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Abstract

Understanding the causal relationship between genotype and clinical phenotype
is crucial for disease treatment and prognosis. Despite the existing literature
on exploring associations of genetics with clinical phenotypes such as imaging
patterns and survival in various diseases, there are few to none work address the
causation of these correlated genotypes. This paper leverages recent advances in
causal deep learning to formulate the phenotypical outcome given the change in
genotype as a causal inference problem. We build upon structural causal model
(SCM) with normalizing flows parameterized by deep networks to perform the
counterfactual query to investigate the causal relationship between genotype and
clinical phenotype in two types of neurological disorders. Specifically, we focus on
the causal effect of (1) APOE4 allele on brain volumetric measures in Alzheimer’s
disease; (2) key driver gene mutations on overall survival (OS) in glioblastoma.
Experimental results show that APOE4 noncarriers causally lead to greater gray
matter atrophy in the frontal lobe, and survival-correlated genes do not exhibit
causal effect on OS in glioblastoma.

1 Introduction

Uncovering the causality between genotype and clinical phenotype is of great interest to scientific
research to further the understanding of disease mechanism as well as clinical practice to develop
targeted therapy. While genetics could potentially play a significant role with respect to neurological
disorders as shown from association studies Shen and Thompson [2019], the causal relationship
between genotype and the phenotypical characteristics of these diseases is not known.

Causal deep learning (DL) models integrate causality into DL research which enable the answer
to interventional and counterfactual questions. This paper builds upon the deep structural causal
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model Pawlowski et al. [2020], Wang et al. [2021] to formulate the causes (APOE4 allele or gene
mutation status, sex, age, imaging phenotype) and effects (brain volumetric measures or survival days
after surgery) via a causal graph and learn the structural assignments by using normalizing flows
parameterized by deep networks. To the best of our knowledge, this work should be among the first
to apply causal DL models for studying the causality between genotype and clinical phenotype, and
can be further extended to identifying causal relationship in other applications of biomedical domain.

Our work mainly focuses on two neurological disorders, Alzheimer’s disease (AD) and glioblastoma
(GBM), to demonstrate the utility of causal deep learning with generative models for healthcare.
Alzheimer’s disease is the most prevalent neurodegenerative disease and affects millions of people
globally Association et al. [2016]. Apolipoprotein E (APOE4) is known as the major genetic risk
factor for AD, but few studies have shown the phenotypical differences between APOE4 carrier with
non-carrier Emrani et al. [2020]. We formulate the effect of APOE4 as a causal inference problem as
the counterfactual question of "how the brain volumes will change if the APOE4 allele changes" is
asked. Glioblastoma is the most common and aggressive malignant primary adult brain tumor with
a median overall survival (OS) of 14.6 to 16.7 months Stupp et al. [2017]. Maximal safe surgical
resection combined with radiotherapy and temozolomide (TMZ) chemotherapy has been the standard
treatment pipeline for GBM in clinical practice Akbari et al. [2016]. There have been studies on
using multi-omics data, i.e., clinical information, radiomics and genomics data, to predict the OS
and derive radiomic signature or survival prediction index Fathi Kazerooni et al. [2022]. As a result,
these studies often present the correlation between the risk factors and the OS without addressing the
causal aspect. We also treat this similarly as a causal inference problem where the causal relationships
between 5 key driver genes (EGFR, NF1, PTEN, RB1, TP53) and OS are studied.

2 Dataset

Alzheimer’s Disease We select 983 participants with mild cognitive impairment (MCI) from The
Alzheimer’s Disease Neuroimaging Initiative (ADNI) with only baseline included. 1.5T and 3T MRI
were acquired for all subjects upon which a fully automated pipeline was applied for processing T1
structural MRI data. Intensity inhomogeneities were corrected for the scans Sled et al. [1998] followed
by extra-cranial material removal via a multi-atlas skull stripping algorithm Doshi et al. [2013]. A
multi-atlas label fusion method Doshi et al. [2016] is then used for identifying 145 anatomical regions
of interest (ROIs) in gray matter (GM, 119 ROIs), white matter (WM, 20 ROIs) and ventricles (6
ROIs). As for APOE4, we denote homozygote as 2, heterozygote as 1 and non-carrier as 0, and in the
deep SCM formulation we map all carrier to 1 for the binary experimental setting. We investigate
the causal relationship between APOE4 and 145 brain ROI measures while age and sex are the
confounders.

