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Abstract

Large language models (LLMs) demonstrate im-
pressive reasoning abilities, but translating rea-
soning into actions in the real world remains
challenging. In particular, it is unclear how to
complete a given task provably within a mini-
mum number of interactions with the external
environment, e.g., through an internal mecha-
nism of reasoning. To this end, we propose the
first framework with provable regret guarantees
to orchestrate reasoning and acting, which we
call “reason for future, act for now” (RAFA).
Specifically, we design a prompt template for
reasoning that learns from the memory buffer
and plans a future trajectory over a long hori-
zon (“reason for future”). At each step, the
LLM agent takes the initial action of the planned
trajectory (“act for now”), stores the collected
feedback in the memory buffer, and reinvokes
the reasoning routine to replan the future tra-
jectory from the new state. The key idea is to
cast reasoning in LLMs as learning and planning
in Bayesian adaptive Markov decision processes
(MDPs). Correspondingly, we prompt LLMs
with the memory buffer to estimate the unknown
environment (learning) and generate an optimal
trajectory for multiple future steps that maximize
a value function (planning). The learning and
planning subroutines are performed in an “in-
context” manner to emulate the actor-critic up-
date for MDPs. Our theoretical analysis estab-
lishes a

√
T regret, while our experimental val-

idation demonstrates superior empirical perfor-
mance. Here, T denotes the number of online
interactions.

*Equal contribution 1Northwestern University, USA 2Institute
for Interdisciplinary Information Sciences, Tsinghua University,
China 3The Chinese University of Hong Kong, China. Correspon-
dence to: Zhihan Liu <ZhihanLiu2027@u.northwestern.edu>,
Zhaoran Wang <zhaoranwang@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

1. Introduction
Large language models (LLMs) exhibit remarkable reason-
ing abilities, which open a new avenue for agents to inter-
act with the real world autonomously. However, turning
reasoning into actions remains challenging. Specifically,
although LLMs are equipped with the prior knowledge ob-
tained through pretraining, it is stateless in nature and un-
grounded in the real world, which makes the resulting ac-
tion suboptimal. To bridge the reasoning-acting gap, we
aim to design an internal mechanism of reasoning on top of
LLMs, which optimizes actions iteratively by incorporating
feedback from the external environment. In particular, we
focus on the sample efficiency of autonomous LLM agents
in interactive decision-making tasks, which plays a key role
in their practical adoption, especially when interactions are
costly and risky. Our primary goal is to enable agents to
complete a given task in a guaranteed manner through rea-
soning within a minimum number of interactions with the
external environment.

Reinforcement learning (RL) is a well-studied paradigm
for improving actions by collecting feedback. However, to
tailor existing RL techniques for autonomous LLM agents,
we lack a rigorous mapping between RL and LLMs, which
leads to various conceptual discrepancies. For example, RL
operates in a numerical system, where rewards and transi-
tions are defined by scalars and probabilities. In compar-
ison, the inputs and outputs of LLMs are described by to-
kens in a linguistic system. As another example, LLMs
are trained on a general-purpose corpus and remain fixed
throughout the interactive process. In contrast, RL trains
actors and critics via parameter updates on the collected
feedback iteratively. Thus, it appears inappropriate to treat
LLMs as actors or critics under the RL framework, al-
though all of them are parameterized by deep neural net-
works. Moreover, it remains unclear what reasoning with
LLMs means under the RL framework, e.g., what are the
inputs and outputs of a reasoning routine and how rea-
soning should be coordinated with acting. Such concep-
tual discrepancies prevent us from establishing a principled
framework beyond borrowing the “trial and error” concept
from RL straightforwardly and make it difficult to establish
the theoretical guarantee.
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To address such conceptual discrepancies, we formalize
reasoning and acting with LLMs under a Bayesian adaptive
Markov decision process (MDP) framework, where the la-
tent variable of interest is the unknown environment. The
starting point is to cast the full history of states (of the ex-
ternal environment), actions, rewards, and their linguistic
summaries in the memory buffer as the information state
of Bayesian adaptive MDPs. Throughout the interactive
process, the information state accumulates a growing col-
lection of feedback from the external environment, which
is mapped to an optimized action at each step by an inter-
nal mechanism of reasoning. As detailed below, we con-
struct the reasoning routine through two key subroutines,
namely learning and planning, which are instantiated by
LLMs with specially designed prompts. (a) The learning
subroutine forms an estimate of the external environment
given the memory buffer, where LLMs are prompted to
infer the transition and reward models (model) or/and the
value function (critic). (b) The planning subroutine gener-
ates an optimal policy (actor) or trajectory for multiple fu-
ture steps, which maximizes the value function (up to a cer-
tain error). Depending on the specific configuration of the
state and action spaces (continuous versus discrete) and the
transition and reward models (stochastic versus determin-
istic), the planning subroutine emulates the value iteration
algorithm, the random shooting algorithm, or the Monte-
Carlo tree-search algorithm.

Although LLMs remain fixed throughout the interactive
process, we can reduce their estimation uncertainty by
prompting the growing collection of feedback from the ex-
ternal environment as contexts, which is verified both the-
oretically and empirically in this paper. From the perspec-
tive of Bayesian adaptive MDPs, LLMs can be considered
as some functional of the posterior of the environment (for
example, Bayesian model averaging (Wasserman, 2000)),
hence the estimation uncertainty is reduced with increasing
information via interactions. For several tasks, we demon-
strate that LLMs can make a more precise prediction when
prompted with more data as contexts. Hence, LLMs can
play a similar role of model estimators in the design of on-
line RL algorithms for interactions. We improve the accu-
racy of LLMs by simply adding the new feedback to the
memory buffer as contexts, instead of performing explicit
parameter updates (such as gradient descent) on deep neu-
ral networks as in existing RL methods.

We conclude our contributions in this paper from three per-
spectives. (a) We establish the LLM-RL correspondence
and design a principled framework RAFA for orchestrat-
ing the reasoning and acting of LLMs. (b) Our empirical
validation shows that RAFA outperforms various existing
frameworks in interactive decision-making tasks, including
ALFWorld, BlocksWorld, Game of 24, and a new bench-
mark based on Tic-Tac-Toe. (c) Our theoretical analysis

proves that RAFA achieves a
√
T regret, explaining why

RAFA demonstrates strong empirical performance. We also
provide two provably efficient variants of RAFA to imple-
ment efficient exploration for more complex tasks.

1.1. Literature
Due to the page limit, we defer the detailed discussion on
large language model (LLM), in-context learning (ICL),
and reinforcement learning (RL) under a Bayesian frame-
work to Appendix A.

Reasoning with LLM. We build on a recent line of work
that develops various prompting schemes to improve the
reasoning performance of LLMs. “Chain of thoughts”
(“CoT”) (Wei et al., 2022) decomposes a challenging prob-
lem into several reasoning stages and guides LLMs to solve
them one by one. As generalizations, “tree of thoughts”
(Yao et al., 2023a), “graph of thoughts” (Yao et al., 2023b),
“algorithm of thoughts” (Sel et al., 2023), and “cumulative
reasoning” (Zhang et al., 2023a) provide different graph-
search schemes to guide LLMs. See also (Wang et al.,
2022a; Creswell et al., 2022; Creswell & Shanahan, 2022;
Guo et al., 2024; Zhang et al., 2024). Also, “reasoning via
planning” (“RAP”) (Hao et al., 2023) emulates the Monte-
Carlo tree-search (MCTS) algorithm to reduce the search
complexity. (Pouplin et al., 2024) improve LLM reason-
ing process with MCTS, and formulated the reasoning pro-
cess as an MDP and (Sun et al., 2023a) use offline inverse
RL to optimize the prompts for arithmetic problems. For
embodied LLM agents, (Huang et al., 2022a) propose to
decompose a complex task into multiple executable steps.
Most of them focus on general reasoning tasks, e.g., solv-
ing a mathematical or logic puzzle, where LLMs generate a
detailed trace (trajectory) of arguments through an internal
mechanism to reach a final answer. Here, LLMs play the
same role as the planning subroutine in RAFA. In contrast,
we focus on interactive decision-making tasks, where au-
tonomous LLM agents collect feedback from the external
environment to optimize actions iteratively. In particular,
we aim to complete a given task within a minimum number
of interactions with the external environment. To this end,
it is essential to operate three interleaved modules, namely
learning, planning, and acting, in a closed loop. While it
is feasible to incorporate existing graph-search or MCTS
schemes as the planning subroutine for generating trajec-
tories, our core contribution is a principled framework that
executes a selected subset of the planned trajectory to col-
lect feedback (“act for now”) and replans an improved tra-
jectory from the new state by learning from feedback (“rea-
son for future”). From an RL perspective, existing graph-
search or MCTS schemes are analogous to an open-loop
method, e.g., motion planning or trajectory optimization
(Betts, 1998), which does not involve interactions with the
external environment. To integrate them into a closed-loop
approach, e.g., model predictive control (Rawlings, 2000),
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Figure 1. Illustration of the
RAFA (“reason for future,
act for now”) framework.

one has to specify how to act given the planned trajectory
and when to reinvoke the reasoning (learning and planning)
routine, which is the key technique of RAFA. Another re-
cent line of work tackles more complex tasks by allow-
ing LLMs to access various additional modules, e.g., tools,
programs, and other learning algorithms (Ahn et al., 2022;
Shen et al., 2023; Lu et al., 2023; Liu et al., 2023a; Cai
et al., 2023), or by finetuning LLMs on the feedback (Ze-
likman et al., 2022; Li et al., 2022; Paul et al., 2023; Sun,
2023).

