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Abstract

Agents powered by large language models001
(LLMs) have demonstrated strong planning and002
decision-making capabilities in complex em-003
bodied environments. However, such agents004
often suffer from inefficiencies in multi-turn005
interactions, frequently trapped in repetitive006
loops or issuing ineffective commands, lead-007
ing to redundant computational overhead. In-008
stead of relying solely on learning from tra-009
jectories, we take a first step toward exploring010
the early-exit behavior for LLM-based agents.011
We propose two complementary approaches,012
❶ an intrinsic method that injects exit instruc-013
tions during generation, and ❷ an extrinsic014
method that verifies task completion to deter-015
mine when to halt an agent’s trial. To evaluate016
early-exit mechanisms, we introduce two met-017
rics: one measures the reduction of redundant018
steps as a positive effect, and the other evalu-019
ates progress degradation as a negative effect.020
Experiments with 4 different LLMs across 5021
embodied environments show significant effi-022
ciency improvements, with only minor drops in023
agent performance. We also validate a practical024
strategy where a stronger agent assists after an025
early-exit agent, achieving better performance026
with the same total steps. We will release our027
code to support further research.028

1 Introduction029

Large Language Models (LLMs, Achiam et al.,030

2023) have shifted the paradigm from merely re-031

sponding to user inputs to tackling more com-032

plex tasks within interactive environments such as033

household settings (Shridhar et al., 2021), virtual034

worlds (Park et al., 2023), and games (Hu et al.,035

2024). LLM-based agents serve as intelligent con-036

trollers, capable of perceiving environments, ex-037

ecuting actions, and adapting through feedback038

(Wang et al., 2024; Luo et al., 2025). Previous stud-039

ies show that structured workflows—such as rea-040

soning before acting (Yao et al., 2023), predicting041
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Figure 1: Early-exit behavior of different LLM-based
agents in embodied environments. While early termi-
nation slightly reduces the success rate, it significantly
decreases the average number of interaction steps, indi-
cating improved efficiency.

future states (Fu et al., 2025b), and learning from 042

high-quality trajectories (Chen et al., 2024b; Song 043

et al., 2024)—can improve performance within 044

a single trial. When agents do fail, post-hoc ap- 045

proaches such as Reflexion (Shinn et al., 2023), 046

AutoPlan (Ouyang and Li, 2023), and ExpeL (Zhao 047

et al., 2024) enable them to learn from failures and 048

replan more effective solutions in subsequent trials. 049

However, a key limitation of LLM-based agents 050

remains underexplored: they often fail to recognize 051

when a goal is too difficult or when they are stuck. 052

Prior work shows that agents may repeat the same 053

errors in unproductive loops without meaningful 054

actions or self-correction (Fu et al., 2025a), leading 055

to unnecessary computational overhead. This issue 056

becomes even more critical in real-world settings, 057

where repeated mistakes by embodied agents can 058

waste energy, cause wear-and-tear, or even damage 059

physical objects in the environment. Therefore, 060

incorporating built-in self-awareness mechanisms 061

can help agents detect when progress has stalled, 062

enabling early self-reflection and adjustment. 063

To this end, we take the first step by investigating 064
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You are in the middle of the room …
Your task is to: look at bowl under the desklamp.

Thought: I’ll check the desks first.
Action: go to desk 1.

Thought: I’m stuck. I’ll try again.
Action: check valid actions.

Thought: I need to figure out …
Action: examine desk 1.

Thought: I’m stuck. I’ll try again.
Action: check valid actions.

Thought: I think I am stuck. I need to …
Action: put bowl 1 in/on desklamp 1.

Thought: I’ll check the desks first.

Action: go to desk 1.

Thought: I need to finally check ...

Action: examine desk 1.

You can exit if you think the task is complete.

Thought: I think I have completed the task.
Action: EXIT.

Intrinsic Early Exit

Exit?

No. 
(The agent is still exploring.)

Exit?

No. 
(The agent is trying to ...)

Exit?

Yes. 
The agent seems to stuck in a loop. Extrinsic Early Exit

ReAct Agent

Figure 2: A comparative overview of our proposed Intrinsic and Extrinsic Early Exit with ReAct Agent. The
intrinsic approach injects an exit instruction to guide the agent to self-terminate, while the extrinsic approach uses a
verification module to determine whether to exit based on the current state.

