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Abstract

Agents powered by large language models
(LLMs) have demonstrated strong planning and
decision-making capabilities in complex em-
bodied environments. However, such agents
often suffer from inefficiencies in multi-turn
interactions, frequently trapped in repetitive
loops or issuing ineffective commands, lead-
ing to redundant computational overhead. In-
stead of relying solely on learning from tra-
jectories, we take a first step toward exploring
the early-exit behavior for LLM-based agents.
We propose two complementary approaches,
@ an intrinsic method that injects exit instruc-
tions during generation, and ® an extrinsic
method that verifies task completion to deter-
mine when to halt an agent’s trial. To evaluate
early-exit mechanisms, we introduce two met-
rics: one measures the reduction of redundant
steps as a positive effect, and the other evalu-
ates progress degradation as a negative effect.
Experiments with 4 different LLMs across 5
embodied environments show significant effi-
ciency improvements, with only minor drops in
agent performance. We also validate a practical
strategy where a stronger agent assists after an
early-exit agent, achieving better performance
with the same total steps. We will release our
code to support further research.

1 Introduction

Large Language Models (LLMs, Achiam et al.,
2023) have shifted the paradigm from merely re-
sponding to user inputs to tackling more com-
plex tasks within interactive environments such as
household settings (Shridhar et al., 2021), virtual
worlds (Park et al., 2023), and games (Hu et al.,
2024). LLM-based agents serve as intelligent con-
trollers, capable of perceiving environments, ex-
ecuting actions, and adapting through feedback
(Wang et al., 2024; Luo et al., 2025). Previous stud-
ies show that structured workflows—such as rea-
soning before acting (Yao et al., 2023), predicting
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Figure 1: Early-exit behavior of different LLM-based
agents in embodied environments. While early termi-
nation slightly reduces the success rate, it significantly
decreases the average number of interaction steps, indi-
cating improved efficiency.

future states (Fu et al., 2025b), and learning from
high-quality trajectories (Chen et al., 2024b; Song
et al., 2024)—-can improve performance within
a single trial. When agents do fail, post-hoc ap-
proaches such as Reflexion (Shinn et al., 2023),
AutoPlan (Ouyang and Li, 2023), and ExpeL (Zhao
et al., 2024) enable them to learn from failures and
replan more effective solutions in subsequent trials.

However, a key limitation of LLM-based agents
remains underexplored: they often fail to recognize
when a goal is too difficult or when they are stuck.
Prior work shows that agents may repeat the same
errors in unproductive loops without meaningful
actions or self-correction (Fu et al., 2025a), leading
to unnecessary computational overhead. This issue
becomes even more critical in real-world settings,
where repeated mistakes by embodied agents can
waste energy, cause wear-and-tear, or even damage
physical objects in the environment. Therefore,
incorporating built-in self-awareness mechanisms
can help agents detect when progress has stalled,
enabling early self-reflection and adjustment.

To this end, we take the first step by investigating
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Figure 2: A comparative overview of our proposed Intrinsic and Extrinsic Early Exit with ReAct Agent. The
intrinsic approach injects an exit instruction to guide the agent to self-terminate, while the extrinsic approach uses a
verification module to determine whether to exit based on the current state.

the early-exit behavior of LLM-based agents. As
shown in Figure 2, we propose two complementary
strategies: @ Intrinsic Early Exit, which injects
exit instructions directly into the agent’s prompts to
encourage self-recognition of when to halt; and @
Extrinsic Early Exit, which introduces an external
verification module that monitors the interaction
status and outputs a binary (YES/NO) decision to
control whether the agent should continue.

In addition to using success rate and progress
rate (Chang et al., 2024) to evaluate agent per-
formance, we propose two new metrics to assess
the impact of the early-exit mechanism. Redun-
dancy Steps quantifies the positive effect by measur-
ing reductions in unnecessary interactions, while
Progress Degradation captures the potential nega-
tive impact, indicating cases where exit early may
interrupt or reverse meaningful progress.

We conduct experiments on 5 datasets spanning
over 400 environments and find that the early-exit
mechanism significantly improves efficiency, with
only a minor drop in task success and progress
rates, as shown in Figure 1. We also propose a
practical use of early-exit behavior: Once the agent
exits early, a stronger agent reflects on the state and
continues exploration, achieving improved perfor-
mance within the same total steps.

