrated in POMO (Kwon
et al., 2020), such as starting from different cities in the TSP; 4) Augmentation, which applies trans-
formations to instances, such as random rotations in Euclidean problems (Kim et al., 2022), to create
an augmented set of problems. We describe these strategies in detail in Appendix D.4.

Documentation, Tutorials, and Testing. We release extensive documentation2 to make RL4CO as
accessible as possible for both newcomers and experts. Furthermore, several tutorials and examples
are also available under the examples/ folder of our publicly available code3. We thoroughly
test our library via continuous integration on multiple Python versions and operating systems. The
following code snippet shows minimalistic code that can train a model in a few lines:

from rl4co.envs.routing import TSPEnv, TSPGenerator
from rl4co.models import AttentionModelPolicy, POMO
from rl4co.utils import RL4COTrainer
Instantiate generator and environment
generator = TSPGenerator(num_loc=50, loc_distribution="uniform")
env = TSPEnv(generator)
Create policy and RL model
policy = AttentionModelPolicy(env_name=env.name, num_encoder_layers=6)
model = POMO(env, policy, batch_size=64)
Instantiate Trainer and fit
trainer = RL4COTrainer(epochs=10, accelerator="gpu", precision="fp16")
trainer.fit(model)

2https://anonymous.4open.science/w/rl4co-submission/
3https://anonymous.4open.science/r/rl4co-submission/

6

https://anonymous.4open.science/w/rl4co-submission/
https://anonymous.4open.science/r/rl4co-submission/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.5 BASELINES ZOO

RL4CO entails a collection of 23 neural solvers for CO from the literature, which are implemented
in a modular and flexible way using our policy metaclasses introduced in § 4.2. We organize these
baselines into five categories: (non-)autoregressive constructive methods, improvement strategies,
general-purpose RL algorithms and transductive RL methods. Table 2 lists all baselines currently
available in RL4CO and we refer the reader to Appendix C for further implementation details.

Table 2: RL4CO baselines.

Category Methods

Constructive AR Methods

AM (Kool et al., 2019a), Ptr-Net (Vinyals et al., 2015), POMO (Kwon et al., 2020),
HAM (Li et al., 2021), SymNCO (Kim et al., 2022), PolyNet (Hottung et al., 2024),
MVMoE (Zhou et al., 2024), L2D (Zhang et al., 2020), HGNN (Song et al., 2022),
MatNet (Kwon et al., 2021), MTPO (Liu et al., 2024a), DevFormer (Kim et al., 2023)

Constructive NAR Methods DeepACO (Ye et al., 2023), GFACS (Kim et al., 2024), GLOP (Ye et al., 2024b)

Improvement Methods DACT (Ma et al., 2021), N2S (Ma et al., 2022), NeuOpt (Ma et al., 2024)

RL Algorithms REINFORCE (Sutton et al., 1999), Advantage Actor-Critic (A2C) (Konda and Tsitsiklis, 1999),
Proximal Policy Optimization (PPO) (Schulman et al., 2017)

Transductive RL Methods Active search (Bello et al., 2017), Efficient active search (Hottung et al., 2022)

5 BENCHMARKING STUDY

We perform several benchmarking studies with our unified RL4CO library, with experimental setup
and benchmarking details in Appendix D. Due to the extent of our benchmark, we report highlights
of the results in the following section and refer the reader to Appendix E for additional experiments.

5.1 FLEXIBILITY AND MODULARITY

Changing policy components. The integration of many state-of-the-art methods in RL4CO
from the NCO field in a modular framework makes it easy to implement and improve upon
state-of-the-art neural solvers for complex CO problems with only a few lines of code.4

Table 3: Solutions obtained with RL4CO for the FJSSP with
different model configurations.

FJSSP
Encoder / Decoder 10× 5 20× 5

HGNN + MLP (g.) (Song et al., 2022) Obj. 111.82 211.21
Gap 15.8% 12.1%

MatNet + MLP (g.) Obj. 103.91 197.92
Gap 7.6% 5.0%

MatNet + Pointer (g.) Obj. 101.17 196.3
Gap 4.8% 4.2%

MatNet + Pointer (s. x128) Obj. 98.31 192.02
Gap 1.8% 1.9%

We demonstrate this in Table 3 for the
FJSSP by gradually replacing or adding el-
ements to the original SotA policy (Song
et al., 2022). First, replacing the HGNN
encoder with the more expressive MatNet
encoder (Kwon et al., 2021) already im-
proves the average makespan by around
7%. Further, replacing the MLP decoder
with the pointer mechanism from the AM
model (Kool et al., 2019a) reduces the op-
timality gap to roughly one-third of that
observed in the policy proposed by Song
et al. (2022), even when using a greedy de-
coding strategy.

5.2 CONSTRUCTIVE POLICIES

Mind Your Baseline. In on-policy RL, which is often employed in RL4CO due to fast reward
function evaluations, several different REINFORCE baselines have been proposed to improve the
performance. We benchmark several RL algorithms training constructive policies for routing prob-
lems of node size 50, whose underlying architecture is based on the encoder-decoder Attention
Model (Kool et al., 2019a) and whose main difference lies in how the REINFORCE baseline is
calculated (we additionally train the AM with PPO as further reference). For a fair comparison,

4The different model configurations shown here can be obtained by simply changing the Hydra configura-
tion file like the one shown in Appendix D.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

we run all baselines in controlled settings with the same number of optimization steps and report
results in Table 4. The performance of A2C is generally inferior to other baselines. This can be ex-
plained by the inherent challenge of estimating the value of a problem instance x based on the sparse
reward, which is only observed after solving an entire instance in routing problems. We found sim-
ilar trends regarding actor-critic methods as A2C and PPO in the EDA mDPP problem (Kim et al.,
2023), which we report in Appendix E.4. Namely, a greedy rollout baseline (Kool et al., 2019a)
can do better than value-based methods due to the challenging task of instance value estimation.

Table 4: Optimality gaps obtained via greedy decoding.

Method TSP CVRP OP PCTSP PDP

A2C 2.22 7.09 8.64 14.96 10.02
AM-Rollout 1.41 5.30 4.40 2.46 9.88
POMO 0.89 3.99 14.26 11.61 10.64
Sym-NCO 0.47 4.61 3.09 2.12 7.73
AM-PPO 0.92 4.60 3.05 2.45 8.31

Interestingly, while POMO (Kwon et al., 2020),
which takes as a baseline the average reward
over all routes forcing each starting node to be
different, may work well as baselines for prob-
lems in which near-optimal solutions can be
constructed from any node (e.g., TSP), this may
not be true for other problems such as the Ori-
enteering Problem (OP): the reason is that in
OP only a subset of nodes should be selected in

an optimal solution, while several states will be discarded. Hence, forcing the policy to select all of
them makes up for a poor baseline. We remark that while SymNCO (whose shared baseline involves
symmetric rotations and flips) (Kim et al., 2022) may perform well in Euclidean problems, it is not
applicable in non-Euclidean CO, including asymmetric routing problems and scheduling.

Decoding Schemes. The solution quality of different solvers often shows signif-
icant improvements in performance with different decoding schemes. We evalu-
ate the pre-trained solver with different strategies and settings as shown in Fig. 4.

(a) Greedy (b) Sampling (c) Augmentation (d) Multistart

Figure 4.1: Decoding schemes of the autoregressive NCO solvers evaluated in this paper.

the Decap Placement Problems (DPP) from electronic design automation in Appendix B. Further
details on environment implementations and data generation are provided in Appendix C.

Decoding Schemes The solution quality of NCO solvers often shows large variations in perfor-
mances to the different decoding schemes, even though using the same NCO solvers. Regarding
that, we evaluate the trained solvers using five schemes shown in Fig. 4.1:

• Greedy: elects the highest probabilities at each decoding step.

• Sampling: concurrently samples N solutions using a trained stochastic policy.

• Multistart Greedy: inspired by POMO, decodes from the first given nodes and considers the
best results from N cases starting at N different cities. For example, in TSP with N nodes, a
single problem involves starting from N different cities.

• Augmentation: selects the best greedy solutions from randomly augmented problems (e.g.,
random rotation and flipping) during evaluation.

• Multistart Greedy + Augmentation: combines Multistart Greedy and Augmentation.

4.2 Benchmark Results

In-distribution We first measure the performances of NCO solvers on the same dataset distribu-
tion on which they are trained. The results for training on 50 nodes are summarized in Table 4.1. We
first observe that, counter to the commonly known trends that AM < POMO < Sym-NCO, the trends
can change to decoding schemes and targeting CO problems. Especially when the solver decodes
the solutions with Augmentation or Greedy Multistart + Augmentation, the performance
differences among the benchmarked solvers on TSP and CVRP become less significant.

Greedy

Augment

Sampling

Multistart

Multistart + Augment

Dihedral Augment (x8)

100 101 102 103

Number of Samples

0.0

0.5

1.0

G
ap

(%
)

AM

100 101 102 103

Number of Samples

POMO

100 101 102 103

Number of Samples

SymNCO

100 101 102 103

Number of Samples

1

2

3

4

5

G
ap

(%
)

AM

100 101 102 103

Number of Samples

POMO

100 101 102 103

Number of Samples

SymNCO

Figure 4.2: Pareto front of decoding schemes by number of samples. Left: TSP50; right: CVRP50.

We note that the original implementation of POMO 9 is not directly applicable to OP, PCTSP and
PDP. Adapting it to solve new problems is not straightforward due to the coupling between envi-
ronment and policy implementations. However, owing to the flexibility of RL4CO, we successfully
implemented POMO for OP and PCTSP. Our results indicate that POMO underperforms in OP and
PCTSP; unlike TSP, CVRP, and PDP, where all nodes need to be visited, OP and PCTSP are not
constrained to visit all nodes. Due to such differences, POMO’s visiting all nodes strategy may not
work as an effective inductive bias. Further, we benchmark the NCO solvers for PDP, which is not
originally supported natively by each of the benchmarked solvers. We apply the environment em-
beddings and the Heterogeneous Attention Encoder from HAM (Li et al., 2021a) to the NCO models
for encoding pickup and delivery pairs, further emphasizing RL4CO’s flexibility. We observe that
AM-XL, which employs the same RL algorithm as AM but features the encoder architecture of
POMO and is trained with an equivalent number of samples, yields performance comparable to

9https://github.com/yd-kwon/POMO

7

(a) Greedy (b) Sampling (c) Augmentation (d) Multistart

Figure 4.1: Decoding schemes of the autoregressive NCO solvers evaluated in this paper.

the Decap Placement Problems (DPP) from electronic design automation in Appendix B. Further
details on environment implementations and data generation are provided in Appendix C.

Decoding Schemes The solution quality of NCO solvers often shows large variations in perfor-
mances to the different decoding schemes, even though using the same NCO solvers. Regarding
that, we evaluate the trained solvers using five schemes shown in Fig. 4.1:

• Greedy: elects the highest probabilities at each decoding step.

• Sampling: concurrently samples N solutions using a trained stochastic policy.

• Multistart Greedy: inspired by POMO, decodes from the first given nodes and considers the
best results from N cases starting at N different cities. For example, in TSP with N nodes, a
single problem involves starting from N different cities.

• Augmentation: selects the best greedy solutions from randomly augmented problems (e.g.,
random rotation and flipping) during evaluation.

• Multistart Greedy + Augmentation: combines Multistart Greedy and Augmentation.

4.2 Benchmark Results

In-distribution We first measure the performances of NCO solvers on the same dataset distribu-
tion on which they are trained. The results for training on 50 nodes are summarized in Table 4.1. We
first observe that, counter to the commonly known trends that AM < POMO < Sym-NCO, the trends
can change to decoding schemes and targeting CO problems. Especially when the solver decodes
the solutions with Augmentation or Greedy Multistart + Augmentation, the performance
differences among the benchmarked solvers on TSP and CVRP become less significant.

Greedy

Augment

Sampling

Multistart

Multistart + Augment

Dihedral Augment (x8)

100 101 102 103

Number of Samples

0.0

0.5

1.0
G

ap
(%

)

AM

100 101 102 103

Number of Samples

POMO

100 101 102 103

Number of Samples

SymNCO

100 101 102 103

Number of Samples

1

2

3

4

5

G
ap

(%
)

AM

100 101 102 103

Number of Samples

POMO

100 101 102 103

Number of Samples

SymNCO

Figure 4.2: Pareto front of decoding schemes by number of samples. Left: TSP50; right: CVRP50.

We note that the original implementation of POMO 9 is not directly applicable to OP, PCTSP and
PDP. Adapting it to solve new problems is not straightforward due to the coupling between envi-
ronment and policy implementations. However, owing to the flexibility of RL4CO, we successfully
implemented POMO for OP and PCTSP. Our results indicate that POMO underperforms in OP and
PCTSP; unlike TSP, CVRP, and PDP, where all nodes need to be visited, OP and PCTSP are not
constrained to visit all nodes. Due to such differences, POMO’s visiting all nodes strategy may not
work as an effective inductive bias. Further, we benchmark the NCO solvers for PDP, which is not
originally supported natively by each of the benchmarked solvers. We apply the environment em-
beddings and the Heterogeneous Attention Encoder from HAM (Li et al., 2021a) to the NCO models
for encoding pickup and delivery pairs, further emphasizing RL4CO’s flexibility. We observe that
AM-XL, which employs the same RL algorithm as AM but features the encoder architecture of
POMO and is trained with an equivalent number of samples, yields performance comparable to

9https://github.com/yd-kwon/POMO

7

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
98

0.
99

0.
99

5
1.
0

Top-p

0.1

0.3

0.5

0.7

0.8

0.9

1.0

1.1

1.2

1.5

1.8

2.0

2.2

2.5

2.8

3.0

T
em

p
er

at
ur

e

1.5%

2%

2.5%

3%

3.5%

4%

G
ap

 (%
)

Number of Samples Top-p

Te
m

pe
ra

tu
re

(a) Greedy (b) Sampling (c) Augmentation (d) Multistart

Figure 4.1: Decoding schemes of the autoregressive NCO solvers evaluated in this paper.

the Decap Placement Problems (DPP) from electronic design automation in Appendix B. Further
details on environment implementations and data generation are provided in Appendix C.

Decoding Schemes The solution quality of NCO solvers often shows large variations in perfor-
mances to the different decoding schemes, even though using the same NCO solvers. Regarding
that, we evaluate the trained solvers using five schemes shown in Fig. 4.1:

• Greedy: elects the highest probabilities at each decoding step.

• Sampling: concurrently samples N solutions using a trained stochastic policy.

• Multistart Greedy: inspired by POMO, decodes from the first given nodes and considers the
best results from N cases starting at N different cities. For example, in TSP with N nodes, a
single problem involves starting from N different cities.

• Augmentation: selects the best greedy solutions from randomly augmented problems (e.g.,
random rotation and flipping) during evaluation.

• Multistart Greedy + Augmentation: combines Multistart Greedy and Augmentation.

4.2 Benchmark Results

In-distribution We first measure the performances of NCO solvers on the same dataset distribu-
tion on which they are trained. The results for training on 50 nodes are summarized in Table 4.1. We
first observe that, counter to the commonly known trends that AM < POMO < Sym-NCO, the trends
can change to decoding schemes and targeting CO problems. Especially when the solver decodes
the solutions with Augmentation or Greedy Multistart + Augmentation, the performance
differences among the benchmarked solvers on TSP and CVRP become less significant.

Greedy

Augment

Sampling

Multistart

Multistart + Augment

Dihedral Augment (x8)

100 101 102 103

Number of Samples

0.0

0.5

1.0

G
ap

(%
)

AM

100 101 102 103

Number of Samples

POMO

100 101 102 103

Number of Samples

SymNCO

100 101 102 103

Number of Samples

1

2

3

4

5

G
ap

(%
)

AM

100 101 102 103

Number of Samples

POMO

100 101 102 103

Number of Samples

SymNCO

Figure 4.2: Pareto front of decoding schemes by number of samples. Left: TSP50; right: CVRP50.

We note that the original implementation of POMO 9 is not directly applicable to OP, PCTSP and
PDP. Adapting it to solve new problems is not straightforward due to the coupling between envi-
ronment and policy implementations. However, owing to the flexibility of RL4CO, we successfully
implemented POMO for OP and PCTSP. Our results indicate that POMO underperforms in OP and
PCTSP; unlike TSP, CVRP, and PDP, where all nodes need to be visited, OP and PCTSP are not
constrained to visit all nodes. Due to such differences, POMO’s visiting all nodes strategy may not
work as an effective inductive bias. Further, we benchmark the NCO solvers for PDP, which is not
originally supported natively by each of the benchmarked solvers. We apply the environment em-
beddings and the Heterogeneous Attention Encoder from HAM (Li et al., 2021a) to the NCO models
for encoding pickup and delivery pairs, further emphasizing RL4CO’s flexibility. We observe that
AM-XL, which employs the same RL algorithm as AM but features the encoder architecture of
POMO and is trained with an equivalent number of samples, yields performance comparable to

9https://github.com/yd-kwon/POMO

7

Figure 4: Study of decoding schemes using POMO on CVRP50.
[Left]: Pareto front of decoding schemes by the number of sam-
ples; [Right]: performance of sampling with different temperatures
τ and p values for top-p sampling.

Generalization. Using RL4CO, we
can easily evaluate the generalization
performance of existing baselines by
employing supported environments
that incorporate various VRP vari-
ant tasks and instance distributions
(termed MTPOMO and MDPOMO,
respectively). Empirical results on
CVRPLib, shown in Table 5, reveal
that training on different tasks signif-
icantly enhances generalization per-
formance. This finding underscores
the necessity of building foundation
models across diverse CO domains.

Large-Scale Instances. We evaluate
large-scale CVRP instances of thou-
sands of nodes, with more visualizations and scaling in Appendix E.1.6. The last row of Table 6
illustrates the performance of the hybrid NAR/AR GLOP (Ye et al., 2024b), while others refer to re-
produced results from Ye et al. (2024b). Our implementation in RL4CO improves the performance
in not only speed but also solution quality.

Table 5: Results on CVRPLIB with models trained
on N = 50. Greedy multi-start decoding is used.

POMO MTPOMO MDPOMO
Obj. Gap Obj. Gap Obj. Gap

Set A 1075 3.13% 1076 3.20% 1074 2.97%
Set B 996 3.41% 1003 4.06% 995 3.26%
Set E 761 5.04% 760 4.82% 762 5.07%
Set F 813 13.52% 798 12.09% 825 13.66%
Set M 1259 16.37% 1234 13.58% 1263 16.03%
Set P 620 6.72% 608 3.72% 613 5.04%
Set X 73953 16.80% 73763 16.69% 81848 23.69%

Table 6: Performance on large-scale CVRP instances
with thousands of nodes.

CVRP1K CVRP2K CVRP7K
Obj. Time Obj. Time Obj. Time

LKH-3 46.4 6.2 64.9 20 245.0 501

AM 61.4 0.6 114.4 1.9 354.3 26
TAM (AM) 50.1 0.8 74.3 2.2 233.4 26
TAM (LKH-3) 46.3 1.8 64.8 5.6 196.9 33
GLOP-G (AM)* 47.1 0.4 63.5 1.2 191.7 2.4
GLOP-G (LKH-3)* 45.9 1.1 63.0 1.5 191.2 5.8

GLOP-G (AM) 46.9 0.3 64.7 0.7 190.9 2.0
GLOP-G (LKH-3) 45.5 0.5 62.8 0.8 190.1 3.9

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.3 COMBINING CONSTRUCTION AND IMPROVEMENT: BEST OF BOTH WORLDS?

While constructive policies can build solutions in seconds, their performance is often lim-
ited, even with advanced decoding schemes such as sampling or augmentations. On
the other hand, improvement methods are more suitable for larger computing budgets.

0 50 100 150 200
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

G
ap

(%
)

POMO (sampling)
DACT (from random init)
DACT (from POMO init)
NeuOpt (from random init)
NeuOpt (from POMO init)

Figure 5: Bootstrapping improvement with con-
structive methods.

We benchmark models on TSP with 50 nodes: the
AR constructive method POMO (Kwon et al., 2020)
and the improvement methods DACT (Ma et al.,
2021) and NeuOpt (Ma et al., 2024). In the original
implementation, DACT and NeuOpt started from a
solution constructed randomly. To further demon-
strate the flexibility of RL4CO, we show that boot-
strapping improvement methods with constructive
ones enhance convergence speed. Fig. 5 shows
that bootstrapping with a pre-trained POMO policy
significantly enhances the convergence speed. To
further investigate the performance, we report the
Primal Integral (PI) (Berthold, 2013; Vidal, 2022;
Thyssens et al., 2023), which evaluates the evolution
of solution quality over time. Improvement methods
alone, such as DACT and NeuOpt, achieve 2.99 and
2.26 respectively, while sampling from POMO achieves 0.08. This shows that the “area under the
curve” can be better even if the final solution is worse for constructive methods. Bootstrapping with
POMO then improves DACT and NeuOpt to 0.08 and 0.04 respectively, showing the benefits of
modularity and hybridization of different components.

6 DISCUSSION

Limitations and Future Directions While RL4CO is an efficient and modular library specialized
in CO problems, it might not be suitable for any other task due to a number of area-specific opti-
mizations, and we do not expect it to seamlessly integrate with, for instance, OpenAI Gym wrappers
without some modifications. Another limitation of the library is its scope so far, namely RL. Even-
tually, creating a new library to support supervised methods as a comprehensive "AI4CO" codebase
could benefit the whole NCO community. We additionally identify in Foundation Models for CO
and related scalable architectures a promising area of future research to overcome generalization
issues across tasks and distributions, for which we provided some early clues in Appendix E.8.

Long-term Plans RL4CO is an active library that has already garnered much attention from the
community, with over 400 stars on GitHub. We thank contributors in the community who have
helped us build RL4CO. Our long-term plan is to become the go-to RL for CO benchmark library.
For this purpose, we created a community Slack workspace (link available upon acceptance) that
has attracted more than 200 researchers. We are committed to helping resolve issues and questions
from the community and actively engaged in discussion. It is our hope that our work will ultimately
benefit the NCO field with new ideas and collaborations. More available in Appendix A.

7 CONCLUSION

This paper introduces RL4CO, a modular, flexible, and unified Reinforcement Learning (RL) for
Combinatorial Optimization (CO) benchmark. We provide a comprehensive taxonomy from envi-
ronments to policies and RL algorithms that translate from theory to practice to software level. Our
benchmark library aims to fill the gap in unifying implementations in RL for CO by utilizing sev-
eral best practices with the goal of providing researchers and practitioners with a flexible starting
point for NCO research. We provide several experimental results with insights and discussions that
can help identify promising research directions. We hope that our open-source library will provide
a solid starting point for NCO researchers to explore new avenues and drive advancements. We
warmly welcome researchers and practitioners to actively participate and contribute to RL4CO.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

L. Accorsi, A. Lodi, and D. Vigo. Guidelines for the computational testing of machine learning
approaches to vehicle routing problems. Operations Research Letters, 50(2):229–234, 2022.

A. AhmadiTeshnizi, W. Gao, and M. Udell. OptiMUS: Scalable optimization modeling with (MI)LP
solvers and large language models. In International Conference on Machine Learning, 2024.

K. Ali, W. Alsalih, and H. Hassanein. Set-cover approximation algorithms for load-aware readers
placement in RFID networks. In 2011 IEEE international conference on communications (ICC),
pages 1–6. IEEE, 2011.

D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Concorde TSP solver, 2023. URL https:
//www.math.uwaterloo.ca/tsp/concorde/index.html.

B. Balaji, J. Bell-Masterson, E. Bilgin, A. Damianou, P. M. Garcia, A. Jain, R. Luo, A. Maggiar,
B. Narayanaswamy, and C. Ye. Orl: Reinforcement learning benchmarks for online stochastic
optimization problems. arXiv preprint arXiv:1911.10641, 2019.

E. Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.

A. Bdeir, J. K. Falkner, and L. Schmidt-Thieme. Attention, filling in the gaps for generalization in
routing problems. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 505–520. Springer, 2022.

I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization with
reinforcement learning, 2017.

E. Bengio, M. Jain, M. Korablyov, D. Precup, and Y. Bengio. Flow network based generative mod-
els for non-iterative diverse candidate generation. Advances in Neural Information Processing
Systems, 34:27381–27394, 2021a.

Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a method-
ological tour d’horizon. European Journal of Operational Research, 290(2):405–421, 2021b.

Y. Bengio, S. Lahlou, T. Deleu, E. J. Hu, M. Tiwari, and E. Bengio. Gflownet foundations. Journal
of Machine Learning Research, 24(210):1–55, 2023.

T. Berthold. Measuring the impact of primal heuristics. Operations Research Letters, 41(6):611–
614, 2013.

F. Berto, C. Hua, N. G. Zepeda, A. Hottung, N. Wouda, L. Lan, K. Tierney, and J. Park.
RouteFinder: Towards foundation models for vehicle routing problems. Arxiv, 2024. URL
https://github.com/ai4co/routefinder.

K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen, L. Eifler,
O. Gaul, G. Gamrath, A. Gleixner, et al. The SCIP optimization suite 8.0. arXiv 2112.08872,
2021.

M. Bettini, A. Prorok, and V. Moens. Benchmarl: Benchmarking multi-agent reinforcement learn-
ing. arXiv preprint arXiv:2312.01472, 2023.

J. Bi, Y. Ma, J. Wang, Z. Cao, J. Chen, Y. Sun, and Y. M. Chee. Learning generalizable models for
vehicle routing problems via knowledge distillation. Advances in Neural Information Processing
Systems, 35:31226–31238, 2022.

D. Biagioni, C. E. Tripp, S. Clark, D. Duplyakin, J. Law, and P. C. S. John. graphenv: a python
library for reinforcement learning on graph search spaces. Journal of Open Source Software, 7
(77):4621, 2022.

L. Bodin. Routing and scheduling of vehicles and crews. Computer & Operations Research, 10(2):
69–211, 1983.

10

https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://github.com/ai4co/routefinder

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

C. Bonnet, D. Luo, D. Byrne, S. Surana, S. Abramowitz, P. Duckworth, V. Coyette, L. I. Midgley,
E. Tegegn, T. Kalloniatis, O. Mahjoub, M. Macfarlane, A. P. Smit, N. Grinsztajn, R. Boige, C. N.
Waters, M. A. Mimouni, U. A. M. Sob, R. de Kock, S. Singh, D. Furelos-Blanco, V. Le, A. Pre-
torius, and A. Laterre. Jumanji: a diverse suite of scalable reinforcement learning environments
in jax. In International Conference on Learning Representations, 2024.

A. Bou, M. Bettini, S. Dittert, V. Kumar, S. Sodhani, X. Yang, G. D. Fabritiis, and V. Moens.
TorchRL: A data-driven decision-making library for pytorch. In International conference on
learning representations, 2024.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

P. Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Annals of Operations
research, 41(3):157–183, 1993.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. arXiv preprint arXiv:1606.01540, 2016.

S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks? In International
Conference on Learning Representations, 2019.

F. Bu, H. Jo, S. Y. Lee, S. Ahn, and K. Shin. Tackling prevalent conditions in unsupervised com-
binatorial optimization: Cardinality, minimum, covering, and more. In International Conference
on Machine Learning, 2024.

B. Çatay. Ant colony optimization and its application to the vehicle routing problem with pickups
and deliveries. In Natural intelligence for scheduling, Planning and packing problems, pages
219–244. Springer, 2009.

F. Chalumeau, S. Surana, C. Bonnet, N. Grinsztajn, A. Pretorius, A. Laterre, and T. Barrett. Com-
binatorial optimization with policy adaptation using latent space search. Advances in Neural
Information Processing Systems, 36, 2024.

I.-M. Chao, B. L. Golden, and E. A. Wasil. A fast and effective heuristic for the orienteering
problem. European journal of operational research, 88(3):475–489, 1996.

J. Chen, Z. Zhang, Z. Cao, Y. Wu, Y. Ma, T. Ye, and J. Wang. Neural multi-objective combinatorial
optimization with diversity enhancement. Advances in Neural Information Processing Systems,
36, 2024.

X. Chen and Y. Tian. Learning to perform local rewriting for combinatorial optimization. In Ad-
vances in Neural Information Processing Systems, 2019.

T. Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient exact
attention with io-awareness. Advances in Neural Information Processing Systems, 35:16344–
16359, 2022.

M. Dorigo and T. Stützle. Ant colony optimization: overview and recent advances. Springer, 2019.

D. Drakulic, S. Michel, F. Mai, A. Sors, and J.-M. Andreoli. BQ-NCO: Bisimulation quotienting
for generalizable neural combinatorial optimization. Advances in Neural Information Processing
Systems, 2023.

Z. Drezner and H. W. Hamacher. Facility location: applications and theory. Springer Science &
Business Media, 2004.

W. Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019. URL https:
//github.com/Lightning-AI/lightning.

11

http://github.com/google/jax
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

J. K. Falkner and L. Schmidt-Thieme. Learning to solve vehicle routing problems with time windows
through joint attention. arXiv preprint arXiv:2006.09100, 2020.

M. Fischetti, J. J. S. Gonzalez, and P. Toth. Solving the orienteering problem through branch-and-
cut. INFORMS Journal on Computing, 10(2):133–148, 1998.

N. Grinsztajn, D. Furelos-Blanco, S. Surana, C. Bonnet, and T. Barrett. Winner takes it all: Train-
ing performant rl populations for combinatorial optimization. Advances in Neural Information
Processing Systems, 36:48485–48509, 2023.

L. Gurobi Optimization. Gurobi optimizer reference manual, 2021. URL http://www.gurobi.
com.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

K. Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12 2017. doi: 10.13140/
RG.2.2.25569.40807.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text degeneration.
arXiv preprint arXiv:1904.09751, 2019.

A. Hottung, B. Bhandari, and K. Tierney. Learning a latent search space for routing problems using
variational autoencoders. In International Conference on Learning Representations, 2020.

A. Hottung, Y.-D. Kwon, and K. Tierney. Efficient active search for combinatorial optimization
problems. International conference on learning representations, 2022.

A. Hottung, M. Mahajan, and K. Tierney. PolyNet: Learning diverse solution strategies for neural
combinatorial optimization. arXiv preprint arXiv:2402.14048, 2024.

Y. Hou, H. Ye, Y. Zhang, S. Xu, and G. Song. Routeplacer: An end-to-end routability-aware placer
with graph neural network. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2024.

C. D. Hubbs, H. D. Perez, O. Sarwar, N. V. Sahinidis, I. E. Grossmann, and J. M. Wassick.
OR-Gym: A reinforcement learning library for operations research problems. arXiv preprint
arXiv:2008.06319, 2020.

J. Hwang, J. S. Pak, D. Yoon, H. Lee, J. Jeong, Y. Heo, and I. Kim. Enhancing on-die pdn for optimal
use of package pdn with decoupling capacitor. In 2021 IEEE 71st Electronic Components and
Technology Conference (ECTC), pages 1825–1830, 2021. doi: 10.1109/ECTC32696.2021.00288.

Z. Iklassov, Y. Du, F. Akimov, and M. Takac. Self-guiding exploration for combinatorial problems.
arXiv preprint arXiv:2405.17950, 2024.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456. pmlr,
2015.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.
Neural computation, 3(1):79–87, 1991.

A. D. Jesus, A. Liefooghe, B. Derbel, and L. Paquete. Algorithm selection of anytime algorithms. In
Proceedings of the 2020 genetic and evolutionary computation conference, pages 850–858, 2020.

Y. Jiang, Y. Wu, Z. Cao, and J. Zhang. Learning to solve routing problems via distributionally robust
optimization. In 36th AAAI Conference on Artificial Intelligence, 2022.