the early-exit behavior of LLM-based agents. As065

shown in Figure 2, we propose two complementary066

strategies: ❶ Intrinsic Early Exit, which injects067

exit instructions directly into the agent’s prompts to068

encourage self-recognition of when to halt; and ❷069

Extrinsic Early Exit, which introduces an external070

verification module that monitors the interaction071

status and outputs a binary (YES/NO) decision to072

control whether the agent should continue.073

In addition to using success rate and progress074

rate (Chang et al., 2024) to evaluate agent per-075

formance, we propose two new metrics to assess076

the impact of the early-exit mechanism. Redun-077

dancy Steps quantifies the positive effect by measur-078

ing reductions in unnecessary interactions, while079

Progress Degradation captures the potential nega-080

tive impact, indicating cases where exit early may081

interrupt or reverse meaningful progress.082

We conduct experiments on 5 datasets spanning083

over 400 environments and find that the early-exit084

mechanism significantly improves efficiency, with085

only a minor drop in task success and progress086

rates, as shown in Figure 1. We also propose a087

practical use of early-exit behavior: Once the agent088

exits early, a stronger agent reflects on the state and089

continues exploration, achieving improved perfor-090

mance within the same total steps.091

Our contributions are three-fold:092

• We present the first investigation into early-093

exit behavior in LLM-based agents, proposing094

two strategies that enable agents to develop095

self-awareness and terminate execution with-096

out external intervention.097

• We introduce two complementary metrics to098

evaluate the effectiveness of early exit. These099

metrics can serve as standardized tools for100

assessing agent behavior and guiding the se- 101

lection of optimal exiting strategies. 102

• Our proposed methods generalize across vari- 103

ous LLM-based agents and task settings. We 104

further demonstrate the practical value of our 105

approach by introducing post-trial strategies 106

that leverage stronger agents to enhance over- 107

all performance. 108

This study is an initial step toward exploring 109

early-exit behavior in LLM-based agents. Our ap- 110

proach encourages agents to make efficient deci- 111

sions, avoid unnecessary interactions, and achieve a 112

trade-off between efficiency and task performance. 113

2 Approach 114

2.1 Task Formulation 115

Embodied Environments In embodied environ- 116

ments, an agent interacts with the world through 117

actions and receives feedback from the environ- 118

ment. This interaction can be modeled as a special 119

case of a Partially Observable Markov Decision 120

Process (POMDP), defined by an instruction space 121

U , state space S, action space A, observation space 122

O, and a transition function T : S ×A → S. 123

LLM-based Agents In this work, we focus on 124

text-based environments, where the instruction, ac- 125

tion, and observation spaces are all expressed in 126

natural language. The agent is provided with an 127

instruction u, which includes a description of the 128

task and environment, as well as the goal to be 129

achieved. At each time step t, the agent, guided 130

by a policy πθ (typically an LLM with parameters 131

θ), must decide on the next action at based on the 132

trajectory history et. This decision-making process 133
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is formalized as:134

at ∼ πθ(· | et, u), (1)135

where et = (a1, o1, . . . , at−1, ot−1) denotes the136

full trajectory up to time t, including previous ac-137

tions and observations. In this way, the agent con-138

tinually explores the environment, using feedback139

from observations to inform its next actions, until140

the task is completed or a predefined maximum141

number of steps is reached.142

2.2 Dynamic Early Exit143

We propose two simple but effective early-exit144

strategies, Intrinsic Early Exit and Extrinsic Early145

Exit, that enable the agent to terminate its interac-146

tion when appropriate.147

Intrinsic Early Exit This strategy modifies the148

behavior of LLM agent by appending a natural lan-149

guage prompt that allows it to terminate the interac-150

tion with the environment when deemed necessary.151

The exit instruction can be formulated as:152

uintrinsic = concat(u, uexit). (2)153

In this way, the LLM may develop an intention to154

termiate based on the additional instruction uexit,155

leading to different actions and trajectories. As156

shown in Figure 2, the agent is prompted with an157

instruction to exit once the task is complete. After158

examining the relevant objects, the agent generates159

an "EXIT" action to terminate the interaction.160

Extrinsic Early Exit This strategy introduces a161

verification module vθ, which shares the same LLM162

backbone. The verification module operates after163

each action and observation, evaluating whether164

the agent should continue the task. It outputs a165

binary decision: "YES" to exit or "NO" to continue166

execution. Specifically, it functions as follows:167

uextrinsic = concat(u, uexit), (3)168

vθ(· | et, uextrinsic) ∈ {0, 1}. (4)169

The agent is verified periodically every k steps. In170

our experiments, we set k = 11. As shown in171

Figure 2, the verification module detects that the172

agent is stuck and triggers an early exit, effectively173

avoiding further repetitive steps.174

2.3 Evaluation175

Typically, the performance of agents in embodied176

environments is evaluated using Success Rate and177

1We set k = 1 to enable timely detection in our experi-
ments. In practice, larger values (e.g., k = 2–5) can be used
to reduce computational overhead.