Glioblastoma Multi-parametric MRI (mpMRI) scans (T1, T1-Gd, T2, T2-FLAIR, DSC, DTI) of
patients diagnosed with glioblastoma were retrospectively collected. Radiomics features, including
histograms, morphological and textural descriptors, were derived using Cancer Imaging Phenomics
Toolkit (CaPTk) Davatzikos et al. [2018]. We applied non-negative matrix factorization (NMF) to
reduce the dimension of imaging features and used the coefficients as covariates. Genetic markers
were obtained through a targeted next generation sequencing (NGS) panel on the resected tumor
samples from the patients. A total number of 27 genes are included in the NGS panel from which
5 most frequent genes were selected for analysis. Clinical information include sex, age at the scan
and survival days from the surgery. The final cohort consists of n = 181 IDH-wildtype patients
with all radiomics, genomics, and clinical measures available. Specifically, we investigate the causal
relationship of the survival days with respect to the 5 gene mutation status (EGFR, NF1, PTEN, RB1,
TP53), while age, sex, 3 NMF coefficients are the other confounders.

3 Methodology

3.1 Structural Causal Model

A structural causal model (SCM) denoted as M = (S, P (ϵ)) consists of a collection S = (f1, . . . , fK)
of structural assignments xk = fk(ϵk;pak), where pak represents the set of parents (direct causes) of
xk and ϵk are noise variables of the unknown sources of variation for xk. A SCM satisfies the causal
Markov condition that each variable xk is independent of its non-effects given the direct causes. There-
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Figure 1: Causal graph of SCM for Alzheimer’s disease where the causal effect of APOE4 on brain
ROI measures is studied. The nodes consist of sex (s), age (a), gene (g) and brain ROIs (x), with
corresponding exogenous noise terms (ϵs, ϵa, ϵg, ϵx). Invertible normalizing flow models are denoted
by bidirectional arrows. The black dot indicates a conditional flow where x is conditioned on the
parent nodes s, a and g. The causal graph for the glioblastoma case follows the same logic where
more nodes are added for incorporating the NMF coefficients and multiple key driver genes besides
sex and age, while the effect being the survival days after surgery.

fore the joint observational distribution of a SCM can be factorised as PM (x) =
∏K

k=1 PM (xk|pak),
where each conditional distribution PM (xk|pak) is characterized by the corresponding structural as-
signment and noise distribution. The joint distribution of exogenous noise variables can be expressed
as P (ϵ) =

∏K
k=1 P (ϵk).

Given the above formulation, we perform a counterfactual query following the three-step process:
abduction, action and prediction Pearl et al. [2000]. The abduction step is the prediction of the
exogenous noise ϵ given the observations x which is to infer the posterior PM (ϵ|x). Next comes the
action step where an intervention, denoted by do(xk := x̃k), is conducted according to the desired
manipulation. A modified SCM M̃ = Mdo(x̃) = (S̃, PM (ϵ|x)) is obtained as a result. Finally, in
the prediction step, the counterfactuals are predicted through sampling from the distribution PM̃(x)

entailed by the modified SCM.

3.2 Normalizing Flow

Normalizing flow can model a complex probability density by applying transformation to simpler base
distribution with same dimensionality. Given an observed variable x, an invertible and differentiable
transformation f(·), and base variable ϵ ∼ P (ϵ) such that x = f(ϵ), the output density is computed
as p(x) = p(ϵ)|det∇f(ϵ)|−1 where ϵ = f−1(x) and ∇f(ϵ) as the Jacobian of the flow f : ϵ 7→ x.
Denote a dataset with sample size of n as D = {xi ∼ p(x)}ni=1, a normalizing flow can be fit by
maximizing the likelihood to obtain the parameters:

θ∗ = argmax
1

n

n∑
i=1

log p(ϵi)− log |det∇fθ(ϵ
i)|

where we use a deep neural network to parameterize the normalizing flow. The above approach
can be used for the conditional densities PM (xk|pak) in SCM. The flows fθk will be fit to map
exogenous noise ϵ to effect xk (e.g., brain volumes or survival days) given parents pak (e.g., APOE4,
sex, age, NMF coefficents of radiomics features, gene mutation). The abduction step involving the
flow is essentially ϵi = f−1

θ (xi). We can manipulate the value of a particular variable for the flow as
the intervention do(x̃k), as in our case we change the APOE4 allele or gene mutation status from
0 (non-carrier / non-mutant) to 1 (carrier / mutant) and vice versa. Then the modified flow f̃θ can
be conducted to sample from PM̃(x) to get counterfactuals (brain volumes w.r.t. change in APOE4 /
survival days w.r.t. change in gene mutation status). Statistical testing will be applied to examine
whether the counterfactual and original variable of interest has significant differences to imply if the
causality can be established or not.
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Figure 2: Survival curves show the association of gene mutations with survival after surgery in GBM
patients. NF1 and RB1 are significantly associated with survival among the 5 most frequent genes.