M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

12

http://www.gurobi.com
http://www.gurobi.com

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

C. K. Joshi, T. Laurent, and X. Bresson. An efficient graph convolutional network technique for the
travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

J. Juang, L. Zhang, Z. Kiguradze, B. Pu, S. Jin, and C. Hwang. A modified genetic algorithm for the
selection of decoupling capacitors in pdn design. In 2021 IEEE International Joint EMC/SI/PI and
EMC Europe Symposium, pages 712–717, 2021. doi: 10.1109/EMC/SI/PI/EMCEurope52599.
2021.9559292.

B. Kalantari, A. V. Hill, and S. R. Arora. An algorithm for the traveling salesman problem with
pickup and delivery customers. European Journal of Operational Research, 22(3):377–386, 1985.

E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization algo-
rithms over graphs. Advances in neural information processing systems, 30, 2017.

S. Khuller, A. Moss, and J. S. Naor. The budgeted maximum coverage problem. Information
processing letters, 70(1):39–45, 1999.

D. Kikuta, H. Ikeuchi, K. Tajiri, and Y. Nakano. RouteExplainer: An explanation framework for
vehicle routing problem. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 30–42. Springer, 2024.

H. Kim, M. Kim, F. Berto, J. Kim, and J. Park. DevFormer: A symmetric transformer for context-
aware device placement. International Conference on Machine Learning, 2023.

M. Kim, J. Park, and J. Kim. Learning collaborative policies to solve NP-hard routing problems. In
Advances in Neural Information Processing Systems, 2021.

M. Kim, J. Park, and J. Park. Sym-NCO: Leveraging symmetricity for neural combinatorial opti-
mization. Advances in Neural Information Processing Systems, 2022.

M. Kim, S. Choi, J. Son, H. Kim, J. Park, and Y. Bengio. Ant colony sampling with GFlowNets for
combinatorial optimization. arXiv preprint arXiv:2403.07041, 2024.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

V. Konda and J. Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

W. Kool, H. Van Hoof, and M. Welling. Attention, learn to solve routing problems! International
Conference on Learning Representations, 2019a.

W. Kool, H. Van Hoof, and M. Welling. Stochastic beams and where to find them: The gumbel-
top-k trick for sampling sequences without replacement. In International Conference on Machine
Learning, pages 3499–3508. PMLR, 2019b.

Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min. POMO: Policy optimization with
multiple optima for reinforcement learning. Advances in Neural Information Processing Systems,
33:21188–21198, 2020.

Y.-D. Kwon, J. Choo, I. Yoon, M. Park, D. Park, and Y. Gwon. Matrix encoding networks for neural
combinatorial optimization. Advances in Neural Information Processing Systems, 34:5138–5149,
2021.

G. Laporte and S. Martello. The selective travelling salesman problem. Discrete applied mathemat-
ics, 26(2-3):193–207, 1990.

E. Lawler, J. Lenstra, A. R. Kan, and D. Shmoys. The traveling salesman problem: A guided tour of
combinatorial optimization. The Journal of the Operational Research Society, 37(5):535, 1986.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

F. Li, B. Golden, and E. Wasil. The open vehicle routing problem: Algorithms, large-scale test
problems, and computational results. Computers & Operations Research, 34(10):2918–2930,
2007. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2005.11.018.

G. Li, C. Xiong, A. Thabet, and B. Ghanem. Deepergcn: All you need to train deeper gcns. arXiv
preprint arXiv:2006.07739, 2020a.

J. Li, L. Xin, Z. Cao, A. Lim, W. Song, and J. Zhang. Heterogeneous attentions for solving pickup
and delivery problem via deep reinforcement learning. IEEE Transactions on Intelligent Trans-
portation Systems, 23(3):2306–2315, 2021.

J. Li, Y. Ma, Z. Cao, Y. Wu, W. Song, J. Zhang, and Y. M. Chee. Learning feature embedding
refiner for solving vehicle routing problems. IEEE Transactions on Neural Network and Learning
Systems, 2023.

S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith, B. Vaughan, P. Da-
mania, et al. Pytorch distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704, 2020b.

E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez, K. Goldberg, and I. Stoica. Ray rllib:
A composable and scalable reinforcement learning library. arXiv preprint arXiv:1712.09381, 85,
2017.

I. Lima, E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, A. Subramanian, R. W, D. Oliveira,
and E. Queiroga. CVRPLIB: Capacitated vehicle routing problem library, 2014. URL http:
//vrp.galgos.inf.puc-rio.br/index.php/en/. Last checked on October 6, 2024.

X. Lin, Z. Yang, and Q. Zhang. Pareto set learning for neural multi-objective combinatorial opti-
mization. arXiv preprint arXiv:2203.15386, 2022.

J. T. Linderoth, A. Lodi, et al. Milp software. Wiley encyclopedia of operations research and
management science, 5:3239–3248, 2010.

F. Liu, X. Lin, Q. Zhang, X. Tong, and M. Yuan. Multi-task learning for routing problem with
cross-problem zero-shot generalization. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2024a.

F. Liu, X. Tong, M. Yuan, X. Lin, F. Luo, Z. Wang, Z. Lu, and Q. Zhang. Evolution of heuris-
tics: Towards efficient automatic algorithm design using large language model. In International
Conference on Machine Learning, 2024b.

S. Liu, C. Chen, X. Qu, K. Tang, and Y.-S. Ong. Large language models as evolutionary optimizers.
arXiv preprint arXiv:2310.19046, 2023.

R. Lotfi, A. Mostafaeipour, N. Mardani, and S. Mardani. Investigation of wind farm location plan-
ning by considering budget constraints. International Journal of Sustainable Energy, 37(8):799–
817, 2018.

F. Luo, X. Lin, F. Liu, Q. Zhang, and Z. Wang. Neural combinatorial optimization with heavy
decoder: Toward large scale generalization. Advances in Neural Information Processing Systems,
36, 2024a.

F. Luo, X. Lin, Z. Wang, T. Xialiang, M. Yuan, and Q. Zhang. Self-improved learning for scalable
neural combinatorial optimization. arXiv preprint arXiv:2403.19561, 2024b.

L. Luttmann and L. Xie. Neural combinatorial optimization on heterogeneous graphs: An applica-
tion to the picker routing problem in mixed-shelves warehouses. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling, volume 34, pages 351–359, 2024.

Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang. Learning to iteratively solve routing
problems with dual-aspect collaborative transformer. Advances in Neural Information Processing
Systems, 34, 2021.

14

http://vrp.galgos.inf.puc-rio.br/index.php/en/
http://vrp.galgos.inf.puc-rio.br/index.php/en/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Y. Ma, J. Li, Z. Cao, W. Song, H. Guo, Y. Gong, and Y. M. Chee. Efficient neural neighborhood
search for pickup and delivery problems. arXiv preprint arXiv:2204.11399, 2022.

Y. Ma, Z. Cao, and Y. M. Chee. Learning to search feasible and infeasible regions of routing
problems with flexible neural k-opt. Advances in Neural Information Processing Systems, 36,
2024.

S. Manchanda, S. Michel, D. Drakulic, and J.-M. Andreoli. On the generalization of neural combi-
natorial optimization heuristics. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceed-
ings, Part V, pages 426–442. Springer, 2023.

V. Marianov, D. Serra, et al. Location problems in the public sector. Facility location: Applications
and theory, 1:119–150, 2002.

R. Mart, P. M. Pardalos, and M. G. Resende. Handbook of heuristics. Springer Publishing Company,
Incorporated, 2018.

Y. Min, Y. Bai, and C. P. Gomes. Unsupervised learning for solving the travelling salesman problem.
In Neural Information Processing Systems, 2023.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement
learning. nature, 518(7540):529–533, 2015.

V. Moens. TensorDict: your PyTorch universal data carrier, 2023. URL https://github.
com/pytorch-labs/tensordict.

A. T. Murray, K. Kim, J. W. Davis, R. Machiraju, and R. Parent. Coverage optimization to support
security monitoring. Computers, Environment and Urban Systems, 31(2):133–147, 2007.

M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác. Reinforcement learning for solving the vehicle
routing problem. Advances in neural information processing systems, 31, 2018.

M. Pagliardini, D. Paliotta, M. Jaggi, and F. Fleuret. Faster causal attention over large sequences
through sparse flash attention. arXiv preprint arXiv:2306.01160, 2023.

H. Park, H. Kim, H. Kim, J. Park, S. Choi, J. Kim, K. Son, H. Suh, T. Kim, J. Ahn, et al. Versatile
genetic algorithm-bayesian optimization (ga-bo) bi-level optimization for decoupling capacitor
placement. In 2023 IEEE 32nd Conference on Electrical Performance of Electronic Packaging
and Systems (EPEPS), pages 1–3. IEEE, 2023a.

J. Park, C. Kwon, and J. Park. Learn to solve the min-max multiple traveling salesmen problem with
reinforcement learning. In Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, pages 878–886, 2023b.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. PyTorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems, 32, 2019.

L. Perron and V. Furnon. OR-Tools, 2023. URL https://developers.google.com/
optimization/.

J. Pirnay and D. G. Grimm. Self-improvement for neural combinatorial optimization: Sample with-
out replacement, but improvement. arXiv preprint arXiv:2403.15180, 2024.

A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, and A. Lodi. Ecole: A gym-like
library for machine learning in combinatorial optimization solvers. In Learning Meets Combina-
torial Algorithms at NeurIPS2020, 2020. URL https://openreview.net/forum?id=
IVc9hqgibyB.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

15

https://github.com/pytorch-labs/tensordict
https://github.com/pytorch-labs/tensordict
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB
http://jmlr.org/papers/v22/20-1364.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

G. K. Rand. Sequencing and scheduling: An introduction to the mathematics of the job-
shop. Journal of the Operational Research Society, 33:862, 1982. URL https://api.
semanticscholar.org/CorpusID:62592932.

G. Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):376–
384, 1991.

B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog, M. P. Kumar, E. Dupont, F. J. Ruiz, J. S.
Ellenberg, P. Wang, O. Fawzi, et al. Mathematical discoveries from program search with large
language models. Nature, 625(7995):468–475, 2024.

M. W. Savelsbergh and M. Sol. The general pickup and delivery problem. Transportation science,
29(1):17–29, 1995.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

W. Shan, Q. Yan, C. Chen, M. Zhang, B. Yao, and X. Fu. Optimization of competitive facility
location for chain stores. Annals of Operations research, 273:187–205, 2019.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outrageously
large neural networks: The sparsely-gated mixture-of-experts layer. In International Conference
on Learning Representations, 2017.

J. Son, M. Kim, H. Kim, and J. Park. Meta-SAGE: Scale meta-learning scheduled adaptation with
guided exploration for mitigating scale shift on combinatorial optimization. In Proceedings of the
40th International Conference on Machine Learning, volume 202, pages 32194–32210. PMLR,
2023.

J. Son, M. Kim, S. Choi, H. Kim, and J. Park. Equity-Transformer: Solving NP-hard min-max rout-
ing problems as sequential generation with equity context. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 20265–20273, 2024.

J. Song, Y. Yue, B. Dilkina, et al. A general large neighborhood search framework for solving integer
linear programs. Advances in Neural Information Processing Systems, 33:20012–20023, 2020.

W. Song, X. Chen, Q. Li, and Z. Cao. Flexible job-shop scheduling via graph neural network and
deep reinforcement learning. IEEE Transactions on Industrial Informatics, 19(2):1600–1610,
2022.

L. Sun, W. Huang, P. S. Yu, and W. Chen. Multi-round influence maximization. In Proceedings of
the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pages
2249–2258, 2018.

Z. Sun and Y. Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial optimization. In
Advances in Neural Information Processing Systems, volume 36, pages 3706–3731, 2023.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. Advances in neural information processing systems, 12,
1999.

E. Taillard. Benchmarks for basic scheduling problems. european journal of operational research,
64(2):278–285, 1993.

H. Tang, F. Berto, Z. Ma, C. Hua, K. Ahn, and J. Park. Himap: Learning heuristics-informed policies
for large-scale multi-agent pathfinding. arXiv preprint arXiv:2402.15546, 2024a.

H. Tang, F. Berto, and J. Park. Ensembling prioritized hybrid policies for multi-agent pathfinding.
arXiv preprint arXiv:2403.07559, 2024b.

P. Tassel, M. Gebser, and K. Schekotihin. A reinforcement learning environment for job-shop
scheduling. arXiv preprint arXiv:2104.03760, 2021.

D. Thyssens, T. Dernedde, J. K. Falkner, and L. Schmidt-Thieme. Routing arena: A benchmark
suite for neural routing solvers. arXiv preprint arXiv:2310.04140, 2023.

16

https://api.semanticscholar.org/CorpusID:62592932
https://api.semanticscholar.org/CorpusID:62592932

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization: The missing ingredient for fast
stylization. arXiv preprint arXiv:1607.08022, 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, et al. Graph attention
networks. stat, 1050(20):10–48550, 2017.

T. Vidal. Hybrid genetic search for the CVRP: Open-source implementation and SWAP* neighbor-
hood. Computers & Operations Research, 140:105643, 2022.

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems, volume 28, pages 2692–2700, 2015.

C. P. Wan, T. Li, and J. M. Wang. RLOR: A flexible framework of deep reinforcement learning for
operation research. arXiv preprint arXiv:2303.13117, 2023.

R. Wang, L. Shen, Y. Chen, X. Yang, D. Tao, and J. Yan. Towards one-shot neural combinatorial
solvers: Theoretical and empirical notes on the cardinality-constrained case. In The Eleventh
International Conference on Learning Representations, 2022.

S. Wasserkrug, L. Boussioux, D. d. Hertog, F. Mirzazadeh, I. Birbil, J. Kurtz, and D. Maragno. From
large language models and optimization to decision optimization CoPilot: A research manifesto.
arXiv preprint arXiv:2402.16269, 2024.

J. Weng, H. Chen, D. Yan, K. You, A. Duburcq, M. Zhang, Y. Su, H. Su, and J. Zhu. Tianshou: A
highly modularized deep reinforcement learning library. Journal of Machine Learning Research,
23(267):1–6, 2022.

N. A. Wouda, L. Lan, and W. Kool. PyVRP: A high-performance vrp solver package. INFORMS
Journal on Computing, 2024.

Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim. Learning improvement heuristics for solving routing
problems. IEEE transactions on neural networks and learning systems, 33(9):5057–5069, 2021.

Z. Xiao, D. Zhang, Y. Wu, L. Xu, Y. J. Wang, X. Han, X. Fu, T. Zhong, J. Zeng, M. Song, and
G. Chen. Chain-of-experts: When LLMs meet complex operations research problems. In Inter-
national Conference on Learning Representations, 2024.

L. Xin, W. Song, Z. Cao, and J. Zhang. Generative adversarial training for neural combinatorial
optimization models, 2022. URL https://openreview.net/forum?id=9vsRT9mc7U.

O. Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019. URL
https://github.com/facebookresearch/hydra.

C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen. Large language models as
optimizers. In International Conference on Learning Representations, 2024.

H. Ye, J. Wang, Z. Cao, H. Liang, and Y. Li. DeepACO: Neural-enhanced ant systems for combina-
torial optimization. arXiv preprint arXiv:2309.14032, 2023.

H. Ye, J. Wang, Z. Cao, F. Berto, C. Hua, H. Kim, J. Park, and G. Song. Reevo: Large language mod-
els as hyper-heuristics with reflective evolution. In Advances in Neural Information Processing
Systems, 2024a. https://github.com/ai4co/reevo.

H. Ye, J. Wang, H. Liang, Z. Cao, Y. Li, and F. Li. GLOP: Learning global partition and local
construction for solving large-scale routing problems in real-time. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 20284–20292, 2024b.

17

https://openreview.net/forum?id=9vsRT9mc7U
https://github.com/facebookresearch/hydra
https://github.com/ai4co/reevo

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi. Learning to dispatch for job shop
scheduling via deep reinforcement learning. Advances in Neural Information Processing Systems,
33:1621–1632, 2020.

D. Zhang, H. Dai, N. Malkin, A. C. Courville, Y. Bengio, and L. Pan. Let the flows tell: Solving
graph combinatorial problems with gflownets. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36,
pages 11952–11969. Curran Associates, Inc., 2023.

Z. Zheng, S. Yao, Z. Wang, X. Tong, M. Yuan, and K. Tang. Dpn: Decoupling partition and naviga-
tion for neural solvers of min-max vehicle routing problems. arXiv preprint arXiv:2405.17272,
2024.

J. Zhou, Y. Wu, W. Song, Z. Cao, and J. Zhang. Towards omni-generalizable neural methods for
vehicle routing problems. In International Conference on Machine Learning, 2023.

J. Zhou, Z. Cao, Y. Wu, W. Song, Y. Ma, J. Zhang, and C. Xu. MVMoE: Multi-task vehicle routing
solver with mixture-of-experts. In International Conference on Machine Learning, 2024.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

RL4CO: AN EXTENSIVE REINFORCEMENT LEARNING
FOR COMBINATORIAL OPTIMIZATION BENCHMARK

Supplementary Material

Table of Contents
A RL4CO: Vision and Software 21

A.1 Why Choosing the RL4CO Library? . 21
A.2 On the Choice of the Software . 21
A.3 Licenses . 22

B Environments 22
B.1 Routing . 23

B.1.1 Traveling Salesman Problem (TSP) . 23
B.1.2 Capacitated Vehicle Routing Problem (CVRP) 23
B.1.3 Orienteering Problem (OP) . 24
B.1.4 Prize Collecting TSP (PCTSP) . 24
B.1.5 Pickup and Delivery Problem (PDP) 24
B.1.6 Multi-Task VRP (MTVRP) . 25

B.2 Scheduling . 27
B.2.1 Job Shop Scheduling Problem (JSSP) 27
B.2.2 Flexible Job Shop Scheduling Problem (FJSSP) 27
B.2.3 Flexible Flow Shop Problem (FFSP) 28

B.3 Electronic Design Automation . 28
B.3.1 Decap Placement Problem (DPP) . 28
B.3.2 Multi-Port Decap Placement Problem (mDPP) 29

B.4 Graph . 29
B.4.1 Facility Location Problem (FLP) . 29
B.4.2 Maximum Coverage Problem (MCP) 30

B.5 Additional Environments and Beyond . 30

C Baselines 31
C.1 General-purpose RL Algorithms . 31

C.1.1 REINFORCE . 31
C.1.2 Advantage Actor-Critic (A2C) . 31
C.1.3 Proximal Policy Optimization (PPO) 32

C.2 Constructive Autoregressive (AR) . 32
C.2.1 Attention Model (AM) . 32
C.2.2 Ptr-Net . 34
C.2.3 POMO . 34
C.2.4 SymNCO . 34
C.2.5 PolyNet . 35
C.2.6 HAM . 35
C.2.7 MTPOMO . 35
C.2.8 MVMoE . 35
C.2.9 L2D . 36
C.2.10 HGNN . 36
C.2.11 MatNet . 36
C.2.12 DevFormer . 37

C.3 Constructive Non-Autoregressive (NAR) . 37
C.3.1 DeepACO . 37
C.3.2 GFACS . 38
C.3.3 GLOP . 38

C.4 Improvement methods . 39
C.4.1 DACT . 39
C.4.2 N2S . 39
C.4.3 NeuOpt . 39

C.5 Active Search Methods . 40
C.5.1 Active Search (AS) . 40

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.5.2 Efficient Active Search (EAS) . 40

D Benchmarking Setup 40
D.1 Metrics . 40

D.1.1 Gap to BKS . 40
D.1.2 Primal Integral . 40
D.1.3 Runtime Measurement . 41

D.2 Hardware & Software . 41
D.2.1 Hardware . 41
D.2.2 Software . 42

D.3 Hyperparameters . 42
D.3.1 Common Hyperparameters . 42
D.3.2 Changing Policy Components . 42
D.3.3 Mind Your Baseline . 42
D.3.4 Generalization: Cross-Task and Cross-Distribution 44
D.3.5 Large-Scale Instances . 44
D.3.6 Combining Construction and Improvement 44

D.4 Decoding Schemes . 45
D.4.1 Augmentations . 45
D.4.2 Sampling . 45

E Additional Experiments 47
E.1 Mind your Baseline: Further Insights . 47

E.1.1 Main In-distribution Results . 47
E.1.2 Decoding Schemes Comparison . 48
E.1.3 Sample Efficiency . 48
E.1.4 Out-of-distribution . 49
E.1.5 Search Methods . 50
E.1.6 Additional Large-scale Results . 52

E.2 Learning Heuristics for Ant Colony Optimization 53
E.2.1 Experiment Settings . 53
E.2.2 Results . 53

E.3 Learning to Schedule . 53
E.3.1 JSSP . 54
E.3.2 FJSSP . 55
E.3.3 FFSP . 56
E.3.4 Dense and Episodic Rewards . 57

E.4 Electronic Design Automation: Learning to Place Decaps 57
E.4.1 Main Results . 58
E.4.2 Generalization to Different Number of Components 58

E.5 Learning to Improve . 58
E.5.1 Main results . 59
E.5.2 Discussion . 59

E.6 Graph Problems: Facility Location Problem (FLP) and Maximum Coverage Prob-
lem (MCP) . 60
E.6.1 Experimental settings . 60
E.6.2 Benchmark Results . 60
E.6.3 Out-of-distribution . 62

E.7 Efficient Software Routines . 65
E.7.1 Mixed-Precision Training . 65
E.7.2 FlashAttention . 67
E.7.3 Efficient Memory Handling in Environments 67

E.8 Towards Foundation Models . 68
E.8.1 Experimental Setting . 68
E.8.2 Empirical Results . 69
E.8.3 Discussion . 69

E.9 Generalization of Training on Multiple Distributions and Multiple Tasks 70

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A RL4CO: VISION AND SOFTWARE

A.1 WHY CHOOSING THE RL4CO LIBRARY?

RL4CO is a unified and extensive benchmark for the RL-for-CO research domain, designed to be
accessible and valuable to researchers and practitioners across all levels of expertise.

Figure 6: RL4CO benchmark logo.

Availability and Future Support RL4CO can be installed through PyPI. We adhere to continu-
ous integration, deployment, and testing to ensure reproducibility and accessibility.

Open License We adopt the open MIT license for all content contained in RL4CO. We ascribe
to the principles of libre software5. Most reimplementations are from original authors and are re-
licensed under the MIT license. Data and baseline-specific licenses are reported in Appendix A.3.

Figure 7: Unofficial - but widely used - open MIT license logo.

Open Community Through our journey, we started the AI4CO community6, which is a non-
profit, cross-institution, inclusive, and open research community. AI4CO originally started out as a
Slack channel for discussing the RL4CO but evolved into a broader-visioned and inclusive space to
communicate with other researchers about general NCO. We warmly invite all interested people to
join us.

Figure 8: AI4CO community logo.

A.2 ON THE CHOICE OF THE SOFTWARE

During the development of RL4CO, we wanted to make it as simple as possible to integrate repro-
ducible and standardized code adhering to the latest guidelines. As a main template for our codebase,
we use Lightning-Hydra-Template 7 which we believe is a solid starting point for reproducible deep
learning. We further discuss framework choices below.

PyTorch PyTorch (Paszke et al., 2019) is a popular open-source deep-learning framework that has
gained significant traction in the research community. We chose PyTorch as the primary framework
for RL4CO due to its intuitive API, dynamic computational graphs, strong community support,
and seamless integration with the Python ecosystem. These features make PyTorch well-suited for

5https://www.gnu.org/philosophy/free-sw.en.html
6Community Github link available upon acceptance
7https://github.com/ashleve/lightning-hydra-template

21

https://www.gnu.org/philosophy/free-sw.en.html
https://github.com/ashleve/lightning-hydra-template

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

rapid prototyping and experimentation, which are essential in research settings. Moreover, most
of the existing research in NCO has been implemented. It is currently being implemented using
PyTorch, making it not only easier to build upon and compare with previous work but also easier for
newcomers and experienced researchers.

TorchRL and TensorDict One of the software hindrances in RL is the bottleneck between CPU
and GPU communication, majorly due to CPU-based operating environments. For this reason, we
did not opt for OpenAI Gym (Brockman et al., 2016) since, although it includes some level of par-
allelization, this does not happen on GPU and would thus greatly hinder performance. Kool et al.
(2019a) creates ad-hoc environments in PyTorch to handle batched data efficiently. However, it
could be cumbersome to integrate into standardized routines that include step and reset func-
tions. As we searched for a better alternative, we found that TorchRL library (Bou et al., 2024),
an official PyTorch project that allows for efficient batched implementations on (multiple) GPUs as
well as functions akin to OpenAI Gym. We also employ the TensorDict (Bou et al., 2024) to handle
tensors efficiently on multiple keys (i.e. in CVRP, we can directly operate transforms on multiple
keys as locations, capacities, and more). This makes our environments compatible with the models
in TorchRL, which we believe could further spread interest in the CO area.

PyTorch Lightning PyTorch Lightning (Falcon and The PyTorch Lightning team, 2019) is a use-
ful tool for abstracting away the boilerplate code, allowing researchers and practitioners to focus
more on the core ideas and innovations. It features a standardized training loop and an extensive
set of pre-built components, including automated checkpointing, distributed training, and logging.
PyTorch Lightning accelerates development time and facilitates scalability. We employ PyTorch
Lightning in RL4CO to integrate with the PyTorch ecosystem - which includes TorchRL- enabling
us to leverage the rich set of tools and libraries available.

Hydra Hydra (Yadan, 2019) is a powerful open-source framework for managing complex con-
figurations in machine-learning models and other software. Hydra facilitates creating hierarchical
configurations, making it easy to manage even very large and intricate configurations. Moreover, it
integrates with command-line interfaces, allowing the execution of different configurations directly
from the command line, thereby enhancing reproducibility. We found Hydra to be effective when
dealing with multiple experiments since configurations are saved both locally, as yaml files, and
can be uploaded to monitoring software as Wandb 8 (or to any of the monitoring software supported
by PyTorch Lightning).

A.3 LICENSES

Table 7: Reference code licenses and links.

Type Asset License Link

Library

PyTorch Paszke et al. (2019) BSD-3 License link
PyTorch Lightning Falcon and The PyTorch Lightning team (2019) Apache-2.0 License link

TorchRL+TensorDict Bou et al. (2024) MIT License link
Hydra Yadan (2019) MIT License link

Dataset
TSPLIB Reinelt (1991) Available for any non-commercial use link

CVRPLib Lima et al. (2014) Available for any non-commercial use link
DPP PDNs (Park et al., 2023a) Apache-2.0 link

Solver
PyVRP Wouda et al. (2024) MIT link

LKH3 Helsgaun (2017) Available for any non-commercial use link
OR-Tools Perron and Furnon (2023) Apache 2.0 License link

We summarize the license of software that we employ in RL4CO in a non-exhaustive list in Table 7.
Original environments and models from the authors are acknowledged through their respective cita-
tions, with several links available in the library. RL4CO is licensed under the MIT license.

B ENVIRONMENTS

This section provides an overview of the list of environments we experimented with at the time of
writing. We organize environments by categories, which, at the time of writing, are:

8https://wandb.ai/

22

https://github.com/pytorch/pytorch
https://github.com/Lightning-AI/pytorch-lightning
https://github.com/pytorch/rl
https://github.com/facebookresearch/hydra
https://github.com/rhgrant10/tsplib95
http://vrp.galgos.inf.puc-rio.br/index.php/en/
https://github.com/kaist-silab/devformer
https://github.com/PyVRP/PyVRP
http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://github.com/google/or-tools
https://wandb.ai/

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1. Routing (B.1)
2. Scheduling (B.2)
3. Electronic Design Automation (B.3)
4. Graph (B.4)

B.1 ROUTING

Routing problems are perhaps the most known class of CO problems. They are problems of great
practical importance, not only for logistics, where they are more commonly framed, but also for
industry, engineering, science, and medicine. The typical objective of routing problems is to mini-
mize the total length of the paths needed to visit some (or all) the nodes in a graph. In the following
section, we present each of these variants with details of their implementations.

Common instance generation details Following the standard protocol of NCO for routing, we
randomly sample node coordinates from the 2D unit square (i.e., [0, 1]2). To ensure reproducibility
in our experiments, we use specific random seeds for generating validation and testing instances. For
the 10,000 validation instances, we use a random seed of 4321. For the 10,000 testing instances, we
use a random seed of 1234. All protocols, including seed selection, align with the practices outlined
by Kool et al. (2019a).

B.1.1 TRAVELING SALESMAN PROBLEM (TSP)

The Traveling Salesman Problem (TSP) is a fundamental routing problem that aims to find the
Hamiltonian cycle of minimum length. While the original TSP formulation employs mixed-integer
linear programming (MILP), in the NCO community, the solution-finding process of TSP is dif-
ferently formulated for constructive and improvement methods. For constructive methods, the TSP
solution is generated by autoregressive solution decoding (i.e., the construction process) in line with
Kool et al. (2019a). In each step of node selection, we preclude the selection of nodes already picked
in previous rounds. This procedure ensures the feasibility of constructed solutions and also allows
for the potential construction of an optimal solution for any TSP instance. For improvement meth-
ods, it starts with an initial solution and iteratively searches for an optimal one using local search.
In each step, the solution is locally adjusted based on a specified local search operator. We support
two representative operators for TSP variants, including the 2-opt in line with Ma et al. (2021) and
the flexible k-opt in line with Ma et al. (2024). The former selects two nodes in the current solution
and reverses the solution segment between them to perform a 2-opt exchange. The latter selects k
nodes so that a k-opt is performed. Both methods ensure the feasibility of the solutions by masking
invalid actions. The best solution after a set number of iterations is the final output.

0 250 500 750 1000 1250 1500 1750
Cost: 7542

0

200

400

600

800

1000

1200
Optimal (or BKS)

0 250 500 750 1000 1250 1500 1750
Cost: 7897

0

200

400

600

800

1000

1200
AM 50

0 250 500 750 1000 1250 1500 1750
Cost: 7603

0

200

400

600

800

1000

1200
POMO 50

0 250 500 750 1000 1250 1500 1750
Cost: 7616

0

200

400

600

800

1000

1200
SymNCO 50

0 250 500 750 1000 1250 1500 1750
Cost: 7674

0

200

400

600

800

1000

1200
AM-XL 50

Figure 9: Sample TSP tours on TSPLib’s Berlin 52 with different autoregressive models.

B.1.2 CAPACITATED VEHICLE ROUTING PROBLEM (CVRP)

The Capacitated Vehicle Routing Problem (CVRP) is a popular extension of TSP, applicable to a
variety of real-world logistics/routing problems (e.g., delivery services). In CVRP, each node has its
own demand, and the vehicle visiting them has a specific capacity and always leaves from a special
node called “depot”. The vehicle can visit new nodes while their demand fits in its residual capacity
(i.e. the total capacity decreased by the sum of the demands visited in the current path). When no
nodes can be added to the path, the vehicle returns to the depot, and its full capacity is restored.
Then, it embarks on another tour. The process is repeated until all nodes have been visited. By

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

applying a similar logic to that of the TSP environment, we can reformulate CVRP as a sequential
node selection problem, taking into account demands and capacity.

0 20 40 60 80
Cost: 1167

0

20

40

60

80

D

Optimal (or BKS)

0 20 40 60 80
Cost: 1200

0

20

40

60

80

D

AM 50

0 20 40 60 80
Cost: 1181

0

20

40

60

80

D

POMO 50

0 20 40 60 80
Cost: 1196

0

20

40

60

80

D

SymNCO 50

0 20 40 60 80
Cost: 1176

0

20

40

60

80

D

AM-XL 50

Figure 10: Sample CVRP tours on CVRPLib’s A-n54-k7 instance with different autoregressive models.