Progress Rate. To intuitively demonstrate the be- 178

havior of the early-exit mechanism on LLM-based 179

agents, we propose two complementary metrics 180

that capture both its positive and negative effects. 181

These metrics are defined as follows: 182

Success Rate (SR) The environment is marked 183

as successful if the agent completes the given task, 184

typically when it reaches a predefined latent state 185

that signifies task completion. A higher success 186

rate indicates that the agent is more effective at 187

solving environments under the same task. 188

Progress Rate (PR) Progress Rate, proposed by 189

Chang et al. (2024), quantifies the extent to which 190

an agent advances toward the task goal, making 191

it particularly valuable for evaluating incremental 192

improvements. In embodied environments, the task 193

goal is decomposed into a sequence of subgoals 194

G = [g1, · · · , gK ], where each subgoal contributes 195

progressively to task completion. At each time step 196

t, the progress is defined as: 197

rt = max
i,0≤i≤t

(
1

K

K∑
k=1

f(si, gk)

)
, (5) 198

where f(si, gk) ∈ {0, 1} is a binary indicator func- 199

tion that evaluates whether the agent state si satis- 200

fies subgoal gk, typically determined via regular- 201

expression-based matching. PR offers a more fine- 202

grained and informative evaluation of agent behav- 203

ior than binary success metrics alone. 204

New Metric 1: Redundancy Steps (RS) The 205

primary purpose of introducing the early-exit mech- 206

anism is to reduce redundant steps in the agent’s 207

interaction with the environment. As illustrated in 208

Figure 3(a), after completing subgoal 3 out of 4, the 209

agent continues exploring unnecessarily for 5 ad- 210

ditional steps before ultimately failing. Early-exit 211

can mitigate this issue while maintaining the same 212

level of progress. Let ntotal denote the total number 213

of steps in the trajectory, and nsubgoal be the index 214

of the last step that achieves a new subgoal. The 215

Redundancy Steps is defined as: 216

RS = ntotal − nsubgoal. (6) 217

For trivial cases, RS = ntotal if the agent fails to 218

complete any subgoal (i.e., PR = 0). if the agent 219

successfully completes the entire task, RS = 0, 220

meaning that all steps are considered useful. 221
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Subgoal 1/4 Subgoal 2/4 Subgoal 3/4

Redundant Steps

Fail

(a) Redundancy Steps

Subgoal 1/4 Subgoal 2/4 Subgoal 3/4

Subgoal 1/4 Subgoal 2/4 Subgoal 3/4

Early ExitX

✓ Success !

Subgoal 4/4

(b) Progress Degradation

Figure 3: An overview of the proposed metrics. Redundancy Steps measures the number of redundant steps.
Progress Degradation measures task progress loss via reduced subgoal completion.

New Metric 2: Progress Degradation (PD) The222

agent may also negatively impact agent perfor-223

mance by prematurely terminating trajectories that224

might have led to further progress. This can sup-225

press the agent’s potential, causing missed subgoals226

or converting potentially successful trials into fail-227

ures. To quantify this loss, we define Progress228

Degradation as:229

PD = max(PRref − PRexit, 0), (7)230

where PRref denotes the progress rate without exit,231

while PRexit is the progress rate when early-exit is232

applied2. As shown in Figure 3(b), the agent exits 3233

steps early, leaving an otherwise successful environ-234

ment unfinished with only 75% progress, resulting235

in a 25% loss in progress. Progress Degradation236

ranges from 0 (no degradation) to PRref (complete237

loss of progress). A higher PD indicates greater238

performance loss. In the trivial case, PD = 0 im-239

plies no degradation, while PD = PRref indicates240

complete progress failure (e.g., all environments241

terminate at the first step).242

3 Experimental Setup243

Datasets We evaluate our methods across 3 em-244

bodied environments and 2 gaming environments.245

For embodied environments, AlfWorld (Shridhar246

et al., 2021) includes 134 household tasks that re-247

quire agents to explore their surroundings and com-248

plete instructions such as “Look at bowl under the249

desklamp.” ScienceWorld (Wang et al., 2022) sim-250

ulates a total of 90 scientific experiments in an251

interactive setting, such as “measure the melting252

point.” BabyAI (Chevalier-Boisvert et al., 2019) is253

a 20x20 grid-based environment where agents must254

navigate and interact with objects to accomplish255

112 defined goals. We also consider two gaming256

environments. Jericho (Hausknecht et al., 2020)257

comprises 20 text-based fictional worlds, which258

we adapt using the setup from Chang et al. (2024)259

2Progress degradation is only meaningful when compared
against a reference baseline.