Acting (and Reasoning) with LLM. We build on a re-
cent line of work that develops various closed-loop frame-
works for interacting with the external environment. “In-
ner monologue” (Huang et al., 2022b) and “ReAct” (Yao
et al., 2022) combine reasoning and acting to refine each
other for the first time. In comparison, RAFA provides a
specific schedule for orchestrating reasoning and acting (as
discussed above). As generalizations, “Reflexion” (Shinn
et al., 2023) enables autonomous LLM agents to revise the
current action of a pregenerated trajectory by learning from
feedback, especially when they make mistakes. See also
(Kim et al., 2023). However, making a local revision to the
pre-generated trajectory is myopic because it fails to con-
sider the long-term consequences of actions. Consequently,
the obtained policy may get trapped by a local optimum.
From an RL perspective, “Reflexion” (Shinn et al., 2023)
is an oversimplified version of RAFA, where the planning
subroutine revises the current action to maximize the re-
ward function (“reason for now”) instead of planning mul-
tiple future steps to maximize the value function (“reason
for future”), which measures the expected cumulative fu-
ture reward. To remedy this issue, “AdaPlanner” (Sun et al.,
2023b) regenerates the whole trajectory at each step, which
yields a global improvement. See also (Wang et al., 2023b).
However, the reasoning routine of “AdaPlanner” requires a
handcrafted set of programs to reject suboptimal candidate
trajectories. Without the domain knowledge of the current
task, the regenerated trajectory is not necessarily optimal,
i.e., maximizing the value function (up to a certain error).
In contrast, the reasoning routine of RAFA is designed fol-
lowing the principled approach in RL. In particular, the

Closed-Loop
Mechanisms

No Parameter
Update

Theoretical
Guarantee

RAFA ✓ ✓
Model-Based Deep RL ✗ ✓
Model Predictive Control ✗ ✓
Thompson Sampling ✗ ✓

“React”, “Reflexion”,
and “Adaplanner” ✓ ✗

Table 1. Comparison between RAFA and other mechanisms.

learning subroutine infers the transition and reward models
(model) or/and the value function (critic), while the plan-
ning subroutine emulates the value iteration algorithm, the
random shooting algorithm, or the MCTS algorithm, none
of which use any domain knowledge. RAFA also achieves
provable sample efficiency guarantees for the first time and
outperforms those existing frameworks empirically.

1.2. Notations

We provide a table of notations in Appendix C.1.

2. Bridging LLM and RL
Interaction Protocol. We use Bayesian adaptive Markov
decision processes (MDPs) (Ghavamzadeh et al., 2015) to
model how autonomous LLM agents interact with the ex-
ternal environment. We consider an infinite-horizon MDP
M = (S,A, P, r, ρ, γ,P0), where S is the state space, A
is the action space, P : S × A 7→ ∆(S) is the transi-
tion kernel, r : S × A 7→ R is the reward function, ρ is
the initial distribution of states, γ ∈ (0, 1) is the discount
factor, and P0 is the prior distribution of the transition ker-
nel and the reward function. Here, P gives the probability
distribution of the next state given the current state and ac-
tion, while r is assumed to be deterministic without loss
of generality. For notational simplicity, we parameterize P
and r by a shared parameter θ ∈ Θ and denote them as
Pθ and rθ. At the beginning of the interaction, the data-
generating parameter θ⋆ is sampled from the prior P0. At
the t-th step during the interaction, the LLM agent receives

3



Reason for Future, Act for Now: A Principled Architecture for Autonomous LLM Agents

a state st ∈ S, takes an action at ∈ A following the current
policy πt : S 7→ A, and receives a reward rt = rθ⋆(st, at).
Subsequently, the external environment transits to the next
state st+1 ∼ Pθ⋆(· | st, at), while the LLM agent computes
the updated policy πt+1 through an internal mechanism of
reasoning (as discussed below). Note that S andA are rep-
resented by tokens in a linguistic system. Here, π ∈ Π
is assumed to be deterministic without loss of generality,
where Π is the feasible set of policies.

Value Function. For a policy π and a parameter θ of the
transition and reward models, we define the state-value and
action-value functions

V π
θ (s) = E

[ ∞∑
t=0

γtrθ(st, at)
∣∣∣ s0 = s

]
,

Qπ
θ (s, a) = E

[ ∞∑
t=0

γtrθ(st, at)
∣∣∣ s0 = s, a0 = a

]
, (2.1)

where E is taken with respect to at = π(st) and st+1 ∼
Pθ(· | st, at) for all t ≥ 0. In other words, V π

θ (and Qπ
θ )

gives the expected cumulative future reward from the cur-
rent state s (and action a).

We define the optimal policy π⋆
θ with respect to a given

parameter θ as π⋆
θ = argmaxa∈AQ

⋆
θ , whereQ⋆

θ is the fixed
point of the Bellman optimality equation (Sutton & Barto,
2018). See the detailed discussions in Appendix C.2.

Posterior, Entropy, and Information Gain. By Bayes’
rule, the posterior of θ⋆ given any in-context dataset D is

Ppost(θ | D) ∝ P0(θ)L(D | θ), (2.2)

where we denote by L(D | θ) the likelihood of D condi-
tioned on θ. We define the random variable ξ(s,a) as the
pair of the next state and the current reward (s′, r) given the
query state-action pair (s, a). Given any in-context dataset
D and query state-action pair (s, a), the posterior of ξ(s,a)
can be specified as

Ppost(ξ(s,a) | D, s, a)
= Eθ∼Ppost(· | D)

[
Pθ(s

′ | s, a) · 1(r = rθ(s, a))
]
, (2.3)

where we use Bayes’ rule and the fact that the query state-
action pair (s, a) is conditionally independent of θ⋆ given
D. To characterize the uncertainty of θ⋆ conditioned on D,
we define the posterior entropy H(θ | D) as

H(θ | D) = Eθ∼Ppost(· | D)

[
− log

(
ppost(θ | D)

)]
, (2.4)

where ppost is the probability mass (or density) function of
Ppost. High posterior entropy H(θ | D) means high uncer-
tainty of θ⋆, which suggests that it is hard for the agent to
make a precise prediction given D. We also define the in-
formation gain I(θ; ξ | D) asH(θ | D)−H(θ | D, ξ), which

characterizes how much information ξ(s,a) carries to reduce
the uncertainty of θ⋆ conditioned on D.

Sample Efficiency. As the performance metric, we define
the Bayesian regret after T steps of interactions,

R(T ) = E
[T−1∑
t=0

V π⋆

θ⋆ (st)− V πt

θ⋆ (st)
]
, (2.5)

where π⋆=π⋆
θ⋆ , E is taken with respect to the prior dis-

tribution P0 of θ⋆, the stochastic outcome of st, and the
iterative update of πt, which involves states, actions, and
rewards until the t-th step, i.e., the full history Dt =
{(si, ai, si+1, ri)}t−1

i=0 . We aim to design a sample-efficient
agent that satisfies R(T ) = o(T ), i.e., the Bayesian regret
is sublinear in the total number of interactions T .

What Reasoning Means and Role of LLM. To bridge
LLM mechanisms with online RL algorithms, we claim
that LLMs can play a similar role of model estimators in the
design of online RL algorithms for interactions, which is
one aspect of In-Context Learning (ICL) ability of LLMs.

Claim 2.1. LLMs provide a more accurate estimate for the
environment with more feedback from online interactions.