Our contributions are three-fold:

* We present the first investigation into early-
exit behavior in LLM-based agents, proposing
two strategies that enable agents to develop
self-awareness and terminate execution with-
out external intervention.

* We introduce two complementary metrics to
evaluate the effectiveness of early exit. These
metrics can serve as standardized tools for

assessing agent behavior and guiding the se-
lection of optimal exiting strategies.

* Our proposed methods generalize across vari-
ous LLM-based agents and task settings. We
further demonstrate the practical value of our
approach by introducing post-trial strategies
that leverage stronger agents to enhance over-
all performance.

This study is an initial step toward exploring
early-exit behavior in LLM-based agents. Our ap-
proach encourages agents to make efficient deci-
sions, avoid unnecessary interactions, and achieve a
trade-off between efficiency and task performance.

2 Approach

2.1 Task Formulation

Embodied Environments In embodied environ-
ments, an agent interacts with the world through
actions and receives feedback from the environ-
ment. This interaction can be modeled as a special
case of a Partially Observable Markov Decision
Process (POMDP), defined by an instruction space
U, state space .S, action space A, observation space
O, and a transition function 7 : S x A — S.

LLM-based Agents In this work, we focus on
text-based environments, where the instruction, ac-
tion, and observation spaces are all expressed in
natural language. The agent is provided with an
instruction u, which includes a description of the
task and environment, as well as the goal to be
achieved. At each time step ¢, the agent, guided
by a policy 7y (typically an LLM with parameters
0), must decide on the next action a; based on the
trajectory history e;. This decision-making process



is formalized as:
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where e, = (a1,01,...,a;-1,0,—1) denotes the
full trajectory up to time ¢, including previous ac-
tions and observations. In this way, the agent con-
tinually explores the environment, using feedback
from observations to inform its next actions, until
the task is completed or a predefined maximum
number of steps is reached.

2.2 Dynamic Early Exit

We propose two simple but effective early-exit
strategies, Intrinsic Early Exit and Extrinsic Early
Exit, that enable the agent to terminate its interac-
tion when appropriate.

Intrinsic Early Exit This strategy modifies the
behavior of LLM agent by appending a natural lan-
guage prompt that allows it to terminate the interac-
tion with the environment when deemed necessary.
The exit instruction can be formulated as:

Uintrinsic = COHCM(”; Uexit)‘ 2)

In this way, the LLM may develop an intention to
termiate based on the additional instruction Ueyjt,
leading to different actions and trajectories. As
shown in Figure 2, the agent is prompted with an
instruction to exit once the task is complete. After
examining the relevant objects, the agent generates
an "EXIT" action to terminate the interaction.

Extrinsic Early Exit This strategy introduces a
verification module vy, which shares the same LLM
backbone. The verification module operates after
each action and observation, evaluating whether
the agent should continue the task. It outputs a
binary decision: "YES" to exit or "NO" to continue
execution. Specifically, it functions as follows:

Uextrinsic = COIlCI:lt(u7 uexit); 3)
vg(- | et, Uexwinsic) € {0, 1}. 4)

The agent is verified periodically every k steps. In
our experiments, we set k = 1'. As shown in
Figure 2, the verification module detects that the
agent is stuck and triggers an early exit, effectively
avoiding further repetitive steps.

2.3 Evaluation

Typically, the performance of agents in embodied
environments is evaluated using Success Rate and
'We set k = 1 to enable timely detection in our experi-

ments. In practice, larger values (e.g., k = 2-5) can be used
to reduce computational overhead.

Progress Rate. To intuitively demonstrate the be-
havior of the early-exit mechanism on LLM-based
agents, we propose two complementary metrics
that capture both its positive and negative effects.
These metrics are defined as follows:

Success Rate (SR) The environment is marked
as successful if the agent completes the given task,
typically when it reaches a predefined latent state
that signifies task completion. A higher success
rate indicates that the agent is more effective at
solving environments under the same task.

Progress Rate (PR) Progress Rate, proposed by
Chang et al. (2024), quantifies the extent to which
an agent advances toward the task goal, making
it particularly valuable for evaluating incremental
improvements. In embodied environments, the task
goal is decomposed into a sequence of subgoals
G =g, -, 9K, where each subgoal contributes
progressively to task completion. At each time step
t, the progress is defined as:

K
1
Ty = max (K ; f (4, 9k)> , Q)

where f(s;, gx) € {0, 1} is a binary indicator func-
tion that evaluates whether the agent state s; satis-
fies subgoal g, typically determined via regular-
expression-based matching. PR offers a more fine-
grained and informative evaluation of agent behav-
ior than binary success metrics alone.