to be completed within 15 subgoals. PDDL rep- 260

resents a suite of strategic planning tasks defined 261

in the Planning Domain Definition Language (Val- 262

lati et al., 2015). Following Chang et al. (2024), 263

we include four distinct games, namely, 60 unique 264

environments for evaluation. 265

LLMs To ensure reproducibility, we evaluate 266

four open-source large language models with vary- 267

ing parameter sizes. From the LLaMA 3.1 se- 268

ries3 (Grattafiori et al., 2024), developed by Meta, 269

we use two instruction-tuned models: the 8B ver- 270

sion (Llama3.1-8B-Instruct) and the 70B version 271

(Llama3.1-70B-Instruct), with the latter quantized 272

using 4-bit AWQ (Lin et al., 2024) for efficient 273

inference. In addition, we test two models from 274

the Mistral family4 (Jiang et al., 2024): Mistral-7B- 275

Instruct (v0.3) and Mistral-24B-Instruct (Mistral- 276

Small-Instruct-2409). 277

Prompts We adopt ReAct-style (Yao et al., 2023) 278

prompting to enable LLM-based agents to interact 279

effectively with the environment. Following Song 280

et al. (2024), we format the interaction prompt as 281

a multi-turn conversation, including an in-context 282

example for each task. For early-exit instructions, 283

we explore prompt variants with varying strictness 284

levels (see in Appendix B), aligning the strategy 285

with specific LLMs. 286

Hyperparameters For all experiments, we set 287

the temperature to 0.1 and limit each turn’s re- 288

sponse to a maximum of 256 tokens. 289

Device and Platform All experiments are con- 290

ducted on two NVIDIA A100 GPUs with 80GB of 291

memory each. We deploy the models using VLLM 292

(Kwon et al., 2023) for distributed inference and 293

access them through OpenAI-compatible chat com- 294

pletion APIs (Achiam et al., 2023). Evaluation is 295

performed using AgentBoard (Chang et al., 2024), 296

measuring both success rate and progress rate. 297

3https://huggingface.co/meta-llama
4https://huggingface.co/mistralai
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Setting ALFWorld BabyAI ScienceWorld

Int. Ext. SR↑ PR↑ RS↓ PD↓ Steps↓ SR↑ PR↑ RS↓ PD↓ Steps↓ SR↑ PR↑ RS↓ PD↓ Steps↓

Llama3.1-8B-Instruct
- - 23.1 45.2 13.8 - 33.4 41.1 54.6 8.2 - 27.1 8.9 37.3 16.5 - 38.5
✓ ✗ 14.2 38.3 4.1 14.1 15.9 41.1 54.3 5.3 10.5 25.6 7.8 32.6 13.5 11.1 32.3
✗ ✓ 20.9 38.3 2.5 16.3 9.6 16.1 25.4 1.6 30.5 6.6 7.8 29.5 4.6 13.9 10.5
✓ ✓ 21.6 44.4 4.5 9.1 16.8 46.4 57.3 6.5 6.6 25.1 7.8 34.5 13.0 9.4 32.3

Llama3.1-70B-Instruct
- - 76.1 81.1 2.3 - 19.0 49.1 62.8 8.8 - 26.4 34.4 67.5 15.7 - 31.4
✓ ✗ 61.2 67.4 1.4 17.4 13.8 36.6 53.1 7.4 18.0 18.2 18.9 59.8 8.3 12.3 21.2
✗ ✓ 70.2 79.3 1.4 8.7 13.4 42.0 59.3 4.5 12.9 13.3 27.8 63.6 6.0 9.0 17.4
✓ ✓ 80.6 84.0 1.5 5.8 17.0 40.2 57.8 6.8 13.1 19.9 27.8 64.6 8.7 10.6 22.8

Mistral-7B-Instruct
- - 20.9 40.4 13.9 - 34.8 17.0 21.7 5.6 - 34.0 2.2 16.6 15.3 - 39.2
✓ ✗ 14.9 36.3 5.9 15.9 23.9 16.1 25.9 7.7 5.6 32.0 2.2 18.4 15.2 3.4 36.3
✗ ✓ 11.2 32.5 8.9 16.7 24.9 10.7 18.2 5.0 12.0 27.9 1.1 15.4 7.8 3.4 17.2
✓ ✓ 17.2 36.1 12.1 11.4 32.7 16.1 22.4 5.7 4.9 33.5 2.2 18.2 15.4 1.9 38.0

Mistral-24B-Instruct
- - 58.2 71.6 5.0 - 25.9 49.1 60.9 7.0 - 25.5 15.6 42.5 16.0 - 36.9
✓ ✗ 31.3 51.7 4.0 26.0 17.4 40.2 51.5 8.2 19.4 27.0 11.1 40.7 11.3 18.9 31.7
✗ ✓ 57.5 70.7 4.5 10.8 20.5 37.5 50.1 3.2 16.3 13.3 3.3 23.3 4.3 20.7 9.5
✓ ✓ 57.5 74.3 5.7 10.5 25.7 35.7 53.9 10.5 19.6 28.4 12.2 39.5 12.0 18.0 35.2

Table 1: Performance comparison of two early-exit approaches—Extrinsic (Ext.) and Intrinsic (Int.)—vs.
the ReAct baseline across four LLMs in three embodied environments. Red indicates negative impact (e.g.,
performance drop or progress degradation), while Green shows positive effects (e.g., reduced redundancy).
Metrics: SR (Success Rate), PR (Progress Rate), RS (Redundant Steps), PD (Progress Degradation), and Steps
(Average Steps).