Additional generation details To generate the demand, we randomly sample integers between 1
and 10. Without loss of generality, we fix the capacity of the vehicle at 1.0. Then, we normalize
the demands by multiplying them by a constant that varies according to the size of the CVRP. The
specific constant can be found in our implementation.

B.1.3 ORIENTEERING PROBLEM (OP)

The Orienteering Problem (OP) is a variant of the TSP. In the OP, each node is assigned a prize. The
objective of the OP is to find a tour, starting and ending at the depot, that maximizes the total prize
collected from visited nodes, while abiding by a maximum tour length constraint. The OP can be
framed as a sequential decision-making problem by enforcing the “return to depot” action when no
nodes are visitable due to the maximal tour length constraint.

Additional generation details To generate the prize, we use the prize distribution proposed in
Fischetti et al. (1998), particularly the distribution that allocates larger prizes to nodes further from
the depot.

B.1.4 PRIZE COLLECTING TSP (PCTSP)

In the Prize Collecting TSP (PCTSP), each node is assigned both a prize and a penalty. The objec-
tive is to accumulate a minimum total prize while minimizing the combined length of the tour and
the penalties for unvisited nodes. By making a minor adjustment to the PCTSP, it can model dif-
ferent subproblems that arise when using the Branch-Price-and-Cut algorithms for solving routing
problems.

B.1.5 PICKUP AND DELIVERY PROBLEM (PDP)

The Pickup and Delivery Problem (PDP) is an extension of TSP in the literature Helsgaun (2017);
Ma et al. (2022).9 In PDP, a pickup node has its own designated delivery node. The delivery node
can be visited only when its paired pickup node has already been visited. We call this constraint
precedence constraint. The objective of the PDP is to find a complete tour with a minimal tour
length while starting from the depot node and satisfying the precedence constraints. We assume that
stacking is allowed, meaning that the traveling agent can visit multiple pickups prior to visiting the
paired deliveries. For constructive methods, the PDP solution construction is similar to that of TSP
but must obey precedence constraints. For improvement methods, we consider the ruin and repair
local search operator presented by Ma et al. (2021). In each step, a pair of pickup and delivery nodes
are removed from the current solution and then reinserted back into the solution with potentially
better positions. Invalid actions that violate precedence constraints are masked out to ensure the
feasibility of PDP solutions.

Additional generation details To generate the positions of the depot, pickups, and deliveries, we
sample the node coordinates from the 2D unit square. The first N/2 generated nodes are pickups,
and the remaining N/2 are their respective deliveries. The pickups and deliveries are paired. For a
pickup node i, its respective delivery is i+N/2 (excluding the depot index).

9PDP is also called PDTSP (pickup and delivery TSP).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Open route (O)

< L

0.2

0.1

0.3

0.1

0.2
0.1

Duration limit (L) Time windows (TW)

0.1

0.2
0.4

0.5

0.3

Linehaul demands (C) Backhaul demands (B)

Depot Customer Linehaul Backhaul Feasible route Customer time window

sd:0.5

sd:1.2

sd:0.7

sd:0.2
sd:0.3sd:0

sd:0.2 Service duration

Figure 11: Different VRP attributes. Open routes (O) and duration limits (L) are global attributes, whereas time
windows (TW), capacitated vehicles for linehaul demands (C) and backhaul demands (B) are node attributes.
Attributes may be combined in different ways to define VRP variants.

B.1.6 MULTI-TASK VRP (MTVRP)

This environment introduces the 16 VRP variants in Liu et al. (2024a); Zhou et al. (2024) with
additional enhancements, such as support for any number of variants in the same batch, as done in
Berto et al. (2024). The base logic is the same as CVRP: each node has a demand, and the vehicle has
a specific capacity by which it can deliver to nodes and return to the depot to replenish its capacity,
with the goal of minimizing the total tour distance. We report each modular constraint definition in
the following paragraphs according to Berto et al. (2024); Wouda et al. (2024). Table 8 reports the
list of all variants and Fig. 11 illustrates the meaning of each MTVRP component.

VRP Variant Capacity
(C)

Open Route
(O)

Backhaul
(B)

Duration Limit
(L)

Time Windows
(TW)

CVRP ✓
OVRP ✓ ✓
VRPB ✓ ✓
VRPL ✓ ✓
VRPTW ✓ ✓
OVRPTW ✓ ✓ ✓
OVRPB ✓ ✓ ✓
OVRPL ✓ ✓ ✓
VRPBL ✓ ✓ ✓
VRPBTW ✓ ✓ ✓
VRPLTW ✓ ✓ ✓
OVRPBL ✓ ✓ ✓ ✓
OVRPBTW ✓ ✓ ✓ ✓
OVRPLTW ✓ ✓ ✓ ✓
VRPBLTW ✓ ✓ ✓ ✓
OVRPBLTW ✓ ✓ ✓ ✓ ✓

Table 8: The 16 VRP variants that are modeled by the MTVRP environment. All variants include the base
Capacity (C). The k = 4 features O, B, L, and TW can be combined into any subset, including the empty set
and itself (i.e., a power set) with 2k = 16 possible combinations.

(C) Demand and Vehicle Capacity [q ∈ [0, Q]]: Every node i, except the depot, has a demand qi that
must be satisfied by the vehicle with a uniform capacity of Q > 0. The sum of the demands served
by a vehicle in the same path must not exceed its capacity Q at any point along its route.

(O) Open Routes [o ∈ {0, 1}]: With open routes, the distance between the last node and the depot
is not counted in the total path length. This represents the scenarios where vehicles are not required
to return to the depot after serving all assigned customers. Open routes are commonly found in
scenarios involving third-party drivers, who are typically compensated only for the deliveries they
complete, without the need to return to the depot (Li et al., 2007).

(B) Backhauls [p ∈ [0, Q]]: Backhauls extend the concept of demand to include both delivery and
pickup requests, thus increasing vehicle utilization and leading to savings. Nodes are categorized as

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

either linehaul or backhaul nodes.10 Linehaul nodes require delivery of demand qi from the depot
to the node i (similar to CVRP), while backhaul nodes require a pickup of an amount pi to be trans-
ported from the node back to the depot. A vehicle can serve both linehaul and backhaul customers in
a single route, but all linehaul customers must be served before any backhaul customers. A typical
example of a backhaul problem is a laundry service for hotels that has to deliver clean towels and
pick up dirty ones, in which the precedence constraint of linehaul nodes is important due to possible
contamination (Çatay, 2009).

(L) Duration Limits [l ∈ [0, L]]: Imposes a limit L on the total travel duration (or distance) of
each vehicle route, ensuring a fair distribution of workload among different paths. This limit is
consistently applied to all routes in the problem.

(TW) Time Windows [e, s, l ∈ [0, T]3]: Each node i, except for the depot, has an associated time
window [ei, li], which specifies the earliest and latest times at which it can be visited. When visiting
node i, the vehicle must wait for a time si before leaving. The vehicle must arrive at customer i
before the end of its time window li, but if they arrive before the start of the time window ei, they
must wait at the customer’s location until the time window begins before starting the service. When
the vehicle returns to the depot, the time is reset to 0.

Additional generation details We introduce the data generation details as follows:

Locations: We generate n+1 locations randomly with xi and yi ∼ U(0, 1),∀i ∈ {0, . . . , n}, where
[x0, y0] represents the depot and [xi, yi], i ∈ {1, . . . , n} are the other n nodes.

Capacity: The capacity C of the vehicle is determined based on the following calculation:

C =

30 +
⌊
1000
5 + n−1000

33.3

⌋
if 1000 < n

30 +
⌊
n
5

⌋
if 20 < n ≤ 1000

30 otherwise
.

Open route: the open route is an instance-wise flag: when set to 1, the route is open, when 0 is
closed. We sample the flag from a uniform distribution with the same probability of the route being
open or closed.

Linehaul and Backhaul demands: We generate demands according to the following schema:

1. Generate linehaul demands qi ∈ {0, . . . , Q} for all nodes i ∈ {i, . . . , n}. These are needed
for both backhaul and linehaul scenarios.

2. Generate backhaul demands pi ∈ {0, . . . , Q} for all nodes i ∈ {i, . . . , n}.
3. For each node i ∈ {i, . . . , n}, there is a probability of 0.2 that it is assigned a backhaul

demand, otherwise, its backhaul demand is set to be 0.

Note that even in a backhaul setting, usually not all nodes are backhaul nodes, i.e., we need to
consider both linehaul and backhaul demands in backhaul problem settings. All demands, both
linehauls and backhauls, are scaled to [0, 1] through division by the vehicle capacity.

Duration limits: Each route is assigned a fixed duration limit L with a default value of 3. We check
that 2 ∗ d0i < L to make sure there is a feasible route for any customer.

Time Windows: We generate the time windows for each node i ∈ {1, . . . , n} according to the
following steps:

1. Generate service time si ∈ [0.15, 0.18].
2. Generate time window length ti ∈ [0.18, 0.2].
3. Calculate distance d0i from node to depot.
4. Calculate the upper bound for the start time hi = tmax−si−ti

d0i
− 1, where tmax is the

maximum time with a default value of 4.6.
10Note that another name of this problem, as adopted in LKH3 (Helsgaun, 2017), is VRP with Pickup and

Deliveries (VRPPD). However, we align with PyVRP (Wouda et al., 2024) and do not use this name to prevent
confusion with the one-to-one PDP, as we described before, where there is strict precedence between each pair
of pickup and delivery.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

5. Calculate the start time as ei = (1 + (hi − 1) · ui) · d0i with ui ∼ U(0, 1).

6. Calculate the end time as li = ei + ti.

Classical solvers We employ the SotA HGS implementation in PyVRP (Wouda et al., 2024) and
OR-Tools (Perron and Furnon, 2023). We make these solvers conveniently available through the
solve API of the environment.

B.2 SCHEDULING

Scheduling problems are a fundamental class of problems in operations research and industrial en-
gineering, where the objective is to optimize the allocation of resources over time. These problems
are critical in various industries, such as manufacturing, computer science, and project manage-
ment. Currently, RL4CO implements three central scheduling problems, namely the flexible flow
shop (FFSP), the job shop (JSSP), and the flexible job shop problem (FJSSP). Each of these prob-
lems has unique characteristics and complexities that need to be translated into the environment
classes that we will describe hereafter.

B.2.1 JOB SHOP SCHEDULING PROBLEM (JSSP)

The job shop scheduling problem is a well-known combinatorial optimization problem. It is widely
used in the operations research community as well as many industries, such as manufacturing and
transportation. In the JSSP, a set of jobs J must be processed by a set of machines M . Each job
Ji ∈ J consists of a set of ni operations Oi = {oij}ni

j=1 which must be processed one after another
in a given order. The goal of the JSSP is to construct a valid schedule that adheres to the precedence
order of the operations and minimizes the makespan, i.e., the time until the last job is finished. One
example of such a schedule is shown in Fig. 12.

0 20 40 60 80
Time

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

1112 13 20 24 25 3439 4047 51 52

6 1718 19 2138 4348

1 2 4 527 29 333742

37 1014 15 1623 262831 32 35

8 922 303641 44 45 4649 50

Gantt Chart

Job 0
Job 1
Job 2
Job 3
Job 4
Job 5
Job 6
Job 7
Job 8
Job 9

Figure 12: Example Schedule for the JSSP

We formulate the JSSP as a sequential decision problem following the implementation of Tassel
et al. (2021). Here, the environment iterates through distinct time steps t = 1, . . . , T . At each time
step, the agent decides for each machine whether and which job to process next until all machines
are busy or all jobs are being processed. In this case, the environment transitions to the next time
step at which a machine becomes idle.

Instance Generation We follow the instance generation method described by Zhang et al. (2020),
which assumes that each job has exactly one operation per machine, i.e. ni = |M |. Further,
processing times for all operations are sampled iid. from a uniform distribution, with parameters
specified in Table 9.

B.2.2 FLEXIBLE JOB SHOP SCHEDULING PROBLEM (FJSSP)

The flexible job shop scheduling problem is very similar to the JSSP. However, while in the classical
JSSP, each operation oij ∈ O has a specified machine and processing time pij , the flexible job shop

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

scheduling problem (FJSSP) relaxes this assumption by allowing each operation to be processed by
multiple eligible machines Mk ⊆ M , potentially with different processing times pijk associated
with the respective operation-machine pair. As a consequence, the agent does not only need to
decide which job to process next, but also on which machine it should be processed.

Instance Generation We follow the instance generation method described by Song et al. (2022),
who sample ni operations for each job Ji from a uniform distribution. Further, an average processing
time p̄ij is drawn for each operation oij ∈ O, and the actual processing time per eligible operation-
machine pair is subsequently sampled from U(0.8 · p̄ij , 1.2 · p̄ij). The parameters used for instance
generation can be found in Table 9.

Table 9: Instance generation parameters

JSSP FJSSP
6× 6 10× 10 15× 15 20× 20 10× 5 20× 5 15× 10 20× 10

|J | 6 10 15 20 10 20 15 20
|M | 6 10 15 20 5 5 10 10
ni 6 10 15 20 U(4, 6) U(4, 6) U(8, 12) U(8, 12)
p̄ij U(1, 99) U(1, 99) U(1, 99) U(1, 99) U(1, 20) U(1, 20) U(1, 20) U(1, 20)
|Mi| 1 1 1 1 U(1, 5) U(1, 5) U(1, 10) U(1, 10)

B.2.3 FLEXIBLE FLOW SHOP PROBLEM (FFSP)

The flexible flow shop problem (FFSP) is a complex and widely studied optimization problem in
production scheduling. It involves N jobs to be processed in S stages, each containing multiple
machines (M > 1). Each job must pass through the stages in a specified order, but within each
stage, it can be processed by any available machine. A critical constraint is that no machine can
process more than one job at a time. The objective is to find an optimal schedule that minimizes the
total time required to complete all jobs. We formulate the FFSP as a sequential decision process,
where at each time step t = 0, 1, ... and for each idle machine, the agent must decide whether
and which job to schedule. If all machines are busy or all jobs are currently being processed, the
environment moves to the next time step t + 1, and the process repeats until all jobs for each stage
have been scheduled.

Instance Generation We follow the data generation process described by Kwon et al. (2021),
who sample processing times for each job-machine pair and for every stage independently from a
discrete uniform distribution.

B.3 ELECTRONIC DESIGN AUTOMATION

c. This involves solving complex problems that can be either continuous, such as cell placement
(Hou et al., 2024), or combinatorial, like decap placement (Kim et al., 2023). RL4CO integrates CO
problems in EDA as benchmarking environments.

B.3.1 DECAP PLACEMENT PROBLEM (DPP)

The decap placement problem (DPP) is an electronic design automation problem (EDA) in which
the goal is to maximize the performance with a limited number of the decoupling capacitor (decap)
placements on a hardware board characterized by asymmetric properties, measured via a probing
port. The decaps cannot be placed on the location of the probing port or in keep-out regions (which
represent other hardware components) as shown in Fig. 13. The optimal placement of a given num-
ber of decaps can significantly impact electrical performance, specifically in terms of power integrity
(PI) optimization. PI optimization is crucial in modern chip design, including AI processors, espe-
cially with the preference for 3D stacking memory systems like high bandwidth memory (HBM)
(Hwang et al., 2021). For comprehensive details, we follow the configuration guidelines provided
in (Kim et al., 2023).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Industrial & Systems Engineering 6

Package
PDN

Interposer
PDN

Hardware
Device

On-chip
PDN

𝑍𝑍1,1 ⋯ 𝑍𝑍1,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑟𝑟𝑐𝑐
⋮ ⋱ ⋮

𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑟𝑟𝑐𝑐,1 ⋯ 𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑟𝑟𝑐𝑐,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑟𝑟𝑐𝑐
𝑍𝑍1,1 ⋯ 𝑍𝑍1,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑟𝑟𝑐𝑐
⋮ ⋱ ⋮

𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑟𝑟𝑐𝑐,1 ⋯ 𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑟𝑟𝑐𝑐,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑟𝑟𝑐𝑐

𝑍𝑍1,1 ⋯ 𝑍𝑍1, 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑟𝑟𝑐𝑐
⋮ ⋱ ⋮

𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑟𝑟𝑐𝑐,1 ⋯ 𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑟𝑟𝑐𝑐, 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑟𝑟𝑐𝑐 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

EM simulation at the probing port

𝑱𝑱(𝒂𝒂;𝒙𝒙)Keep-Out
Probing Port

Decap

Frequency-dependent Impedances

Objective function

Figure 13: Grid representation of the target on-chip PDN for the DPP problem with a single probing port from
Kim et al. (2023).

Baseline solvers We employ two meta-heuristic baselines commonly used in hardware design as
outlined in (Kim et al., 2023): random search (RS) and genetic algorithm (GA) (Juang et al., 2021).
GA has shown promise as a method for addressing the decap placement problem (DPP).

Instance generation details We use the same data for simulating the hardware board as Kim et al.
(2023), with power distribution network (PDN) datasets from Park et al. (2023a). We randomly
select one probing port and a number between 1 and 50 keep-out regions sampled from a uniform
distribution for generating instances. As in the routing benchmarks, we select seed 1234 for testing
the 100 instances.

B.3.2 MULTI-PORT DECAP PLACEMENT PROBLEM (MDPP)

We further consider a more complex and realistic version compared to Kim et al. (2023). The multi-
port decap placement problem (mDPP) is a generalization of DPP from Appendix B.3.1 in which
measurements from multiple probing ports are performed. The objective function can be either the
mean of the reward from the probing ports: 1) (Maxsum): the objective is to maximize the average
PI among multiple probing ports and 2) (Maxmin): maximize the minimum PI between them.

Instance generation details The generation details are the same as DPP, except for the probing
port. A number of probing ports between 2 and 5 is sampled from a uniform distribution, and
probing ports are randomly placed on the board, just like the other components.

B.4 GRAPH

Many CO problems can be (re-)formulated on graphs (Khalil et al., 2017). In typical CO problems
on graphs, actions are defined on nodes/edges, while problem variables and constraints are incor-
porated in graph topology and node/edge attributes (e.g., weights). The graph-based formulation
gives us concise and systematic representations of CO problems. Moreover, existing traditional and
machine-learning algorithms for graphs are off-the-shelf tools.

B.4.1 FACILITY LOCATION PROBLEM (FLP)

The optimal usage of limited resources is an important problem to consider in many different fields
and has various forms. One specific form of such a problem can be formulated as the facility location
problem (FLP), where one aims to choose a given number of locations among given candidates, and
the objective is to minimize the overall cost of service (e.g., the sum of the distance from the users
to the nearest facility) (Drezner and Hamacher, 2004).

Many real-world problems can be abstracted as instances of FLP. For example, franchise brands may
need to determine where to open new retail stores to maximize accessibility and profitability (Shan
et al., 2019); governments may need to consider the placement of public facilities (e.g., hospitals

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

and schools) to maximize the convenience for citizens to use them (Marianov et al., 2002); energy
companies may need to determine the best locations for power centers (e.g., power plants and wind
farms) to minimize transmission losses (Lotfi et al., 2018).

Formal definition We consider the following specific form of the facility location problem (FLP)
used in existing NCO literature (Wang et al., 2022; Bu et al., 2024): (1) given a group of n lo-
cations x1, x2, . . . , xn ∈ Rd in a d-dimensional space (usually d = 2 or 3) and k < n, (2) we
aim to choose k locations xi1, xi2, . . . , xik among the given n locations as the locations of fa-
cilities, (3) to minimize the sum of the distance from all the n locations to the nearest facility,
i.e.,

∑n
j=1 minkt=1 dist(xj , xit). We specially consider the Euclidean distance, i.e., dist(xi, xj) =

∥xi − xj∥2.

Instance generation details The locations are (d = 2)-dimensional generated i.i.d. at random.
For each location, each coordinate is sampled i.i.d. uniformly at random between 0 and 1. Each
instance contains n = 100 locations, and k = 10 locations are to be chosen.

Classical solvers We apply two MIP solvers, Gurobi (Gurobi Optimization, 2021) and
SCIP (Bestuzheva et al., 2021), to obtain the optimal solutions.

B.4.2 MAXIMUM COVERAGE PROBLEM (MCP)

In many real-world scenarios, one needs to allocate limited resources to achieve maximum coverage,
which is a fundamental concern across various domains. One specific formulation is called the
maximum coverage problem (MCP), where the goal is to select a subset of sets from a given family
of sets to maximize the coverage, i.e., the (weighted) size of the union of the selected sets (Khuller
et al., 1999).

As a mathematical abstraction, the MCP can be used to represent many real-world problems. For
example, radio frequency identification (RFID) system engineers may need to set RFID readers in
an optimal way to ensure the maximum coverage of RFID tags (Ali et al., 2011); marketers may
need to choose proper forms of advertisement to reach the maximum number of customers (Sun
et al., 2018); in security applications (e.g., deploying security cameras), one may need to select the
optimal deployment to maximize the coverage of the protected area (Murray et al., 2007).

Formal definition We consider the following specific form of the maximum coverage problem
(MCP) used in existing NCO literature (Wang et al., 2022; Bu et al., 2024): (1) given m items
(WLOG, [m] := {1, 2, 3, . . . ,m}), where each item t has weight wt, and a family of n sets
S1, S2, . . . , Sn ⊆ [m] for some positive integer m and k < n, (2) we aim to choose k sets
Si1, Si2, . . . , Sik among the given n sets, (3) to maximize the total weighted coverage of the k cho-
sen sets, which is the sum of the weights of items contained in any chosen set, i.e.,

∑
t∈⋃k

j=1 Sij
wt.

Instance generation details First, m = 200 items are generated, and the item weights are gener-
ated i.i.d., where each weight is a random integer sampled between 1 and 10 (inclusive) uniformly at
random. Then, n = 100 sets are generated i.i.d., where for each set, we first sample its size between
5 and 15 uniformly at random and then choose that number of items uniformly at random. After
generation, k = 10 locations are to be chosen.

Classical solvers We apply two MIP solvers, Gurobi (Gurobi Optimization, 2021) and
SCIP (Bestuzheva et al., 2021), to obtain the optimal solutions.

B.5 ADDITIONAL ENVIRONMENTS AND BEYOND

We also include in the library additional environments that have been implemented but not fully
benchmarked in this paper yet, such as the ATSP, mTSP, Skill-VRP, SMTWTP, and SPCTSP, to
name a few. We did not count these in the total environment count (hence the “conservative” esti-
mate). Moreover, several projects, among which co-authors of this paper, have adapted several new
environments to their own tasks, which may be included in the future.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Although RL4CO already contains several environments, we acknowledge that the library can be
further extended within new directions, which we briefly describe. One such direction is multi-
objective combinatorial optimization (Lin et al., 2022; Chen et al., 2024), which is a recently trend-
ing research topic of practical importance. Moreover, providing modular reward evaluators to op-
timize different objectives (for instance, min-max, tardiness) is another avenue of research that we
recommend exploring (Park et al., 2023b). Of practical importance is also non-euclidean routing,
which so far has received comparatively less attention in this field but is practically important (i.e.,
DIMACS challenge11). Finally, multi-agent CO (Falkner and Schmidt-Thieme, 2020; Tang et al.,
2024a;b; Bettini et al., 2023) is another interesting area of research, which recent approaches model
as a sequential decision-making process (Son et al., 2024; Zheng et al., 2024).

Implementing new environments is relatively easy: we created a notebook under the examples/
folder demonstrating how one can implement a custom environment from the base logic to a fully
functioning model. We expect to host an even wider variety of environments in the future, thanks to
the community, and invite contributors to help us in our journey.

C BASELINES

This section provides an overview of the key components and methods implemented in RL4CO that
can be used as baselines for comparative evaluation. The term “baselines” broadly refers to both the
RL algorithms that define the learning objectives and update rules, as well as the policy architectures
that parameterize the agent’s behavior in the environment, given that several papers introduce a mix
of RL training schemes and policy improvements. We categorize baselines into:

1. General-purpose RL algorithms (C.1)
2. Constructive autoregressive (AR) methods (C.2)
3. Constructive non-autoregressive (NAR) methods (C.3)
4. Improvement methods (C.4)
5. Active search methods (C.5)

C.1 GENERAL-PURPOSE RL ALGORITHMS

In the following descriptions of RL algorithms, we use the notations of a full problem instance x
and a complete solution a for simplicity. However, note that these algorithms are also applicable to
the usual notion of the sum of rewards over partial states st and actions at.

C.1.1 REINFORCE (SUTTON ET AL., 1999)

REINFORCE (also known as policy gradients in the literature) is an online RL algorithm whose loss
function gradient is given by:

∇θLa(θ|x) = Eπ(a|x) [(R(a,x)− b(x))∇θ log π(a|x)] , (5)
where b(·) is a baseline function used to stabilize training and reduce gradient variance. The choice
of b(·) can greatly influence the final performance.

C.1.2 ADVANTAGE ACTOR-CRITIC (A2C) (KONDA AND TSITSIKLIS, 1999)

A2C is an algorithm that can be used to solve the RL objective in Eq. (3). It consists of an actor (pol-
icy network) and a critic (value function estimator). The actor is trained to maximize the expected
cumulative reward by following the policy gradient, while the critic is trained to estimate the value
function. The advantage function, computed as the difference between the reward R(a,x) and the
value function V (x), is used to weight the policy gradient update for the actor. This can be seen
as a modification of the REINFORCE gradient, where the baseline b(x) is replaced by the value
function V (x):

∇θLa(θ|x) = Eπ(a|x) [(R(a,x)− V (x))∇θ log π(a|x)] . (6)

11http://dimacs.rutgers.edu/programs/challenge/vrp/

31

http://dimacs.rutgers.edu/programs/challenge/vrp/

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

The critic is updated by minimizing the mean-squared error between the estimated value function
and the target value, which is the reward for the given problem instance x:

Lc = Ex∼P (x)(R(a,x)− V (x))2. (7)
By using the advantage function, A2C reduces the variance of the policy gradient and stabilizes
training compared to the standard REINFORCE algorithm.

C.1.3 PROXIMAL POLICY OPTIMIZATION (PPO) (SCHULMAN ET AL., 2017)

PPO is another algorithm that can be used to solve the RL objective in Eq. (3). It is an on-policy
algorithm that aims to improve the stability of policy gradient methods by limiting the magnitude
of policy updates. To this end, PPO introduces a surrogate objective function that constrains the
probability ratio between the target policy πθ that is optimized and a reference policy πθold , which
is periodically updated. This clipping mechanism prevents drastic changes to the target policy,
ensuring more reliable and stable learning. Formally, the PPO objective function is given by:

LCLIP(θ) = Ex∼P (x)

[
Ea∼πθold (a|x)

[
min(

πθ(a|x)
πθold(a|x)

Aπθold (x,a),

clip(
πθ(a|x)
πθold(a|x)

, 1− ϵ, 1 + ϵ)Aπθold (x,a))
]]
, (8)

where θold represents the parameters of the reference policy, typically a periodically created copy of
the parameters θ of the target policy. Further, Aπθold (x,a) is the advantage function estimated using
the reference policy, and ϵ is a hyperparameter that controls the clipping range, typically set to a
small value like 0.2.

The advantage function in PPO is estimated using a learned value function Vϕ(x), where ϕ repre-
sents the parameters of the value function. The advantage is computed as:

Aπθold (x,a) = R(a,x)− Vϕ(x). (9)
The value function is learned by minimizing the mean-squared error between the estimated value
and the actual return:

LV (ϕ) = Ex∼P (x)

[
(R(a,x)− Vϕ(x))

2
]
. (10)

An optimization step in PPO updates both, the parameters θ of the target policy and the parameters
ϕ of the value function by combining LCLIP and LV (ϕ) in a single loss LPPO = LCLIP + βLV (ϕ),
where β is a hyperparameter Schulman et al. (2017).

C.2 CONSTRUCTIVE AUTOREGRESSIVE (AR)

C.2.1 ATTENTION MODEL (AM) (KOOL ET AL., 2019A)

The Attention Model (AM) from Kool et al. (2019a) is an encoder-decoder architecture based on the
self-attention mechanism Vaswani et al. (2017) that is at the heart of several state-of-the-art NCO
methods, including RL-based ones (Kwon et al., 2020; Kim et al., 2022; Hottung et al., 2024) as well
as (self-)supervised ones (Drakulic et al., 2023; Luo et al., 2024a;b). In the original AM, only node
features are considered: with abuse of notation from Fig. 3, we consider the InitEmbedding as
the node embedding, and split the context embedding into a ContextEmbedding which updates
the current query and DynamicEmbedding that updates the current cached keys and values.

Multi-Head Attention Before delving into the encoder and decoder structures, we briefly intro-
duce the notion of Multi-Head Attention (MHA) from Vaswani et al. (2017), since it is used across
several NCO methods. MHA allows the model to jointly attend to information from different rep-
resentation subspaces at different positions, enabling it to capture various relationships between the
input elements. Importantly, it is flexible in handling a variable number of elements.

In the MHA operation, the input sequences Q (queries), K (keys), and V (values) are linearly
projected to H different subspaces using learned matrices WQ

i , WK
i , and WV

i , respectively, where
H is the number of attention heads:

Qi = QWQ
i (11)

Ki = KWK
i (12)

Vi = VWV
i (13)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

for i = 1, . . . ,H .

The attention weights are computed as the scaled dot-product between the queries and keys, followed
by a softmax operation:

Ai = Softmax
(
QiK

T
i√

dk
+M

)
(14)

where dk is the dimension of the keys, used as a scaling factor to prevent the dot-products from
getting too large, and M is an optional mask matrix that can be used to prevent attention to certain
positions (e.g. infeasible actions in a CO problem).

The output of each attention head is computed as the weighted sum of the values, using the attention
weights:

Zi = AiVi (15)
Finally, the outputs of all attention heads are concatenated and linearly projected using a learned
matrix WO to obtain the final output of the MHA operation:

MHA(Q,K, V) = Concat(Z1, . . . , ZH)WO (16)
This multi-head attention mechanism allows the model to learn different attention patterns and cap-
ture various dependencies between the input elements, enhancing the representational power of the
model. The queries, keys, and values can come from the same input sequence (self-attention, i.e.
Q = K = V) or from different sequences (cross-attention), depending on the application. While the
attention operation is at the core of much of the current SotA deep learning (Touvron et al., 2023),
this scales as O(L)2 where L is the sequence length, such as the number of nodes in a TSP. Thus,
an efficient implementation such as FlashAttention (Dao et al., 2022; Dao, 2023) is important, as
shown in Appendix E.7.2.

Encoder The encoder’s primary task is to encode input x into a hidden embedding h. The struc-
ture of fθ comprises two trainable modules: the InitEmbedding and encoder blocks. The
InitEmbedding module typically transforms problem features into the latent space and problem-
specific compared to the encoder blocks, which often involve plain multi-head attention (MHA):

h = fθ(x) ≜ EncoderBlocks(InitEmbedding(x)) (17)

Each encoder block in the AM is composed of an Attention Layer, similar to Vaswani et al. (2017).
Each layer ℓ is composed of multi-head attention (MHA) for message passing and a Multi-Layer
Perceptron (MLP, also known as feed-forward network (FFN)), with skip-connections and normal-
ization (Norm):

ĥ = Norm
(
h(ℓ−1) + MHA(h(ℓ−1),h(ℓ−1),h(ℓ−1))

)
(18)

h(ℓ) = Norm
(
ĥ+ MLP(ĥ)

)
(19)

with ℓ = [1, . . . , N] where N is the number of encoding layers and h0 = InitEmbedding(x). In
the encoder side, we have Q = K = V = h(ℓ−1)), hence self-attention.

The original implementation of the AM uses N = 3 layers H = 8 heads of dimension dk = dh
M =

16, an MLP with one hidden layer of dimension 512 with a ReLU activation function, and a Batch
Normalization (Ioffe and Szegedy, 2015) as normalization.