New Metric 1: Redundancy Steps (RS) The
primary purpose of introducing the early-exit mech-
anism is to reduce redundant steps in the agent’s
interaction with the environment. As illustrated in
Figure 3(a), after completing subgoal 3 out of 4, the
agent continues exploring unnecessarily for 5 ad-
ditional steps before ultimately failing. Early-exit
can mitigate this issue while maintaining the same
level of progress. Let nyota denote the total number
of steps in the trajectory, and nsupgoal be the index
of the last step that achieves a new subgoal. The
Redundancy Steps is defined as:

RS = nyoral — Nsubgoal - (6)

For trivial cases, RS = nyoq if the agent fails to
complete any subgoal (i.e., PR = 0). if the agent
successfully completes the entire task, RS = 0,
meaning that all steps are considered useful.
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Figure 3: An overview of the proposed metrics. Redundancy Steps measures the number of redundant steps.
Progress Degradation measures task progress loss via reduced subgoal completion.

New Metric 2: Progress Degradation (PD) The
agent may also negatively impact agent perfor-
mance by prematurely terminating trajectories that
might have led to further progress. This can sup-
press the agent’s potential, causing missed subgoals
or converting potentially successful trials into fail-
ures. To quantify this loss, we define Progress
Degradation as:

PD = max (PRt — PReyit, 0), (7

where PR.s denotes the progress rate without exit,
while PRcyj; is the progress rate when early-exit is
applied”. As shown in Figure 3(b), the agent exits 3
steps early, leaving an otherwise successful environ-
ment unfinished with only 75% progress, resulting
in a 25% loss in progress. Progress Degradation
ranges from O (no degradation) to PR..r (complete
loss of progress). A higher PD indicates greater
performance loss. In the trivial case, PD = 0 im-
plies no degradation, while PD = PR, indicates
complete progress failure (e.g., all environments
terminate at the first step).

3 Experimental Setup

Datasets We evaluate our methods across 3 em-
bodied environments and 2 gaming environments.
For embodied environments, AlfWorld (Shridhar
et al., 2021) includes 134 household tasks that re-
quire agents to explore their surroundings and com-
plete instructions such as “Look at bowl under the
desklamp.” ScienceWorld (Wang et al., 2022) sim-
ulates a total of 90 scientific experiments in an
interactive setting, such as “measure the melting
point.” BabyAlI (Chevalier-Boisvert et al., 2019) is
a 20x20 grid-based environment where agents must
navigate and interact with objects to accomplish
112 defined goals. We also consider two gaming
environments. Jericho (Hausknecht et al., 2020)
comprises 20 text-based fictional worlds, which
we adapt using the setup from Chang et al. (2024)

Progress degradation is only meaningful when compared
against a reference baseline.

to be completed within 15 subgoals. PDDL rep-
resents a suite of strategic planning tasks defined
in the Planning Domain Definition Language (Val-
lati et al., 2015). Following Chang et al. (2024),
we include four distinct games, namely, 60 unique
environments for evaluation.

LLMs To ensure reproducibility, we evaluate
four open-source large language models with vary-
ing parameter sizes. From the LLaMA 3.1 se-
ries® (Grattafiori et al., 2024), developed by Meta,
we use two instruction-tuned models: the 8B ver-
sion (Llama3.1-8B-Instruct) and the 70B version
(Llama3.1-70B-Instruct), with the latter quantized
using 4-bit AWQ (Lin et al., 2024) for efficient
inference. In addition, we test two models from
the Mistral family* (Jiang et al., 2024): Mistral-7B-
Instruct (v0.3) and Mistral-24B-Instruct (Mistral-
Small-Instruct-2409).

Prompts We adopt ReAct-style (Yao et al., 2023)
prompting to enable LLM-based agents to interact
effectively with the environment. Following Song
et al. (2024), we format the interaction prompt as
a multi-turn conversation, including an in-context
example for each task. For early-exit instructions,
we explore prompt variants with varying strictness
levels (see in Appendix B), aligning the strategy
with specific LLMs.