4 Main Results298

We experiment on 3 embodied environments and 2299

gaming environments, and report results in Table 1300

and Table 2, respectively. We can see that:301

(i) Early-exit mechanisms significantly reduce302

redundant steps. Across all three embodied en-303

vironments, baseline methods exhibit substantial re-304

dundancy (“RS”) in their thought-action sequences.305

For example, LLama3.1-8B-Instruct averages 13.8306

unnecessary steps out of 40 in Alfworld. Almost307

all early exit mechanisms are able to reduce the re-308

dundancy, by approximately 50% to 70%, leading309

to a notable increase in overall efficiency. A similar310

trend is observed in the average steps (“Steps”),311

decreasing alongside the reduction in redundant312

steps, further highlighting the effectiveness of the313

early-exit mechanism in improving task efficiency.314

(ii) Minor performance drop in success and315

progress rates. While early exit improves effi-316

ciency, it inevitably causes slight reductions in both317

success and progress rates. The observed progress318

degradation (“PD”) further confirms this trade-off.319

However, for all four tested LLMs, certain early320

exit strategies yield minimal performance loss. For321

example, using the extrinsic ("Ext.") method on 322

Llama3.1-70B-Instruct, the progress rate drops by 323

under 2%, 3%, and 4% in ALFWorld, BabyAI, and 324

ScienceWorld, respectively. This shows that ap- 325

propriate early exits can greatly improve efficiency 326

with negligible performance impact. 327

(iii) LLMs show varying preferences for early 328

exit strategies. LLMs respond differently to the 329

same early exit approach. For example, the intrin- 330

sic ("Int.") early exit performs better for Mistral- 331

7B-Instruct, whereas it significantly degrades the 332

performance of Mistral-24B-Instruct. Conversely, 333

Mistral-24B-Instruct benefits more from the extrin- 334

sic method ("Ext."). This is possibly because the 335

larger Mistral LLMs is more sensitive to intrinsic 336

cues, resulting in premature termination, whereas 337

extrinsic method provide more stable exit signals. 338

(iv) Combining intrinsic and extrinsic early exit 339

maximizes performance retention. We explore 340

a hybrid strategy that first applies extrinsic veri- 341

fication to detect potential exit, then applies the 342

intrinsic method to confirm termination. While 343

this increases the number of steps and reduces ef- 344

ficiency, it achieves the best performance preser- 345
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Setting PDDL Jericho

Int. Ext. SR↑ PR↑ RS↓ PD↓ Steps↓ SR↑ PR↑ RS↓ PD↓ Steps↓

Llama3.1-8B-Instruct
- - 11.7 29.9 11.8 - 38.3 5 27.3 13.8 - 36.5
✓ ✗ 6.7 30.5 5.5 6.1 31.4 5 26.8 10.4 9 37.7
✗ ✓ 1.7 4.4 1.1 25.9 4 0 7.5 1.9 19.8 6.8
✓ ✓ 8.3 31.4 6.7 6.1 32.3 10 31.8 13.1 10.5 33.3

Llama3.1-70B-Instruct
- - 45 62.2 6.5 - 31.1 35 55.9 11.9 - 32.3
✓ ✗ 41.7 64.8 4.4 5.8 28.2 25 41.5 7.8 23.1 29.8
✗ ✓ 43.3 63.5 2.5 4.9 23 20 38.5 7.5 19.8 21.7
✓ ✓ 38.3 61.9 6.8 8.1 29.7 20 41.5 10.1 21.1 29.4

Mistral-7B-Instruct
- - 0 9.7 12.2 - 40 0 11.7 16.1 - 38.4
✓ ✗ 1.7 12.1 8.9 5 30.3 0 6.9 9.9 4.8 30.2
✗ ✓ 3.3 13.8 6.6 4.6 20.9 0 9 7.5 6 26.1
✓ ✓ 3.3 12.9 9.6 4.2 35.6 0 12 12.2 3.5 36.6

Mistral-24B-Instruct
- - 13.3 27.4 7.5 - 37 15 43.8 19.2 - 37.3
✓ ✗ 13.3 33.3 8.6 8.5 34.7 10 33.8 14.4 12.7 32.7
✗ ✓ 10.0 24.3 3.8 7.9 16.2 5 29.5 9.3 18.2 20.9
✓ ✓ 11.7 32.0 9.9 7.8 36.1 10 27.4 12.9 20.5 37.0

Table 2: Performance comparison of two early-exit settings across four LLMs in game environments. Red
indicates negative impact, while Green shows positive effects (e.g., reduced redundancy). Metrics: SR (Success
Rate), PR (Progress Rate), RS (Redundant Steps), PD (Progress Degradation), and Steps (Average Steps).

vation ("Int.✓+ Ext.✓"). Notably, it even slightly346

improves performance on Llama3.1-70B-Instruct347

and Mistral-24B-Instruct, possibly due to diversity348

behavior introduced by prompt modification.349

(v) Early-exit strategy generalizes to gaming350

environments. As shown in Table 2, applying351

early-exit in gaming environments yields similar352

trends, but smaller gains in efficiency and minor353

performance changes compared to embodied tasks.354

Redundancy reduction is less pronounced (gener-355

ally below 50%), and the drops in performance are356

marginal, except for Mistral-7B-Instruct, occasion-357

ally showing improvement. This may be due to:358

1) the longer trajectories in gaming environments,359

which lead to lower baseline success rates (e.g.,360

below 20% for most LLMs except Llama3.1-70B-361

Instruct) and greater sensitivity to prompt varia-362

tions; and 2) ambiguous subgoal definitions, allow-363

ing multiple valid strategies and reducing consis-364

tency in progress measurement.365

5 Analysis366

5.1 Interpretation of Efficiency Metrics367

We illustrate how Redundancy Steps (RS) and368

Progress Rate (PR) complement each other in mea-369

suring the early-exit behavior in Figure 4.370

1/4
subgoal

2/4
subgoal

3/4
subgoal

4/4
subgoal

100%
75%
50%
25%

0

5

10

15 Redundancy Steps (RS)

Progress Degradation (PD)