Embedding

Encoder Decoder

Initial

Layers

Encoder

Environment

Context Embedding

Dynamic Embedding

Node 1

Node 2

Node i

Node N

…
…

…
…

Node 1

Node 2

Node i

Node N

States current_state=i

…

…

…

…

…

…

Node 1

Node 2

Node i

Node N

…
…

…
…

…
…

Decoder

Layers

Hidden States

Action

reset()

step()

Action

Probabilities

Node 1

Node 2

Node i

Node N

…

…
…

…

…

…

Node Features

Figure 14: An overview of the modularized Attention Model policy in RL4CO.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Decoder The decoder gθ autoregressively constructs the solution based on the encoder output h
and the state at current step t, st. The solution decoding involves iterative steps until a complete
solution is constructed: at each step, starting from the current node’s i query qit

qit = ContextEmbedding(h, st), (20)

hct = MHA(qit,K
g
t , V

g
t ,Mt), (21)

z =
V p
t h

c
t√

dk
(22)

where Mt is the set of feasible actions (i.e. the action_mask), projections Kg
t , V

g
t , V

p
t =

W g
kh,W

g
v h,W

p
v h can either be precomputed once as cache or updated via a dynamic embedding

Kg
t , V

g
t , V

p
t = DynamicEmbedding(W g

k h,W
g
v h,W

p
v h, st,h,x),, depending on the problem.

We note that Eq. (22) is usually referred to as the pointer mechanism (in the codebase, we refer
to Eq. (21) and Eq. (22) as the PointerAttention). Finally, logits z (unnormalized output of
policy π) are transformed into a probability distribution over the action space:

p = Softmax (C · tanh(z)) (23)
where logits z for infeasible actions can be set to −∞ to avoid choosing them; and the C value
(called tanh clipping, usually set to 10) serves in improving the exploration (Bello et al., 2017). We
note that Eq. (23) can also include additional operations such as temperature scaling, top-k, and
top-p filtering.

Baseline Kool et al. (2019a) additionally introduces the rollout baseline b for Eq. (5). At the end of
each epoch, a greedy rollout of a baseline policy πBL is executed for each of the sampled instances
x, whose values become baselines for REINFORCE. The algorithm compares the current training
policy with a saved baseline policy (similar to the DQN target network (Mnih et al., 2015)) at the
end of every epoch, and replace the parameters of πBL with the current trained π if the improvement
is significant with a paired t-test of (i.e., 5% in the original paper).

C.2.2 PTR-NET (VINYALS ET AL., 2015)

The original Pointer Network (Ptr-Net) is introduced in Vinyals et al. (2015) and further refined to be
trained with RL in (Bello et al., 2017). The base architecture predates the AM (Kool et al., 2019a):
an attention mechanism is employed to select outputs of variable length, thus “pointing” at them.
The baseline architecture additionally uses an LSTM (Hochreiter and Schmidhuber, 1997), which
in practice has less expressivity than full-fledged attention.

C.2.3 POMO (KWON ET AL., 2020)

POMO introduces the shared baseline to lower the REINFORCE variance. The key idea is that one
can sample rollouts when decoding by forcing diverse starting nodes, which is a powerful inductive
bias for certain problems, such as the TSP, in which multiple optimal initial starting points exist.
The baseline bshared is the average of all rollouts:

bshared(s) =
1

N

N∑

j=1

R(aj ,x) (24)

where N is the number of sampled trajectories (typically set as the number of nodes).

C.2.4 SYMNCO (KIM ET AL., 2022)

SymNCO considers the symmetric nature of combinatorial problems and solutions. There are two
major symmetries in combinatorial optimization: 1) Problem symmetries: The representation of
the input 2D coordinates should have equivalent optimal solution sets and 2) Solution symmetries:
Multiple permutations can represent an identical cyclic line graph. To reflect this symmetric nature,
SymNCO augments the AM architecture by incorporating an auxiliary invariant representation loss
function to ensure input 2D symmetries. Additionally, SymNCO employs a shared baseline as
Eq. (24) similar to POMO but samples rollouts from both different symmetric problem inputs and
solutions together. The implementation is not vastly different from AM and POMO; the primary
addition is the symmetric-aware augmentation functions.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

C.2.5 POLYNET (HOTTUNG ET AL., 2024)

The PolyNet method proposed by Hottung et al. (2024) enables the learning of a set of complemen-
tary solution strategies within a single model. This facilitates the easy sampling of diverse solutions
at test time, resulting in improved exploration of the search space and, consequently, enhanced over-
all performance. Unlike many other approaches, PolyNet does not artificially increase exploration
by forcing diverse starting actions, as initially proposed by Kwon et al. (2020). Instead, PolyNet uti-
lizes its inherent diversity mechanism, based on its novel architecture and the Poppy loss (Grinsztajn
et al., 2023; Chalumeau et al., 2024):

∇θL = Eπ(a∗|x) [(R(a
∗,x)− b◦(x))∇θ log πθ(a

∗|x)] , (25)
to facilitate exploration during the search process, where a∗ is the best solution of K PolyNet sam-
ples and b◦(x)) is the average reward of theK samples. This can improve performance for problems
in which the first action greatly influences the performance.

C.2.6 HAM (LI ET AL., 2021)

The Heterogeneous Attention Model (HAM) (Li et al., 2021) is a model specialized for Pickup
and Delivery problems (PDP, Appendix B.1.5), characterized by hard one-to-one precedence con-
straints. To differentiate between pickup and delivery pairs, it introduces ad hoc encoder blocks with
a specialized attention mechanism that can differentiate between pickup and delivery pairs.

C.2.7 MTPOMO (LIU ET AL., 2024A)

The MTPOMO developed by Liu et al. (2024a) proposes to adopt a unified model to learn across
various VRP variants. It is motivated by the fact that the diverse VRPs are different combinations of
several shared underlying attributes. By training on a limited number of VRPs with basic attributes,
the model is capable of generalizing to a vast array of VRP variants, each representing different
combinations of these attributes. This approach extends POMO (Kwon et al., 2020) by incorporating
an attribute composition block, facilitating learning across different problems. The cross-problem
learning demonstrates promising zero-shot generation performance on unseen VRPs and benefits
out-of-distribution performance.

C.2.8 MVMOE (ZHOU ET AL., 2024)

The MVMoE architecture proposed by Zhou et al. (2024) incorporates mixture-of-experts
(MoEs) (Jacobs et al., 1991; Jordan and Jacobs, 1994; Shazeer et al., 2017) into attention-based
model (e.g., POMO (Kwon et al., 2020)), such that the model capacity can be greatly enhanced with-
out a proportional increase in computation. For the encoder part, MVMoE replaces a feed-forward
network (FFN) with an MoE layer, which typically consists of 1) m experts {E1, E2, . . . , Em},
each of which is also an FFN with independent trainable parameters, and 2) a gating network G
parameterized by WG, which decides how the inputs are distributed to experts. Given a single input
x, G(x) and Ej(x) denote the output of the gating network (i.e., an m-dimensional vector), and the
output of the jth expert, respectively. The output of an MoE layer is calculated as:

MoE(x) =
m∑

j=1

G(x)jEj(x). (26)

The gating algorithm follows the node-level input-choice gating proposed by Shazeer et al. (2017),
which leverages a sparse gating network: G(x) = Softmax(TopK(x · WG)). In this way, only
k experts with partial model parameters are activated, hence saving the computation. For the de-
coder part, MVMoE replaces the final linear layer of MHA with an MoE layer, including m linear
layers and a gating network G. To balance the empirical performance and computational com-
plexity, a hierarchical gating mechanism is further proposed to utilize MoEs during decoding effi-
ciently. In this case, the MoE layer in the decoder includes two gating networks {G,G′}, m experts
{E1, E2, . . . , Em}, and a dense layer D. Given a batch of inputs X , the hierarchical gating routes
them in two stages. In the first stage, G′ decides to distribute inputs X to either the sparse or dense
layer. In the second stage, if X is routed to the sparse layer, the gating network G is activated to
route nodes to experts on the node level by using the default gating algorithms, i.e., the input-choice
gating. Otherwise, X is routed to the dense layer D and transformed into D(X). In summary, the
hierarchical gating learns to output G′(X)0

∑m
j=1G(X)jEj(X) or G′(X)1D(X). Empirically, hi-

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

erarchical gating has been found to be more efficient, albeit with a slight sacrifice in in-distribution
performance, while demonstrating superiority with out-of-distribution data.

C.2.9 L2D (ZHANG ET AL., 2020)

Learning to Dispatch (L2D) proposed by Zhang et al. (2020) is a DRL method to solve the JSSP.
It comprises of the usual encoder-decoder structure, where a graph convolution network (GCN) is
employed to extract hidden representations from the JSSP instance. To this end, L2D formulates the
JSSP as a disjunctive graph, with nodes reflecting the operations of the problem instance. Nodes of
operations that belong to the same job are connected via directed arcs, specifying their precedence
relation. Moreover, operations to be processed on the same machine are connected using undirected
arcs. Using the resulting neighborhood N of the nodes, the GCN performs massage passing be-
tween adjacent operations to construct their hidden representations. Formally, let h0 be the initial
embeddings of operations O and Ã the adjacency matrix with added self-loops of operations, then
a graph convolutional layer can be described as follows:

h(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2h(l)W (l)

)

Here, h(l) are the operation embeddings at layer l, W (l) is a trainable weight matrix at layer l, and
σ(·) is an activation function such as ReLU. Further, D̃ is the diagonal degree matrix of Ã, ensuring
appropriate scaling of the features.

Given the operation embeddings, the decoder of L2D first extracts for each job the embedding of
the operation that needs to be scheduled next and then feeds them to an MLP f : RJ×d → RJ×1 to
obtain logits for each job j ∈ (1, ..., J). In contrast to Kool et al. (2019a) for example, who encode
the CO problem once and then generate actions autoregressively using only the decoder, Zhang et al.
(2020) use the GCN encoder after each step to generate new hidden representations that reflect the
current state of the problem.

C.2.10 HGNN (SONG ET AL., 2022)

The heterogeneous graph neural network (HGNN) is a neural network architecture proposed by Song
et al. (2022) to solve the FJSSP. Similar to L2D, HGNN considers an FJSSP instance as a graph.
However, instead of treating an FJSSP instance as a disjunctive graph, Song et al. (2022) formulate it
as heterogeneous graph with operations and machines posing different node types. Again, operations
are connected to each other via directed arcs that specify the precedence relation. Machines are only
connected to operations that they are able to process, and the edge weights indicate the respective
processing times. To encode the graph, HGNN first projects operationsO ∈ x and machinesM ∈ x
into a mutual embedding space Rd using type-specific transformations WO and WM , respectively.
Given the initial hidden representations h0

i and h0
k for operations oi ∈ O and machines mk ∈ M ,

respectively, as well as edge embeddings hik, an HGNN layer conducts weighted message passing
between operations and machines using the processing times of operation-machine pairs:

hl+1
i =

∑

j∈Ni

ϵih
l
j , where (27)

ϵij = Softmax
j∈Ni

(a⊤[hl
j ||hij]). (28)

Since operations in the FJSSP can be processed by multiple machines, the decoder must specify
not only which job to process next but also on which machine the operation of the selected job
should be executed. To this end, Song et al. (2022) concatenates the hidden representations of every
operation with the embeddings of every machine. The resulting embeddings are fed to an MLP
f : RJ×M×2d → RJ×M×1, which generates the sampling probabilities for the respective action.

C.2.11 MATNET (KWON ET AL., 2021)

The MatNet architecture proposed by Kwon et al. (2021) adjusts the attention model Kool et al.
(2019a) so that it is applicable to bipartite graphs with node types I and J as well as a weight
matrix E ∈ R|I|×|J | corresponding to the edges connecting nodes from the two sets. The novelty
of this architecture is that instead of using self-attention as in the attention model, MatNet uses cross-

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

attention to perform message passing between both node sets and augments the resulting attention
scores with the weight matrix E. Formally, let Z be the set of all nodes i ∈ I ∪ J , Zϕi

the subset
of nodes of the same type as i and Z∁

ϕi
the set of nodes of the respective type. Then, cross-attention

is defined as:12

α′
ij =

q⊤
i kj√
dk

, ∀i ∈ Z, j ∈ Z∁
ϕi

(29)

where
qi =WQ

ϕi
hl−1
i kj =WK

ϕi
hl−1
j (30)

and weight matricesWQ
ϕi

andWK
ϕi

∈ Rdk×dh being learned by the update function corresponding to
nodes of type ϕi. After that, MatNet augments α′

ij with the corresponding edge weight eij and maps
it through a feed-forward neural network FF : R2 → R to a scalar score, which is then normalized
using the softmax function:

αij =
exp(ϵij)∑

q∈Z∁
ϕi

exp(ϵiq)
, ϵij = FF

(
[α′

ij ||eij]
)

(31)

The resulting weights are used to compute a weighted average of the embeddings vj = WV
ϕi
hl−1
j

of the nodes in Z∁
ϕi

. In the end, skip connections, layer normalization (LN), and feed-forward
layers are used as in Vaswani et al. (2017). Besides the original MatNet implementation, RL4CO
also implements a version that applies both self- and cross-attention, successively as proposed by
Luttmann and Xie (2024). This makes MatNet not only applicable to bipartite graph problems but
to the more general class of heterogeneous graphs Luttmann and Xie (2024).

C.2.12 DEVFORMER (KIM ET AL., 2023)

We employ online RL variants of DevFormer (Kim et al., 2023) (DF), an Attention-Model (Kool
et al., 2019a) variant specifically designed for autoregressive construction of DPP solutions from
Appendix B.3.1. We note that the DF training scheme was initially designed for offline training;
however, in this study, we benchmark DF as a sample-efficient online reinforcement learning ap-
proach. We benchmark the DF version for RL with the same node and context embedding structure
as the original in Kim et al. (2023). We modify the embeddings in the mDPP environment (Ap-
pendix B.3.2) version to include the location of multiple probing ports. Min-max and min-sum
mDPP versions utilize the same embeddings and are trained separately.

C.3 CONSTRUCTIVE NON-AUTOREGRESSIVE (NAR)

C.3.1 DEEPACO (YE ET AL., 2023)

Ant Colony Optimization (ACO) is an evolutionary algorithm that has been successfully applied to
various COPs. Traditionally, customizing ACO for a specific problem requires the expert design
of knowledge-driven heuristics. However, this routine of algorithm customization exhibits certain
deficiencies: 1) it requires extra effort and makes ACO less flexible; 2) the effectiveness of the
heuristic measure heavily relies on expert knowledge and manual tuning; and 3) designing a heuristic
measure for less-studied problems can be particularly challenging, given the paucity of available
expert knowledge.

DeepACO is designed to automatically strengthen the heuristic measures of existing ACO algo-
rithms and dispense with laborious manual design in future ACO applications. DeepACO consists
of two stages: 1) training a neural model to map a COP instance to its heuristic measures, and 2) in-
corporating the learned heuristic measures into ACO to bias solution constructions and local search.
During the training phase, DeepACO parameterizes the heuristic space with a graph neural network
(GNN) (Joshi et al., 2019). It trains the GNN across COP instances with REINFORCE, towards
minimizing the expected objective value of both constructed solutions and solutions refined by local
search. During the inference phase, DeepACO utilizes the well-trained GNN to generate heuristic

12For succinctness, note that we omit head and layer enumeration.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

measures for ACO. Optionally, DeepACO interleaves local search with neural-guided perturbation
to refine the constructed solutions. For more details, please refer to (Ye et al., 2023).

DeepACO is the first NAR model implemented in RL4CO, laying the foundation for other NAR
models later integrated into RL4CO. DeepACO offers a versatile methodological framework that
allows for further algorithmic enhancements in neural architecture, training paradigms, decoding
strategies, and problem-specific adaptations. Notable improvements over DeepACO are introduced
by GFACS (Kim et al., 2024).

C.3.2 GFACS (KIM ET AL., 2024)

While DeepACO (Ye et al., 2023) provides promising results and opens new doors for pretraining
heuristic measures for the ACO algorithm using deep learning, their method is sub-optimal for two
major reasons. Firstly, they utilized policy gradient reinforcement learning (RL), which is an on-
policy method that cannot leverage powerful off-policy techniques such as local search. Secondly,
their method cannot effectively capture the multi-modality of heuristic distribution because the RL
method cannot accurately model multi-modal probabilistic distributions considering the symmetric
nature of combinatorial space, where multiple trajectories can lead to identical solutions.

The methodology of GFACS shares a very similar structure with DeepACO. The key difference
lies in the learning procedure; GFACS employs generative flow networks (GFlowNets) (Bengio
et al., 2021a; 2023) for learning the heuristic matrix. Additionally, they leverage effective off-policy
exploration methods using local search. The inference procedure with the learned heuristic matrix
remains exactly the same. With the RL4CO modular implementation, both DeepACO and GFACS
can run similarly and be comparable at the modular level, allowing future researchers to improve
certain modules of training or inference.

C.3.3 GLOP (YE ET AL., 2024B)

Most NCO methods struggle with real-time scaling-up performance; they are unable to solve routing
problems involving thousands or tens of thousands of nodes in seconds, falling short of the needs
of modern industries. GLOP (Global and Local Optimization Policies) is proposed to address this
challenge. It partitions a large routing problem into sub-TSPs and further partitions potentially large
(sub-)TSPs into small Shortest Hamiltonian Path Problems (SHPPs). It is the first hybrid method to
integrate NAR policies for coarse-grained problem partitions and AR policies for fine-grained route
constructions, leveraging the scalability of the former and the meticulousness of the latter.

1) AR (Sub-)TSP Solver. The (Sub-)TSP Solver in GLOP initializes TSP tours using a Random
Insertion heuristic, which greedily inserts nodes to minimize cost. These tours are then improved
through a process of decomposition and reconstruction. Specifically, the solver decomposes a com-
plete tour into several subtours, which are treated as instances of the Shortest Hamiltonian Path
Problem (SHPP). Each subtour is solved using an AR local policy referred to as a “reviser”. These
revisers are applied in rounds called “revisions” to enhance the initial tour iteratively. The subtours
are normalized and optionally rotated to improve the model’s performance. After solving the SHPP
instances, the subtours are reassembled into an improved complete tour. This method allows for
efficient and parallelizable improvements on large-scale TSPs.

2) NAR General Routing Solver. The general routing solver in GLOP additionally implements
an NAR global policy that either partitions all nodes into multiple sub-TSPs (e.g., for CVRP) or
subsets all nodes to form a sub-TSP (e.g., for PCTSP). The NAR global policy is parameterized by a
graph neural network (GNN) that processes sparsified input graphs and outputs a partition heatmap.
GLOP clusters or subsets nodes by sequentially sampling nodes based on the partition heatmap
while adhering to problem-specific constraints. The sub-TSPs are then solved by the (Sub-)TSP
solver. The global policy is trained using REINFORCE to output partitions that could lead to the
best-performing final solutions after solving sub-TSPs.

GLOP is integrated into RL4CO as the first hybrid method that combines NAR and AR policies,
indicating the versatility of RL4CO in accommodating various methodological paradigms. It is
promising to further investigate the emerging possibilities that arise when viewing AR and NAR

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

methods from a unified perspective and combining them synergistically. RL4CO provides a flexible
and extensible platform for exploring such hybridization in future research.

C.4 IMPROVEMENT METHODS

Improvement methods leverage RL to train a policy that iteratively performs rewriting exchanges on
the current solution, aiming to generate a new solution with potentially lower costs. As in construc-
tive methods, the policy of improvement methods is also based on the encoder-decoder structure.

C.4.1 DACT (MA ET AL., 2021)

Improvement methods typically take node features and solution features (positional information of
nodes in the current solution) as key inputs. Encoding VRP solutions involves processing com-
plex relationships between Node Feature Embeddings (NFEs) and Positional Feature Embeddings
(PFEs). However, directly adopting the original Transformer to add the two types of embeddings, as
done by Wu et al. (2021), can cause mixed attention score correlations and impairing performance.
To address this, the Dual-Aspect Collaborative Transformer (DACT) proposes DAC-Att, which pro-
cesses NFEs and PFEs separately and employs cross-aspect referential attention to understand the
consistencies and differences between the two embedding aspects. This approach avoids mixed
correlations and allows detailed modeling of hidden patterns. Another key issue is the Positional
Encoding (PE) method. While the original Transformer’s PE works well for linear sequences, it
may not suit the cyclic nature of VRP solutions. To address this, DACT proposes Cyclic Positional
Encoding (CPE), inspired by cyclic Gray codes, which generates cyclic real-valued coding vectors to
capture the topological structure of VRP solutions and improve generalization. Additionally, DACT
redesigns the RL algorithm for improvement methods, introducing a Proximal Policy Optimization
with Curriculum Learning (PPO-CL) algorithm to improve training stability and efficiency.

In RL4CO, DACT is implemented and modularized so that other methods can easily reuse com-
ponents like CPE encoding and the PPO-CL algorithm. It also reuses common parts (such as node
embedding initialization, decoding functions, etc) from the implementation of constructive methods,
indicating the flexibility of the RL4CO framework.

C.4.2 N2S (MA ET AL., 2022)

The Neural Neighborhood Search (N2S) method extends the capabilities of improvement methods
to pickup and delivery problems (PDP). Expanding on the DACT approach, N2S leverages a tai-
lored MDP formulation for a ruin-repair neighborhood search process. It uses a Node-Pair Removal
decoder in the ruin stage and a Node-Pair Reinsertion decoder in the repair stage, allowing efficient
operation on pickup-delivery node pairs. However, more complex decoders increase computational
costs in the policy network, requiring a balance between encoders and decoders. To address this,
N2S introduces Synthesis Attention (Synth-Att), which learns a single set of embeddings and synthe-
sizes attention scores from various node feature embeddings using a Multilayer Perceptron (MLP)
module. This promotes lightweight policy networks and enhances model expressiveness. The N2S
encoder with the efficient Synth-Att represents a state-of-the-art design of improvement encoder,
which is adopted in the latest works Ma et al. (2022; 2024).

In RL4CO, N2S reuses the CPE encoding and the PPO-CL algorithm implemented in DACT. The
efficient N2S encoder is also modularized and designed to be shared among other improvement
methods to process the complex relationships between different feature embeddings.

C.4.3 NEUOPT (MA ET AL., 2024)

A key bottleneck of improvement methods like DACT is their simplistic action space design, which
typically uses smaller, fixed k values (2-opt or 3-opt) due to decoders struggling with larger, varying
k. To address this, the latest improvement method introduces Neural k-Opt (NeuOpt), a flexible
solver capable of handling any given k ≥ 2. NeuOpt employs an action factorization method to
break down complex k-opt exchanges into a sequence of basis moves (S-move, I-move, E-move),
with the number of I-moves determining the k value. This step-by-step construction allows the
model to automatically determine a suitable k. Similar to variable neighborhood search, NeuOpt
combines varying k values across search steps, balancing coarse-grained and fine-grained searches,

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

which is crucial for optimal performance. NeuOpt also features a Recurrent Dual-Stream (RDS)
decoder with recurrent networks and two decoding streams for contextual modeling and attention
computation, effectively capturing the complex dependencies between removed and added edges.

In RL4CO, NeuOpt is implemented by reusing the successful CPE and PPO-CL training modules
from DACT, as well as the efficient encoder from N2S. This demonstrates the strength and versatility
of the RL4CO coding library, which allows for the easy integration of proven methodologies.

C.5 ACTIVE SEARCH METHODS

Active search methods are examples of transductive RL, in which an RL algorithm is run to finetune
a pre-trained policy on specific test-time instances.

C.5.1 ACTIVE SEARCH (AS) (BELLO ET AL., 2017)

In active search proposed by Bello et al. (2017), a model is fine-tuned to a single test instance. To
this end, active search uses the same loss formulation as during the original training of the model.
Over the course of the search process, the model’s performance on the single test instance improves,
leading to the discovery of high-quality solutions. While active search is easy to implement, as the
search process closely follows the training process, it is often very slow since all model weights are
adjusted for each test instance individually.

C.5.2 EFFICIENT ACTIVE SEARCH (EAS) (HOTTUNG ET AL., 2022)

Efficient active search (EAS), proposed by Hottung et al. (2022), builds upon the idea of active
search and trains a model on a single instance at test time to enable a guided search. However, EAS
only updates a subset of parameters during the search and allows most operations to be performed
in parallel across a batch of different instances. This approach not only reduces computational costs
but also results in a more stable fine-tuning process, leading to an overall improvement in solution
quality.

D BENCHMARKING SETUP

D.1 METRICS

D.1.1 GAP TO BKS

The Gap to Best Known Solution (BKS) is a commonly used metric to evaluate the performance
of optimization algorithms on benchmark instances. It measures the relative difference between the
best solution found by the algorithm and the BKS for a given problem instance. Given a problem
instance i, let ai be the objective value of the best solution found by the algorithm, and let a∗

i be the
objective value of the BKS for that instance. The Gap to BKS for the i-th instance is defined as:

Gap to BKSi = 100×
(
ai − a∗

i

a∗
i

)
(32)

The Gap to BKS is expressed as a percentage, with a value of 0% indicating that the algorithm
has found a solution that matches the BKS. A positive Gap to BKS indicates that the algorithm’s
solution is worse than the BKS, while a negative Gap to BKS (though less common) indicates that
the algorithm has found a new best solution for the instance13.

D.1.2 PRIMAL INTEGRAL

The Primal Integral (PI) is a metric that evaluates the anytime performance of optimization algo-
rithms by capturing the trade-off between solution quality and computational time (Berthold, 2013;

13Note that when calculating the gap for a set of instances, one should do an average of gaps, i.e.
1
n

∑n
i=1 Gap to BKSi, instead of calculating the gap of the average 100 ×

∑
ai/

∑
a∗
i , which might yield

similar results in some settings but prone to error especially for certain distributions.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Thyssens et al., 2023). It is defined as the area under the curve of the incumbent solution value
plotted against time, normalized by the BKS value and the total time budget:

PI = 100×
(∑n

i=1 ai−1 · (ti − ti−1) + an · (Tmax − tn)

Tmax · a∗ − 1

)
(33)

where Tmax is the total time budget, ai is the incumbent solution value at time ti, and a∗ is the
best known solution value. A lower PI percentage indicates better anytime performance. The PI
complements other metrics, such as the Gap to BKS, by providing insights into the temporal aspect
of an algorithm’s performance, making it particularly useful for assessing anytime algorithms (Jesus
et al., 2020).

D.1.3 RUNTIME MEASUREMENT

Runtime normalization Comparing the run-time efficiency of different methods across various
hardware configurations can be challenging. In the RL4CO benchmark, we generally run the in-
ference on a single machine; when this is not possible due to resource limitations, we employ the
run-time normalization approach based on the PassMark hardware rating14. This approach nor-
malizes time budgets and run times during the evaluation process, allowing for a more equitable
comparison of methods. We use the definition of Accorsi et al. (2022); Thyssens et al. (2023) in
normalizing: the reference machine combines a single CPU thread and a single GPU, the PassMark
score s for GPU-based methods is calculated as:

s =
1

2
(#CPU · CPU_Mark +#GPU · GPU_Mark) (34)

To normalize the solution time from machine 1 to machine 2, we calculate t̃2 = t1
s1
s2

, where t1 is
the solution time on machine 1, s1 is the PassMark score of machine 1, and s2 is the PassMark score
of machine 2. Note that in the case of most classical solvers, the GPU_Mark is simply set to 0 due
to them running on CPU.

Cross-solver comparisons Another aspect of NCO evaluation that has to be addressed is the fact
that evaluation between classical and learned solvers is often done on different devices, namely on
(single-threaded) CPUs and GPUs, respectively. Moreover, while multiple instances in NCO can
usually be solved in a batch, this is not usually the case for classical solvers. A more correct way is
to measure the per-instance solution time (which we do on large-scale NAR routing), which is more
realistic for real-world applications. For other studies, we employ the standard procedure of NCO of
evaluating times on batches as done in the original methods, making sure to compare “apples with
apples” (i.e., different NCO approaches are compared with the same settings). We note that while
RL4CO focuses on comparisons between NCO solvers and creating an open-source ecosystem for
this specific area, future studies (and possibly works in the RL4CO community) may also include
comparisons with classical solvers under different conditions, which we recognize as an important
research direction.

D.2 HARDWARE & SOFTWARE

D.2.1 HARDWARE

Most experiments (during testing) were carried out on a machine equipped with two AMD EPYC
7542 32-CORE PROCESSOR CPUs with 64 threads each and four NVIDIA RTX A6000 graphic
cards with 48 GB of VRAM, of which only one is used during inference. We note that, due to the
amount of experiments and contributions, training was performed on a variety of hardware combina-
tions, particularly University clusters. We found RL4CO to be robust and efficient across different
combinations of CPU, GPU, and software. Throughout the text, we may report the hardware setting
on which testing took place if it differs from the default one. In case different configurations were
used or results were reported from previous works, we refer to Appendix D.1.3 for result standard-
ization.

14PassMark: https://www.passmark.com/ is also used in the 2022 DIMACS challenge: http:
//dimacs.rutgers.edu/programs/challenge/vrp/.

41

https://www.passmark.com/
http://dimacs.rutgers.edu/programs/challenge/vrp/
http://dimacs.rutgers.edu/programs/challenge/vrp/

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

D.2.2 SOFTWARE

Software-wise, we used Python 3.11 and PyTorch 2.3 (Paszke et al., 2019)15, most notably due
to the native implementation of scaled_dot_product_attention. Given that most models
in RL constructive methods for CO generally use attention for encoding states, FlashAttention has
some boost on the performance (between 5% and 20% saved time depending on the problem size)
when training is subject to mixed-precision training, which we do for all experiments. During decod-
ing, the FlashAttention routine is not called since, at the time of writing, it does not support maskings
other than causal; this could further boost performance compared to older implementations. Refer
to Appendix A.2 for additional details regarding notable software choices of our library, namely
TorchRL, PyTorch Lightning, and Hydra.

D.3 HYPERPARAMETERS

D.3.1 COMMON HYPERPARAMETERS

Common hyperparameters can be found in the config/ folder from the RL4CO library, which
can be conveniently loaded by Hydra. We provide yaml-like configuration files below, divided by
experiments in Listing 1.

D.3.2 CHANGING POLICY COMPONENTS

We train the models evaluated in Table 3 using the same number of training instances as well as
identical hyperparameters. Specifically, models are trained for 10 epochs on 2.000 training instances
using the PPO algorithm with clip range ϵ = 0.2. The training dataset is split into batches of size
100 to construct the replay buffer. For the PPO optimization we sample mini-batches of size 512
from the replay buffer until it is empty and repeat this for R = 3 inner epochs. All models use
an embedding dimension dh of 256. The number of encoder layersis set to L = 3 in each case.
Further, MatNet and the AM Pointer use H = 8 attention heads. The parameters of the models
are updated using the Adam optimizer with learning rate 10−4. Afterwards, the trained policies
are evaluated on 1.000 randomly generated test instances. The Hydra config files corresponding
to this experiment, which also implement the different model architectures, can be found in the
config/experiment/scheduling folder from the RL4CO library

D.3.3 MIND YOUR BASELINE

We run all models to match the original implementation details under controlled settings. In par-
ticular, we run all models for 250, 000 gradient steps with the same Adam (Kingma and Ba, 2014)
optimizer with a learning rate of 10−4 and 0 weight decay. For POMO, we match the original im-
plementation details of weight decay as 10−6. For POMO, the number of multistarts is the same as
the number of possible initial locations in the environment (for instance, for TSP50, 50 starts are
considered). In the case of Sym-NCO, we use 10 as augmentation for the shared baseline; we match
the number of effective samples of AM-XL to the ones of Sym-NCO to demonstrate the differences
between models.