In Proposition C.4 in Section 5, we prove that LLMs with
posterior alignment perform Bayesian model averaging
(BMA). This theoretical result supports Claim 2.1, as the
estimation uncertainty of BMA is reduced given more feed-
back from the interactions with the environment (Wasser-
man, 2000). We also provide empirical evidence on three
tasks for Claim 2.1 as follows.
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(a) Information Ban-
dit. The goal of our
100-arm bandit experi-
ment is to find the arm
with the highest reward.
There is an informative
arm whose reward is
the index of the best
arm. We prompt the
LLM (gpt-4) to pull
the arm by providing it with the historical data of several
bandit instances that share the same informative arm. It can
be observed from the right figure that the LLM can learn
the best arm with only 6 examples, and is thus an effective
reward estimator.
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(b) Concept Learning.
We evaluate LLMs
(Llama 2-7B) in
three tasks (Todd et al.,
2023) with hidden con-
cepts: (1) Antonym:
Generate the word with
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the opposite meaning given an input word; (2) Country-
Capital: Generate the capital city of a given country; and
(3) Present-Past: Generate the verb’s past inflection given
a verb in the present tense. We observe that with more
in-context examples provided to the LLM, the accuracy of
the test instance monotonically increases, indicating that
the hidden concepts of the tasks are learned.
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sin(x)

(c) Function Value Pre-
diction. The goal of this
experiment is to let the
LLM (gpt-3) predict
the values of a function
on unseen data points
given the values on the
points with fixed inter-
vals. Following Gruver
et al. (2023), we report the t-interval cumulative nega-
tive log-likelihood CNLL = −∑t

i logP (vi|prompti−1),
where vi is the value of the function at data point i. It can
be observed that the LLMs are good time series forecasters.

Under Claim 2.1, we establish the correspondence between
LLMs and RL by using LLMs as the model estimators in
RL algorithms, which opens the door to creating a practi-
cal algorithm that combines the strengths of both LLMs and
RL. LLMs excel in accuracy with minimal feedback, which
improves the sample efficiency. LLMs can also refine es-
timates using new feedback as prompts, which avoids ex-
plicit parameter updates. RL algorithms benefit from on-
line interaction to improve estimates and policies and have
theoretical guarantees with optimal planning algorithms
like value iteration. This LLM-RL correspondence inspires
us to introduce a new framework in the next section, aim-
ing to orchestrate the reasoning (learning and planning) and
acting of LLMs.

3. Algorithm
Architecture of RAFA. By leveraging the LLM-RL corre-
spondence in Section 2, we provide a principled framework
for orchestrating reasoning and acting, namely “reason for
future, act for now” (RAFA), in Algorithms 1 and 2. At the
t-th step of Algorithm 1, the LLM agent invokes the rea-
soning routine, which learns from the memory buffer and
plans a future trajectory over a long horizon (“reason for
future” in Line 6), takes the initial action of the planned
trajectory (“act for now” in Line 7), and stores the col-
lected feedback (state, action, and reward) in the memory
buffer (Line 8). Upon the state transition of the external
environment, the LLM agent reinvokes the reasoning rou-
tine to replan another future trajectory from the new state
(Line 6 following Line 9). To ensure the learning and plan-
ning stability, we impose the switching condition (Line 10)
to decide whether to incorporate the newest chunk of his-

Algorithm 1 Reason for future, act for now (RAFA): The
LLM version.
1: input: An LLM learner-planner LLM-LR-PL, which aims

at generating an optimal trajectory given an initial state and
returns the initial action (e.g., Algorithm 2), and a switching
condition If-Switch.

2: initialization: Sample the initial state s0 ∼ ρ, set t = 0, and
initialize the memory buffer D0 = ∅.

3: for k = 0, 1, . . . , do
4: Set tk ← t.
5: repeat
6: Learn and plan given memory Dtk to get action at ←

LLM-LR-PL(Dtk , st). (“reason for future”)
7: Execute action at to receive reward rt and state st+1

from environment. (“act for now”)
8: Update memory Dt+1 ← Dt ∪ {(st, at, st+1, rt)}.
9: Set t← t+ 1.

10: until If-Switch(Dt) is True. (the switching
condition is satisfied)

11: end for

tory, i.e., the set difference Dt − Dtk , into the information
state, which is used in the reasoning routine as contexts.
In other words, the reasoning routine uses the same history
Dtk for all tk ≤ t < tk+1 until the (k + 1)-th switch at
the (tk+1 − 1)-th step, which guarantees that the posterior
distribution and the optimized action or the corresponding
policy are updated in a conservative manner. We specify
the switching condition in Sections 4 and 5.

“Reason for Future” (Line 6 in Algorithm 1 and Lines
3-11 in Algorithm 2). As detailed below, the reasoning
routine composes the learning and planning subroutines to
map the full history Dtk (until the tk-th step) to an op-
timized action at. Note that the reasoning routine does
not interact with the external environment throughout the
learning and planning subroutines.

• The learning subroutine (Lines 3-4 in Algorithm 2) maps
the memory buffer Dtk to a transition kernel (Model) and
a value function (Critic), which are used in the planning
subroutine. In practice, we prompt LLMs to form an es-
timate of the external environment based on the memory
buffer. Here, the estimate is instantiated by two LLMs:
Model and Critic, which estimate their ground-truth
counterparts in association with the data-generating param-
eter. Under Claim 2.1, the learning subroutine yields more
accurate versions of Model and Critic when we prompt
them with a growing collection of feedback from the exter-
nal environment. Consequently, the planning subroutine
can use them to assess the long-term outcome of actions
with a higher accuracy. Depending on whether we emulate
the model-based or model-free approach of RL, we may
choose to emulate Model or Critic individually. Com-
pared with the learning subroutine in RL, we replace the
parameterized function approximation (usually deep neu-
ral networks) with LLMs and use an “in-context” manner
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to update the LLMs, which eliminates the need for explicit
parameter updates. Because LLMs are pretrained and un-
dergo supervised fine-tuning, they provide much better es-
timates compared to learning from scratch, leading to an
improvement in sample efficiency for online interactions.

Algorithm 2 The LLM learner-planner (LLM-LR-PL): A
tree-search example. (the deterministic case)
1: input: The memory buffer D, the initial state s, the search

breadth B, and the search depth U .
2: initialization: Initialize the state array S0 ← {s} and the

action array A0 ← ∅.
———————- (the learning subroutine) ——————–

3: Set Model as an LLM instance prompted to use D as con-
texts to generate the next state.

4: Set Critic as an LLM instance prompted to use D as con-
texts to estimate the value function.
———————- (the planning subroutine) ——————–

5: Set Elite as an LLM instance prompted to use D as con-
texts to generate multiple candidate actions.

6: for u = 0, . . . , U do
7: For each current state in Su, invoke Elite to generate B

candidate actions and store them in Au.
8: For each candidate action in Au, invoke Model to gener-

ate the next state and store it in Su+1.
9: end for

10: For all resulting rollouts in S0×A0×· · ·×SU×AU , invoke
Critic to evaluate the expected cumulative future reward
and select the best one (s†0, a

†
0, . . . , s

†
U , a

†
U ), where s†0 = s.

11: output: The initial action a†
0 of the selected rollout.

• The planning subroutine (Lines 5-11 in Algorithm
2) maps Model and Critic to a future trajectory
(s†0, a

†
0, . . . , s

†
U , a

†
U ), where s†0 is the current state st and a†0

is executed in the external environment as the current action
at during the acting phase. Intuitively, we prompt LLMs to
generate an optimal policy (actor) for multiple future steps,
which maximizes the value function (Critic). From an
RL perspective (Sections 2 and 5), the planning subrou-
tine approximately solves the Bellman equation (Sutton &
Barto, 2018), where we solve the optimal policy (or the
corresponding action) given the estimated transition kernel
and reward (or critic) by LLMs. As two LLM instances
from the learning subroutine, Model and Critic instan-

tiate the estimated transition kernel and the estimated value
function. Hence, we can simulate a given number of tra-
jectories with Model, evaluate them with Critic, and
obtain an improved policy, which is achieved by specially
designed prompts instead of a numerical algorithm. By
maximizing the expected cumulative future reward (instead
of the immediate reward), the planning subroutine returns
an optimized action that improves the long-term outcome.
There are two error sources that affect the planning subrou-
tine, namely the posterior uncertainty, which is inherited
from Model and Critic due to the finite size ofDtk , and
the planning suboptimality, which is induced by the lim-
ited capacity for computation, e.g., the bounded width and
depth of tree-search (Lines 6-9 in Algorithm 2). Depending
on the specific configuration of the state and action spaces
(continuous versus discrete) and the transition and reward
models (stochastic versus deterministic), we may choose to
emulate the value iteration algorithm, the random shooting
algorithm, or the Monte-Carlo tree-search algorithm. All
of them allow RAFA to achieve provable sample efficiency
guarantees as long as they satisfy a specific requirement of
optimality (Definition C.1). For illustration, we emulate
the tree-search algorithm and defer its stochastic variant to
Appendix B.