4 Results

The flow-based SCM is implemented with quadratic autoregressive spline Durkan et al. [2019] by
using PyTorch and Pyro Bingham et al. [2019]. For training details, we use Adam as the optimizer,
set learning rate as 3 × 10−4, weight decay as 10−4 and the number of epochs as 100 for both
experiments.

Alzheimer’s Disease As for the deep SCM implementation details, categorical distribution is used
for sex and APOE4, and we use real-valued normalizing flow for other structural assignments.
Specifically, the structural assignment for age is linear flow, while that for brain ROI volumes is
a conditional flow conditioned on the activations of a fully-connected network with age, sex and
APOE4 as input. The counterfactual outcomes of 145 ROI volumes are generated by changing either
APOE4 status from non-carrier to carrier or carrier to non-carrier. Then we apply t-test adjusted
for multiple testing (Bonferroni correction) comparing the original volume with the counterfactual
outcome of each ROI, and find the region of right medial orbital gyrus has decreasing volume for
APOE4 non-carriers. This observation is consistent with previous literature where the study shows
non-carriers had greater frontoparietal atrophy Wolk et al. [2010].

Glioblastoma The multivariate Cox-PH model and statistical analysis is performed in R. Figure
2 shows that NF1 (p-value: 0.0133 < 0.05) and RB1 (p-value: 0.0072 < 0.05) were significantly
associated with survival days after surgery. Categorical distribution is used for sex and gene mutations,
with real-valued normalizing flow for others. The structural assignments for age and NMF coefficients
are linear flows, while that for survival days is a conditional flow conditioned on the activations of a
fully-connected network with age, sex, NMF coefficients and gene mutations as input. Figure 3 (b-c)
show the distributions of factual and counterfactual survival days under the intervention of specific
gene mutation status. No statistical significance was observed from the t-test. The genetic effects
on survival days from the counterfactuals are in accordance with literature, e.g., mutation in RB1
may prolong the survival Dono et al. [2021]. These results indicate that correlation may not imply
causation and it is desired to uncover the causal factors underlying the disease prognosis.
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(a)

(b)

(c)

Figure 3: (a) Results from Alzheimer’s disease Intervention on APOE4 to change its status of carrier
(homozygote and heterozygote) to non-carrier where the counterfactual outcome of the right medial
orbital gyrus shows significant decrease in the volume. (b-c) Results from glioblastoma Intervention
on a specific gene to alter its status from mutant to non-mutant to observe how the counterfactual
survival days would change comparing with the original survival days of subjects with mutant status
of that gene. (c) follows the same logic as (b) while the alteration direction is from non-mutant to
mutant.

5 Conclusion

The current study demonstrated the utility of deep generative models with causal framework in
biomedical domain and drew the conclusion that APOE4 non-carrier can cause greater atrophy in
frontal lobe in AD patients, and significantly associated genes may not be the underpinning causes
for influencing the survival days after surgery in glioblastoma patients. The limitations of this study
includes the model scalability for the input nodes and the lack of validation for the clinical findings.
Future directions include defining causal graphs with intermediate nodes for secondary phenotypes,
i.e, taking account of the causal relationship from gene to imaging features via causal mediation,
adding more genes or other risk factors into the model, and also applying the causal inference method
on multi-institutional data consortium Davatzikos et al. [2020] with larger sample size.

6 Broader Impact

Uncovering causality in complex real-world scenarios is challenging in nature, especially for biomed-
ical domain where the clinically relevant conclusions and decision-making require rigorous validation
Shen et al. [2020]. However, it is quite hard to validate the causal findings, i.e., as we refer to the
literature on causal discovery where most of the methodological work rely on synthetic or benchmark
dataset Yu et al. [2019], which can be less ideal than the realistic cases.

This work serves as a novel application of the deep SCM framework to provide a deeper understanding
of causality between genotype and clinical phenotype in two real-world datasets of neurological
disorders, thereby shed light upon the causality research for healthcare, i.e., causal inference and
causal discovery from high-dimensional biomedical data. That said, the results from the current
work are in very preliminary stages and demand further investigations as well as clinical validation.
We do not foresee any negative social impact of this work since it is still far from being used for
clinical decision-making. We hope our work can motivate applications of causal deep learning models
in other diseases, such as different types of cancers or neurodegenerative diseases for conducting
genotype-phenotype studies.
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