15During development, we also used beta wheels as well as manually installed version of FlashAttention
(Dao et al., 2022; Dao, 2023). Note that software version varied in terms of training runs depending on the
author who ran experiments (e.g. any range of Python and PyTorch as [3.9, 3.10, 3.11] × [2.0, 2.1, 2.2, 2.3],
which RL4CO can support out of the box on multiple devices and operating systems.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Example Hydra Configuration
1 defaults: # override default configurations under configs/
2 - override /env: tsp.yaml
3 - override /model: am.yaml
4 - override /callbacks: default.yaml
5 - override /trainer: default.yaml
6 - override /logger: wandb.yaml
7

8 # Environment
9 env:

10 generator_params:
11 num_loc: 50
12

13 # RL Algorithm and policy (env passed automatically)
14 model:
15 policy: # override policy parameters to pass to the RL algo
16 _target_: rl4co.models.zoo.am.policy.AttentionModelPolicy
17 embed_dim: 128
18 num_heads: 8
19 num_encoder_layers: 3
20 feedforward_hidden: 128
21 env_name: "${env.name}" # automatically construct env embeddings
22 baseline: "rollout" # REINFORCE baseline
23 batch_size: 512
24 train_data_size: 1_280_000
25 optimizer_kwargs:
26 lr: 1e-4
27

28 # Optional override of checkpoint parameters
29 model_checkpoint:
30 dirpath: ${paths.output_dir}/checkpoints
31 filename: "epoch_{epoch:03d}"
32

33 # Trainer
34 trainer:
35 max_epochs: 100
36 gradient_clip_val: 1.0
37 max_epochs: 100
38 precision: "16-mixed" # allows for FlashAttention
39 strategy: DDPStrategy # efficient for multiple GPUs
40 matmul_precision: "medium" # speeds up calculation
41

42 # Logging
43 logger:
44 wandb:
45 project: "rl4co"
46 name: "am-tsp${env.generator_params.num_loc}"

Listing 1: Example example.yaml configuration for the AM from the AR routing experiments. Ad-
ditional parameters are modularized in the actual configs and moved to the other config folders (such
as env/tsp.yaml so that a single experiment config is not too cluttered. Running this configu-
ration is simple: placed under configs/experiments/, it can be called with python run.py
experiment=example.

The number of epochs for all models is 100, except for AM-XL (500). We also employ learning rate
scheduling, in particular, MultiStepLR 16 with γ = 0.1 on epoch 80 and 95; for AM-XL, this
applies on epoch 480 and 495.

PPO for the AM We follow other hyperparameters for REINFORCE baselines. We set the num-
ber of mini-epochs to 2, mini-batch size to 512, clip range to 0.2, and entropy coefficient c2 = 0.01.

16https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.MultiStepLR

43

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.MultiStepLR

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Interestingly, we found that normalizing the advantage as done in the Stable Baselines PPO2 imple-
mentation17 slightly hurt performance, so we set the normalize advantage parameter to False. We
suspect this is because the NCO solvers are trained on multiple problem instances, unlike the other
RL applications that aim to learn a policy for a single MDP.

Sample Efficiency Experiments We keep the same hyperparameters as the mind your baseline,
experiments except for the number of epochs and scheduling. We consider 5 independent runs
that match the number of samples per step (i.e., the batch size is exactly the same for all models
after considering techniques such as the multistart and symmetric baselines). For AM Rollout, we
employ half the batch size of other models since it requires double the number of evaluations due to
its baseline.

Search Methods Experiments For these experiments, we employ the same models trained in the
in-distribution benchmark on 50 nodes. For Active Search (AS), we run 200 iterations for each in-
stance and an augmentation size of 8. The Adam optimizer is used with a learning rate of 2.6×10−4

and weight decay of 10−6. For Efficient Active Search, we benchmark EAS-Lay (with an added
layer during the single-head computation, PointerAttention in our code) with the original
hyperparameters proposed by Hottung et al. (2022). The learning rate is set to 0.0041 and weight
decay to 10−6. The search is restricted to 200 iterations with dihedral augmentation of 8 as well as
imitation learning weight λ = 0.013.

Testing is performed on 100 instances on both TSP and CVRP for N ∈ [200, 500, 1000], generated
with the usual random seed for testing 1234.

D.3.4 GENERALIZATION: CROSS-TASK AND CROSS-DISTRIBUTION

In addition to training on uniformly distributed instances, as is standard for POMO Kwon et al.
(2020), we further train POMO Kwon et al. (2020) on a mixture of multiple distributions (i.e., the
exemplar distributions defined in (Bi et al., 2022)) and multiple VRP tasks (i.e., CVRP, OVRP,
VRPL, VRPB, VRPTW, and OVRPTW, as defined in (Liu et al., 2024a; Zhou et al., 2024; Berto
et al., 2024)) with fixed problem size N = 50, termed as MDPOMO and MTPOMO, respectively.
Note that all the models in Table 5 undergo training across 10,000 epochs, each with a batch size of
512 and 10,000 training instances. The other training setups are consistent with the previous work
(Kwon et al., 2020). The whole training time is within one day. During inference, we evaluate their
generalization performance on the benchmark datasets in CVRPLib Lima et al. (2014) using greedy
rollout with 8× instance augmentation and multiple start nodes following Kwon et al. (2020).

D.3.5 LARGE-SCALE INSTANCES

The GLOP (Ye et al., 2024b) models’ global policy are trained on random instances of CVRP1K and
CVRP2K, respectively. Both models are trained for 100 epochs, with each epoch comprising 1000
instances. To accelerate the training process, random insertion is utilized as the sub-TSP solver.

For the experiment results presented in Table 6, we evaluate our implementation using the identical
instances and setup as those utilized in Ye et al. (2024b). The AM revisers involved are directly
adopted from Ye et al. (2024b). Table 14 reports the generalization performance of the CVRP2K
model on 100 CVRP10K instances and 24 CVRP20K instances. These test instances are generated
following the procedure in Nazari et al. (2018), with the capacities fixed to 1000.

D.3.6 COMBINING CONSTRUCTION AND IMPROVEMENT

To test the potential collaboration between constructive and improvement methods (in Appendix E.5
and Section 5.3), we recorded the performance of improvement methods during inference with initial
solutions generated either randomly or by leveraging solutions generated greedily by constructive
methods. This was done for both TSP and PDP with a fixed problem size of N = 50. We used
a test set with 1,000 instances for both TSP and PDP and recorded the runtime for all constructive
and improvement solvers based on an INTEL XEON GOLD 5317 CPU @ 3.00GHZ and one RTX
3090 GPU.

17https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html

44

https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

For the constructive models to bootstrap improvement, we used the POMO and HAM (i.e. AM
with rollout baseline, with HAM (Li et al., 2021) encoder for construction PDP) directly from Ap-
pendix D.3.3. Note that these models were trained under controlled settings and could see a further
boost in performance with further training. Moreover, while we used simple greedy evaluation, more
complex evaluation schemes may be used, such as combining symmetric augmentation, multistart,
or advanced sampling techniques as nucleus sampling.

For the improvement models, we used both DACT and NeuOpt (with K = 4) for TSP, and the N2S
model for PDP. Training for all models was conducted with 200 epochs and 20 batches per epoch,
with a batch size of 512 for TSP and 600 for PDP. The n-step and maximum improvement steps for
training were set to 4 and 200, respectively. Other hyperparameters such as learning rate, curriculum
learning scaler, and gradient norm clip were set as per their original papers.

D.4 DECODING SCHEMES

Due to the limited space in the main paper, we further elaborate on the setup of the decoding schemes
(or strategies) in this section, shown in Fig. 15.

Greedy

Sampling Multistart

......

Augmentation

......

Figure 15: Inference methods we consider in RL4CO. These can also be combined together, such as greedy
multistart with augmentation.

D.4.1 AUGMENTATIONS

In RL4CO, we consider as augmentations any transformation ψ that maps an instance x
into an instance x′ whose (optimal) solution should be the same or close to the original.

Table 10: Dihedral
transformations (Kwon
et al., 2020).

ψ(x, y)

(x, y) (y, x)
(x, 1-y) (y, 1-x)
(1-x, y) (1-y, x)

(1-x, 1-y) (1-y, 1-x)

Augmentations have been used in various domains, such as computer vision,
where, for example, labels are invariant to rotations. Similarly, in Euclidean
CO, one can apply the dihedral transformation of Table 10 to generate a
new instance whose solution is the same as the original one, composed of
4 rotations and 2 flips for a total of ×8 transformation (which is the default
used in POMO-based models as Kwon et al. (2020); Liu et al. (2024a); Zhou
et al. (2024). As introduced in Kim et al. (2022) , one may additionally use
any angle θ to perform a symmetric transformation as follows:

(
x′

y′

)
= ψ(x, y) =

(
x cos θ −y sin θ
x sin θ +y cos θ

)

where θ ∈ [0, 2π]. Interestingly, we found that, generally, the dihedral augmentation is worse in
terms of sample efficiency compared to randomly augmenting by sampling a θ value. We note that
other augmentations are possible, including dilation (Bdeir et al., 2022) (i.e., rescaling) and possibly
new ones such as jittering, which may have a broader application than Euclidean CO.

D.4.2 SAMPLING

In most NCO approaches, sampling is performed by simply increasing the evaluation budget but
without additional modifications that can be important for better performance. We include the fol-
lowing techniques in RL4CO: 1) Sampling with Softmax Temperature, 2) Top-k Sampling and 3)
Top-p Sampling, visualized in Fig. 16.

Sampling with Softmax Temperature Sampling with softmax temperature is a technique used to
control the randomness of the sampling process. The temperature parameter τ is introduced to the
softmax function, which converts the logits z into a probability distribution:

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Action

Lo
gi

ts

Action

Pr
ob

Action

Pr
ob

Temperature

Action

Pr
ob

Action

<latexit sha1_base64="tk3LG33WSqXL4XGLy3jcLUX59CE=">AAAB83icdVDLSsNAFJ3UV62vqktdDBbBVZiU1HZZcOOygn1AE8pkOm2HTiZxHkIJ/Q0 3LhRx68+482+cphVU9MCFwzn3cu89UcqZ0gh9OIW19Y3NreJ2aWd3b/+gfHjUUYmRhLZJwhPZi7CinAna1kxz2kslxXHEaTeaXi387j2ViiXiVs9SGsZ4LNiIEaytFATKxAGndxC5jUG5gtwaQlW/DnPiIZQTv1H1oeeiHBWwQmtQfg+GCTExFZpwrFTfQ6kOMyw1I5zOS4FRNMVkise0b6nAMVVhlt88h+dWGcJRIm0JDXP1+0SGY6VmcWQ7Y6wn6re3EP/y+kaPGmHGRGo0FWS5aGQ41AlcBACHTFKi+cwSTCSzt0IywRITbWMq2RC+PoX/k07V9S7d2o1faZ6u4iiCE3AGLoAH6qAJrkELtAEBKXgAT+DZMc6j8+K8LlsLzmrmGPyA8/YJM/WRCg==</latexit>X
 0.8

Action

1

2

3 4
5

Softmax w/ temperature 2.0

Instance Softmax w/o temperature

Sorted Probs

Top-p Sampling

Top-k Sampling

Pr
ob

Pr
ob

<latexit sha1_base64="yir/KCREFZa9Nxn2SfJkWdx20Z0=">AAACIHicdVDLSgMxFM34rPU16tJNsAquhoyttu4KblxWsA9oxyGTZtrQzIMkI9RhPsWNv+LGhSK6068xbUdQqQcu93DOvST3eDFnUiH0YSwsLi2vrBbWiusbm1vb5s5uS0aJILRJIh6Jjocl5SykTcUUp51YUBx4nLa90cXEb99SIVkUXqtxTJ0AD0LmM4KVllyz2vMFJim9SWfkzmVZ2lM4yTLdZRK4bK7nmiVklc81ahBZFYSQjXKCytC20BQlkKPhmu+9fkSSgIaKcCxl10axclIsFCOcZsVeImmMyQgPaFfTEAdUOun0wAweaaUP/UjoChWcqj83UhxIOQ48PRlgNZR/vYk4z+smyq85KQvjRNGQzB7yEw5VBCdpwT4TlCg+1gQTwfRfIRliHYbSmRZ1CN+Xwv9J68Syz6zTq0qpfpjHUQD74AAcAxtUQR1cggZoAgLuwSN4Bi/Gg/FkvBpvs9EFI9/ZA79gfH4B1QSmbw==</latexit>

e
zi
⌧

P
i e

zi
⌧

<latexit sha1_base64="/DdPu0hJy8b83ZOnJA4CV3dnKn0=">AAACBnicdVDLSgMxFM34rPU16lKEYBVcDRlbte4KblxWsA/o1CGTZtrQzIMkI9RhVm78FTcuFHHrN7jzb0zbKajogQsn59xL7j1ezJlUCH0ac/MLi0vLhZXi6tr6xqa5td2UUSIIbZCIR6LtYUk5C2lDMcVpOxYUBx6nLW94MfZbt1RIFoXXahTTboD7IfMZwUpLrrnn+AKTlN6kdy7LstSRSeCy2dM1S8gqn2tUIbIqCCEb5QSVoW2hCUogR901P5xeRJKAhopwLGXHRrHqplgoRjjNik4iaYzJEPdpR9MQB1R208kZGTzUSg/6kdAVKjhRv0+kOJByFHi6M8BqIH97Y/Evr5Mov9pNWRgnioZk+pGfcKgiOM4E9pigRPGRJpgIpneFZIB1LkonV9QhzC6F/5PmsWWfWidXlVLtII+jAHbBPjgCNjgDNXAJ6qABCLgHj+AZvBgPxpPxarxNW+eMfGYH/IDx/gVsbJpP</latexit>

ezi

P
i ezi

Figure 16: Sampling techniques implemented in RL4CO.

pi =
exp(zi/τ)∑N
j=1 exp(zj/τ)

(35)

where pi is the probability of selecting the i-th action, zi is the corresponding logit, andN is the total
number of actions. A higher temperature τ > 1 makes the distribution more uniform, increasing
the chances of selecting less likely actions. Conversely, a lower temperature 0 < τ < 1 makes the
distribution sharper, favoring the most likely actions.

Top-k Sampling Top-k sampling is a method that restricts the sampling space to the k most likely
actions. Given the logits z, the top-k actions with the highest probabilities are selected, and the prob-
abilities of the remaining actions are set to zero. The probability distribution is then renormalized
over the selected actions:

pi =

{
exp(zi/τ)∑

j∈Tk
exp(zj/τ)

if i ∈ Tk
0 otherwise

(36)

where Tk is the set of indices corresponding to the top-k actions. Top-k sampling helps to eliminate
the possibility of generating low-probability actions, improving the quality and coherence of the
generated output. We note that, however, in CO problems, it may not be as straightforward as
in large language models to select the k parameter since neighborhoods and distributions are not
homogeneous.

Top-p Sampling Top-p sampling, also known as nucleus sampling, is an alternative to top-k sam-
pling that dynamically adjusts the number of actions considered for sampling based on a probability
threshold p (Holtzman et al., 2019). The actions are sorted by their probabilities in descending order,
and the cumulative probability is calculated. The sampling space is then restricted to the smallest
set of actions whose cumulative probability exceeds the threshold p:

Tp =

i :

i∑

j=1

pj ≤ p

 (37)

where Tp is the set of indices corresponding to the actions included in the top-p sampling. The
probabilities of the actions in Tp are renormalized, while the probabilities of the remaining actions
are set to zero:

pi =

{
exp(zi/τ)∑

j∈Tp
exp(zj/τ)

if i ∈ Tp
0 otherwise

(38)

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Top-p sampling provides a more dynamic way to control the diversity and quality of the generated
output compared to top-k sampling. In CO, this is also a more structured way of performing training
or evaluation since top-p sampling is agnostic of the number of nodes, unlike top-k sampling.

E ADDITIONAL EXPERIMENTS

E.1 MIND YOUR BASELINE: FURTHER INSIGHTS

Benchmark Setup We focus on benchmarking the AR routing NCO solvers under controlled
settings, aiming to compare all benchmarked methods as closely as possible in terms of network
architectures and the number of training samples consumed.

Models We evaluate the following NCO solvers: 1) AM (Kool et al., 2019a) with rollout baseline,
2) POMO (Kwon et al., 2020) with the shared baseline to train AM instead of the rollout baseline;
we also use six MHA layers and InstanceNorm instead of BatchNorm according to the original
implementation, 3) Sym-NCO (Kim et al., 2022) utilizes the symmetric baseline to train AM instead
of the rollout baseline and the same encoder as POMO, 4) AM-XL is an AM model that adopts
POMO-style MHA encoder, and trained on the same number of samples as POMO, with the goal of
seeing whether training for longer, as done in POMO, can significantly improve the results 5) A2C,
i.e. AM trained with Advantage Actor-Critic (A2C), 6) AM-PPO trained via the Proximal Policy
Optimization (PPO, Schulman et al. (2017)) algorithm and finally 7) Polynet (Hottung et al., 2024)
with shared baseline and setting K = n.

For fairness of comparison, we try to match the number of training steps to be the same and adjust
the batch size accordingly. Specifically, we train models for 100 epochs as in Kool et al. (2019a)
using the Adam optimizer (Kingma and Ba, 2014) with an initial learning rate (LR) of 0.001 with
a decay factor of 0.1 after the 80th and 95th epochs18. We evaluate the trained solvers using the
schemes shown in Fig. 15.

E.1.1 MAIN IN-DISTRIBUTION RESULTS

We first measure the performances of NCO solvers on the same dataset distribution on which they
are trained. We first observe that, counter to the commonly known trends that AM < POMO < Sym-
NCO, the trends can change to decoding schemes and targeting CO problems. Especially when
the solver decodes the solutions with Augmentation or Greedy Multistart + Augmentation, the per-
formance differences among the benchmarked solvers on TSP and CVRP become less significant.
Surprisingly, PolyNet performs well even in the greedy one-shot setting, despite its primary focus
on generating diverse solutions. For decoding schemes that generate multiple solutions, PolyNet
demonstrates strong performance across various problems. Particularly for decoding schemes with-
out multistarts, PolyNet benefits significantly from its inherent diversity mechanism

We note that the original implementation of POMO 19 is not directly applicable to OP, PCTSP, and
PDP. Adapting it to solve new problems is not straightforward due to the coupling between envi-
ronment and policy implementations. However, owing to the flexibility of RL4CO, we successfully
implemented POMO for OP and PCTSP. Our results indicate that POMO underperforms in OP and
PCTSP; unlike TSP, CVRP, and PDP, where all nodes need to be visited, OP and PCTSP are not
constrained to visit all nodes. Due to such differences, POMO’s visiting all nodes strategy may not
work as an effective inductive bias. Further, we benchmark the NCO solvers for PDP, which was
not originally supported natively by each of the benchmarked solvers. We apply the environment
embeddings and the Heterogeneous Attention Encoder from HAM (Li et al., 2021) to the NCO mod-
els for encoding pickup and delivery pairs, further emphasizing RL4CO’s flexibility. We observe
that AM-XL, which employs the same RL algorithm as AM but features the encoder architecture of
POMO and is trained with an equivalent number of samples, yields performance comparable to NCO
solvers using more sophisticated baselines. This suggests that careful controls on architecture and
the number of training samples are required when evaluating NCO solvers. We also re-implemented

18We find that simple learning rate scheduling with MultiStepLinear can improve performance i.e.,
compared to the original AM implementation.

19https://github.com/yd-kwon/POMO

47

https://github.com/yd-kwon/POMO

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Table 11: In-distribution benchmark results for routing problems with 50 nodes. We report the gaps to the
best-known solutions of classical heuristics solvers.

Method TSP CVRP OP PCTSP PDP

Cost ↓ Gap Time Cost ↓ Gap Time Prize ↑ Gap Time Cost ↓ Gap Time Cost ↓ Gap Time

Classical Solvers

Gurobi 5.70 0.00% 2m − − − − − − − − − − − −
Concorde 5.70 0.00% 2m − − − − − − − − − − − −
HGS − − − 10.37 0.00% 10h − − − − − − − − −
Compass − − − − − − 16.17 0.00% 5m − − − − − −
LKH3 5.70 0.00% 5m 10.38 0.10% 12h − − − − − − 6.86 0.00% 1h30m
OR Tools 5.80 1.83% 5m − − − − − − 4.48 0.00% 5h 7.36 7.29% 2h

Greedy One Shot Evaluation

A2C 5.83 2.22% (<1s) 11.16 7.09% (<1s) 14.77 8.64% (<1s) 5.15 14.96% (<1s) 7.52 9.90% (<1s)
AM 5.78 1.41% (<1s) 10.95 5.30% (<1s) 15.46 4.40% (<1s) 4.59 2.46% (<1s) 7.51 9.88% (<1s)
POMO 5.75 0.89% (<1s) 10.80 3.99% (<1s) 13.86 14.26% (<1s) 5.00 11.61% (<1s) 7.59 10.64% (<1s)
Sym-NCO 5.72 0.47% (<1s) 10.87 4.61% (<1s) 15.67 3.09% (<1s) 4.52 2.12% (<1s) 7.39 7.73% (<1s)
AM-XL 5.73 0.54% (<1s) 10.84 4.31% (<1s) 15.69 2.98% (<1s) 4.53 2.44% (<1s) 7.31 6.56% (<1s)
AM-PPO 5.76 0.92% (<1s) 10.87 4.60% (<1s) 15.67 3.05% (<1s) 4.55 2.45% (<1s) 7.43 8.31% (<1s)
PolyNet 5.72 0.68% 2s 10.81 4.24% 2s 15.70 2.93% 2s 4.54 2.45% 2s 8.26 3.46% 2s

Sampling with width M = 1280

A2C 5.74 0.72% 40s 10.70 3.07% 1m24s 15.14 6.37% 48s 4.96 10.71% 57s 7.32 6.70% 1m15s
AM 5.72 0.40% 40s 10.60 2.22% 1m24s 15.90 1.68% 48s 4.52 0.99% 57s 7.25 5.69% 1m15s
POMO 5.71 0.18% 1m 10.54 1.64% 2m30s 14.62 9.56% 1m10s 4.82 7.59% 1m23s 7.31 6.56% 1m50s
Sym-NCO 5.70 0.14% 1m 10.58 2.03% 2m30s 16.02 0.93% 1m10s 4.52 0.82% 1m23s 7.17 4.52% 1m50s
AM-XL 5.71 0.17% 1m 10.57 1.91% 2m30s 15.97 1.25% 1m10s 4.52 0.88% 1m23s 7.15 4.23% 1m50s
AM-PPO 5.70 0.15% 40s 10.52 1.52% 1m24s 16.04 0.78% 48s 4.48 0.18% 57s 7.17 4.52% 1m15s
PolyNet 5.70 0.15% 1m20s 10.42 0.53% 2m40s 16.08 0.52% 1m15s 4.47 0.13% 2m15s 6.93 0.81% 2m10s

Greedy Multistart (N)

A2C 5.80 1.81% 2s 10.90 4.86% 6s 14.61 9.65% 4s 5.12 14.29% 5s 7.54 9.85% 4s
AM 5.77 1.21% 2s 10.73 3.39% 6s 15.71 2.84% 4s 4.56 1.89% 5s 7.46 8.75% 4s
POMO 5.71 0.29% 3s 10.58 2.04% 8s 13.95 13.71% 7s 4.98 11.16% 7s 7.46 8.75% 6s
Sym-NCO 5.72 0.36% 3s 10.71 3.17% 8s 15.88 1.79% 7s 4.55 1.59% 7s 7.38 7.58% 6s
AM-XL 5.72 0.42% 3s 10.68 2.88% 8s 15.85 1.95% 7s 4.56 1.79% 7s 7.25 5.69% 6s
AM-PPO 5.74 0.61% 2s 10.67 2.72% 6s 15.98 1.21% 4s 4.53 1.18% 5s 7.23 5.39% 4s
PolyNet 5.70 0.25% 3s 10.52 1.42% 18s 16.05 0.71% 3s 4.54 1.31% 10s 7.18 4.65% 5s

Greedy with Augmentation (1280)

A2C 5.71 0.18% 40s 10.63 2.49% 1m24s 14.89 7.91% 48s 5.15 14.96% 1m 7.03 2.46% 1m15s
AM 5.70 0.07% 40s 10.53 1.56% 1m24s 15.88 1.79% 48s 4.59 2.46% 1m 7.14 4.08% 1m15s
POMO 5.70 0.06% 1m 10.55 1.72% 2m30s 14.23 11.97% 1m15m 5.09 13.61% 1m42s 7.15 4.23% 1m45s
Sym-NCO 5.70 0.01% 1m 10.53 1.54% 2m30s 15.94 1.41% 1m15m 4.58 2.17% 1m42s 7.03 2.48% 1m45s
AM-XL 5.70 0.01% 1m 10.52 1.47% 2m30s 15.90 1.66% 1m15m 4.59 2.54% 1m42s 6.98 1.75% 1m45s
AM-PPO 5.70 0.15% 40s 10.52 1.52% 1m24s 16.01 0.84% 48s 4.48 0.18% 1m 7.00 2.04% 1m15s
PolyNet 5.70 0.17% 1m30s 10.47 0.92% 3m 16.05 0.72% 2m 4.47 0.10% 2m10s 6.94 1.20% 2m15s

Greedy Multistart with Augmentation (N × 16)

A2C 5.72 0.41% 32s 10.67 2.81% 1m 15.22 5.88% 30s 5.06 12.94% 35s 7.10 3.51% 50s
AM 5.71 0.21% 32s 10.55 1.73% 1m 16.05 0.76% 30s 4.54 1.28% 35s 7.10 3.50% 50s
POMO 5.70 0.05% 48s 10.48 1.11% 2m 15.05 6.94% 1m 4.92 9.81% 1m10s 7.12 3.79% 1m25s
Sym-NCO 5.70 0.03% 48s 10.54 1.63% 2m 16.09 0.51% 1m 4.53 1.17% 1m10s 7.01 2.19% 1m25s
AM-XL 5.70 0.04% 48s 10.53 1.50% 2m 16.08 0.57% 1m 4.54 1.25% 1m10s 7.00 2.04% 1m25s
AM-PPO 5.70 0.03% 32s 10.51 1.45% 1m 16.09 0.49% 30s 4.49 0.89% 35s 6.98 1.75% 50s
PolyNet 5.70 0.15% 1m 10.41 0.36% 2m16s 16.11 0.37% 1m24s 4.49 0.24% 1m35s 7.02 2.33% 1m50s

PointerNetworks (Vinyals et al., 2015; Bello et al., 2017), but we excluded them from the main table
due to their poor performance, i.e., more than 4% optimality gap in TSP50.

Table 11 and Table 12 show detailed results for 50 and 20 nodes, respectively.

E.1.2 DECODING SCHEMES COMPARISON

During inference, investing more computational resources (i.e., sampling more), the trained NCO
solver can discover improved solutions. We examine the performance gains achieved with varying
numbers of samples. As shown in Fig. 17, the Augmentation decoding scheme achieves the Pareto
front with limited samples and, notably, generally outperforms other decoding schemes. We note
that while sampling with a light decoder can be more efficient in terms of speed than sampling, this
may not be true for heavy-decoder (Luo et al., 2024a) or decoder-only models (Drakulic et al., 2023;
Luo et al., 2024b; Pirnay and Grimm, 2024), where decoding via greedy augmentations may help
improve performance.

E.1.3 SAMPLE EFFICIENCY

We additionally evaluate the NCO solvers based on the number of training samples (i.e., the number
of reward evaluations). As shown in Fig. 18, we found that actor-critic methods (e.g., A2C and PPO)
can exhibit efficacy in scenarios with limited training samples, as demonstrated by the TSP50/100

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Table 12: In-distribution results for models trained on 20 nodes.

Method TSP CVRP OP PCTSP PDP

Cost ↓ Gap Time Cost ↓ Gap Time Prize ↑ Gap Time Cost ↓ Gap Time Cost ↓ Gap Time

Classical Solvers

Gurobi† 3.84 0.00% 7s − − − − − − − − − − − −
Concorde 3.84 0.00% 1m − − − 5.39 0.00% 16m 3.13 0.00% 2m − − −
HGS − − − 6.13 0.00% 4h − − − − − − − − −
Compass − − − − − − − − − − − − − − −
LKH3 3.84 0.00% 15s 6.14 0.16% 5h − − − − − − − − −
OR Tools 3.85 0.37% 1m − − − − − − 3.13 0.00% 5h 4.70 3.16% 1h
CPLEX − − − − − − − − − − − − 4.56 0.00% 7m23s

Greedy One Shot Evaluation

A2C 3.86 0.64% (<1s) 6.46 5.00% (<1s) 5.01 6.70% (<1s) 3.36 7.35% (<1s) 4.71 3.31% (<1s)
AM 3.84 0.19% (<1s) 6.39 3.92% (<1s) 5.20 3.17% (<1s) 3.17 1.28% (<1s) 4.82 5.70% (<1s)
POMO 3.84 0.18% (<1s) 6.33 3.00% (<1s) 4.69 12.69% (<1s) 3.41 8.95% (<1s) 4.85 6.36% (<1s)
Sym-NCO 3.84 0.05% (<1s) 6.30 2.58% (<1s) 5.30 1.37% (<1s) 3.15 0.64% (<1s) 4.70 3.07% (<1s)
AM-XL 3.84 0.07% (<1s) 6.31 2.81% (<1s) 5.25 2.23% (<1s) 3.17 1.26% (<1s) 4.71 3.29% (<1s)
PolyNet 3.84 0.10% (<1s) 6.40 4.44% (<1s) 5.26 2.28% (<1s) 3.18 1.98% (<1s) 4.69 2.92% (<1s)

Sampling with width M = 1280

A2C 3.84 0.15% 20s 6.26 2.08% 24s 5.12 4.66% 22s 3.28 4.79% 23s 4.64 1.76% 23s
AM 3.84 0.04% 20s 6.24 1.78% 24s 5.30 1.30% 22s 3.15 0.78% 23s 4.66 2.19% 23s
POMO 3.84 0.02% 36s 6.20 1.06% 40s 4.90 8.83% 37s 3.33 6.39% 39s 4.68 2.63% 39s
Sym-NCO 3.84 0.01% 36s 6.22 1.44% 40s 5.34 0.59% 37s 3.14 0.35% 39s 4.64 1.75% 39s
AM-XL 3.84 0.02% 36s 6.22 1.46% 40s 5.32 0.93% 37s 3.15 0.56% 39s 4.64 1.75% 39s
PolyNet 3.84 0.00% 47s 6.14 0.23% 1m15s 5.35 0.52% 37s 3.13 0.15% 1m15s 4.59 0.57% 1m36s

Greedy Multistart (N)

A2C 3.85 0.36% (<1s) 6.33 3.04% 3s 5.06 5.77% 2s 3.30 5.18% 2s 4.85 6.42% 2s
AM 3.84 0.12% (<1s) 6.28 2.27% 3s 5.24 2.42% 2s 3.16 0.95% 2s 4.67 2.41% 2s
POMO 3.84 0.05% (<1s) 6.21 1.27% 4s 4.76 11.32% 3s 3.35 7.03% 4s 4.66 2.19% 4s
Sym-NCO 3.84 0.03% (<1s) 6.22 1.48% 4s 5.32 0.87% 3s 3.15 0.62% 4s 4.69 2.85% 4s
AM-XL 3.84 0.05% (<1s) 6.22 1.38% 4s 5.29 1.49% 3s 3.15 0.64% 4s 4.65 1.97% 4s
PolyNet 3.84 0.01% 1s 6.17 0.71% 5s 5.34 0.58% 1s 3.15 0.76% 5s 4.81 5.43% 5s

Greedy with Augmentation (1280)

A2C 3.84 0.01% 20s 6.22 1.35% 24s 5.04 6.10% 22s 3.33 6.39% 23s 4.61 1.11% 23s
AM 3.84 0.00% 20s 6.20 1.07% 24s 5.25 2.25% 22s 3.16 0.96% 23s 4.63 1.54% 23s
POMO 3.84 0.00% 36s 6.18 0.84% 45s 4.85 9.76% 38s 3.37 7.55% 42s 4.62 1.32% 42s
Sym-NCO 3.84 0.00% 36s 6.17 0.71% 45s 5.33 0.77% 38s 3.15 0.63% 42s 4.61 0.95% 42s
AM-XL 3.84 0.00% 36s 6.17 0.68% 45s 5.30 1.30% 38s 3.15 0.68% 42s 4.61 0.96% 42s
PolyNet 3.84 0.00% 55s 6.16 0.48% 1m10s 5.35 0.50% 57s 3.13 0.16% 1m2s 4.59 0.58% 1m10s

Greedy Multistart with Augmentation (N × 16)

A2C 3.84 0.01% 9s 6.20 1.12% 48s 5.20 3.17% 32s 3.28 4.95% 25s 4.75 4.06% 23s
AM 3.84 0.00% 9s 6.18 0.78% 48s 5.34 0.56% 32s 3.14 0.32% 25s 4.63 1.52% 23s
POMO 3.84 0.00% 13s 6.16 0.50% 1m 5.09 5.29% 45s 3.35 6.95% 38s 4.61 1.10% 42s
Sym-NCO 3.84 0.00% 13s 6.17 0.61% 1m 5.35 0.39% 45s 3.14 0.24% 38s 4.60 0.89% 42s
AM-XL 3.84 0.00% 13s 6.16 0.44% 1m 5.35 0.46% 45s 3.14 0.28% 38s 4.60 0.87% 42s
PolyNet 3.84 0.00% 18s 6.14 0.16% 1m20s 5.37 0.31% 1m 3.13 0.12% 58s 4.61 1.03% 55s

Greedy

Augment

Sampling

Multistart

Multistart + Augment

Dihedral Augment (x8)

100 101 102 103

Number of Samples

0.0

0.5

1.0

G
ap

(%
)

AM

100 101 102 103

Number of Samples

POMO

100 101 102 103

Number of Samples

SymNCO

100 101 102 103

Number of Samples

1

2

3

4

5

G
ap

(%
)

AM

100 101 102 103

Number of Samples

POMO

100 101 102 103

Number of Samples

SymNCO

Figure 17: Pareto front of decoding schemes by the number of samples. Left: TSP50; right: CVRP50.

results in Fig. 18. This observation suggests that NCO solvers with control over the number of
samples may exhibit a different trend in sample efficiency: if reward function evaluation is expen-
sive, REINFORCE baselines that include additional reward function evaluations such as Greedy
Rollout, POMO, and SymNCO may be sample-inefficient. While this is not the case for most CO
problems (for instance: in routing, it is inexpensive to calculate routes), in other areas as Electronic
Design Automation, where reward evaluation is resource-intensive due to the necessity of electrical
simulations, in which sample efficiency can become even more crucial.