“Act for Now” (Lines 7-10 in Algorithm 1). At the cur-
rent state st, the LLM agent executes the optimized action
at in the external environment, which is obtained from the
reasoning routine. Specifically, we take the initial action
a†0 of the planned trajectory (s†0, a

†
0, . . . , s

†
U , a

†
U ), where

s†0 = st and a†0 = at, and discard the remaining subset.
At the next state st+1, the LLM agent replans another fu-
ture trajectory (s†0, a

†
0, . . . , s

†
U , a

†
U ) with s†0 = st+1 and

a†0 = at+1. In other words, the acting phase follows a
short-term subset of the long-term plan, which is regener-
ated at every new state. The LLM agent stores the col-
lected feedback (st, at, rt, st+1) in the memory buffer Dt

and queries a switching condition If-Switch to decide
when to update the memory buffer Dtk , which is used in
the reasoning routine as contexts for learning and plan-
ning. Intuitively, we incorporate the newest chunk of his-
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gpt-4 gpt-3.5

RAFA (B = 1) 89% 29%
RAFA (B = 2) 93% 46%
ToT (B = 1) 73% 10%
ToT (B = 2) 81% 17%
Reflexion 21% 16%

Figure 3. Game of 24 results.

Pick Clean Heat Cool Exam Pick2 Total

BUTLER 46.00 39.00 74.00 100.00 22.00 24.00 37.00
ReAct 66.67 41.94 91.03 80.95 55.56 35.29 61.94
AdaPlanner 100.00 96.77 95.65 100.00 100.00 47.06 91.79
Reflexion 100.00 90.32 82.61 90.48 100.00 94.12 92.54
RAFA 100.00 96.77 100.00 100.00 100.00 100.00 99.25

Figure 4. ALFWorld results (success rates %).

tory Dt − Dtk to improve the current policy only when it
carries significant novel information, e.g., when the LLM
agent loses for the first time following a winning streak.

4. Experiment
We evaluate RAFA in several text-based benchmarks, e.g.,
Game of 24, ALFWorld, BlocksWorld, and Tic-Tac-Toe.
The detailed setups, results, and ablations are provided in
Appendix G, while the detailed prompts are in Appendix H.
Our code is available at https://agentification.
github.io/RAFA/.

4.1. Game of 24

Game of 24 (Yao et al., 2023a) is a mathematical puzzle
where the player uses basic arithmetic operations (i.e., ad-
dition, subtraction, multiplication, division) with four given
numbers to get 24. The state is the (possibly unfinished)
current formula and the action is the next formula (or the
modified part).
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Figure 5. Sample efficiency on Game of 24.

3 6 9 12 15 18
Step

66

72

78

84

90

96

V
al

u
e

A
cc

u
ra

cy
(%

)

Game of 24

RAFA(gpt-4)

RAFA(gpt-3.5-turbo)

Figure 6. Value estimation accu-
racy on Game of 24.

Setup. We emulate the
tree-search algorithm
to plan (B ∈ {1, 2}).
At the t-th step, RAFA
learns from the mem-
ory buffer and switches
to a new policy upon
receiving an unex-
pected reward, which
is the switching con-
dition. After the t-th
step, RAFA digests the collected feedback and generates a
linguistic summary, which is saved into the memory buffer
to avoid similar previous mistakes.

Result. We report the performance of RAFA in Table 3,
which attains the SOTA. As shown in Figures 2 and 5, su-
perior sample efficiency is achieved by mitigating halluci-
nations via interactions and the enhanced planning ability
to avoid careless trials (see Appendix G.1 for a detailed
discussion). To verify that feedback from the environment
can help mitigate hallucinations, we report the value esti-
mation accuracy with RAFA agents for different timesteps,
as shown in Figure 6. The value estimation is in general
more accurate as the number of interaction increases, veri-
fying our claim in Claim 2.1.

4.2. ALFWorld

ALFWorld (Shridhar et al., 2020) is an interactive environ-
ment for embodied agent simulations, which encompasses
134 household tasks in six overall categories (Table 4). We
use gpt-3 (text-davinci-003).

Setup. We emulate the tree-search algorithm to plan (B =
2). RAFA invokes Critic to evaluate the completed por-
tion of the desired goal and switches to a new policy after
20 consecutive failures.
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ReAct

Figure 7. Sample efficiency on
ALFWorld.

Result. RAFA out-
performs various
existing frameworks
(right figure). The
better performance
of AdaPlanner at
the initial episode
is attributed to a
handcrafted set of
programs for rejecting
suboptimal candidate
trajectories, which is challenging to construct without the
domain knowledge of a specific task. One such example
is the PickTwo category, where a substantial performance
disparity emerges compared to other tasks.

4.3. Blocksworld

BlocksWorld (Hao et al., 2023) is a rearrangement puzzle.
For the RAFA algorithm, we use the Vicuna (Zheng et al.,
2023) model and emulate the MCTS algorithm to plan (see
Figure 15 in Appendix). RAFA achieves superior success
rates across multiple Vicuna versions (Figure 8). Com-
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Figure 8. Sample efficiency on BlocksWorld (4 and 6 are the min-
imum numbers of steps for solving a specific task). CoT is
prompted by four in-context examples.

O X gpt-4

gpt-4 90%, 0%, 10%
RAFA(T =1) 90%, 0%, 10%
RAFA(T =5) 50%, 0%, 50%
RAFA(T =7) 0%, 0%, 100%

Table 2. Tic-Tac-Toe results. We set B = 4 and report the win-
ning rate of X, the tie rate, and the winning rate of O.

parisons with CoT and RAP demonstrate how the learning
subroutine improves the planning optimality.

4.4. Tic-Tac-Toe

Tic-Tac-Toe (Beck, 2008) is a competitive game where the
X and O sides take turns to place marks. RAFA invokes
Model to simulate the transition and opponent dynamics
(see Figure 16 in Appendix).

Setup. We use gpt-4 and emulate the tree-search algo-
rithm to plan (B ∈ {3, 4}). RAFA switches to a new pol-
icy when (a) the predicted state differs from the observed
one, (2) the predicted action of opponents differs from the
observed one, or (3) Critic gives the wrong prediction
of the game status. Here, X has an asymmetric advantage
(winning surely if played properly).
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Figure 9. Sample efficiency on
Tic-Tac-Toe (0 means tie).

Result. As shown in
Table 2, RAFA (playing
O) matches and beats
gpt-4 for T = 5 and
T = 7, although O is
destined to lose. The
ablation study (B =
3 versus B = 4) il-
lustrates how the plan-
ning suboptimality af-

fects the sample efficiency (see Figure 9).

5. Theory
In this section, we provide the theoretical explana-
tion of RAFA. For LLMs used in RAFA, we denote
P LLM(ξ(s,a) | D, s, a) as the probability measure of the pre-
dicted state-reward pair given the query state-action pair
and the memory bufferD as the in-context dataset. Induced
by P LLM, we also denote PLLM(D) and rLLM(D) as the esti-
mated transition kernel and reward by LLMs.

LLMs with Posterior Alignments Perform Bayesian
Model Averaging (BMA). In the following, we analyze
Claim 2.1 from the theoretical perspective. For the sim-
plicity of analysis, we assume that all LLMs have poste-
rior alignments in the tasks that we study, whose posterior
distribution of the reward and the next state given the cur-
rent state-action pair and any in-context dataset matches the
posterior in these tasks.
Assumption 5.1 (Posterior Alignment). We assume that
LLMs used in RAFA are aligned with the posterior of the
state and reward in the underlying MDP, which is formu-
lated as

P LLM
(
ξ(s,a)

∣∣D, s, a) = Ppost
(
ξ(s,a)

∣∣D, s, a),
for any in-context dataset D = {(si, ai, ri, s′i)}Ii=0 with
size I , query state-action pair (s, a), reward r, and state
s′. Here, the posterior Ppost is defined in (2.3).