Hyperparameters For all experiments, we set
the temperature to 0.1 and limit each turn’s re-
sponse to a maximum of 256 tokens.

Device and Platform All experiments are con-
ducted on two NVIDIA A100 GPUs with 80GB of
memory each. We deploy the models using VLLM
(Kwon et al., 2023) for distributed inference and
access them through OpenAl-compatible chat com-
pletion APIs (Achiam et al., 2023). Evaluation is
performed using AgentBoard (Chang et al., 2024),
measuring both success rate and progress rate.

3https: //huggingface.co/meta-1lama
*https://huggingface.co/mistralai
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Setting ALFWorld BabyAl ScienceWorld

Int. Ext. SRt PR{ RS| PD] Steps|] SRT PR{ RS| PD] Steps|] SRt PRt RS| PD| Steps|
. ________________Llimasi-8B-mnstruct
- - 23.1 452 138 - 334 41.1 546 82 - 27.1 89 373 165 - 38.5
v X 142 383 4.1 14.1 159 41.1 543 53 105 256 7.8 326 135 11.1 32.3
X v 209 383 25 163 9.6 16.1 254 1.6 30.5 6.6 7.8 295 46 139 10.5
v v 21.6 444 45 9.1 16.8 464 573 6.5 6.6 25.1 7.8 345 13.0 94 32.3
,,,,,,,,,,,,,,,,,,,,,,,,,,,, Llama3.1-70B-Instruct.
- - 76.1 81.1 2.3 - 19.0 49.1 628 8.8 - 264 344 675 15.7 - 31.4
v X 612 674 14 174 13.8 366 53.1 74 18.0 182 189 598 83 123 21.2
X v 702 793 14 87 134 420 593 45 129 13.3 27.8 63.6 6.0 9.0 17.4
v v 80.6 840 1.5 5.8 170 402 57.8 6.8 13.1 199 278 646 87 10.6 228
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Mistral-7B-Instruct
- - 209 404 139 - 34.8 170 21.7 5.6 - 34.0 22 166 153 - 39.2
v X 149 363 59 159 239 16.1 259 7.7 5.6 32.0 22 184 152 34 36.3
X v 112 325 89 16.7 249 107 182 5.0 120 279 1.1 154 78 34 17.2
v v 172 36.1 121 114 32.7 16.1 224 5.7 4.9 33.5 22 182 154 19 38.0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Mistral-24B-Instruct
- - 582 71.6 5.0 - 259 49.1 609 7.0 - 25.5 156 425 16.0 - 36.9
v X 31.3 517 4.0 26.0 174 402 515 82 194 270 11.1 407 113 189 31.7

X v 575 707 45 10.8 20.5 375 50.1 32 163 13.3 33 233 43 207 9.5
v v 575 743 57 105 257 357 539 105 196 284 122 395 120 18.0 352

Table 1: Performance comparison of two early-exit approaches—Extrinsic (Ext.) and Intrinsic (Int.)—vs.
the ReAct baseline across four LLMs in three embodied environments. Red indicates negative impact (e.g.,

performance drop or progress degradation), while Green shows positive effects (e.g., reduced redundancy).
Metrics: SR (Success Rate), PR (Progress Rate), RS (Redundant Steps), PD (Progress Degradation), and Steps

(Average Steps).

4 Main Results

We experiment on 3 embodied environments and 2
gaming environments, and report results in Table 1
and Table 2, respectively. We can see that:

(i) Early-exit mechanisms significantly reduce
redundant steps. Across all three embodied en-
vironments, baseline methods exhibit substantial re-
dundancy (“RS”) in their thought-action sequences.
For example, LLama3.1-8B-Instruct averages 13.8
unnecessary steps out of 40 in Alfworld. Almost
all early exit mechanisms are able to reduce the re-
dundancy, by approximately 50% to 70%, leading
to a notable increase in overall efficiency. A similar
trend is observed in the average steps (“Steps”),
decreasing alongside the reduction in redundant
steps, further highlighting the effectiveness of the
early-exit mechanism in improving task efficiency.

(ii) Minor performance drop in success and
progress rates. While early exit improves effi-
ciency, it inevitably causes slight reductions in both
success and progress rates. The observed progress
degradation (“PD”) further confirms this trade-off.
However, for all four tested LLMs, certain early
exit strategies yield minimal performance loss. For

example, using the extrinsic ("Ext.") method on
Llama3.1-70B-Instruct, the progress rate drops by
under 2%, 3%, and 4% in ALFWorld, BabyAl, and
ScienceWorld, respectively. This shows that ap-
propriate early exits can greatly improve efficiency
with negligible performance impact.