E.1.4 OUT-OF-DISTRIBUTION

In this section, we evaluate the out-of-distribution performance of the NCO solvers by measuring the
gap compared to the best-known solutions (BKS). The evaluation results are visualized in Fig. 19.
Contrary to the in-distribution results, we find that NCO solvers with sophisticated baselines (i.e.,

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

4.0

4.2

4.4

C
os

t

TSP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

6.0

6.5

7.0

7.5

8.0
TSP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

10

12

14

TSP N = 100

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

7.0

7.5

8.0

C
os

t

CVRP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

12

14

16

18
CVRP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

17.5

20.0

22.5

25.0

27.5

30.0
CVRP N = 100

AM Rollout AM Critic POMO Sym-NCO AM PPO

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

4.0

4.2

4.4

C
os

t

TSP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

6.0

6.5

7.0

7.5

8.0
TSP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

10

12

14

TSP N = 100

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

7.0

7.5

8.0

C
os

t

CVRP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

12

14

16

18
CVRP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

17.5

20.0

22.5

25.0

27.5

30.0
CVRP N = 100

AM Rollout AM Critic POMO Sym-NCO AM PPO

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

4.0

4.2

4.4

C
os

t

TSP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

6.0

6.5

7.0

7.5

8.0
TSP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

10

12

14

TSP N = 100

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

7.0

7.5

8.0

C
os

t

CVRP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

12

14

16

18
CVRP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

17.5

20.0

22.5

25.0

27.5

30.0
CVRP N = 100

AM Rollout AM Critic POMO Sym-NCO AM PPO

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

4.0

4.2

4.4

C
os

t

TSP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

6.0

6.5

7.0

7.5

8.0
TSP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

10

12

14

TSP N = 100

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

7.0

7.5

8.0

C
os

t

CVRP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

12

14

16

18
CVRP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

17.5

20.0

22.5

25.0

27.5

30.0
CVRP N = 100

AM Rollout AM Critic POMO Sym-NCO AM PPO

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

4.0

4.2

4.4

C
os

t

TSP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

6.0

6.5

7.0

7.5

8.0
TSP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

10

12

14

TSP N = 100

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

7.0

7.5

8.0

C
os

t

CVRP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

12

14

16

18
CVRP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

17.5

20.0

22.5

25.0

27.5

30.0
CVRP N = 100

AM Rollout AM Critic POMO Sym-NCO AM PPOA2CAM Rollout POMO SymNCO AM-PPO

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

4.0

4.2

4.4

C
os

t

TSP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

6.0

6.5

7.0

7.5

8.0
TSP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

10

12

14

TSP N = 100

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

7.0

7.5

8.0

C
os

t

CVRP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

12

14

16

18
CVRP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

17.5

20.0

22.5

25.0

27.5

30.0
CVRP N = 100

AM Rollout AM Critic POMO Sym-NCO AM PPO

Figure 18: Validation cost curves and number of training samples consumed. Models with greater performance
after full training may show worse convergence properties when the number of training samples is limited.

POMO and Sym-NCO) tend to exhibit worse generalization when the problem size changes, either
for solving smaller or larger instances. This can be seen as an indication of “overfitting” to the
training sizes. On the other hand, variants of AM show relatively better generalization results overall.

Besides, we also evaluate the model by sampling decoding strategy with different temperatures
as shown in Fig. 20, k values for Top-k as shown in Fig. 21, and p values for Top-p as shown in
Fig. 22. A higher temperature or a lower p value with Top-p sampling can improve the generalization
ability on large-scale problems, while Top-k sampling has limited contribution to generalization
cross problem sizes.

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

0

2

4

6

8

10

12

G
ap

(%
)

TSP

A2C
AM
POMO
SymNCO
AM-XL

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

2

4

6

8

10

12

14

16

18

20

G
ap

(%
)

CVRP

A2C
AM
POMO

SymNCO
AM-XL

Figure 19: Out-of-distribution generalization by greedy decoding for models with different reinforce baselines
trained on 50 nodes. Stronger performance in distribution does not always translate to out-of-distribution.

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

0

5

10

15

20

25

30

G
ap

(%
)

TSP

t = 0.1
t = 0.5
t = 1.0
t = 1.5
t = 2.0

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

0

5

10

15

20

25

30

G
ap

(%
)

CVRP

t = 0.1
t = 0.5
t = 1.0
t = 1.5
t = 2.0

Figure 20: Out-of-distribution generalization by sampling with different temperatures τ for POMO trained on
50 nodes.

E.1.5 SEARCH METHODS

A way to adapt to distribution changes is using transductive RL, commonly known as (active) search
methods, which involve training (a part of) a pre-trained NCO solver to adapt to CO instances of
interest. We evaluate 1) Active Search (AS) (Bello et al., 2017) which finetunes a pre-trained model

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

0

5

10

15

20

G
ap

(%
)

TSP

k = 2
k = 4
k = 6
k = 8
k = 10

k = 20
k = 30
k = 50
k = 100
No Top-k

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

2.5

5.0

7.5

10.0

12.5

15.0

17.5

G
ap

(%
)

CVRP

k = 2
k = 4
k = 6
k = 8
k = 10

k = 20
k = 30
k = 50
k = 100
No Top-k

Figure 21: Out-of-distribution generalization by sampling with different Top-k for POMO trained on 50 nodes.

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

0

5

10

15

20

G
ap

(%
)

TSP

p = 0.5
p = 0.6
p = 0.7
p = 0.8
p = 0.9
p = 0.99
p = 0.995
No Top-p

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

2

4

6

8

10

12

14

16

18

G
ap

(%
)

CVRP

p = 0.5
p = 0.6
p = 0.7
p = 0.8

p = 0.9
p = 0.99
p = 0.995
No Top-p

Figure 22: Out-of-distribution generalization by sampling with different Top-p for POMO trained on 50 nodes.

Table 13: Search Methods results of models pre-trained on 50 nodes. Classic refers to Concorde (Applegate
et al., 2023) for TSP and HGS (Vidal, 2022; Wouda et al., 2024) for CVRP. OOM is "Out of Memory".

Type Metric TSP CVRP

POMO Sym-NCO POMO Sym-NCO
200 500 1000 200 500 1000 200 500 1000 200 500 1000

Classic Cost 10.17 16.54 23.13 10.72 16.54 23.13 27.95 63.45 120.47 27.95 63.45 120.47

Zero-shot
Cost 13.15 29.96 58.01 13.30 29.42 56.47 29.16 92.30 141.76 32.75 86.82 190.69
Gap[%] 29.30 81.14 150.80 24.07 77.87 144.14 4.33 45.47 17.67 17.17 36.83 58.29
Time[s] 2.52 11.87 96.30 2.70 13.19 104.91 1.94 15.03 250.71 2.93 15.86 150.69

AS
Cost 11.16 20.03 OOM 11.92 22.41 OOM 28.12 63.98 OOM 28.51 66.49 OOM
Gap[%] 4.13 21.12 OOM 11.21 35.48 OOM 0.60 0.83 OOM 2.00 4.79 OOM
Time[s] 7504 10070 OOM 7917 10020 OOM 8860 21305 OOM 9679 24087 OOM

EAS
Cost 11.10 20.94 35.36 11.65 22.80 38.77 28.10 64.74 125.54 29.25 70.15 140.97
Gap[%] 3.55 26.64 52.89 8.68 37.86 67.63 0.52 2.04 4.21 4.66 10.57 17.02
Time[s] 348 1562 13661 376 1589 14532 432 1972 20650 460 2051 17640

on the searched instances by adapting all the policy parameters and 2) Efficient Active Search (EAS):
from (Hottung et al., 2022) which finetunes a subset of parameters (i.e., embeddings or new layers)
and adds an imitation learning loss to improve convergence.

We apply AS and EAS to POMO and Sym-NCO pre-trained on TSP and CVRP with 50 nodes to
solve larger instances havingN ∈ [200, 500, 1000] nodes. As shown in Table 13, solvers with search
methods improve the solution quality. However, POMO generally shows better improvements over
Sym-NCO. This suggests once more that the “overfitting” of sophisticated baselines can perform
better in training distributions but eventually worse in different downstream tasks.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

E.1.6 ADDITIONAL LARGE-SCALE RESULTS

We also show in Table 14 additional large-scale results with 10k+ nodes obtained with the hybrid
AR/NAR GLOP model (Ye et al., 2024b). Fig. 23 demonstrates a solution obtained through our
implementation of GLOP for CVRP35K. It represents the maximum scale of CVRP that RL4CO is
capable of solving within 24GB of graphics memory while preserving the performance.

Table 14: Performance on large-scale CVRP instances with ten thousands of nodes.

CVRP10K CVRP20K
Obj. Time Obj. Time

HGS (Vidal, 2022) 108.1 4.01h 182.7 6.03h
Random Insertion 187.9 0.16s 330.4 0.61s

GLOP-G (Insertion) 127.0 2.42s 208.3 10.9s
GLOP-G (AM) 119.6 4.68s 199.6 14.8s
GLOP-G (LKH) 111.4 5.06s 191.4 17.9s

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
GLOP-G (LKH) — CVRP35K capacity=2000 — veh num=89 cost=180.743 time=46.39s

Figure 23: A visualization of the solution generated by GLOP on CVRP35K.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

Table 15: Benchmarking results of ACO method in TSP with 200, 500, 1000 nodes. The reported values are
obtained by averaging over 128 test instances. The time is the average computation time for solving a single
instance.

Method TSP200 TSP500 TSP1000

Cost Gap(%) Time(s) Cost Gap(%) Time(s) Cost Gap(%) Time(s)

Concorde Applegate et al. (2023) 10.72 0.00 0.9 16.55 0.00 10.7 23.12 0.00 108.3

ACO 10.88 1.52 1.0 17.23 4.11 4.0 24.42 5.65 19.8
DeepACO 10.80 0.79 1.0 16.87 1.95 4.3 23.82 3.03 20.7
GFACS 10.75 0.32 1.0 16.80 1.56 4.3 23.78 2.87 20.7

Table 16: Benchmarking results of ACO methods with different τ values in TSP with 500 nodes. The reported
values are the average cost of 128 test instances.

Method τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1.0 τ = 1.5 τ = 2.0

ACO 17.05 16.95 17.03 17.11 17.19 17.23 17.26 17.26
DeepACO 17.00 16.97 16.92 16.84 16.85 16.87 16.88 16.89
GFACS 16.92 16.90 16.86 16.80 16.80 16.80 16.81 16.82

E.2 LEARNING HEURISTICS FOR ANT COLONY OPTIMIZATION

E.2.1 EXPERIMENT SETTINGS

We adhered to the hyperparameters specified in the original papers for DeepACO (Ye et al., 2023)
and GFACS (Kim et al., 2024) for GFlowNets training. We conducted two distinct benchmarks for
ACO methods. The first benchmark evaluated the ability to solve the Traveling Salesman Problem
(TSP) at different scales: 200, 500, and 1000. We use the test instances provided by DeepACO20.
The second benchmark assessed inference capability at various temperature values of τ in TSP with
500 nodes. The temperature τ is a hyperparameter for the heatmap distribution of the heuristic
matrix in ACO, where a low τ emphasizes exploitation and a high τ emphasizes exploration. For
both experiments, the optimality gaps are calculated with respect to the average cost of solutions
obtained using Concorde Applegate et al. (2023).

E.2.2 RESULTS

TSP Benchmark Table 15 shows the results for the first benchmark. In this benchmark, we ob-
served that GFACS outperforms other baselines, and DeepACO surpasses ACO. These results are
consistent with their respective claims (Ye et al., 2023; Kim et al., 2024), providing evidence that
our benchmark is sufficiently valid. Notably, our algorithm also performed slightly faster than the
original implementation, likely due to the batchified environment of RL4CO.

Performance Comparison for Different Heatmap Temperatures (τ) Table 16 shows the re-
sults for the second benchmark. This benchmark compared inference performance across different
heatmap temperatures (τ). We observed notable performance variation with changes in τ . This
highlights the importance of inference and sampling strategies even after deep network training is
completed. Additionally, GFACS produced more consistent results with different τ values. This
provides empirical evidence of the robustness of GFACS, which is due to its ability to model a sam-
pler capable of generating diverse and high-reward solutions. The modularization of RL4CO allows
for a focused study on inference capabilities, enabling future researchers to contribute to this aspect
using the RL4CO pipeline.

E.3 LEARNING TO SCHEDULE

Compared to routing problems, scheduling problems have not been extensively studied by the NCO
community. On the one hand side, NCO methods for scheduling are harder to benchmark due to
the absence of well-performing heuristics like the LKH algorithm for the TSP. On the other hand,
scheduling problems involve more complex graph representations like disjunctive graphs Zhang

20https://github.com/henry-yeh/DeepACO

53

https://github.com/henry-yeh/DeepACO

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

et al. (2020), bipartite graphs Kwon et al. (2021), or heterogeneous graphs Song et al. (2022), making
it harder to encode the problem. With RL4CO, we aim to mitigate these entry barriers for NCO
researchers by providing established solution methods along with the environments. Further, by
being modular by design, RL4CO allows for quick evaluation of different learning algorithms and
network architectures, which can already lead to substantial improvements of the solution quality,
as demonstrated in the example of the FJSSP in Table 3. Lastly, by providing benchmark instances
like Taillard Taillard (1993) and easy ways of initializing the environments with external benchmark
files, we facilitate the comparison of models with existing methods. The following chapter describes
established DRL models for scheduling problems as well as their performance on synthetic and
benchmark datasets.

E.3.1 JSSP

Models To solve the JSSP using DRL methods, we implement the L2D model described in Ap-
pendix C.2.7 in RL4CO. To train the encoder-decoder policy, we use the same Proximal Policy
Optimization (PPO) algorithm as Zhang et al. (2020). In contrast to most other work in the NCO
domain, L2D uses a (dense) stepwise reward function rather than a sparse episodic reward, which is
observed only after a complete solution is obtained. This reward determines the change in the lower
bound of the makespan given the partial schedule. Due to the dense nature of the reward, the PPO
algorithm for the scheduling problems evaluates actions on a stepwise basis, whereas environments
with an episodic reward are evaluated based on a full rollout. We compare these methods and discuss
the different implementations in Appendix E.3.4.

Further, we demonstrate RL4CO’s ability to effortlessly implement a state-of-the-art solver for JSSP
instances by exchanging the GCN encoder used by Zhang et al. (2020) with the MatNet encoder
Kwon et al. (2021) described in Appendix C.2.11. Furthermore, the greedy decoding scheme of
Zhang et al. (2020) is replaced by N = 100 random samples, of which the best is selected.

Reproduction and Improvement of Original Results We demonstrate RL4CO’s capability of
learning dispatching rules for the JSSP by training and validating the L2D model of Zhang et al.
(2020) and our version of L2D with the MatNet encoder on synthetic data. We report the perfor-
mance achieved with RL4CO together with the baselines the authors of the original papers used, as
well as the solutions obtained via the CP-Sat solver Google OR-Tools. The baselines are a set of
selected PDRs that have a high practical relevance, namely Most Work Remaining (MWKR) and
Most Operations Remaining (MOR).

Table 17: Comparison of RL4CO with L2D Zhang et al. (2020) and other baselines on the JSSP. For OR-Tools,
the fraction of instances solved optimally is reported in parentheses.

Size Metric OR-Tools PDRs L2D RL4CO

MWKR MOR Zhang et al. (2020) GCN MatNet (×128)

6× 6
Obj. 487.75 (100%) 656.96 630.19 574.09 569.53 515.11
Gap - 34.6% 29.2% 17.7% 16.8% 5.6%

10× 10
Obj. 808.32 (100%) 1151.41 1101.08 988.58 972.35 865.78
Gap - 42.6% 36.5% 22.3% 20.3% 7.1%

15× 15
Obj. 1187.06 (99%) 1812.13 1693.33 1504.79 1492.94 1318.25
Gap - 52.6% 42.6% 26.7% 25.7% 11.0%

20× 20
Obj. 1555.79 (4%) 2469.19 2263.68 2007.76 1992.36 1847.33
Gap - 58.6% 45.5% 29.0% 28.1% 18.7%

The results are listed in Table 17. RL4CO’s implementation of L2D manages to outperform the
original implementation on all instance types, even when using the same model architecture, learning
algorithm, and hyperparameters. The reason is that RL4CO uses an improved implementation of the
environment. In the implementation of Zhang et al. (2020) the state of the environment does not
contain a time dimension. Instead, the environment schedules the selected operation at the earliest
feasible start time, given the current schedule. Here, we use the environment proposed by Tassel
et al. (2021), where the environment transitions through distinct time steps t = 0, 1, ...T . In this

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

case, the start time of a selected operation is set to the time step at which it was selected, leading to
a more natural form of credit assignment.

Using the MatNet encoder instead of the GCN and employing a decoding scheme based on multiple
random rollouts further reduces the makespan by a large margin. One instances of size 6 × 6, the
gap to the optimal solutions was reduced by 11 percentage points to 5.6%, which corresponds to a
third of the gap realized with the GCN encoder.

Taillard Benchmark and out-of-distribution performance With RL4CO, we also provide the
possibility to test models against established benchmarks. For the JSSP, a well-recognized bench-
mark is that of Taillard (1993), which is also used by Zhang et al. (2020) to validate their model.
In Table 18, we report the results of RL4CO on these instances along with the results obtained by
Zhang et al. (2020) as well as the MOR and MWKR heuristics. We trained our MatNet models on
JSSP instances up to size 20×20. For larger Taillard instances, we report the out-of-distribution per-
formance to demonstrate the model’s generalization ability. Similar to the synthetic test instances,
our RL4CO implementation paired with the MatNet encoder manages to outperform the original
L2D by large margins on all instances of the Taillard benchmark dataset, even when evaluating it on
out-of-distribution instances.

Table 18: Results on the Taillard Taillard (1993) benchmark instances. BKS refers to the best known solutions
and % opt. specifies the rate of instances with optimal solutions. Values marked with a † indicate out-of-
distribution performance of the model trained on 20× 20.

Size Metric BKS PDRs L2D RL4CO

MWKR MOR Zhang et al. (2020) MatNet (×128)

15× 15
Obj. 1230.06 (100%) 1927.5 1782.3 1547.50 1404.30
Gap - 56.7% 45.0% 26.0% 14.2%

20× 15
Obj. 1363.22 (90%) 2190.7 2015.8 1774.7 1570.70
Gap - 60.7% 47.7% 30.0% 15.2%

20× 20
Obj. 1617.60 (30%) 2518.6 2309.9 2128.1 1842.90
Gap - 55.7% 42.8% 31.6% 13.9%

30× 15
Obj. 1787.68 (70%) 2728.0 2601.3 2378.8 2121.19†

Gap - 52.6% 45.6% 33.0% 18.6%

30× 20
Obj. 1948.32 (0%) 3193.3 2888.1 2603.9 2357.90†

Gap - 63.9% 48.2% 33.6% 21.0%

E.3.2 FJSSP

Model To solve the FJSSP using DRL methods, we implement the HGNN model described in
Appendix C.2.10 in RL4CO and train it with the same PPO algorithm as L2D. Besides HGNN we
also implement a second model which exchanges the encoder of HGNN with the MatNet encoder.

Reproduction and Improvement of Original Results We compare the results obtained via
RL4CO with those reported by Song et al. (2022) and the baseline used by them. Also, Song et al.
(2022) use MWKR and MOR to benchmark their model as well as the OR-Tools solver. The results,
which are obtained on a test set comprising of 100 randomly generated instances, are listed below
in Table 19.

Similar to the JSSP, the HGNN implemented in RL4CO achieves better results than the original im-
plementation, although both implementations use the same definition of the environment. However,
in RL4CO, we use instance normalization Ulyanov et al. (2016) on the input variables as well as
between consecutive HGNN layers, which we found to drastically stabilize the training process.

Again, we were able to enhance the quality of the solution further by simply exchanging the encoder
with MatNet. Especially on the larger instances, the increased model complexity translates into
much better model performance, with the solutions even surpassing OR-Tools on 20× 10 instances.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

Table 19: Comparison of RL4CO and HGNN Song et al. (2022) on the FJSSP. For OR-Tools, the fraction
of instances solved optimally is reported in parentheses. Both RL4CO and Song et al. (2022) make use of
random-rollouts for decoding.

Size Metric OR-Tools PDRs HGNN RL4CO (×128)

MWKR MOR Song et al. (2022) (×128) HGNN MatNet

10× 5
Obj. 96.59 (15%) 115.29 116.69 105.61 102.49 99.02
Gap - 19.4% 20.9% 9.4% 6.1% 2.5%

20× 5
Obj. 188.45 (0%) 216.98 217.17 207.50 199.47 192.05
Gap - 15.2% 15.3% 10.1% 5.8% 1.9%

15× 10
Obj. 145.42 (5%) 169.18 173.40 160.36 155.34 151.93
Gap - 16.3% 19.3% 10.3% 6.8% 4.5%

20× 10
Obj. 197.24 (0%) 220.85 221.86 214.87 207.52 192.00
Gap - 11.9% 12.53% 9.0% 5.2% -2.7%

Out-of-distribution In this section, we evaluate the out-of-distribution performance of the DRL
models trained with RL4CO on FJSSP 20 × 10 instances, by evaluating them on smaller (20 × 5
& 15 × 10) and larger (30 × 10 & 40 × 10) instances. The results in Table 20 indicate that both
HGNN and MatNet manage to generalize well to problems of different sizes. Despite being trained
on smaller instances, the HGNN manages to close the performance gap when evaluated on larger
instances, with gaps being as small as 3.7% for FJSSP 40 × 10 instances. And on FJSSP 20 × 5
instances, the average makespan increases by only 1.56 (0.8%) when using the model trained on
FJSSP 20 × 10 instead of 20 × 5 instances. Again, the MatNet model shows superior perfor-
mance compared to the other baselines and surpasses even the results obtained by OR-Tools on the
larger instances. The within-distribution performance of MatNet, therefore, also translates to out-of-
distribution instances, indicating that the complexity of the model results in a better generalization
ability.

Table 20: Generalization performance of a policy trained on a 20 × 10 FJSSP instances on smaller and larger
instances. We use 100 test instances per instance size. Gaps are reported with respect to the results of OR-Tools

Size Metric OR-Tools PDRs HGNN RL4CO (×128)

MWKR MOR Song et al. (2022) (×128) HGNN MatNet

20× 5
Obj. 188.45 (0%) 216.98 217.17 207.50 201.03 193.61
Gap - 15.2% 15.3% 10.1% 6.7% 2.7%

15× 10
Obj. 145.42 (5%) 169.18 173.40 160.36 162.41 150.59
Gap - 16.3% 19.3% 10.3% 11.7% 3.5%

30 × 10 Obj. 294.10 (0%) 319.89 320.18 312.20 309.10 286.16
Gap - 8.8% 8.9% 6.1% 5.1% -2.7%

40 × 10 Obj. 397.36 (0%) 425.70 425.19 415.14 412.05 381.19
Gap - 7.1% 7.0% 4.4% 3.7% -4.1%

E.3.3 FFSP

MatNet To solve the FFSP using DRL, RL4CO implements the policy network described by
Kwon et al. (2021). It uses separate policy networks for each stage of the FFSP. Each of the stage
networks employs the MatNet encoder described in Appendix C.2.11, which generates embeddings
for jobs and machines using the processing times of the job-machine pairs of the respective stage.
The decoder of the attention model Kool et al. (2019a) then utilizes the machine embeddings of
the respective stage as query and the job embeddings as keys and values to compute the probability
distribution over jobs.

Results We use the same three instance types described by Kwon et al. (2021) to evaluate our
implementations of the FFSP environment and the policy network. The instances only differ in

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

the number of jobs, which are set to 20, 50, and 100. We assume that there are S = 3 stages,
and each stage has M = 4 machines. In the kth stage, the processing time of the job j on the
machine m is given by pjmk. Therefore, an instance of the problem is defined by three matrices
(P1, P2, and P3), specifying the processing time for each job-machine combination in that stage.
We report the results obtained by RL4CO and compare them to those obtained by Kwon et al.
(2021) in Table 21. Other benchmarks used are the exact solver CPLEX (for which results can
only be obtained for FFSP20 instances), the Shortest Job First (SJF) dispatching rule, as well as the
evolutionary algorithms Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). One can
see that, using RL4CO, we are able to reproduce the results from the original paper.

Table 21: Comparison of RL4CO with the results reported in Kwon et al. (2021). Gaps are reported with
respect to the best known results.

Instance Matric CPLEX (600s) SJF GA PSO Kwon et al. (2021) RL4CO

FFSP20 Obj. 36.6 31.3 30.6 29.1 27.3 27.2
Gap 34.5% 15.0% 12.5% 6.9% 0.3% 0.0%

FFSP50 Obj. - 57.0 56.4 55.1 51.5 51.6
Gap - 10.7% 9.5% 7.0% 0.0% 0.2%

FFSP100 Obj. - 99.3 98.7 97.3 91.5 91.3
Gap - 8.8% 8.1% 6.6% 0.2% 0.0%

E.3.4 DENSE AND EPISODIC REWARDS

We additionally compare dense and episodic rewards for the TSP and FJSSP environments, with
similar training settings as in other experiments, except for the different reward functions.

Here, we compare the performance of the HGNN (Song et al., 2022) in solving the FJSSP and AM
(Kool et al., 2019a) in solving the TSP when trained using a stepwise vs. an episodic reward. The
results in Table 22 show that evaluating the FJSSP in a stepwise manner and stepwise re-encoding
the current state significantly outperforms a policy based on a single, episodic reward. This is
reasonable since the state of the FJSSP has many dynamic elements, and a policy that relies on a
single encoder step may not fully grasp the problem dynamics. On the other hand, stepwise rewards
for the TSP (AM model trained with POMO with the settings as Kwon et al. (2020)) do not work
well, and interestingly, performance approaches roughly that of the nearest insertion algorithms.
Different CO problems react to the same learning setup, which again underpins the importance of a
unified framework where different algorithms are implemented and are easily exchangeable.

Table 22: Comparison of dense (i.e. stepwise) and episodic rewards for the TSP and the FJSSP

Reward TSP FJSSP

20 50 100 10× 5 20× 5 15× 10

Dense 4.51 7.05 9.80 102.49 199.47 155.34
Episodic 3.83 5.81 7.82 110.65 204.88 182.90

E.4 ELECTRONIC DESIGN AUTOMATION: LEARNING TO PLACE DECAPS

Setup In this section, we benchmark models on the mDPP from Appendix B.3.2. We benchmark
3 variants of online DevFormer (DF), namely DF(PG,Critic): REINFORCE (where PG stands for
Policy Gradients, an “alias” of the REINFORCE algorithm) with Critic baseline, DF(PG,Rollout):
REINFORCE with Rollout baseline as well as PPO. All experiments are run with the same hyper-
parameters as the other experiments except for the batch size set to 64, the maximum number of
samples set to 10, 000, and a total of only 10 epochs due to the nature of the benchmark sample
efficiency.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

E.4.1 MAIN RESULTS

Table 23 shows the main numerical results for the task when RS, GA, and DF models are trained for
placing 20 decaps. While RS and GA need to take online shots to solve the problems (we restricted
the number to 100), DF models can successfully predict in a zero-shot manner and outperform the
classical approaches. Interestingly, the vanilla critic-based method performed the worst, while our
implementation of PPO almost matched the rollout policy gradients (PG) baseline; since extensive
hyperparameter tuning was not performed, we expect PPO could outperform the rollout baseline
given it requires fewer samples. Fig. 24 shows example renderings of the solved environment.

Table 23: Performance of different methods on the mDPP benchmark

Method # Shots Score ↑
maxsum maxmin

Online Test Time Search

Random Search 100 11.55 10.63
Genetic Algorithm 100 11.93 11.07

RL Pretraining & Zero Shot Inference

DF-(PG,Critic) 0 10.89± 0.63 9.51± 0.68
DF-(PPO) 0 12.16± 0.03 11.17± 0.11
DF-(PG,Rollout) 0 12.21± 0.01 11.26± 0.03

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

available keepout probe decap

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

available keepout probe decap

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

available keepout probe decap

Figure 24: Renders of the environment with maxmin objective solved by DF-(PG,Rollout). The model suc-
cessfully learned one main heuristic for DPP problems, which is that the optimal placement of decaps (blue) is
generally close to probing ports (red).