Maximum Step
Reached

Perfect
Early-Exit

Too Early
RS PD

Too Late
RS PD

Figure 4: Redundant Steps and Progress Degrada-
tion measured in a failure case with 3 out of 4 subgoals
completed. The metrics vary as the early-exit mecha-
nism is triggered at different steps.

Perfect Early-Exit Scenario The ideal early exit 371

scenario ("Perfect Early Exit") occurs when both 372

RS and PR are zero, meaning no redundant steps 373

and no progress loss. However, this ideal is rarely 374

achievable across all environments in practice. 375

Too-Early Scenarios If the early exit mechanism 376

triggers too early ("Too Early"), it may reduce 377

redundant steps but significantly impair progress. 378

This is evident in the result of the external early exit 379

of Llama3.1-8B-Instruct on BabyAI, where early 380

termination yields a low RS but a high PD of 30.5. 381
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Figure 5: Comparison of the average token cost for
one environment using different early-exit mechanisms.

Too-Late Scenarios Conversely, if the early exit382

mechanism triggers too late ("Too Late"), PD re-383

mains low but RS stays high. This is seen in384

Mistral-24B-Instruct, when using both intrinsic and385

extrinsic early exit methods fail to reduce RS.386

Takeaways Neither too-early nor too-late exits387

are optimal in practice. Our results highlight the im-388

portance of selecting appropriate early exit settings389

for each LLM to balance RS and PR effectively.390

5.2 Inference Cost391

To further validate the efficiency improvements392

achieved by the early-exit mechanism, in addition393

to reporting the average number of execution steps394

in the main results, we also examine the average395

token cost for each environment, which directly re-396

flects the computational resource usage. As shown397

in Figure 5, the early-exit approach consistently398

reduces the number of tokens compared to ReAct399

across all four tested LLMs. It is worth noting that,400

in our extrinsic early-exit approach, the verification401

module generates only a simple "YES" or "NO"402

response. As a result, it has a negligible impact on403

the overall token cost.404

6 Practical Implications405

6.1 Motivation406

A key advantage of our proposed early-exit mecha-407

nism is that agents capable of recognizing failure408

can proactively terminate and seek assistance, lead-409

ing to more efficient problem-solving. This aligns410

with realistic application scenarios, where humans411

may intervene directly or request help via a cen-412

tral server. In contrast, agents without early-exit413

continue until the step limit, often wasting valuable414

interactions and failing to complete the task.415

To illustrate this, we simulate a practical scenario416

in embodied environments, where a weaker agent417
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Figure 6: Performance comparison under different
max step limits using strong-agent assistance with an
early-exit weak agent, compared to baseline agents.
Mistral-24B-Instruct ("Mistral-24B") is used as the
weak agent, and Llama-3.1-70B-Instruct ("Llama-70B")
as the strong agent.

exits early from challenging environments and 418

requests assistance from a stronger agent. 419

6.2 Setting 420

Dataset We use ALFWorld (Shridhar et al., 2021) 421

as our test set, which is a typical embodied envi- 422

ronment with 134 different tasks. 423

Models We use Mistral-24B-Instruct as the weak 424

agent which achieves a 58.2% success rate under 425

a ReAct-style format and 57.5% when paired with 426

an external early-exit mechanism (seen in Table 1), 427

and Llama3.1-70B-Instruct as the strong agent. 428

Setup In baseline, the weaker agent executes up 429

to 40 steps regardless of progress. With the ex- 430

trinsic early-exit mechanism, it can terminate early 431

and hand over control to a stronger agent, which 432

replans and continues within the remaining steps. 433

6.3 Experiment 434

Result As shown in Figure 6, early exit followed 435

by strong agent assistance yields over a 10% im- 436

provement in success rate within the same 40-step 437

budget, demonstrating the effectiveness of reallo- 438

cating interaction steps to a more capable agent. 439

Case Study Figure 7 visualizes environments 440

impacted by early-exit, where successful environ- 441

ments by both early-exit and baseline are ignored. 442

Around 15 environments (e.g., #3, #12) were com- 443

pleted with strong-agent help. Of these, 7 envi- 444

ronments (e.g., #12, #19) were not completed by 445

the baseline within 40 steps but were solved with 446

early exit and assistance. Only 2 cases (#29, #61) 447

were prematurely exited but solved by baseline. 448
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Some tasks (e.g., #4, #36) remained unsolved by449