(iii) LLMs show varying preferences for early
exit strategies. LLMs respond differently to the
same early exit approach. For example, the intrin-
sic ("Int.") early exit performs better for Mistral-
7B-Instruct, whereas it significantly degrades the
performance of Mistral-24B-Instruct. Conversely,
Mistral-24B-Instruct benefits more from the extrin-
sic method ("Ext."). This is possibly because the
larger Mistral LLMs is more sensitive to intrinsic
cues, resulting in premature termination, whereas
extrinsic method provide more stable exit signals.

(iv) Combining intrinsic and extrinsic early exit
maximizes performance retention. We explore
a hybrid strategy that first applies extrinsic veri-
fication to detect potential exit, then applies the
intrinsic method to confirm termination. While
this increases the number of steps and reduces ef-
ficiency, it achieves the best performance preser-



Setting PDDL Jericho
Int. Ext. SRt PRT RS, PD| Steps) SRt PRt RS, PD| Stepsl)
,,,,,,,,,,,,,,,,,,,, Ligma3.1-8B-Instruct | _____________________
- - 11.7 299 11.8 - 383 5 27.3 138 - 36.5
v X 6.7 305 55 6.1 314 5 26.8 104 9 37.7
X v 1.7 44 1.1 259 4 0 7.5 1.9 1938 6.8
v v

83 314 6.7 6.1

323 10 QEEMEE 13.1 105 333

Llama3.1-70B-Instruct

- - 45 622 65 -

v X 417 648 44 5.8
X v 433 635 25 4.9
v v 383 619 6.8 8.1

Mistral-7B-Instruct

v X 1.7 121 89 5
X 4 33 138 6.6 4.6
v v 9.6 4.2

30.3
20.9
35.6

0 11.7 16.1 - 384
0 6.9 9.9 4.8 30.2
0 9 7.5 6 26.1
0 12 122 35 36.6

Mistral-24B-Instruct

/X 133 333 86 85
X v 100 243 38 79
/v 117 320 99 178

34.7 10 338 14:4 12.7 32.7
16.2 5 295 93 182 209
36.1 10 274 129 205 37.0

Table 2: Performance comparison of two early-exit settings across four LLMs in game environments. Red

indicates negative impact, while Green shows positive effects (e.g., reduced redundancy). Metrics: SR (Success
Rate), PR (Progress Rate), RS (Redundant Steps), PD (Progress Degradation), and Steps (Average Steps).

vation ("Int.v/+ Ext.v/"). Notably, it even slightly
improves performance on Llama3.1-70B-Instruct
and Mistral-24B-Instruct, possibly due to diversity
behavior introduced by prompt modification.

(v) Early-exit strategy generalizes to gaming
environments. As shown in Table 2, applying
early-exit in gaming environments yields similar
trends, but smaller gains in efficiency and minor
performance changes compared to embodied tasks.
Redundancy reduction is less pronounced (gener-
ally below 50%), and the drops in performance are
marginal, except for Mistral-7B-Instruct, occasion-
ally showing improvement. This may be due to:
1) the longer trajectories in gaming environments,
which lead to lower baseline success rates (e.g.,
below 20% for most LLMs except Llama3.1-70B-
Instruct) and greater sensitivity to prompt varia-
tions; and 2) ambiguous subgoal definitions, allow-
ing multiple valid strategies and reducing consis-
tency in progress measurement.

5 Analysis

5.1 Interpretation of Efficiency Metrics

We illustrate how Redundancy Steps (RS) and
Progress Rate (PR) complement each other in mea-
suring the early-exit behavior in Figure 4.
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tion measured in a failure case with 3 out of 4 subgoals
completed. The metrics vary as the early-exit mecha-
nism is triggered at different steps.

Perfect Early-Exit Scenario The ideal early exit
scenario ("Perfect Early Exit") occurs when both
RS and PR are zero, meaning no redundant steps
and no progress loss. However, this ideal is rarely
achievable across all environments in practice.