We remark that the posterior alignment in Assumption 5.1
comes from the in-context ability of LLMs, which is widely
studied in Lee et al. (2023); Wies et al. (2024); Xie et al.
(2021). We also remark that Assumption C.3 does not
mean that LLMs can make the optimal decision at each
step naively in the underlying MDP: (1) Though the pos-
terior distributions of state and reward are aligned, LLMs
still need to be instructed to maximize the long-term value
(via explicit planning) instead of the myopic reward. (2)
LLMs still require online interactions to enlarge the in-
context dataset D such that the prediction uncertainty can
be reduced from the prior uncertainty. In Appendix D.6,
we also discuss how to relax Assumption 5.1 to accommo-
date a generalization error in the regret bound derived by
our analysis, where we assume that LLMs are MLEs on
the pretraining dataset with uniform coverage. Based on
Assumption 5.1, we prove that LLMs with posterior align-
ments perform BMA in model estimation.
Proposition 5.2. Under Assumption 5.1, it holds that

rLLM(D)(s, a) + (PLLM(D)V )(s, a)

= Eθ∼Ppost(· | D)[(BθV )(s, a)]

for any in-context dataset D = {(si, ai, ri, s′i)}Ii=0, value
function V , and query state-action pair (s, a) ∈ S ×A.
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The proof of Proposition 5.2 can be found in Appendix
D.1. Some variants of Proposition 5.2 can be found in var-
ious literature (Lee et al., 2023; Zhang et al., 2022; 2023b).
In particular, Zhang et al. (2022) establish the theoretical
equivalence between BMA and the ideal attention architec-
ture and analyze the generalization error rate of LLMs. By
Proposition 5.2, LLMs can provide a more certain and ac-
curate estimate for the data-generating model θ⋆ with more
collected feedback, as the uncertainty of θ⋆ in the poste-
rior is reduced with more data. Thus, Proposition 5.2 sup-
ports Claim 2.1 in theory, explaining why LLMs can pre-
dict more precisely with more feedback from online inter-
actions.

Regret Bound of RAFA. We propose the theoretical ver-
sion of RAFA in Algorithm 6 in Appendix C, where we
instantiate the switching condition of RAFA by measuring
the reduction of the posterior entropy and describe the plan-
ning subroutine in RAFA as an ϵ-planner PLϵ (defined in
Definition C.1 in Appendix C). Next, we impose a reg-
ularity assumption on the structure of MDPs to measure
the learning difficulty. Recall that we define the posterior
entropy Ht in (2.4), the information gain I(θ; ξ | D), and
ξ(s,a) as the pair of the next state and the current reward
(s′, r) given the query state-action pair (s, a) in Section
2. Define Ht as the posterior entropy H(θ | Dt) given the
dataset Dt = {(si, ai, ri, si+1)}t−1

i=0 .

Assumption 5.3 (MDPs Regularity). We assume that there
exists a coefficient η > 0 such that, if Ht1 −Ht2 ≤ log 2,
then it holds that

I(θ; ξ(s,a) | Dt1) ≤ 4η · I(θ; ξ(s,a) | Dt2)

for any given value function V , t1 < t2 and (s, a) ∈ S×A.

Assumption 5.3 is a regularity assumption on MDPs and
is intrinsic to the agent design. In Appendix F, we prove
that d-dimensional Bayesian linear kernel MDPs (defined
in Definition F.1), satisfy Assumption 5.3 with the coeffi-
cient η = d/ log(1 + d). Intuitively, Assumption 5.3 re-
stricts the increase of the information gain given one bit
(log 2) reduction of the posterior entropy.

Similar to other theoretical work on deep RL (Lazaric et al.,
2010; Fan et al., 2020; Zhang et al., 2020), we introduce the
concentrability coefficient κ to bound the distribution shift
between the current policy and the optimal policy. Intu-
itively, κ measures the hardness to generalize the low pre-
diction error (Bk−Bθ⋆)Vt on the current trajectory induced
by {πk}K−1

k=0 to the optimal trajectory induced by π⋆ in the
underlying MDP. for any t < T . See the full statement in
Assumption C.6 in Appendix C.

In the following theorem, we give the bound of the
Bayesian regret of RAFA (Algorithm 6), where the proof
can be found in Appendix D.3.

Theorem 5.4. Suppose Assumptions 5.3 and C.6 hold.
For the underlying MDP satisfying Assumption 5.1,the
Bayesian regret R(T ) of RAFA (Algorithm 6) is

O
(
(1− γ)−1L

(
κη
√

E[H0 −HT ] ·
√
T + E[H0 −HT ]

))
,

if the planning suboptimality ϵ = O(1/
√
T ). Here, L is the

bound of |r + V (s)| for any r ∈ R, s ∈ S, and value V .

Theorem 5.4 highlights an intriguing interplay between the
prior knowledge obtained through pretraining and the un-
certainty reduction achieved by reasoning and acting. Since
H0 quantifies the prior uncertainty of LLMs before incor-
porating any collected feedback, H0 − HT highlights the
uncertainty reduction achieved by reasoning and acting, as
HT quantifies the posterior uncertainty of LLMs after in-
corporating the collected feedback. We introduce the d-
dimensional Bayesian linear kernel MDP in Appendix F,
where we prove that H0−HT = O(d · log T ) and special-
ize Theorem 5.4 to obtain

√
T regret. Hence, we show that

RAFA (Algorithm 8) is sample-efficient, which explains the
superior empirical performance of RAFA in Section 4.

RAFA with Efficient Exploration Strategies. In Ap-
pendix D.6, we show that Assumption 5.1 can be relaxed
for Theorem 5.4 to accommodate a generalization error.
We also remark that we can drop the dependency of the
concentrability coefficient κ (Assumption C.6) if we mod-
ify RAFA to encourage efficient exploration in MDPs. In
Appendix C.5, we provide two variants of RAFA: (1) RAFA
with optimistic bonus (Algorithm 7) and (2) RAFA with
posterior sampling (Algorithm 8). In Theorems C.8 and
C.10, we bound the Bayesian regret of each variant as

O
(
(1− γ)−1L

(
η
√
E[H0 −HT ] ·

√
T + E[H0 −HT ]

))
,

which removes the dependency of the concentrability coef-
ficient κ in the Bayesian regret of Algorithm 6. This theo-
retical result can also shed light on the design of practical
variants of RAFA for more complex environments. Though
we propose the theoretical algorithms of these two variants
of RAFA, it is still unclear how to design their practical im-
plementations, which we remain for future work.

6. Conclusions
In this paper, we establish the LLM-RL correspondence
and propose a principled framework RAFA for orchestrat-
ing reasoning and acting, which achieves provable sample
efficiency guarantees in autonomous LLM agents for the
first time. We prove the

√
T regret bound of RAFA to

highlight the synergy between prior knowledge from pre-
training and the iterative process of reasoning and acting.
RAFA’s outstanding empirical performance underscores its
potential for autonomous and adaptive decision-making in
various complex tasks, which we remain for future work.
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Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learn-
ing? Investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

Beck, J. Combinatorial games: Tic-Tac-Toe theory. 2008.

Betts, J. T. Survey of numerical methods for trajectory opti-
mization. Journal of Guidance, Control, and Dynamics,
1998.

Bickel, P. J. and Freedman, D. A. Some asymptotic theory
for the bootstrap. The annals of statistics, 9(6):1196–
1217, 1981.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sas-
try, G., Askell, A., et al. Language models are few-shot

learners. Advances in neural information processing sys-
tems, 33:1877–1901, 2020.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. Provably efficient
exploration in policy optimization. In International Con-
ference on Machine Learning, 2020.

Cai, T., Wang, X., Ma, T., Chen, X., and Zhou, D.
Large language models as tool makers. arXiv preprint
arXiv:2305.17126, 2023.

Chen, Y., He, J., and Gu, Q. On the sample complexity of
learning infinite-horizon discounted linear kernel MDPs.
In International Conference on Machine Learning, 2022.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. PaLM: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Chua, K., Calandra, R., McAllister, R., and Levine, S.
Deep reinforcement learning in a handful of trials us-
ing probabilistic dynamics models. Advances in neural
information processing systems, 31, 2018.

Creswell, A. and Shanahan, M. Faithful reason-
ing using large language models. arXiv preprint
arXiv:2208.14271, 2022.

Creswell, A., Shanahan, M., and Higgins, I. Selection-
inference: Exploiting large language models for
interpretable logical reasoning. arXiv preprint
arXiv:2205.09712, 2022.

Davison, A. C. and Hinkley, D. V. Bootstrap methods
and their application. Number 1. Cambridge university
press, 1997.

Dong, K., Wang, Y., Chen, X., and Wang, L. Q-learning
with UCB exploration is sample efficient for infinite-
horizon MDP. arXiv preprint arXiv:1901.09311, 2019.

Efron, B. The jackknife, the bootstrap and other resampling
plans. SIAM, 1982.

Fan, J., Wang, Z., Xie, Y., and Yang, Z. A theoretical anal-
ysis of deep q-learning. In Learning for dynamics and
control, pp. 486–489. PMLR, 2020.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? A case study of sim-
ple function classes. In Advances in Neural Information
Processing Systems, 2022.

Ghavamzadeh, M., Mannor, S., Pineau, J., Tamar, A., et al.
Bayesian reinforcement learning: A survey. Founda-
tions and Trends® in Machine Learning, 8(5-6):359–
483, 2015.

10



Reason for Future, Act for Now: A Principled Architecture for Autonomous LLM Agents

Ghosh, M. Exponential tail bounds for chisquared random
variables. Journal of Statistical Theory and Practice, 15
(2):35, 2021.

Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. Large lan-
guage models are zero-shot time series forecasters. arXiv
preprint arXiv:2310.07820, 2023.

Guo, H., Liu, Z., Zhang, Y., and Wang, Z. Can large lan-
guage models play games? a case study of a self-play
approach. arXiv preprint arXiv:2403.05632, 2024.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International conference on ma-
chine learning, pp. 2555–2565. PMLR, 2019.

Hao, B., Abbasi Yadkori, Y., Wen, Z., and Cheng, G. Boot-
strapping upper confidence bound. Advances in neural
information processing systems, 32, 2019.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang, D. Z.,
and Hu, Z. Reasoning with language model is planning
with world model. arXiv preprint arXiv:2305.14992,
2023.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya,
E., Cai, T., Rutherford, E., Casas, D. d. L., Hen-
dricks, L. A., Welbl, J., Clark, A., et al. Training
compute-optimal large language models. arXiv preprint
arXiv:2203.15556, 2022.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting action-
able knowledge for embodied agents. In International
Conference on Machine Learning, 2022a.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Flo-
rence, P., Zeng, A., Tompson, J., Mordatch, I., Cheb-
otar, Y., et al. Inner monologue: Embodied reasoning
through planning with language models. arXiv preprint
arXiv:2207.05608, 2022b.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to
trust your model: Model-based policy optimization. Ad-
vances in neural information processing systems, 32,
2019.

Jiang, H. A latent space theory for emergent abil-
ities in large language models. arXiv preprint
arXiv:2304.09960, 2023.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. In Conference on Learning Theory, pp.
2137–2143. PMLR, 2020.

Kim, G., Baldi, P., and McAleer, S. Language models can
solve computer tasks. arXiv preprint arXiv:2303.17491,
2023.

Kirsch, L., Harrison, J., Sohl-Dickstein, J., and Metz, L.
General-purpose in-context learning by meta-learning
transformers. arXiv preprint arXiv:2212.04458, 2022.

Lazaric, A., Ghavamzadeh, M., and Munos, R. Analy-
sis of a classification-based policy iteration algorithm.
In ICML-27th International Conference on Machine
Learning, pp. 607–614. Omnipress, 2010.

Lee, J. N., Xie, A., Pacchiano, A., Chandak, Y., Finn,
C., Nachum, O., and Brunskill, E. Supervised pretrain-
ing can learn in-context reinforcement learning. arXiv
preprint arXiv:2306.14892, 2023.

Li, B. Z., Nye, M., and Andreas, J. Language modeling
with latent situations. arXiv preprint arXiv:2212.10012,
2022.

Li, Y., Ildiz, M. E., Papailiopoulos, D., and Oymak, S.
Transformers as algorithms: Generalization and implicit
model selection in in-context learning. arXiv preprint
arXiv:2301.07067, 2023.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Ku-
mar, A., et al. Holistic evaluation of language models.
arXiv preprint arXiv:2211.09110, 2022.

Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas, J.,
and Stone, P. LLM+P: Empowering large language mod-
els with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023a.

Liu, Z., Lu, M., Wang, Z., Jordan, M., and Yang, Z. Welfare
maximization in competitive equilibrium: Reinforce-
ment learning for markov exchange economy. In Inter-
national Conference on Machine Learning, pp. 13870–
13911. PMLR, 2022a.

Liu, Z., Zhang, Y., Fu, Z., Yang, Z., and Wang, Z. Learning
from demonstration: Provably efficient adversarial pol-
icy imitation with linear function approximation. In In-
ternational conference on machine learning, pp. 14094–
14138. PMLR, 2022b.

Liu, Z., Lu, M., Xiong, W., Zhong, H., Hu, H., Zhang, S.,
Zheng, S., Yang, Z., and Wang, Z. Maximize to explore:
One objective function fusing estimation, planning, and
exploration. In Advances in Neural Information Process-
ing Systems, volume 36, pp. 22151–22165, 2023b.

Liu, Z., Lu, M., Xiong, W., Zhong, H., Hu, H., Zhang, S.,
Zheng, S., Yang, Z., and Wang, Z. Maximize to explore:
One objective function fusing estimation, planning, and

11



Reason for Future, Act for Now: A Principled Architecture for Autonomous LLM Agents

exploration. Advances in Neural Information Processing
Systems, 36, 2024.

Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu,
Y. N., Zhu, S.-C., and Gao, J. Chameleon: Plug-and-
play compositional reasoning with large language mod-
els. arXiv preprint arXiv:2304.09842, 2023.

Lu, X. and Van Roy, B. Information-theoretic confidence
bounds for reinforcement learning. Advances in Neural
Information Processing Systems, 2019.

Morari, M. and Lee, J. H. Model predictive control: past,
present and future. Computers & chemical engineering,
23(4-5):667–682, 1999.

Newton, M. A. and Raftery, A. E. Approximate bayesian
inference with the weighted likelihood bootstrap. Jour-
nal of the Royal Statistical Society Series B: Statistical
Methodology, 56(1):3–26, 1994.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

OpenAI. GPT-4 technical report, 2023.

Osband, I., Russo, D., and Van Roy, B. (More) efficient
reinforcement learning via posterior sampling. In Ad-
vances in Neural Information Processing Systems, 2013.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
exploration via bootstrapped dqn. Advances in neural
information processing systems, 29, 2016.

Paul, D., Ismayilzada, M., Peyrard, M., Borges, B., Bosse-
lut, A., West, R., and Faltings, B. REFINER: Reasoning
feedback on intermediate representations. arXiv preprint
arXiv:2304.01904, 2023.

Pouplin, T., Sun, H., Holt, S., and Van der Schaar, M.
Retrieval-augmented thought process as sequential de-
cision making. arXiv preprint arXiv:2402.07812, 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multi-
task learners, 2019.

Rawlings, J. B. Tutorial overview of model predictive con-
trol. IEEE Control Systems Magazine, 2000.

Razeghi, Y., Logan IV, R. L., Gardner, M., and Singh, S.
Impact of pretraining term frequencies on few-shot rea-
soning. arXiv preprint arXiv:2202.07206, 2022.

Russo, D. and Van Roy, B. Learning to optimize via pos-
terior sampling. Mathematics of Operations Research,
2014a.

Russo, D. and Van Roy, B. Learning to optimize via
information-directed sampling. In Advances in Neural
Information Processing Systems, 2014b.

Russo, D. and Van Roy, B. An information-theoretic analy-
sis of Thompson sampling. Journal of Machine Learning
Research, 2016.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner,
D., and Pathak, D. Planning to explore via self-
supervised world models. In International Conference
on Machine Learning, pp. 8583–8592. PMLR, 2020.

Sel, B., Al-Tawaha, A., Khattar, V., Wang, L., Jia, R.,
and Jin, M. Algorithm of thoughts: Enhancing explo-
ration of ideas in large language models. arXiv preprint
arXiv:2308.10379, 2023.

Shen, Y., Song, K., Tan, X., Li, D., Lu, W., and
Zhuang, Y. HuggingGPT: Solving AI tasks with Chat-
GPT and its friends in HuggingFace. arXiv preprint
arXiv:2303.17580, 2023.

Shin, S., Lee, S.-W., Ahn, H., Kim, S., Kim, H., Kim, B.,
Cho, K., Lee, G., Park, W., Ha, J.-W., et al. On the effect
of pretraining corpora on in-context learning by a large-
scale language model. arXiv preprint arXiv:2204.13509,
2022.

Shinn, N., Cassano, F., Labash, B., Gopinath, A.,
Narasimhan, K., and Yao, S. Reflexion: Language
agents with verbal reinforcement learning. arXiv
preprint arXiv:2303.11366, 2023.

Shridhar, M., Yuan, X., Côté, M.-A., Bisk, Y., Trischler,
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A. More Literature
Large Language Model (LLM) and In-Context Learning (ICL). LLMs (Radford et al., 2019; Brown et al., 2020;
Hoffmann et al., 2022; Chowdhery et al., 2022; OpenAI, 2023; Touvron et al., 2023) display notable reasoning abilities.
A pivotal aspect of reasoning is the ICL ability (Liang et al., 2022; Razeghi et al., 2022; Shin et al., 2022; Olsson et al.,
2022; Akyürek et al., 2022; Kirsch et al., 2022; Garg et al., 2022; Von Oswald et al., 2023; Li et al., 2023; Abernethy
et al., 2023), which allows LLMs to solve a broad range of tasks with only a few in-context examples instead of finetuning
parameters on a specific dataset. We focus on harnessing the ICL ability of LLMs to optimize actions in the real world,
which is crucial to autonomous LLM agents. In particular, we build on a recent line of work (Xie et al., 2021; Zhang
et al., 2022; 2023b; Wang et al., 2023a; Wies et al., 2023; Jiang, 2023; Lee et al., 2023) that attributes the ICL ability to
implicit Bayesian inference, i.e., an implicit mechanism that enables LLMs to infer a latent concept from those in-context
examples, which is verified both theoretically and empirically. In RAFA, the latent concept is the transition and reward
models (model) of the unknown environment or/and the value function (critic), which is inferred from the memory buffer
in the learning subroutine. Claim 2.1 can also be considered as a result of ICL ability.