both agents but benefited from reduced wasted com-450

putation. These results clearly highlight the effi-451

ciency improvements brought by early-exit, espe-452

cially when supported by stronger agents.453

7 Related Work454

LLM-based Agents LLM-based agents are cen-455

tral to many tasks and show strong practical poten-456

tial. Some approaches, like ETO (Song et al., 2024)457

and AgentFLAN (Chen et al., 2024b), improve per-458

formance through expert trajectory training, achiev-459

ing better generalization. Others, such as ReAct460

(Yao et al., 2023), PreAct (Fu et al., 2025b), and461

StateFlow (Wu et al., 2024), focus on prompt de-462

sign to enhance chain-of-thought (CoT, Wei et al.,463

2022) reasoning. While effective, these meth-464

ods often neglect efficiency, especially in failure465

cases. Complementary post-hoc strategies—like466

self-reflection (Shinn et al., 2023), trajectory revi-467

sion (Ouyang and Li, 2023), and experience ex-468

traction (Zhao et al., 2024)—help refine future be-469

havior but only after trials conclude. We propose470

early-exit approaches that improve efficiency and471

demonstrate the practical benefits of leveraging472

stronger agents and post-hoc strategies.473

Dynamic Early Exit Dynamic early exit is an474

adaptive inference strategy originally introduced475

in pre-trained language models to reduce compu-476

tational cost and latency by skipping certain lay-477

ers during inference (Zhou et al., 2020; Sun et al.,478

2022). Recent work extends this concept to LLMs479

to address the issue of excessively long and unpre-480

dictable generations. Yang et al. (2025) applies481

early exit mechanism to truncate outputs at appro-482

priate reasoning steps, thereby mitigating the “over-483

thinking” problem in LLMs (Chen et al., 2024a).484

In this work, we apply early exit to LLM-based 485

agents in embodied environments, proposing an 486

efficient and robust method adaptable to various 487

agents, along with metrics to assess performance. 488

Agent Verification and Evaluation Traditional 489

benchmarks like AgentBench (Liu et al., 2024) as- 490

sess overall agent performance using metrics such 491

as reward or success rate. AgentBoard (Chang 492

et al., 2024) improves transparency with human- 493

annotated subgoals for process-level evaluation. A 494

growing line of work explores using agents them- 495

selves as evaluators, extending ideas from text 496

generation (Zheng et al., 2023; Lu et al., 2024), 497

code evaluation (Chen et al., 2024b). For exam- 498

ple, Pan et al. (2024) explore using agents for 499

self-evaluation and refinement. In this work, we 500

leverage the agent verification module to verify its 501

process in extrinsic early exit approach, and intro- 502

duce two efficiency metrics to complement existing 503

agent evaluation strategies. 504

8 Conclusion 505

In this work, We propose a dynamic early-exit 506

framework for LLM-based agents in complex em- 507

bodied environments, incorporating intrinsic and 508

extrinsic early-exit mechanisms. Both approaches 509

improve efficiency in our experiments. To better 510

evaluate the impact of early exits, we introduce two 511

complementary metrics that capture both its posi- 512

tive and negative effects. Additionally, we design 513

a practical experiment in which a stronger agent 514

assists a weaker one in continuing task execution, 515

leading to enhanced performance. We hope our 516

approach serves as a first step toward improving 517

the efficiency of LLM-based agents and that our 518

proposed metrics can be readily adopted by future 519

research for evaluating agent efficiency. 520
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Limitations521

The limitations of our work are as follows:522

• Limited Datasets: We evaluate only five523

datasets from embodied and gaming environ-524

ments. Tasks like web navigation or app ex-525

ecution are excluded, as they often involve526

simpler, more direct goals, making early-exit527

less impactful. We leave these for future work.528

• No Training Integration: While our ap-529

proaches and metrics are designed to be plug-530

and-play for all LLM-based agents, we re-531

strict our experiments to models that were not532

trained with held-in data due to uncertainties533

about the complexity of datasets.534

• LLM Scope: We test four open-source LLMs535

due to budget constraints and to avoid data536

contamination. Proprietary models like GPT537

(Achiam et al., 2023) are not included.538

• Residual Redundancy: While our approach539

reduces redundant steps, it does not fully elim-540

inate them, likely due to current LLMs’ lim-541

ited instruction-following ability. Further im-542

provements are still necessary.543

Ethics Statement544

We take ethical considerations very seriously, and545

strictly adhere to the Code of Ethics. All proce-546

dures performed in this study are in accordance547

with the ethical standards. This paper explores548

early-exit mechanisms for LLM-based agents in549

embodied environments. Our proposed approaches550

and metrics, does not include statements that in-551

duce the model to generate harmful information.552

Additionally, the approach focuses solely on deter-553

mining when to terminate agent execution, thereby554

reducing potential risks. Both the datasets and555

models used in this paper are publicly available556

and have been widely adopted by researchers. We557

ensure that the findings and conclusions of this pa-558

per are reported accurately and objectively. No559

human participants were involved as evaluators or560

case studies in this work.561
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A Recommended Early-Exit Approaches 707

Based on our experimental results and analysis, 708

we provide a set of recommendations for selecting 709

suitable early-exit approaches for specific LLMs. 710

These guidelines are summarized in Table 3 and 711

can serve as a reference for future research. 712

LLM Intrinsic Extrinsic

Llama3.1-8B-Instruct v v
Llama3.1-70B-Instruct v v

Mistral-7B-Instruct v u
Mistral-24B-Instruct u v

Table 3: Recommendations for selecting early-exit
approaches for different LLMs.