E.4.2 GENERALIZATION TO DIFFERENT NUMBER OF COMPONENTS

In hardware design, the number of components is one major contribution to cost; ideally, one would
want to use the least number of components possible with the best performance. In the DPP, in-
creasing the number of decaps generally improves the performance at a greater cost, hence Pareto-
efficient models are essential to identify. Fig. 25 shows the performance of DF models trained on
20 decaps against the baselines. DF models PPO and PG-rollout can successfully generalize and are
also Pareto-efficient with fewer decaps, important in practice for cost and material saving.

E.5 LEARNING TO IMPROVE

In this section, we first show the efficiency of RL4CO when reproducing the improvement methods
on the TSP and PDP with 50 nodes and discuss the potential collaboration of constructive methods
with improvement methods for better inference performance.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

12 14 16 18 20 22 24 26 28

Number of Used Decaps

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

P
er

fo
rm

an
ce

mDPP with Maxsum Objective

RS

GA

DF(PG,Critic)

DF(PPO)

DF(PG,Rollout)

12 14 16 18 20 22 24 26 28

Number of Used Decaps

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

P
er

fo
rm

an
ce

mDPP with Maxmin Objective

RS

GA

DF(PG,Critic)

DF(PPO)

DF(PG,Rollout)

Figure 25: Performance vs number of used decaps for mDPP with maxsum objective [Left] and maxmin objec-
tive [Right].

E.5.1 MAIN RESULTS

As shown in Table 24, refactoring and implementing the three improvement methods—DACT Ma
et al. (2021) (TSP50), N2S Ma et al. (2022) (PDP50), and NeuOpt Ma et al. (2024) (PDP50)—using
RL4CO consistently results in better efficiency compared to the original implementations. Specif-
ically, training and testing times (T = 1, 000) are faster, and peak memory usage is lower. This
advancement can be attributed to RL4CO’s streamlined design, which uses a single tensor dictio-
nary variable to store all state information, and the incorporation of efficient libraries like PyTorch
Lightning and TorchRL. These enhancements demonstrate RL4CO’s superior efficiency and ease of
implementation.

Table 24: Comparison of time and memory usage for DACT Ma et al. (2021) (TSP50), N2S Ma et al. (2022)
(PDP50), and NeuOpt Ma et al. (2024) (PDP50) between the original implementation and the RL4CO imple-
mentation.

T_train (one epoch) T_test (1k,1k) Memory

DACT-Origin 16m 38s 8069MB
DACT-RL4CO 10m 26s 7135MB

N2S-Origin 26m 41s 13453MB
N2S-RL4CO 17m 33s 12489MB

NeuOpt-Origin 14m 37s 7273MB
NeuOpt-RL4CO 10m 31s 6313MB

E.5.2 DISCUSSION

As shown in Fig. 26, bootstrapping improvement with constructive methods can greatly improve
the performance, especially in terms of the Primal Integral (PI, Appendix D.1.2). While in TSP
bootstrapping is consistently better than simply improving with default solutions (i.e. lower final gap
to BKS as well as PI), we note that in PDP with N2S, improving starting from a random initialization
can yield better performance in terms of gap. However, the PI reveals that while N2S from random
init achieves a value of 5.580, N2S from HAM construction initialization achieves a much better
2.234, indicating a much better early convergence speed and Pareto front.

We additionally offer some clues on how to improve such performance. Firstly, we simply initialized
from a greedy solution, while more complex inference strategies may offer a significant boost. Fur-
thermore, the trained model as per the setting in Appendix D.3.3 could be further trained and obtain
better performance. Importantly, we believe that end-to-end construction & improvement, in which
both a constructive and improvement method are trained together, could ultimately outperform a
separate training and achieve the best of both worlds.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

0 50 100 150 200

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

G
ap

(%
)

TSP50

POMO (sampling)
DACT (from random init)
DACT (from POMO init)
NeuOpt (from random init)
NeuOpt (from POMO init)

0 50 100 150 200

Time (s)

1

2

3

4

5

6

7

8

G
ap

(%
)

PDP50

HAM (sampling)
N2S (from random init)
N2S (from HAM init)

Figure 26: Bootstrapping improvement with constructive methods for TSP50 and PDP50.

E.6 GRAPH PROBLEMS: FACILITY LOCATION PROBLEM (FLP) AND MAXIMUM COVERAGE
PROBLEM (MCP)

Here, we present the experimental results and the corresponding discussions on the two CO problems
on graphs: the Facility Location Problem (FLP; see Appendix B.4.1) and the Maximum Coverage
Problem (MCP; see Appendix B.4.2).

E.6.1 EXPERIMENTAL SETTINGS

Baseline methods We consider two simple baselines: uniform random (UR) and deterministic
greedy (DG), where UR chooses k locations uniformly at random and DG chooses k locations one
by one in a greedy manner. We also apply two MIP solvers, Gurobi (Gurobi Optimization, 2021)
and SCIP (Bestuzheva et al., 2021), to obtain the optimal solutions.

Benchmark methods We benchmark with the attention model (AM) with different embedding
models (i.e., encoders) and different RL baselines. For FLP, the considered embedding models are:
the multilayer perception (MLP), the graph convolutional network (GCN) (Kipf and Welling, 2017),
and the graph attention network (Velickovic et al., 2017; Brody et al., 2019). For MCP, since the
problem instances are formulated on bipartite graphs, the considered embedding models are: the
multilayer perception (MLP), the GraphSAGE model (Hamilton et al., 2017) (in short “SAGE”),
and the generalized GCN model (Li et al., 2020a) (in short “GEN”). The considered RL baselines
are: Rollout, Mean, Exponential, and Critic. All the models are trained in 100 epochs. The learning
rate is 1e− 5 for FLP and 1e− 4 for MCP. In each epoch, 100, 000 training data are used with batch
size 1, 000. For the decoding strategies, we consider sampling (with 64 independent samples) and
greedy. For sampling (and UR), we report both the “best” performance among the 64 independent
samples and the “mean” (i.e., average) performance over the 64 independent samples.

Test-time active search We apply three variants of active search at test time: the original active
search (AS) proposed by Bello et al. (2017), efficient active search (EAS) proposed by Hottung
et al. (2022) with two variants: EAS-Emb that finetunes embeddings and EAS-Lay that finetunes
new layers. We run all the active search variants for 100 iterations.

E.6.2 BENCHMARK RESULTS

Main benchmark Table 25 shows the main numerical results when the methods are trained and
tested to choose k = 10 locations on instances with n = 100 locations. Table 26 shows the main
numerical results when the methods are trained and tested to choose k = 10 sets on instances with
n = 100 sets and m = 200 items in total. Each item has a random weight between 1 and 10, and
the number of items in each set is randomly sampled between 5 and 15. The reported results are
averaged over 1, 000 randomly generated test instances. We also report the average gap between the
performance for each setting and the optimum by solvers as described in Appendix D.1.1.

Here we use absolute values since we minimize the total distance for FLP while maximizing the
total weights for MCP. When using absolute values, it is consistent that smaller gaps correspond to

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

Table 25: Performance of different methods on the facility location problem (FLP) benchmark. For the perfor-
mance, the smaller the better.

Encoder RL Baseline Sample (Best) Sample (Mean) Greedy
Active Search

AS EAS-Emb EAS-Lay

MLP

Rollout 10.4895 11.0056 10.9980 10.3004 10.2997 10.2997
(Gap) (2.19%) (7.23%) (7.16%) (0.35%) (0.34%) (0.34%)
Mean 10.5635 11.1614 10.9350 10.2995 10.3008 10.3008
(Gap) (2.91%) (8.75%) (6.54%) (0.34%) (0.35%) (0.35%)

Exponential 10.5726 11.1848 10.9589 10.3054 10.3051 10.3051
(Gap) (3.00%) (8.98%) (6.78%) (0.40%) (0.39%) (0.39%)
Critic 10.5617 11.1401 10.9439 10.2987 10.2994 10.2994
(Gap) (2.90%) (8.55%) (6.63%) (0.33%) (0.34%) (0.34%)

GCN

Rollout 10.4232 10.6404 10.6094 10.2955 10.2956 10.2958
(Gap) (1.54%) (3.66%) (3.36%) (0.30%) (0.30%) (0.30%)
Mean 10.4321 10.8095 10.6076 10.2807 10.2830 10.2830
(Gap) (1.63%) (5.31%) (3.34%) (0.15%) (0.18%) (0.18%)

Exponential 10.4729 10.9573 10.7257 10.2837 10.2859 10.2859
(Gap) (2.02%) (6.75%) (4.49%) (0.18%) (0.20%) (0.20%)
Critic 10.7086 11.4549 11.0139 10.2859 10.2891 10.2891
(Gap) (3.82%) (0.54%) (6.01%) (0.20%) (0.23%) (0.23%)

GAT

Rollout 10.4685 10.9202 10.8916 10.2956 10.2956 10.2957
(Gap) (1.99%) (6.40%) (6.12%) (0.30%) (0.30%) (0.30%)
Mean 10.6641 11.3499 11.0133 10.2865 10.2899 10.2898
(Gap) (3.90%) (0.59%) (7.31%) (0.21%) (0.24%) (0.24%)

Exponential 10.6487 11.3504 10.9869 10.2864 10.2881 10.2880
(Gap) (3.75%) (0.60%) (7.05%) (0.21%) (0.22%) (0.22%)
Critic 10.6566 11.3440 10.8813 10.2859 10.2888 10.2888
(Gap) (4.33%) (1.62%) (7.31%) (0.20%) (0.23%) (0.23%)

Uniform Random (Best) 12.4788
(Gap) (21.62%)

Uniform Random (Mean) 15.6327
(Gap) (52.40%)

Deterministic Greedy 10.9831
(Gap) (7.02%)

GUROBI/SCIP (Optimum) 10.2650
(Gap) (0.00%)

better performance. The performance of RL methods with sampling is consistently better than the
two baselines, uniform random (UR) and deterministic greedy (DG), showing their effectiveness on
those two problems.

Effect of the encoder Overall, the performance of different encoders is similar. For FLP, we can
observe GCN’s marginal superiority (except when we use Critic as the RL baseline). For MCP, the
best encoders for different RL baselines are different, but MLP’s performance is the overall best.

Effect of the RL baseline For FLP, for the four considered RL baselines (Rollout, Mean, Expo-
nential, Critic), Rollout is consistently better than the other three. For MCP, the differences in the
performance of different RL baselines are not significant.

Effect of active search Active search significantly improves performance in almost all cases. For
FLP, interestingly, Rollout achieves the best overall performance without active search, but Rollout
underforms in many cases with test-time active search. Notably, the performance of the original
active search (AS) is less stable than the two variants of efficient active search (EAS), especially for
MCP. In our understanding, AS was originally designed for routing problems and uses multi-start
sampling with distinct initial action (i.e., the first location/set to choose). Such a strategy is useful
for routing problems due to symmetry but is less useful for problems without symmetry, such as
FLP and MCP.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

Table 26: Performance of different methods on the maximum coverage problem (MCP) benchmark. For the
performance, the larger the better.

Encoder RL Baseline Sample (Best) Sample (Mean) Greedy
Active Search

AS EAS-Emb EAS-Lay

MLP

Rollout 682.4741 662.4359 665.1740 689.6200 689.6070 689.6070
(Gap) (0.96%) (3.31%) (3.05%) (0.09%) (0.09%) (0.09%)
Mean 682.4011 664.7105 668.7470 682.0610 689.5900 689.5900
(Gap) (1.06%) (3.96%) (3.56%) (1.18%) (0.09%) (0.09%)

Exponential 683.0300 665.1467 666.6640 671.3130 689.5870 689.5870
(Gap) (1.09%) (3.99%) (3.64%) (9.68%) (0.09%) (0.09%)
Critic 683.1511 666.9047 668.6411 687.8240 689.3510 689.3510
(Gap) (1.43%) (5.40%) (4.92%) (0.35%) (0.13%) (0.13%)

SAGE

Rollout 681.8690 664.1233 665.9901 689.4810 689.5020 689.4930
(Gap) (1.14%) (3.71%) (3.44%) (0.11%) (0.11%) (0.11%)
Mean 682.1360 669.2791 670.4091 666.0360 689.5990 689.5890
(Gap) (1.06%) (3.63%) (3.05%) (10.44%) (0.09%) (0.09%)

Exponential 680.3970 653.0383 656.3170 675.2220 689.5990 689.5980
(Gap) (1.06%) (3.95%) (3.46%) (2.18%) (0.09%) (0.09%)
Critic 676.9190 645.9108 649.6940 647.9050 688.4500 688.4650
(Gap) (1.94%) (6.43%) (5.89%) (6.12%) (0.26%) (0.26%)

GEN

Rollout 680.2640 648.2318 656.3710 689.4430 689.4660 689.4660
(Gap) (1.10%) (2.96%) (2.80%) (0.12%) (0.11%) (0.11%)
Mean 682.1960 662.1896 664.6721 681.3950 689.5670 689.5670
(Gap) (0.97%) (3.56%) (3.34%) (1.28%) (0.10%) (0.10%)

Exponential 682.4290 662.5012 665.8010 689.4060 689.5650 689.5650
(Gap) (1.07%) (3.70%) (3.18%) (0.12%) (0.10%) (0.10%)
Critic 682.3510 664.1604 667.7340 689.6170 689.3940 689.3940
(Gap) (1.45%) (6.08%) (4.91%) (0.09%) (0.12%) (0.12%)

Uniform Random (Best) 527.9360
(Gap) (-23.50%)

Uniform Random (Mean) 432.7287
(Gap) (-37.30%)

Deterministic Greedy 680.2050
(Gap) (-1.46%)

GUROBI/SCIP (Optimum) 690.2350
(Gap) (0.00%)

Test-time sampling techniques We also consider other test-time sampling techniques: top-p sam-
pling (Holtzman et al., 2019) and different sampling temperatures. Top-p sampling discards actions
with low probabilities, and top-p sampling with lower p values discards more low-probability ac-
tions. For sampling temperatures, higher temperatures give more uniform sampling. The considered
p values are: 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1.0. The sampling temperatures considered are 0.01,
0.03, 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, and 2.0. Fig. 27 show the heatmaps for each
combination of encoder and RL baseline, for FLP and MCP. In each subplot, the x-axis represents
the value of p in top-p sampling, and the y-axis represents the sampling temperature. For each com-
bination, the best performance is marked with a red star. For FLP, the best performance is usually
achieved with a proper (i.e., neither too high nor too low) level of randomness. As the p value of
top-p sampling increases, the best sampling temperature decreases. Recall that both increasing the p
value and increasing the sampling temperature would increase the randomness in sampling. Overall,
compared to other RL baselines, Rollout needs a higher level of randomness to perform best. For
MCP, the best performance is usually achieved without top-p sampling and with a high sampling
temperature, i.e., without high randomness in the sampling space.

E.6.3 OUT-OF-DISTRIBUTION

Results on out-of-distribution instances Table 27 shows the main numerical results when the
methods are trained to choose k = 10 locations on instances with n = 100 locations, but tested to
choose k′ = 20 locations on instances with n′ = 200 locations. Table 28 shows the main numerical
results when the methods are trained to choose k = 10 sets on instances with n = 100 sets and

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

MLP GCN GAT

Rollout

Mean

Exponential

Critic

MLP SAGE GEN

Rollout

Mean

Exponential

Critic

Figure 27: Performance of sampling with different p values for top-p sampling and different sampling temper-
atures. Top: FLP; Bottom: MCP. For each combination of encoder and RL baseline, the best performance is
marked with a star.

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

Table 27: Performance of different methods on the facility location problem (FLP) out-of-distribution instances.
For the performance, the smaller the better.

Encoder RL Baseline Sample (Best) Sample (Mean) Greedy
Active Search

AS EAS-Emb EAS-Lay

MLP

Rollout 14.7612 15.2979 15.2709 14.4160 14.4181 14.4181
(Gap) (3.85%) (7.63%) (7.44%) (1.42%) (1.43%) (1.43%)
Mean 15.0045 15.7343 15.3075 14.5315 14.5331 14.5331
(Gap) (5.56%) (10.70%) (7.70%) (2.23%) (2.24%) (2.24%)

Exponential 15.0022 15.7144 15.3131 14.5274 14.5266 14.5266
(Gap) (5.54%) (10.56%) (7.74%) (2.20%) (2.19%) (2.19%)
Critic 14.9670 15.6631 15.2781 14.5147 14.5132 14.5132
(Gap) (5.30%) (10.20%) (7.49%) (2.11%) (2.10%) (2.10%)

GCN

Rollout 14.9564 15.4230 15.3610 14.6254 14.6239 14.6248
(Gap) (5.22%) (8.51%) (8.07%) (2.89%) (2.88%) (2.89%)
Mean 15.1380 15.8310 15.3713 14.6554 14.6572 14.6574
(Gap) (6.50%) (11.38%) (8.14%) (3.10%) (3.11%) (3.12%)

Exponential 15.2197 15.9598 15.4441 14.6961 14.6963 14.6973
(Gap) (7.08%) (12.29%) (8.66%) (3.39%) (3.39%) (3.40%)
Critic 15.1754 15.9835 15.2815 14.6579 14.6634 14.6642
(Gap) (6.53%) (12.00%) (8.23%) (3.12%) (3.16%) (3.16%)

GAT

Rollout 14.7503 15.2808 15.2593 14.4142 14.4150 14.4143
(Gap) (3.77%) (7.51%) (7.36%) (1.40%) (1.41%) (1.40%)
Mean 15.1147 15.9092 15.2895 14.5944 14.5986 14.5946
(Gap) (6.34%) (11.93%) (7.57%) (2.67%) (2.70%) (2.67%)

Exponential 15.1639 15.9886 15.2945 14.5991 14.6004 14.6011
(Gap) (6.68%) (12.49%) (7.60%) (2.70%) (2.71%) (2.72%)
Critic 15.1428 15.9191 15.3835 14.6053 14.6111 14.6111
(Gap) (6.76%) (12.46%) (7.51%) (2.75%) (2.79%) (2.79%)

Uniform Random (Best) 18.3215
(Gap) (28.92%)

Uniform Random (Mean) 21.7044
(Gap) (52.74%)

Deterministic Greedy 15.3090
(Gap) (7.71%)

GUROBI/SCIP (Optimum) 14.2148
(Gap) (0.00%)

m = 200 items in total and tested to choose k′ = 20 sets on instances with n′ = 200 sets and
m′ = 400 items in total. Each item has a random weight between 1 and 10, and the number of
items in each set is randomly sampled between 5 and 15. The reported results are averaged over
1, 000 randomly generated test instances. We also report the average gap for each setting. Overall,
the performance of RL methods generalizes well to out-of-distribution instances, being significantly
higher than both Uniform Random and Deterministic Greedy with enough sampling.

Effect of the encoder For FLP, unlike the main benchmark, the superiority of GCN no longer
exists for out-of-distribution instances. For MCP, the best encoders for different RL baselines are
still different, and the performance of MLP is the best.

Effect of the RL baseline For FLP, again, Rollout is overall better than the other three. For MCP,
the best RL baselines for different encoders are different, and Mean and Critic are overall good
choices.

Effect of active search Again, active search clearly improves performance in almost all cases.
For FLP, unlike the main benchmark, for out-of-distribution instances, Rollout overall performs best
with and without active search. Still, the performance of the original active search (AS) is less
stable than the two variants of efficient active search (EAS). With active search (especially EAS),
the performance of RL methods is consistently better than that of Deterministic Greedy and is close
to the optimum.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

Table 28: Performance of different methods on the maximum coverage problem (MCP) out-of-distribution
instances. For the performance, the larger the better.

Encoder RL Baseline Sample (Best) Sample (Mean) Greedy
Active Search

AS EAS-Emb EAS-Lay

MLP

Rollout 1356.8970 1299.8690 1307.5250 1385.3340 1385.3280 1385.3280
(Gap) (-1.83%) (-5.48%) (-5.03%) (-0.32%) (-0.33%) (-0.33%)
Mean 1360.7710 1306.4015 1312.6290 1319.8180 1383.3580 1383.3580
(Gap) (-2.34%) (-6.45%) (-5.89%) (-5.04%) (-0.47%) (-0.47%)

Exponential 1360.7830 1306.3337 1312.7070 1088.0180 1383.9670 1383.9670
(Gap) (-2.49%) (-6.64%) (-6.23%) (-21.71%) (-0.42%) (-0.42%)
Critic 1363.9190 1313.2830 1319.5280 1353.9080 1377.3780 1377.3780
(Gap) (-3.29%) (-7.83%) (-7.33%) (-2.59%) (-0.90%) (-0.90%)

SAGE

Rollout 1353.9790 1297.5763 1303.7120 1382.2220 1382.1140 1382.1140
(Gap) (-2.55%) (-6.61%) (-6.16%) (-0.55%) (-0.56%) (-0.56%)
Mean 1366.0050 1320.5641 1325.5570 1121.7650 1384.3780 1384.3650
(Gap) (-2.06%) (-5.98%) (-5.53%) (-19.30%) (-0.39%) (-0.40%)

Exponential 1344.1420 1281.0377 1288.0360 1288.2830 1383.6030 1383.5500
(Gap) (-2.30%) (-6.38%) (-5.73%) (-7.31%) (-0.45%) (-0.45%)
Critic 1331.1100 1266.6130 1276.0670 1092.0550 1367.4660 1367.4690
(Gap) (-4.23%) (-8.87%) (-8.19%) (-21.42%) (-1.61%) (-1.61%)

GEN

Rollout 1334.2700 1269.0966 1284.4550 1385.6540 1385.5750 1385.5750
(Gap) (-1.68%) (-4.96%) (-4.60%) (-0.30%) (-0.31%) (-0.31%)
Mean 1354.8450 1297.2153 1302.8560 1305.4070 1384.3080 1384.2980
(Gap) (-2.06%) (-5.98%) (-5.52%) (-6.08%) (-0.40%) (-0.40%)

Exponential 1357.4750 1300.7056 1309.8040 1376.1300 1384.3780 1384.3900
(Gap) (-2.11%) (-6.18%) (-5.45%) (-0.99%) (-0.39%) (-0.39%)
Critic 1360.0420 1303.4360 1313.6640 1366.2960 1374.8630 1374.8370
(Gap) (-4.00%) (-8.68%) (-7.58%) (-1.69%) (-1.08%) (-1.08%)

Uniform Random (Best) 1003.3390
(Gap) (-27.80%)

Uniform Random (Mean) 866.3536
(Gap) (-37.66%)

Deterministic Greedy 1367.2240
(Gap) (-1.63%)

GUROBI/SCIP (Optimum) 1389.8450
(Gap) (0.00%)

Test-time sampling techniques For out-of-distribution instances, we also consider top-p sampling
and different sampling temperatures as the main benchmark. The considered p values are: 0.5, 0.6,
0.7, 0.8, 0.9, 0.95, 0.99, 1.0. The sampling temperatures considered are 0.01, 0.03, 0.1, 0.3, 0.5,
0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, and 2.0. Fig. 28 show the heatmaps for each combination of encoder
and RL baseline, for FLP and MCP. In each subplot, the x-axis represents the value of p in top-
p sampling, and the y-axis represents the sampling temperature. For each combination, the best
performance is marked with a red star. For both FLP and MCP, the best performance is usually
achieved with a proper (i.e., neither too high nor too low) level of randomness. As the p value of
top-p sampling increases, the best sampling temperature decreases. Recall that both increasing the
p value and increasing the sampling temperature would increase the randomness in sampling.

E.7 EFFICIENT SOFTWARE ROUTINES

E.7.1 MIXED-PRECISION TRAINING

RL4CO supports multiple device types as well as floating point precisions by leveraging PyTorch
Lightning (Falcon and The PyTorch Lightning team, 2019).

As Table 29 shows mixed-precision training can successfully reduce computational costs both in
terms of runtime and especially with memory usage.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

MLP GCN GAT

Rollout

Mean

Exponential

Critic

MLP SAGE GEN

Rollout

Mean

Exponential

Critic

Figure 28: Performance of sampling on out-of-distribution instances with different p values for top-p sampling
and different sampling temperatures. Top: FLP; Bottom: MCP. For each combination of encoder and RL
baseline, the best performance is marked with a star.

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

Table 29: Running time and memory usage of the AM model trained using FP32 and FP16 mixed precision
(FP16-mix), evaluated over 5 epochs with a training size of 10,000 in the CVPR20, CVPR50, and CVPR100.

Problem Precision Running time [s] Memory usage [GiB]

CVRP20 FP32 6.33± 0.26 1.41± 0.04
FP16-mix 5.89± 0.07 0.84± 0.01

CVRP50 FP32 13.58± 0.12 4.79± 0.40
FP16-mix 11.68± 0.30 2.30± 0.25

CVRP100 FP32 35.09± 0.71 13.47± 0.63
FP16-mix 25.11± 0.66 8.14± 0.82

E.7.2 FLASHATTENTION

Given that the Attention operator is used on several occasions, especially in autoregressive models,
there is a need to support fast and efficient software routines that can compute this ubiquitous op-
eration. In RL4CO, we natively support FlashAttention (Dao et al., 2022; Dao, 2023) from both
PyTorch 2.0+ and the original FlashAttention repository 21, to which we also made some minor
contributions when we found bugs.

0 2000 4000 6000 8000 10000

Problem size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
[s

]

£10°1

Attention

FlashAttention 1
FlashAttention 2

0 2000 4000 6000 8000 10000

Problem size

0

2

4

6

8

T
im

e
[s

]

£10°2

Attention

FlashAttention 1
FlashAttention 2

(a) (b)

Figure 29: Running time of the graph attention encoder from the Attention Model, equipped with a standard
attention layer, FlashAttention1, and FlashAttention2, across different problem sizes for both (a) the TSP and
(b) the CVRP environments.

As shown in Fig. 29, different implementations can make a difference, especially with large problem
sizes. It should be noted that while more scalable, FlashAttention at the moment is restricted to no
or causal masks only. Therefore, usage in the masked attention decoding scheme is not possible
at the moment, although it could be even more impactful due to the auto-regressive nature of our
encoder-decoder scheme. Recent works as Pagliardini et al. (2023) may be useful in extending
FlashAttention to other masking patterns. We note that masking should, in principle, be even faster
than un-masked attention, given that operations can be skipped in a per-block manner.

E.7.3 EFFICIENT MEMORY HANDLING IN ENVIRONMENTS

When dealing with RL problems, there is usually a tradeoff between memory and speed. This
happens because environments are parallelized using multiple processes or threads, the policy net-
work is replicated to each environment, or observations incoming from each environment need
to be gathered, sent to the policy network, and then the output action scattered back to the
representative environment. In the first case, network duplication causes large memory con-
sumption; in the second case, communication between processes slows down. In RL4CO, we
solve the problem by using batched environments, i.e., every environment is responsible not

21Available at https://github.com/Dao-AILab/flash-attention.

67

https://github.com/Dao-AILab/flash-attention

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

for a single instance of a problem but a batch of instances at the same time. By doing so,
the policy can live in the same process of the environment, in the same device, and receive
and send batched data without any communication overhead or additional memory consumption.

Table 30: Comparison of training time in seconds for
one epoch with RL4CO and TorchRL step method.

Configuration Step method

Environment Nodes RL4CO TorchRL

TSP
50 46.3 49.6
100 102.9 108.6
200 284.9 302.2

CVRP
50 72.9 73.4
100 147.3 154.3
200 371.7 406.4

To further improve performances, we rewrite
a core component of the TorchRL environ-
ment, namely the stepmethod of the TorchRL
base environment. The original step method
performs some checks that, while useful for
generic environments, can be omitted for
RL4CO ones. It also duplicates the informa-
tion in the output TensorDict by return-
ing both the previous and the new state. In
RL4CO, the previous state is always redun-
dant, hence our step method does not keep it,
reducing the memory consumption. We can see
in Table 30 that using RL4CO step method has
a great benefit in terms of speed, especially for high-dimensional environments. The results are
collected for the TSP and CVRP environment during one epoch of training for a dataset of size
100000. The table shows the difference in training time and peak allocated memory for the training
when the environment uses the TorchRL step method and the RL4CO step method. The peak al-
located memory is computed using the torch.cuda.max_memory_allocated method from
PyTorch, and experiments are run on a Tesla V100 DGX 32GB.

E.8 TOWARDS FOUNDATION MODELS

Motivation Although learning to solve VRPs has gained significant attention, previous methods
are only structured and trained independently on a specific problem, making them less generic and
practical. Inspired by the recent success of foundation models in the language and vision domains,
some works started to build foundation models for VRPs (Liu et al., 2024a; Zhou et al., 2024;
Berto et al., 2024), aiming to solve a wide spectrum of problem variants using a single model.
The main idea is to train a (large) model on diverse VRPs, which can be represented by a unified
template. Typically, VRPs share several common attributes. For example, CVRP and VRPTW
share the capacity attribute while only differing in the time window attribute. Therefore, a simple
template could be a union set of attributes that exist in all VRP variants. By training on diverse
VRP variants leveraging this unified representation, the foundation VRP model has the potential to
efficiently and effectively solve any variant, making it a favorable choice versus traditional solvers
(e.g., OR-Tools (Perron and Furnon, 2023)) in the future.

E.8.1 EXPERIMENTAL SETTING

For traditional solvers, we use HGS-PyVRP (Wouda et al., 2024), an open-source VRP solver
based on the state-of-the-art HGS-CVRP (Vidal, 2022), and Google’s OR-Tools (Perron and Furnon,
2023), an open-source solver based on constraint programming for complex optimization problems,
to solve all VRP variants considered in this study. Both baseline methods solve each instance on
a single CPU core with a time limit of 10 and 20 seconds for instances with 50 and 100 nodes,
respectively. We parallelize traditional solvers across 16 CPU cores as in (Kool et al., 2019a). For
neural solvers, we mostly follow the training setups from previous works (Liu et al., 2024a; Zhou
et al., 2024; Berto et al., 2024). In specific, the model is trained over 300 epochs, with each epoch
containing 100,000 instances generated on the fly. The Adam optimizer is used with a learning rate
of 3e− 4, a weight decay of 1e− 6, and a batch size of 256. The learning rate decays by 10 at 270
and 295 epochs. Note that different from Liu et al. (2024a); Zhou et al. (2024), we allow various
problem variants to be trained in each batch training following Berto et al. (2024). We consider 16
VRP variants as shown in Table 8, including the constraints of capacity, time window, backhaul,
open route, and duration limit. The training variants include CVRP, OVRP, VRPL, VRPB, VRPTW,
and OVRPTW. During inference, we use greedy rollout with x8 instance augmentation following
Kwon et al. (2020). We report the average results (i.e., objective values and gaps) over the test
dataset that contains 1,000 instances, and the total time to solve the entire test dataset. The gaps
are computed with respect to the results of HGS-PyVRP. All neural solvers are implemented using
RL4CO.

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

Table 31: Performance on 1,000 test instances. * represents 0.000%, with which the gaps are computed.