Reinforcement Learning (RL) under a Bayesian Framework. We build on a recent line of work on the infinite-
horizon (Abbasi-Yadkori & Szepesvári, 2015; Dong et al., 2019; Wei et al., 2020; Zhou et al., 2021a;b; Chen et al., 2022;
Chua et al., 2018; Hafner et al., 2019; Sekar et al., 2020) and Bayesian (Strens, 2000; Osband et al., 2013; Russo &
Van Roy, 2014b;a; 2016; Lu & Van Roy, 2019) settings of RL, which include model-based deep RL (Janner et al., 2019;
Liu et al., 2023b; Wang et al., 2022b; Liu et al., 2024), model predictive control (Morari & Lee, 1999), and Thompson
sampling (Russo & Van Roy, 2014a). The infinite-horizon setting allows RAFA to interact with the external environment
continuously without resetting to an initial state, while the Bayesian setting allows us to connect RAFA with BMA and
establish the theoretical guarantee. RL operates in a numerical system, where rewards and transitions are defined by
scalars and probabilities, and trains actors and critics on the collected feedback iteratively. We focus on emulating the
actor-model or actor-critic update in RL through an internal mechanism of reasoning on top of LLMs, which allows data
and actions to be tokens in a linguistic system while bypassing the explicit update of parameters in model-based RL (Chua
et al., 2018; Hafner et al., 2019; Sekar et al., 2020; Liu et al., 2022b; Zhong et al., 2022; Zheng et al., 2022; Liu et al.,
2022a). In particular, the learning and planning subroutines of RAFA emulate the posterior update and various planning
algorithms in RL. Moreover, RAFA orchestrates reasoning (learning and planning) and acting following the principled
approach in RL, i.e., (re)planning a future trajectory over a long horizon (“reason for future”) at the new state and taking
the initial action of the planned trajectory (“act for now”). As a result, RAFA inherits provable sample efficiency guarantees
from RL. We summarize the comparison between RAFA and other closed-loop mechanisms in Table 1.
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B. More Algorithms
Depending on the specific configuration of the state and action spaces (continuous versus discrete) and the transition and
reward models (stochastic versus deterministic), we may choose to emulate the tree-search algorithm, the value iteration
algorithm, the random shooting algorithm, or the MCTS algorithm. All of them allow RAFA to achieve provable sample
efficiency guarantees as long as they satisfy a specific requirement of optimality (Definition C.1). For illustration, we
emulate the beam-search algorithm (an advanced version of the tree-search algorithm) in Algorithm 3 and the MCTS
algorithm in Algorithm 4. For the theoretical discussion, we present the value iteration algorithm in Algorithm 5.

Algorithm 3 The LLM learner-planner (LLM-LR-PL): A beam-search example (for the deterministic case).
1: input: The memory buffer D, the initial state s, the proposal width L, the search breadth B, and the search depth U .

2: initialization: Initialize the state array S0 ← {s} and the action array A0 ← ∅.

———————————————————- (the learning subroutine) —————————————————

3: Set Model as an LLM instance prompted to use D as contexts to generate the next state.

4: Set Critic as an LLM instance prompted to use D as contexts to estimate the value function.

———————————————————- (the planning subroutine) —————————————————-

5: Set Elite as an LLM instance prompted to use D as contexts to generate multiple candidate actions.

6: for u = 0, . . . , U do

7: For each current state su in Su, invoke Elite to generate L candidate actions.

8: For each candidate action a(ℓ)u , invoke Model to generate the next state s(ℓ)u+1 and the received reward r(ℓ)u .

9: For each resulting tuple (su, a
(ℓ)
u , s

(ℓ)
u+1, r

(ℓ)
u ), invoke Critic to evaluate the expected cumulative future reward

Q̂(su, a
(ℓ)
u )← r

(ℓ)
u + γV̂ (s

(ℓ)
u+1), where V̂ is given by Critic.

10: Select B best tuples (su, a
(ℓ)
u , s

(ℓ)
u+1) with the highest value Q̂(su, a

(ℓ)
u ) and write them to Su ×Au × Su+1.

11: end for

12: For B preserved rollouts in S0 ×A0 × · · · × SU ×AU × SU+1, invoke Critic to evaluate the expected cumulative

future reward
∑U

u=0 γ
ur

(b)
u + γU+1V̂ (s

(b)
U+1) and select the best one (s†0, a

†
0, . . . , s

†
U , a

†
U , s

†
U+1), where V̂ is given by

Critic and s†0 = s.

13: output: The initial action a†0 of the selected rollout and its initial value.
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Algorithm 4 LLM learner-planner (LLM-PL) for RAFA: A Monte-Carlo tree-search example (for the stochastic case).
1: input: The memory buffer D, the initial state s, the proposal width L, L′, and the expansion budget E.

2: initialization: Initialize the root node n← s and the child function c(·)← ∅.

———————————————————— (the learning subroutine) ————————————————-

3: Set Model as an LLM instance prompted to use D as contexts to generate the next state.

4: Set Critic as an LLM instance prompted to use D as contexts to estimate the value function.

———————————————————— (the planning subroutine) ————————————————

5: Set Elite as an LLM instance prompted to use D as contexts to generate multiple candidate actions.

6: for e = 0, . . . , E do

7: Set se ← n.

8: while se is not a leaf node, i.e., c(se) ̸= ∅, do

9: Invoke Critic to evaluate the expected cumulative future reward and select the child node ae in c(se) with the

highest value Q̂(se, ae).

10: Set se as a child node in c(ae).

11: end while

12: For the current state se, invoke Elite to generate L candidate actions.

13: Write each candidate action a(ℓ)e to c(se), i.e., c(se)← {a(ℓ)e }Lℓ=1.

14: For each candidate action a(ℓ)e , invoke Model to sample L′ next states.

15: Write each next state s(ℓ,ℓ
′)

e to c(a(ℓ)e ), i.e., c(a(ℓ)e )← {s(ℓ,ℓ
′)

e }L′

ℓ′=1.

16: For each generated state s(ℓ,ℓ
′)

e , invoke Critic to evaluate the expected cumulative future reward and update the

estimated value V̂ for all ancestor nodes. (Optional)

17: end for

18: Set s†0 ← n and i← 0.

19: while s†i is not a leaf node, i.e., c(s†i ) ̸= ∅, do

20: Invoke Critic to evaluate the expected cumulative future reward and select the child node a†i+1 in c(s†i ) with the

highest value Q̂(s†i , a
†
i ).

21: Set s†i+1 as a child node in c(a†i ) and i← i+ 1.

22: end while

23: output: The initial action a†0 of the selected rollout (s†0, a
†
0, . . . , s

†
i , a

†
i ) and its initial value.
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C. Theoretical Analysis
In this section, we provide the full theoretical analysis for the statements in Section 5.

C.1. Notations

We provide a table of notations here.

Notations Explanation

ξ(s,a) the pair of the next state and the current reward (s′, r) given the query state-action pair (s, a)

P LLM(ξ(s,a) | D, s, a) the probability measure of the LLM predicted ξ(s,a) given the memory buffer D as contexts

rLLM(D) the LLM reward estimator with the memory buffer D prompted as contexts

PLLM(D) the LLM transition kernel estimator with the memory buffer D prompted as contexts

Dt the history at the t-th step, which includes {(si, ai, ri, si+1)}t−1
i=0

P0(θ) the prior of θ⋆

Ppost(θ | D) the posterior of θ⋆ conditioned on D
Pt(θ) the abbreviation of Ppost(θ | Dt)

H(θ | D) the posterior entropy of the posterior of θ conditioned on D
I(θ; ξ | D) the information gain of ξ, defined by H(θ | D)−H(θ, ξ | D)

Ht the abbreviation of H(θ | Dt)

tk the timestep when RAFA switches the policy for the k-th time

πk the abbreviation of πtk

Bθ the Bellman operator induced by θ

Bk the Bellman operator induced by LLM(Dtk)

dTV(p∥q) total variation (TV) between two probability measures p and q

dKL(p∥q) Kullback–Leibler divergence between two probability measures p and q

Vx∼p[f(x)] the variance of f(X), where X follows the distribution p

(PV )(s, a) Es′∼P (· | s,a)[V (s′)]

L the bound of |r + V (s)| for any r ∈ R, s ∈ S, and value V

ν⋆(· | s) the optimal γ-discounted visitation measure starting from state s

N the set of natural numbers

1(x = y) the indicator with value 1 if x equals y and value 0 otherwise

E the expectation

V the variance
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C.2. Planning Optimality

To define the optimal policy, we define the Bellman optimality equation as

Q⋆
θ (s, a) = (BθV

⋆
θ ) (s, a) ,

V ⋆
θ (s) = max

a∈A
Q⋆

θ(s, a), (C.1)

where Q⋆
θ and V ⋆

θ are the fixed-point solutions Here, we define (BθV
⋆
θ )(s, a) = rθ(s, a) + E[V ⋆

θ (s
′)], where E is taken

with respect to s′ ∼ Pθ(·|s, a). Let π⋆
θ(s) = argmaxa∈AQ

⋆
θ(s, a). See Sutton & Barto (2018) for the existence and

uniqueness guarantees for Q⋆
θ , V ⋆

θ , and π⋆
θ .