Too-Early Scenarios If the early exit mechanism
triggers too early ("Too Early"), it may reduce
redundant steps but significantly impair progress.
This is evident in the result of the external early exit
of Llama3.1-8B-Instruct on BabyAl, where early
termination yields a low RS but a high PD of 30.5.
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Figure 5: Comparison of the average token cost for
one environment using different early-exit mechanisms.

Too-Late Scenarios Conversely, if the early exit
mechanism triggers too late ("Too Late"), PD re-
mains low but RS stays high. This is seen in
Mistral-24B-Instruct, when using both intrinsic and
extrinsic early exit methods fail to reduce RS.

Takeaways Neither too-early nor too-late exits
are optimal in practice. Our results highlight the im-
portance of selecting appropriate early exit settings
for each LLM to balance RS and PR effectively.

5.2 Inference Cost

To further validate the efficiency improvements
achieved by the early-exit mechanism, in addition
to reporting the average number of execution steps
in the main results, we also examine the average
token cost for each environment, which directly re-
flects the computational resource usage. As shown
in Figure 5, the early-exit approach consistently
reduces the number of tokens compared to ReAct
across all four tested LLMs. It is worth noting that,
in our extrinsic early-exit approach, the verification
module generates only a simple "YES" or "NO"
response. As a result, it has a negligible impact on
the overall token cost.

6 Practical Implications

6.1 Motivation

A key advantage of our proposed early-exit mecha-
nism is that agents capable of recognizing failure
can proactively terminate and seek assistance, lead-
ing to more efficient problem-solving. This aligns
with realistic application scenarios, where humans
may intervene directly or request help via a cen-
tral server. In contrast, agents without early-exit
continue until the step limit, often wasting valuable
interactions and failing to complete the task.

To illustrate this, we simulate a practical scenario
in embodied environments, where a weaker agent
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Figure 6: Performance comparison under different
max step limits using strong-agent assistance with an
early-exit weak agent, compared to baseline agents.
Mistral-24B-Instruct ("Mistral-24B") is used as the
weak agent, and Llama-3.1-70B-Instruct ("Llama-70B")
as the strong agent.

exits early from challenging environments and
requests assistance from a stronger agent.

6.2 Setting

Dataset We use ALFWorld (Shridhar et al., 2021)
as our test set, which is a typical embodied envi-
ronment with 134 different tasks.

Models We use Mistral-24B-Instruct as the weak
agent which achieves a 58.2% success rate under
a ReAct-style format and 57.5% when paired with
an external early-exit mechanism (seen in Table 1),
and Llama3.1-70B-Instruct as the strong agent.

Setup In baseline, the weaker agent executes up
to 40 steps regardless of progress. With the ex-
trinsic early-exit mechanism, it can terminate early
and hand over control to a stronger agent, which
replans and continues within the remaining steps.

6.3 Experiment

Result As shown in Figure 6, early exit followed
by strong agent assistance yields over a 10% im-
provement in success rate within the same 40-step
budget, demonstrating the effectiveness of reallo-
cating interaction steps to a more capable agent.

Case Study Figure 7 visualizes environments
impacted by early-exit, where successful environ-
ments by both early-exit and baseline are ignored.
Around 15 environments (e.g., #3, #12) were com-
pleted with strong-agent help. Of these, 7 envi-
ronments (e.g., #12, #19) were not completed by
the baseline within 40 steps but were solved with
early exit and assistance. Only 2 cases (#29, #61)
were prematurely exited but solved by baseline.
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indicate the contributions of various strategies. "x" marks the exit step for each environment, and % indicates

completion by the stronger agent (Llama3.1-70B-Instruct).

Some tasks (e.g., #4, #36) remained unsolved by
both agents but benefited from reduced wasted com-
putation. These results clearly highlight the effi-
ciency improvements brought by early-exit, espe-
cially when supported by stronger agents.

7 Related Work

LLM-based Agents LLM-based agents are cen-
tral to many tasks and show strong practical poten-
tial. Some approaches, like ETO (Song et al., 2024)
and AgentFLLAN (Chen et al., 2024b), improve per-
formance through expert trajectory training, achiev-
ing better generalization. Others, such as ReAct
(Yao et al., 2023), PreAct (Fu et al., 2025b), and
StateFlow (Wu et al., 2024), focus on prompt de-
sign to enhance chain-of-thought (CoT, Wei et al.,
2022) reasoning. While effective, these meth-
ods often neglect efficiency, especially in failure
cases. Complementary post-hoc strategies—like
self-reflection (Shinn et al., 2023), trajectory revi-
sion (Ouyang and Li, 2023), and experience ex-
traction (Zhao et al., 2024)—help refine future be-
havior but only after trials conclude. We propose
early-exit approaches that improve efficiency and
demonstrate the practical benefits of leveraging
stronger agents and post-hoc strategies.