Method
N = 50 N = 100

Method
N = 50 N = 100

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time
C

V
R

P

HGS-PyVRP 10.287 * 4.6m 15.543 * 9.2m

V
R

PT
W

HGS-PyVRP 16.032 * 4.6m 25.433 * 9.2m
OR-Tools 10.523 2.294% 4.6m 16.361 5.263% 9.2m OR-Tools 16.124 0.574% 4.6m 25.923 1.927% 9.2m
MTPOMO 10.408 1.176% 2s 15.809 1.711% 10s MTPOMO 16.396 2.270% 2s 26.391 3.767% 11s
MVMoE 10.397 1.069% 3s 15.782 1.538% 13s MVMoE 16.394 2.258% 3s 26.357 3.633% 14s
MVMoE-L 10.404 1.137% 3s 15.790 1.589% 12s MVMoE-L 16.393 2.252% 3s 26.359 3.641% 13s

O
V

R
P

HGS-PyVRP 6.494 * 4.6m 9.730 * 9.2m

V
R

PL

HGS-PyVRP 10.328 * 4.6m 15.637 * 9.2m
OR-Tools 6.555 0.939% 4.6m 10.081 3.607% 9.2m OR-Tools 10.570 2.343% 4.6m 16.466 5.302% 9.2m
MTPOMO 6.712 3.357% 2s 10.241 5.252% 10s MTPOMO 10.454 1.220% 2s 15.921 1.816% 12s
MVMoE 6.696 3.111% 3s 10.213 4.964% 13s MVMoE 10.442 1.104% 3s 15.886 1.592% 13s
MVMoE-L 6.704 3.234% 2s 10.215 4.985% 12s MVMoE-L 10.450 1.181% 2s 15.898 1.669% 10s

V
R

PB

HGS-PyVRP 9.688 * 4.6m 14.386 * 9.2m

O
V

R
PT

W

HGS-PyVRP 10.485 * 4.6m 16.900 * 9.2m
OR-Tools 9.829 1.455% 4.6m 15.010 4.338% 9.2m OR-Tools 10.497 0.114% 4.6m 17.023 0.728% 9.2m
MTPOMO 9.975 2.962% 2s 15.014 4.365% 10s MTPOMO 10.664 1.707% 2s 17.426 3.112% 11s
MVMoE 9.954 2.746% 3s 14.962 4.004% 13s MVMoE 10.665 1.717% 3s 17.421 3.083% 15s
MVMoE-L 9.963 2.839% 2s 14.976 4.101% 11s MVMoE-L 10.665 1.717% 2s 17.411 3.024% 14s

O
V

R
PB

HGS-PyVRP 6.897 * 4.6m 10.304 * 9.2m

O
V

R
PB

L

HGS-PyVRP 6.904 * 4.6m 10.310 * 9.2m
OR-Tools 6.940 0.623% 4.6m 10.611 2.979% 9.2m OR-Tools 6.949 0.652% 4.6m 10.613 2.939% 9.2m
MTPOMO 7.392 7.177% 2s 11.787 14.392% 10s MTPOMO 7.400 7.184% 2s 11.786 14.316% 10s
MVMoE 7.566 9.700% 3s 11.873 15.227% 13s MVMoE 7.577 9.748% 3s 11.875 15.179% 13s
MVMoE-L 7.388 7.119% 2s 11.806 14.577% 12s MVMoE-L 7.391 7.054% 2s 11.814 14.588% 12s

O
V

R
PB

LT
W

HGS-PyVRP 11.597 * 4.6m 19.005 * 9.2m

O
V

R
PB

T
W

HGS-PyVRP 11.590 * 4.6m 19.167 * 9.2m
OR-Tools 11.612 0.129% 4.6m 19.198 1.016% 9.2m OR-Tools 11.610 0.173% 4.6m 19.314 0.767% 9.2m
MTPOMO 11.986 3.354% 2s 20.048 5.488% 11s MTPOMO 11.980 3.365% 2s 20.209 5.436% 11s
MVMoE 11.949 3.305% 3s 20.092 5.720% 15s MVMoE 11.957 3.167% 3s 20.254 5.671% 15s
MVMoE-L 11.961 3.139% 3s 20.033 5.409% 14s MVMoE-L 11.951 3.115% 2s 20.173 5.249% 14s

O
V

R
PL

HGS-PyVRP 6.510 * 4.6m 9.709 * 9.2m

O
V

R
PL

T
W

HGS-PyVRP 10.455 * 4.6m 16.962 * 9.2m
OR-Tools 6.571 0.937% 4.6m 10.047 3.481% 9.2m OR-Tools 10.465 0.096% 4.6m 17.100 0.814% 9.2m
MTPOMO 6.732 3.410% 2s 10.216 5.222% 10s MTPOMO 10.625 1.626% 2s 17.486 3.089% 11s
MVMoE 6.713 3.118% 3s 10.187 4.923% 13s MVMoE 10.631 1.683% 3s 17.483 3.072% 15s
MVMoE-L 6.725 3.303% 2s 10.185 4.903% 12s MVMoE-L 10.635 1.722% 3s 17.474 3.019% 14s

V
R

PB
L

HGS-PyVRP 9.688 * 4.6m 14.373 * 9.2m

V
R

PB
LT

W

HGS-PyVRP 18.361 * 4.6m 29.026 * 9.2m
OR-Tools 9.820 1.363% 4.6m 15.084 4.947% 9.2m OR-Tools 18.422 0.332% 4.6m 29.830 2.770% 9.2m
MTPOMO 9.994 3.159% 2s 15.033 4.592% 10s MTPOMO 19.028 3.633% 2s 31.062 7.014% 11s
MVMoE 9.971 2.921% 3s 14.979 4.286% 13s MVMoE 18.967 3.300% 3s 31.114 7.194% 15s
MVMoE-L 9.977 2.983% 2s 14.990 4.293% 11s MVMoE-L 18.998 3.469% 3s 31.032 6.911% 13s

V
R

PB
T

W

HGS-PyVRP 18.167 * 4.6m 29.000 * 9.2m

V
R

PL
T

W

HGS-PyVRP 15.951 * 4.6m 25.678 * 9.2m
OR-Tools 18.374 1.139% 4.6m 29.964 3.324% 9.2m OR-Tools 16.036 0.533% 4.6m 26.156 1.862% 9.2m
MTPOMO 18.995 4.558% 2s 31.184 7.531% 11s MTPOMO 16.310 2.251% 2s 26.650 3.785% 11s
MVMoE 18.934 4.222% 3s 31.223 7.666% 15s MVMoE 16.315 2.282% 3s 26.635 3.727% 14s
MVMoE-L 18.970 4.420% 2s 31.138 7.372% 14s MVMoE-L 16.311 2.257% 3s 26.637 3.735% 13s

E.8.2 EMPIRICAL RESULTS

We show the comprehensive evaluation results and validation curves in Table 31 and Fig. 30, re-
spectively. The conclusions are consistent with previous studies (Liu et al., 2024a; Zhou et al.,
2024; Berto et al., 2024) that 1) the foundation VRP solvers exhibit remarkable zero-shot gener-
alization performance, even only trained on several VRPs with simple constraints; 2) conditional
computation (e.g., mixture-of-experts (Jacobs et al., 1991; Shazeer et al., 2017)) can greatly en-
hance the model capacity without a proportional increase in computation. In Table 32, we further
show the performance on CVRPLIB (Lima et al., 2014), which is a real-world benchmark dataset in-
cluding instances with diverse distributions. We empirically observe that training on multiple VRPs
can significantly improve the out-of-distribution generalization performance of neural VRP solvers,
demonstrating the great promise of developing foundation models in VRPs.

E.8.3 DISCUSSION

Foundation models, a class of large-scale deep learning models pre-trained on extensive datasets
of diverse tasks, have recently revolutionized the fields of language and vision domains. They can
generate text, translate languages, summarize content, and more, all without task-specific training.

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Step

16.3

16.2

16.1

16.0

15.9

15.8

Ob
j.

CVRP

MTPOMO
MVMoE
MVMoE-L

0 5 10 15 20 25 30
Step

11.0
10.9
10.8
10.7
10.6
10.5
10.4
10.3
10.2

Ob
j.

OVRP

MTPOMO
MVMoE
MVMoE-L

0 5 10 15 20 25 30
Step

15.6

15.5

15.4

15.3

15.2

15.1

15.0

Ob
j.

VRPB

MTPOMO
MVMoE
MVMoE-L

0 5 10 15 20 25 30
Step

16.5

16.4

16.3

16.2

16.1

16.0

15.9

Ob
j.

VRPL

MTPOMO
MVMoE
MVMoE-L

0 5 10 15 20 25 30
Step

27.2

27.0

26.8

26.6

26.4

Ob
j.

VRPTW

MTPOMO
MVMoE
MVMoE-L

0 5 10 15 20 25 30
Step

18.1

18.0

17.9

17.8

17.7

17.6

17.5

17.4

Ob
j.

OVRPTW

MTPOMO
MVMoE
MVMoE-L

Figure 30: The validation curves of foundation models on N = 100.

This versatility makes them incredibly useful across various applications, from chatbots to academic
research. Aiming for a more powerful and general solver, recent studies explore the possibility of
pretraining a large model on a huge amount of optimization tasks. The long-term goal is to develop
a foundation model for VRPs (or more broadly COPs), which can efficiently solve any problem
variant, comparably or better to the conventional solvers with respect to the solution quality and in-
ference speed. Despite the recent advancements of foundation VRP models (Liu et al., 2024a; Zhou
et al., 2024; Berto et al., 2024), there are many challenges that need to be addressed by the NCO
community, including but not limited to: 1) scaling: current autoregressive-based models are chal-
lenging to scale to the parameter levels of large language models (e.g., billions of parameters) due
to the expensive training cost. RL-based training is data inefficient and converges slowly, whereas
SL-based training requires a significant amount of optimal solutions, which are non-trivial to obtain
for NP-hard problems. They also fail to be efficiently trained on large-scale instances; 2) perfor-
mance: the empirical results are still far short of traditional solvers (e.g., OR-Tools). They may
also suffer from generalization and robustness issues; 3) generality: the current problem formula-
tion or template cannot solve novel problem variants in a zero-shot manner; 4) interpretability: the
decision-making of foundation models is hard to explain.

Moreover, there is another line of research leveraging the existing large language models (LLMs) to
generate solutions (Yang et al., 2024; Liu et al., 2023; Iklassov et al., 2024) or algorithms (Romera-
Paredes et al., 2024; Liu et al., 2024b; Ye et al., 2024a), yielding impressive results when integrated
with problem-specific heuristics or general meta-heuristics. Some studies employ LLMs to investi-
gate the interpretability of solvers (Kikuta et al., 2024), automate problem formulation or simplify
the use of domain-specific tools (Xiao et al., 2024; AhmadiTeshnizi et al., 2024; Wasserkrug et al.,
2024) through text prompts. However, their performance is highly dependent on the utilized LLMs,
and their outputs may be extremely sensitive to the designed prompts.

We view both as promising directions towards foundation models in combinatorial optimization. We
call the attention from both the machine learning (ML) and operations research (OR) communities to
advance the development of impactful foundational models and learning methods that are scalable,
robust, generalizable, and interpretable across various optimization tasks in future work.

E.9 GENERALIZATION OF TRAINING ON MULTIPLE DISTRIBUTIONS AND MULTIPLE TASKS

Recent neural methods mostly train and test neural networks on the same task with instances of
the same distribution and size, and hence suffer from inferior generalization performance. Some
attempts have been made to alleviate the generalization issue, focusing on either distribution (Bi

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2025

Table 32: Results on CVRPLib datasets with diverse distributions and sizes. All models are only trained on the
uniformly distributed data with the size N = 100.

Benchmark Size N Ins. Num. POMO-CVRP MTPOMO MVMoE MVMoE-L
Obj. Gap Obj. Gap Obj. Gap Obj. Gap

Set A 31-79 27 1088.5 4.9% 1084.2 4.3% 1081.0 3.8% 1085.4 4.4%
Set B 30-77 23 1013.9 5.5% 1010.3 5.0% 1003.5 4.0% 1001.2 4.0%
Set F 44-134 3 796.0 12.7% 812.7 16.3% 819.0 13.8% 799.0 14.1%
Set M 100-199 5 1157.4 6.3% 1179.4 8.6% 1181.8 8.8% 1151.4 6.0%
Set P 15-100 23 643.9 14.7% 621.8 8.4% 616.1 5.9% 619.8 6.9%
Set X 100-1000 100 77199.6 21.1% 71153.8 11.7% 72798.7 15.0% 72446.1 13.9%

et al., 2022; Jiang et al., 2022; Xin et al., 2022) or size (Son et al., 2023). More aligned to the
diverse distribution and size settings in the benchmark dataset TSPLib and CVRPLib, Manchanda
et al. (2023) and Zhou et al. (2023) consider generalization across both distribution and size in VRPs.

However, these generalization methods adopt extra model architectures and training paradigms, re-
sulting in additional computational burdens. As a more efficient alternative, we observe that diversi-
fied training datasets significantly improve generalization performance. Specifically, as indicated in
the prior works, training on mixed distributions (Bi et al., 2022) and mixed VRP variants (Liu et al.,
2024a; Zhou et al., 2024; Berto et al., 2024) boosts the generalization capability. RL4CO, detailed
in Appendix B.1.6, supports multiple VRP variants and the generation of diverse coordinate distri-
butions, enabling straightforward experimental setups. The implementation specifics are outlined in
Appendix D.3.4. Evaluation results on the CVRPLib Lima et al. (2014), summarized in Table 5 and
fully detailed in Table 33, demonstrate that training across multiple distributions (i.e., MDPOMO)
achieves better generalization on datasets of similar size to the training set, whereas training across
multiple VRP tasks (i.e., MTPOMO) exhibits superior generalization across larger and more diverse
distributions. This indicates that different VRP variants share foundational knowledge, and learning
from this diversity enhances generalization beyond conventional training on a single distribution,
size, and task. These key findings highlight the necessity of developing foundational models across
diverse combinatorial optimization domains.

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2025

Table 33: Full Results on CVRPLIB instances with models trained on N = 50. Greedy multi-start decoding is
used.

Instance BKS
POMO MTPOMO MDPOMO

Instance BKS
POMO MTPOMO MDPOMO

Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap
A-n32-k5 784 821 4.72% 831 5.99% 817 4.21% X-n125-k30 55539 58759 5.80% 58560 5.44% 59924 7.90%
A-n33-k5 661 683 3.33% 689 4.24% 685 3.63% X-n129-k18 28940 30611 5.77% 30437 5.17% 30516 5.45%
A-n33-k6 742 759 2.29% 745 0.40% 750 1.08% X-n134-k13 10916 11805 8.14% 12043 10.32% 11771 7.83%
A-n34-k5 778 791 1.67% 791 1.67% 791 1.67% X-n139-k10 13590 14562 7.15% 14993 10.32% 15328 12.79%
A-n36-k5 799 831 4.01% 803 0.50% 812 1.63% X-n143-k7 15700 17293 10.15% 17337 10.43% 17062 8.68%
A-n37-k5 669 712 6.43% 699 4.48% 673 0.60% X-n148-k46 43448 47711 9.81% 46442 6.89% 49444 13.80%
A-n37-k6 949 995 4.85% 998 5.16% 999 5.27% X-n153-k22 21220 24506 15.49% 23928 12.76% 24562 15.75%
A-n38-k5 730 753 3.15% 749 2.60% 774 6.03% X-n157-k13 16876 18702 10.82% 18201 7.85% 18560 9.98%
A-n39-k5 822 835 1.58% 842 2.43% 842 2.43% X-n162-k11 14138 15678 10.89% 15615 10.45% 16257 14.99%
A-n39-k6 831 838 0.84% 844 1.56% 842 1.32% X-n167-k10 20557 22331 8.63% 23083 12.29% 22839 11.10%
A-n44-k6 937 962 2.67% 959 2.35% 958 2.24% X-n172-k51 45607 50471 10.67% 48799 7.00% 50689 11.14%
A-n45-k6 944 984 4.24% 981 3.92% 965 2.22% X-n176-k26 47812 54316 13.60% 53773 12.47% 53197 11.26%
A-n45-k7 1146 1166 1.75% 1163 1.48% 1162 1.40% X-n181-k23 25569 27331 6.89% 27571 7.83% 27572 7.83%
A-n46-k7 914 924 1.09% 945 3.39% 938 2.63% X-n186-k15 24145 26981 11.75% 27157 12.47% 27011 11.87%
A-n48-k7 1073 1108 3.26% 1121 4.47% 1102 2.70% X-n190-k8 16980 19414 14.33% 19955 17.52% 18355 8.10%
A-n53-k7 1010 1040 2.97% 1080 6.93% 1047 3.66% X-n195-k51 44225 50357 13.87% 47675 7.80% 49878 12.78%
A-n54-k7 1167 1192 2.14% 1191 2.06% 1181 1.20% X-n200-k36 58578 66149 12.92% 62862 7.31% 62466 6.64%
A-n55-k9 1073 1095 2.05% 1124 4.75% 1123 4.66% X-n204-k19 19565 22013 12.51% 22297 13.96% 23018 17.65%
A-n60-k9 1354 1388 2.51% 1398 3.25% 1389 2.58% X-n209-k16 30656 33810 10.29% 33745 10.08% 34060 11.10%
A-n61-k9 1034 1059 2.42% 1090 5.42% 1051 1.64% X-n214-k11 10856 13108 20.74% 13005 19.80% 12586 15.94%
A-n62-k8 1288 1343 4.27% 1329 3.18% 1364 5.90% X-n219-k73 117595 133173 13.25% 125415 6.65% 126942 7.95%
A-n63-k9 1616 1660 2.72% 1660 2.72% 1654 2.35% X-n223-k34 40437 44173 9.24% 44066 8.97% 44609 10.32%
A-n63-k10 1314 1349 2.66% 1342 2.13% 1347 2.51% X-n228-k23 25742 30685 19.20% 29896 16.14% 29593 14.96%
A-n64-k9 1401 1432 2.21% 1438 2.64% 1441 2.86% X-n233-k16 19230 22082 14.83% 22602 17.54% 23553 22.48%
A-n65-k9 1174 1231 4.86% 1234 5.11% 1239 5.54% X-n237-k14 27042 31000 14.64% 31880 17.89% 31617 16.92%
A-n69-k9 1159 1224 5.61% 1207 4.14% 1205 3.97% X-n242-k48 82751 89900 8.64% 87933 6.26% 90125 8.91%
A-n80-k10 1763 1839 4.31% 1825 3.52% 1840 4.37% X-n247-k50 37274 41688 11.84% 42340 13.59% 43318 16.22%
B-n31-k5 672 688 2.38% 705 4.91% 694 3.27% X-n251-k28 38684 43430 12.27% 42379 9.55% 42721 10.44%
B-n34-k5 788 798 1.27% 802 1.78% 803 1.90% X-n256-k16 18839 23449 24.47% 21559 14.44% 25704 36.44%
B-n35-k5 955 979 2.51% 975 2.09% 976 2.20% X-n261-k13 26558 30384 14.41% 31345 18.02% 30630 15.33%
B-n38-k6 805 830 3.11% 817 1.49% 834 3.60% X-n266-k58 75478 83838 11.08% 83806 11.03% 91188 20.81%
B-n39-k5 549 561 2.19% 561 2.19% 557 1.46% X-n270-k35 35291 40274 14.12% 39378 11.58% 41661 18.05%
B-n41-k6 829 849 2.41% 850 2.53% 848 2.29% X-n275-k28 21245 25909 21.95% 25718 21.05% 26474 24.61%
B-n43-k6 742 762 2.70% 756 1.89% 770 3.77% X-n280-k17 33503 37659 12.40% 39309 17.33% 38119 13.78%
B-n44-k7 909 942 3.63% 940 3.41% 934 2.75% X-n284-k15 20226 25024 23.72% 24791 22.57% 23504 16.21%
B-n45-k5 751 772 2.80% 775 3.20% 771 2.66% X-n289-k60 95151 106073 11.48% 104253 9.57% 107238 12.70%
B-n45-k6 678 736 8.55% 745 9.88% 736 8.55% X-n294-k50 47161 54318 15.18% 53458 13.35% 54899 16.41%
B-n50-k7 741 767 3.51% 765 3.24% 753 1.62% X-n298-k31 34231 40064 17.04% 39609 15.71% 41296 20.64%
B-n50-k8 1312 1347 2.67% 1330 1.37% 1328 1.22% X-n303-k21 21736 26078 19.98% 25228 16.07% 25380 16.76%
B-n52-k7 747 762 2.01% 762 2.01% 763 2.14% X-n308-k13 25859 30557 18.17% 31927 23.47% 31625 22.30%
B-n56-k7 707 740 4.67% 744 5.23% 734 3.82% X-n313-k71 94043 106936 13.71% 101767 8.21% 116306 23.67%
B-n57-k7 1153 1153 0.00% 1175 1.91% 1162 0.78% X-n317-k53 78355 96382 23.01% 84483 7.82% 106138 35.46%
B-n57-k9 1598 1651 3.32% 1645 2.94% 1644 2.88% X-n322-k28 29834 35987 20.62% 35503 19.00% 37562 25.90%
B-n63-k10 1496 1537 2.74% 1589 6.22% 1572 5.08% X-n327-k20 27532 33039 20.00% 33478 21.60% 34083 23.79%
B-n64-k9 861 937 8.83% 931 8.13% 923 7.20% X-n331-k15 31102 36123 16.14% 37292 19.90% 37114 19.33%
B-n66-k9 1316 1353 2.81% 1374 4.41% 1350 2.58% X-n336-k84 139111 153850 10.60% 150341 8.07% 158211 13.73%
B-n67-k10 1032 1070 3.68% 1115 8.04% 1065 3.20% X-n344-k43 42050 48339 14.96% 48035 14.23% 49217 17.04%
B-n68-k9 1272 1337 5.11% 1339 5.27% 1343 5.58% X-n351-k40 25896 30923 19.41% 30498 17.77% 30965 19.57%
B-n78-k10 1221 1306 6.96% 1311 7.37% 1307 7.04% X-n359-k29 51505 58300 13.19% 59810 16.12% 59431 15.39%
E-n22-k4 375 421 12.27% 427 13.87% 433 15.47% X-n367-k17 22814 30083 31.86% 28335 24.20% 27747 21.62%
E-n23-k3 569 621 9.14% 574 0.88% 578 1.58% X-n376-k94 147713 162451 9.98% 160107 8.39% 173422 17.40%
E-n33-k4 835 844 1.08% 845 1.20% 858 2.75% X-n384-k52 65928 76341 15.79% 76040 15.34% 77891 18.15%
E-n51-k5 521 534 2.50% 555 6.53% 546 4.80% X-n393-k38 38260 45226 18.21% 44953 17.49% 47317 23.67%
E-n76-k7 682 708 3.81% 721 5.72% 721 5.72% X-n401-k29 66154 73618 11.28% 76247 15.26% 73121 10.53%
E-n76-k8 735 775 5.44% 770 4.76% 777 5.71% X-n411-k19 19712 26432 34.09% 25671 30.23% 25525 29.49%
E-n76-k10 830 876 5.54% 863 3.98% 868 4.58% X-n420-k130 107798 123789 14.83% 119818 11.15% 128982 19.65%
E-n76-k14 1021 1051 2.94% 1070 4.80% 1058 3.62% X-n429-k61 65449 75236 14.95% 76115 16.30% 78711 20.26%
E-n101-k8 815 876 7.48% 879 7.85% 887 8.83% X-n439-k37 36391 44326 21.80% 43772 20.28% 47436 30.35%

E-n101-k14 1067 1137 6.56% 1150 7.78% 1138 6.65% X-n449-k29 55233 63887 15.67% 67416 22.06% 66168 19.80%
F-n45-k4 724 753 4.01% 747 3.18% 729 0.69% X-n459-k26 24139 32530 34.76% 31774 31.63% 31437 30.23%
F-n72-k4 237 272 14.77% 270 13.92% 268 13.08% X-n469-k138 221824 267934 20.79% 248139 11.86% 260902 17.62%
F-n135-k7 1162 1415 21.77% 1385 19.19% 1478 27.19% X-n480-k70 89449 100833 12.73% 103101 15.26% 103785 16.03%

M-n101-k10 820 974 18.78% 908 10.73% 905 10.37% X-n491-k59 66483 78531 18.12% 78999 18.83% 80703 21.39%
M-n121-k7 1034 1242 20.12% 1181 14.22% 1204 16.44% X-n502-k39 69226 79183 14.38% 77585 12.07% 78419 13.28%

M-n151-k12 1015 1143 12.61% 1116 9.95% 1164 14.68% X-n513-k21 24201 34479 42.47% 32744 35.30% 39592 63.60%
M-n200-k16 1274 1468 15.23% 1464 14.91% 1521 19.39% X-n524-k153 154593 179926 16.39% 174390 12.81% 193416 25.11%
M-n200-k17 1275 1468 15.14% 1473 15.53% 1521 19.29% X-n536-k96 94846 112396 18.50% 111393 17.45% 111191 17.23%

P-n16-k8 450 536 19.11% 455 1.11% 452 0.44% X-n548-k50 86700 106722 23.09% 109595 26.41% 114193 31.71%
P-n19-k2 212 238 12.26% 221 4.25% 221 4.25% X-n561-k42 42717 53160 24.45% 54559 27.72% 64356 50.66%
P-n20-k2 216 244 12.96% 221 2.31% 221 2.31% X-n573-k30 50673 63498 25.31% 61820 22.00% 57024 12.53%
P-n21-k2 211 241 14.22% 231 9.48% 242 14.69% X-n586-k159 190316 222036 16.67% 214162 12.53% 236527 24.28%
P-n22-k2 216 227 5.09% 219 1.39% 248 14.81% X-n599-k92 108451 127051 17.15% 131764 21.50% 132380 22.06%
P-n22-k8 603 767 27.20% 597 -1.00% 671 11.28% X-n613-k62 59535 74314 24.82% 76519 28.53% 82989 39.40%
P-n23-k8 529 550 3.97% 545 3.02% 543 2.65% X-n627-k43 62164 74305 19.53% 76288 22.72% 77838 25.21%
P-n40-k5 458 469 2.40% 463 1.09% 474 3.49% X-n641-k35 63682 75524 18.60% 79364 24.63% 78067 22.59%
P-n45-k5 510 518 1.57% 525 2.94% 519 1.76% X-n655-k131 106780 121331 13.63% 123635 15.78% 286735 168.53%
P-n50-k7 554 577 4.15% 576 3.97% 563 1.62% X-n670-k130 146332 178277 21.83% 175430 19.88% 197324 34.85%
P-n50-k8 631 648 2.69% 651 3.17% 653 3.49% X-n685-k75 68205 85840 25.86% 86689 27.10% 92401 35.48%
P-n50-k10 696 729 4.74% 726 4.31% 725 4.17% X-n701-k44 81923 96856 18.23% 101554 23.96% 99307 21.22%
P-n51-k10 741 756 2.02% 774 4.45% 771 4.05% X-n716-k35 43373 54951 26.69% 55906 28.90% 57471 32.50%
P-n55-k7 568 586 3.17% 590 3.87% 588 3.52% X-n733-k159 136187 163853 20.31% 159532 17.14% 202275 48.53%
P-n55-k10 694 707 1.87% 714 2.88% 710 2.31% X-n749-k98 77269 94552 22.37% 92530 19.75% 101096 30.84%
P-n60-k10 744 769 3.36% 769 3.36% 762 2.42% X-n766-k71 114417 136873 19.63% 140820 23.08% 149744 30.88%
P-n60-k15 968 991 2.38% 1003 3.62% 1016 4.96% X-n783-k48 72386 90822 25.47% 94551 30.62% 96054 32.70%
P-n65-k10 792 808 2.02% 820 3.54% 812 2.53% X-n801-k40 73305 91023 24.17% 94591 29.04% 102682 40.08%
P-n70-k10 827 866 4.72% 876 5.93% 864 4.47% X-n819-k171 158121 184644 16.77% 182548 15.45% 417753 164.20%
P-n76-k4 593 639 7.76% 645 8.77% 649 9.44% X-n837-k142 193737 224297 15.77% 231397 19.44% 285547 47.39%
P-n76-k5 627 680 8.45% 673 7.34% 662 5.58% X-n856-k95 88965 106823 20.07% 112092 26.00% 128899 44.89%
P-n101-k4 681 751 10.28% 746 9.54% 773 13.51% X-n876-k59 99299 122331 23.19% 123350 24.22% 117776 18.61%

X-n101-k25 27591 29873 8.27% 29574 7.19% 30455 10.38% X-n895-k37 53860 72775 35.12% 77568 44.02% 86211 60.06%
X-n106-k14 26362 27868 5.71% 27583 4.63% 26996 2.40% X-n916-k207 329179 378802 15.07% 375026 13.93% 429299 30.42%
X-n110-k13 14971 15970 6.67% 16196 8.18% 16348 9.20% X-n936-k151 132715 167857 26.48% 172305 29.83% 175681 32.37%
X-n115-k10 12747 14190 11.32% 14323 12.36% 13533 6.17% X-n957-k87 85465 111777 30.79% 121909 42.64% 116564 36.39%
X-n120-k6 13332 14381 7.87% 14078 5.60% 14157 6.19% X-n979-k58 118976 146052 22.76% 142602 19.86% 145171 22.02%

72

	Introduction
	Related Works
	RL4CO: Taxonomy
	RL4CO: Library Structure
	Environments
	Policies
	RL Algorithms
	Utilities
	Baselines Zoo

	Benchmarking Study
	Flexibility and Modularity
	Constructive Policies
	Combining Construction and Improvement: Best of Both Worlds?

	Discussion
	Conclusion
	
	
	RL4CO: Vision and Software
	Why Choosing the RL4CO Library?
	On the Choice of the Software
	Licenses

	Environments
	Routing
	Traveling Salesman Problem (TSP)
	Capacitated Vehicle Routing Problem (CVRP)
	Orienteering Problem (OP)
	Prize Collecting TSP (PCTSP)
	Pickup and Delivery Problem (PDP)
	Multi-Task VRP (MTVRP)

	Scheduling
	Job Shop Scheduling Problem (JSSP)
	Flexible Job Shop Scheduling Problem (FJSSP)
	Flexible Flow Shop Problem (FFSP)

	Electronic Design Automation
	Decap Placement Problem (DPP)
	Multi-Port Decap Placement Problem (mDPP)

	Graph
	Facility Location Problem (FLP)
	Maximum Coverage Problem (MCP)

	Additional Environments and Beyond

	Baselines
	General-purpose RL Algorithms
	REINFORCE
	Advantage Actor-Critic (A2C)
	Proximal Policy Optimization (PPO)

	Constructive Autoregressive (AR)
	Attention Model (AM)
	Ptr-Net
	POMO
	SymNCO
	PolyNet
	HAM
	MTPOMO
	MVMoE
	L2D
	HGNN
	MatNet
	DevFormer

	Constructive Non-Autoregressive (NAR)
	DeepACO
	GFACS
	GLOP

	Improvement methods
	DACT
	N2S
	NeuOpt

	Active Search Methods
	Active Search (AS)
	Efficient Active Search (EAS)

	Benchmarking Setup
	Metrics
	Gap to BKS
	Primal Integral
	Runtime Measurement

	Hardware & Software
	Hardware
	Software

	Hyperparameters
	Common Hyperparameters
	Changing Policy Components
	Mind Your Baseline
	Generalization: Cross-Task and Cross-Distribution
	Large-Scale Instances
	Combining Construction and Improvement

	Decoding Schemes
	Augmentations
	Sampling

	Additional Experiments
	Mind your Baseline: Further Insights
	Main In-distribution Results
	Decoding Schemes Comparison
	Sample Efficiency
	Out-of-distribution
	Search Methods
	Additional Large-scale Results

	Learning Heuristics for Ant Colony Optimization
	Experiment Settings
	Results

	Learning to Schedule
	JSSP
	FJSSP
	FFSP
	Dense and Episodic Rewards

	Electronic Design Automation: Learning to Place Decaps
	Main Results
	Generalization to Different Number of Components

	Learning to Improve
	Main results
	Discussion

	Graph Problems: Facility Location Problem (FLP) and Maximum Coverage Problem (MCP)
	Experimental settings
	Benchmark Results
	Out-of-distribution

	Efficient Software Routines
	Mixed-Precision Training
	FlashAttention
	Efficient Memory Handling in Environments

	Towards Foundation Models
	Experimental Setting
	Empirical Results
	Discussion

	Generalization of Training on Multiple Distributions and Multiple Tasks