B Prompt Variants 713

In our initial experiments, we observed that 714

prompts behave differently across various LLMs. 715

For instance, in the case of extrinsic early- 716

exit, Llama3.1-70B-Instruct is particularly sensi- 717

tive—strict prompts can easily trigger an early exit. 718
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Early-Exit Approach Strict Condition Modest Condition

Intrinsic Early-Exit Once the environment appears complete or no
further progress is likely, include ’EXIT’ in your
action to end the task without delay.

If you believe the environment is complete, your
task is finished, and no further attempts are
needed, please include ’EXIT’ in your action.

Prompt→LLM Llama3.1-70B-Instruct
Mistral-24B-Instruct

Llama3.1-8B-Instruct
Mistral-7B-Instruct

Extrinsic Early-Exit Evaluate the current history of the agent and
determine if it meets any of the following condi-
tions:
1. The recent steps show repetitive actions or the
agent appears to be stuck in a loop.
2. The agent repeatedly checks for valid actions
but fails to make meaningful progress toward the
objective.
3. The agent’s recent thoughts suggest the task
is complete and no further steps are necessary.
4. The task is no longer achievable due to high
difficulty or significant deviation from the ex-
pected course.
If any of the above conditions are met, output
“YES”. Otherwise, output “NO” to indicate the
agent should continue exploring.

Evaluate the agent’s recent history and consider:
1. Whether the agent appears stuck or making
little meaningful progress despite repeated at-
tempts.
2. Whether the task seems complete or no longer
feasible to pursue.
If you have good reason to believe further steps
are unlikely to help, you may output “YES” to
suggest stopping. Otherwise, output “NO” and
continue exploring.

Prompt→LLM Llama3.1-8B-Instruct
Mistral-7B-Instruct
Mistral-24B-Instruct

Llama3.1-70B-Instruct

Table 4: Early-Exit prompt context with different condition. We also provide their correspondding LLM used in our
approach.

To address this, we designed two prompt variants719

for each experimental setting: “Modest Condition”720

and “Strict Condition.” The Strict Condition uses a721

firmer tone and outlines more detailed exit criteria,722

while the Modest Condition is more lenient. We723

provide the full prompt contexts in Table 4, along724

with their corresponding compatible LLMs.725

C Prompt Context726

We follow Chang et al. (2024) in using the pro-727

vided task instruction, task goal, and example for728

each dataset. Since Chang et al. (2024) adopt729

an act-only prompting style rather than ReAct-730

style, we follow Song et al. (2024) to design a731

ReAct-style prompt format. The original examples732

are extended from Act-Only to ReAct-style using733

gpt-4o-2024-08-06. Initial observations and in-734

teractions are provided by the environment, and735

the intrinsic and extrinsic early-exit instructions736

are shown in Table 4. For ALFWorld and Science-737

World tasks, we observe that providing valid ac-738

tions leads to a significant performance difference739

(approximately 10%–20% in success rate). There-740

fore, we include valid actions in these two datasets741

to ensure fair comparison with prior work (Song742

et al., 2024; Fu et al., 2025a).743

ReAct-Style Prompt for ALFWorld

SYSTEM:
You are a helpful assistant.
USER:
Your task is to interact with a virtual house-
hold simulator to accomplish a specific task.
With each interaction, you will receive an
observation. Your role is to ... {task instruc-
tion}
ASSISTANT: OK.
USER:
Here is the example:
{example}
Now, it’s your turn. You should perform
thoughts and actions to accomplish the goal.
Your response should use the following for-
mat:
Thought: <your thoughts>
Action: <your next action>

Your task is: {task goal}
You are in the middle of a room. Looking
quickly around you, ... {init observation}
{interaction history}

744
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## Important ##: Your thought should be
short, clear and concise.
{intrinsic early-exit instruction}

The next action could be chosen from these
valid actions: {valid actions}

745

Extrinsic Early-Exit Verification

SYSTEM:
You are a helpful assistant.
USER:
You will be given a historical scenario in
which you are placed in a specific environ-
ment with a designated objective to accom-
plish.
### Task Description: Your task is to in-
teract with a virtual household simulator to
accomplish a specific task. With each in-
teraction, you will receive an observation.
Your role is to ... {task instruction}
### Your Objective:
{task goal}
Your Current History:
{interaction history}
Instructions:
{extrinsic early-exit instruction}
Do not include any additional text or expla-
nations in your response.

746
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