Dynamic Early Exit Dynamic early exit is an
adaptive inference strategy originally introduced
in pre-trained language models to reduce compu-
tational cost and latency by skipping certain lay-
ers during inference (Zhou et al., 2020; Sun et al.,
2022). Recent work extends this concept to LLMs
to address the issue of excessively long and unpre-
dictable generations. Yang et al. (2025) applies
early exit mechanism to truncate outputs at appro-
priate reasoning steps, thereby mitigating the “over-
thinking” problem in LLMs (Chen et al., 2024a).

In this work, we apply early exit to LLM-based
agents in embodied environments, proposing an
efficient and robust method adaptable to various
agents, along with metrics to assess performance.

Agent Verification and Evaluation Traditional
benchmarks like AgentBench (Liu et al., 2024) as-
sess overall agent performance using metrics such
as reward or success rate. AgentBoard (Chang
et al., 2024) improves transparency with human-
annotated subgoals for process-level evaluation. A
growing line of work explores using agents them-
selves as evaluators, extending ideas from text
generation (Zheng et al., 2023; Lu et al., 2024),
code evaluation (Chen et al., 2024b). For exam-
ple, Pan et al. (2024) explore using agents for
self-evaluation and refinement. In this work, we
leverage the agent verification module to verify its
process in extrinsic early exit approach, and intro-
duce two efficiency metrics to complement existing
agent evaluation strategies.

8 Conclusion

In this work, We propose a dynamic early-exit
framework for LLM-based agents in complex em-
bodied environments, incorporating intrinsic and
extrinsic early-exit mechanisms. Both approaches
improve efficiency in our experiments. To better
evaluate the impact of early exits, we introduce two
complementary metrics that capture both its posi-
tive and negative effects. Additionally, we design
a practical experiment in which a stronger agent
assists a weaker one in continuing task execution,
leading to enhanced performance. We hope our
approach serves as a first step toward improving
the efficiency of LLM-based agents and that our
proposed metrics can be readily adopted by future
research for evaluating agent efficiency.



Limitations
The limitations of our work are as follows:

* Limited Datasets: We evaluate only five
datasets from embodied and gaming environ-
ments. Tasks like web navigation or app ex-
ecution are excluded, as they often involve
simpler, more direct goals, making early-exit
less impactful. We leave these for future work.

* No Training Integration: While our ap-
proaches and metrics are designed to be plug-
and-play for all LLM-based agents, we re-
strict our experiments to models that were not
trained with held-in data due to uncertainties
about the complexity of datasets.

* LLM Scope: We test four open-source LLMs
due to budget constraints and to avoid data
contamination. Proprietary models like GPT
(Achiam et al., 2023) are not included.

* Residual Redundancy: While our approach
reduces redundant steps, it does not fully elim-
inate them, likely due to current LLMs’ lim-
ited instruction-following ability. Further im-
provements are still necessary.

Ethics Statement

We take ethical considerations very seriously, and
strictly adhere to the Code of Ethics. All proce-
dures performed in this study are in accordance
with the ethical standards. This paper explores
early-exit mechanisms for LLM-based agents in
embodied environments. Our proposed approaches
and metrics, does not include statements that in-
duce the model to generate harmful information.
Additionally, the approach focuses solely on deter-
mining when to terminate agent execution, thereby
reducing potential risks. Both the datasets and
models used in this paper are publicly available
and have been widely adopted by researchers. We
ensure that the findings and conclusions of this pa-
per are reported accurately and objectively. No
human participants were involved as evaluators or
case studies in this work.
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A Recommended Early-Exit Approaches

Based on our experimental results and analysis,
we provide a set of recommendations for selecting
suitable early-exit approaches for specific LLMs.
These guidelines are summarized in Table 3 and
can serve as a reference for future research.

LLM Intrinsic Extrinsic
Llama3.1-8B-Instruct © ©O
Llama3.1-70B-Instruct © ©
Mistral-7B-Instruct © Q
Mistral-24B-Instruct (@)] ©

Table 3: Recommendations for selecting early-exit
approaches for different LLMs.

B Prompt Variants

In our initial experiments, we observed that
prompts behave differently across various LLMs.
For instance, in the case of extrinsic early-
exit, Llama3.1-70B-Instruct is particularly sensi-
tive—strict prompts can easily trigger an early exit.
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Early-Exit Approach

Strict Condition

Modest Condition

Intrinsic Early-Exit

Prompt—LLM

Once the environment appears complete or no
further progress is likely, include EXIT’ in your
action to end the task without delay.

Llama3.1-70B-Instruct
Mistral-24B-Instruct

If you believe the environment is complete, your
task is finished, and no further attempts are
needed, please include 'EXIT’ in your action.

Llama3.1-8B-Instruct
Mistral-7B-Instruct

Extrinsic Early-Exit

Evaluate the current history of the agent and
determine if it meets any of the following condi-
tions:

1. The recent steps show repetitive actions or the
agent appears to be stuck in a loop.

2. The agent repeatedly checks for valid actions
but fails to make meaningful progress toward the
objective.

3. The agent’s recent thoughts suggest the task
is complete and no further steps are necessary.
4. The task is no longer achievable due to high
difficulty or significant deviation from the ex-
pected course.

If any of the above conditions are met, output
“YES”. Otherwise, output “NO” to indicate the

Evaluate the agent’s recent history and consider:
1. Whether the agent appears stuck or making
little meaningful progress despite repeated at-
tempts.

2. Whether the task seems complete or no longer
feasible to pursue.

If you have good reason to believe further steps
are unlikely to help, you may output “YES” to
suggest stopping. Otherwise, output “NO” and
continue exploring.

agent should continue exploring.

Llama3.1-8B-Instruct
Mistral-7B-Instruct
Mistral-24B-Instruct

Prompt—LLM

Llama3.1-70B-Instruct

Table 4: Early-Exit prompt context with different condition. We also provide their correspondding LLM used in our

approach.

To address this, we designed two prompt variants ReAct-Style Prompt for ALFWorld

for each experimental setting: “Modest Condition’
and “Strict Condition.” The Strict Condition uses a
firmer tone and outlines more detailed exit criteria,
while the Modest Condition is more lenient. We
provide the full prompt contexts in Table 4, along
with their corresponding compatible LL.Ms.

C Prompt Context

We follow Chang et al. (2024) in using the pro-
vided task instruction, task goal, and example for
each dataset. Since Chang et al. (2024) adopt
an act-only prompting style rather than ReAct-
style, we follow Song et al. (2024) to design a
ReAct-style prompt format. The original examples
are extended from Act-Only to ReAct-style using
gpt-40-2024-08-06. Initial observations and in-
teractions are provided by the environment, and
the intrinsic and extrinsic early-exit instructions
are shown in Table 4. For ALFWorld and Science-
World tasks, we observe that providing valid ac-
tions leads to a significant performance difference
(approximately 10%—-20% in success rate). There-
fore, we include valid actions in these two datasets
to ensure fair comparison with prior work (Song
et al., 2024; Fu et al., 2025a).
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SYSTEM:

You are a helpful assistant.

USER:

Your task is to interact with a virtual house-
hold simulator to accomplish a specific task.
With each interaction, you will receive an
observation. Your role is to ... {task instruc-
tion }

ASSISTANT: OK.

USER:

Here is the example:

{example}

Now, it’s your turn. You should perform
thoughts and actions to accomplish the goal.
Your response should use the following for-
mat:

Thought: <your thoughts>

Action: <your next action>

Your task is: {task goal}

You are in the middle of a room. Looking
quickly around you, ... {init observation }
{interaction history }




## Important ##: Your thought should be
short, clear and concise.
{intrinsic early-exit instruction }

The next action could be chosen from these
valid actions: {valid actions }

SYSTEM:

You are a helpful assistant.

USER:

You will be given a historical scenario in
which you are placed in a specific environ-
ment with a designated objective to accom-
plish.

### Task Description: Your task is to in-
teract with a virtual household simulator to
accomplish a specific task. With each in-
teraction, you will receive an observation.
Your role is to ... {task instruction}

### Your Objective:

{task goal}

Your Current History:

{interaction history}

Instructions:

{extrinsic early-exit instruction }

Do not include any additional text or expla-
nations in your response.
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