To measure the performance of the planning subroutine in RAFA (Algorithm 1), we define the ϵ-optimal planner as follows.

Definition C.1 (ϵ-Optimal Planner). A planning algorithm PLϵ : (P,R) 7→ Π is an ϵ-optimal planner if PLϵ(P, r) =

(π, V ), where |Q(s, a)− r(s, a)− (PV )(s, a)| ≤ ϵ and V (s) = maxaQ(s, a) = Q(s, π(s)) for all (s, a) ∈ S ×A.

As a special case of Definition C.1, We present the value iteration algorithm (Algorithm 5) with a truncated horizon U , i.e.,
a finite length of the lookahead window as the ϵ-optimal planner in Algorithm 6. The following proposition ensures that
Algorithm 5 satisfies Definition C.1.

Proposition C.2. Algorithm 5 is an ϵ-optimal planner as long as we set U ≥ 1 + ⌈logγ(ϵ/L)⌉ and any value function is

upper bounded by L ≥ 0.

Proof. See Appendix E.2 for a detailed proof.

Algorithm 5 ϵ-Optimal planner: The value iteration algorithm with a truncated horizon.
1: input: The model (P, r) and the truncated horizon U .

2: initialization: Set the value function V (U)
θ (·)← 0.

3: for u = U − 1, . . . , 1 do

4: Set the value function V (u)(·)← maxa∈AQ
(u)(·, a), where Q(u)(·, ·)← r(·, ·) + γ(PV (u+1))(·, ·).

5: end for

6: output: The greedy policy π(·) = argmaxa∈AQ
(1)(·, a) and the value V (1).

Alternatively, we may choose to emulate the tree-search algorithm, the random shooting algorithm, or the Monte-Carlo
tree-search algorithm. In the tree-search example (Lines 5-11 in Algorithm 2), ϵ decreases as the search breadth B and
depth U increase. Note that, as long as we emulate an ϵ-optimal planner, we are able to establish provable sample efficiency
guarantees.

C.3. LLMs with Posterior Alignments Perform Bayesian Model Averaging (BMA)

In the following, we analyze Claim 2.1 from the theoretical perspective. For LLMs used in RAFA, we denote
P LLM(ξ(s,a) | D, s, a) as the probability measure of the predicted state-reward pair given the query state-action pair and
the memory buffer D as the in-context dataset. Induced by P LLM, we also denote PLLM(D) and rLLM(D) as the estimated
transition kernel and reward by LLMs.

For the simplicity of analysis, we assume that all LLMs have posterior alignments in the tasks that we study, whose
posterior distribution of the reward and the next state given the current state-action pair and any in-context dataset matches
the posterior in these tasks. We formulate this assumption as follows.
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Assumption C.3 (Posterior Alignment). We assume that LLMs are aligned with the posterior of the state and reward in

the underlying MDP, which is formulated as

P LLM
(
ξ(s,a)

∣∣D, s, a) = Ppost
(
ξ(s,a)

∣∣D, s, a),
for any in-context dataset D = {(si, ai, ri, s′i)}Ii=0 with size I , query state-action pair (s, a), reward r, and state s′. Here,

the posterior Ppost is defined in (2.3).

We remark that the posterior alignment in Assumption 5.1 comes from the in-context ability of LLMs, which is widely
studied in Lee et al. (2023); Wies et al. (2024); Xie et al. (2021). We also remark that Assumption C.3 does not mean that
LLMs can make the optimal decision at each step naively in the underlying MDP: (1) Though the posterior distributions
of state and reward are aligned, LLMs still need to be instructed to maximize the long-term value (via explicit planning)
instead of the myopic reward. (2) LLMs still require online interactions to enlarge the in-context dataset D such that
their prediction uncertainty can be reduced from the prior uncertainty. In Appendix D.6, we also discuss how to relax
Assumption 5.1 to accommodate a generalization error in the regret bound derived by our analysis, where we assume that
LLMs are MLEs on the pretraining dataset with uniform coverage. Based on Assumption 5.1, we prove that LLMs with
posterior alignments perform BMA in model estimation in the following proposition.

Proposition C.4 (LLMs with Posterior Alignments Perform BMA). Under Assumption C.3, the LLM predictions satisfy

rLLM(D)(s, a) + (PLLM(D)V )(s, a) = Eθ∼Ppost(· | D)[(BθV )(s, a)]

for any dataset D = {(si, ai, ri, s′i)}Ii=0 with size I , value function V , and query state-action pair (s, a) ∈ S × A. Here,

Ppost(θ | D) is the posterior of θ⋆ given D in the underlying MDP.

Proof of Proposition C.4. See the detailed proof in Appendix D.1.

The proof of Proposition 5.2 can be found in Appendix D.1. Some variants of Proposition 5.2 can be found in various
literature (Lee et al., 2023; Zhang et al., 2022; 2023b). In particular, Zhang et al. (2022) establish the theoretical equivalence
between BMA and the ideal attention architecture and analyze the generalization error rate of LLMs. By Proposition 5.2,
LLMs can provide a more certain and accurate estimate for the data-generating model with more collected feedback, as
the uncertainty in the posterior is reduced with more data. Thus, Proposition 5.2 supports Claim 2.1 in theory.

C.4. Regret Bound of RAFA

To analyze RAFA in theory, we propose the theoretical version of RAFA in Algorithm 6, where we instantiate the switching
condition of RAFA in Line 10 by measuring the reduction of the posterior entropy. At the t-th step and the k-th switching
times, Algorithm 8 only makes the (k + 1)-th switch when the reduction of posterior entropy Htk −Htis greater than one
bit. In Line 6 of Algorithm 6, we describe the planning subroutine in RAFA (Algorithm 1) by an ϵ-planner PLϵ (defined
in Definition C.1). We specify the terminating condition for Algorithm 6. Let (K − 1) be the total number of switches
until t reaches (T − 1). Let tK = T . At the (T − 1)-th step, Algorithm 6 executes aT−1 = πT−1(sT−1) , where we
have πT−1 = PLϵ(PLLM(DtK−1

), rLLM(DtK−1
)). Upon receiving rT−1 and sT from the external environment, Algorithm

6 updates DT = {(st, at, st+1, rt)}T−1
t=0 and terminates. Since the agent in Algorithm 6 executes the same policy until

making a switch, we have πt = πtk for any tk ≤ k < tk+1. We denote by πk = πtk for the notational simplicity. Next,
we impose a regularity assumption on the structure of MDPs to measure the learning difficulty. Recall that we define the
posterior entropy Ht in (2.4), the information gain I(θ; ξ | D), and ξ(s,a) as the pair of the next state and the current reward
(s′, r) given the query state-action pair (s, a) in Section 2. Define Ht as the posterior entropy H(θ | Dt) given the dataset
Dt = {(si, ai, ri, si+1)}t−1

i=0 .

Assumption C.5 (MDPs Regularity). We assume that there exists a coefficient η > 0 such that, if Ht1 −Ht2 ≤ log 2, then

it holds that

I(θ; ξ(s,a) | Dt1) ≤ 4η · I(θ; ξ(s,a) | Dt2)
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Algorithm 6 Reason for future, act for now (RAFA): The theoretical version.
1: input: An ϵ-optimal planner PLϵ, which returns an ϵ-optimal policy that maximizes the value function up to an ϵ

accuracy (Definition C.1), and the LLMs with posterior alignments.

2: initialization: Sample the initial state s0 ∼ ρ, set t = 0, and initialize the memory buffer D0 = ∅.

3: for k = 0, 1, . . . , do

4: Set tk ← t.

5: repeat

6: Planning ahead with the ϵ-optimal planner and LLMs (πt, Vt)← PLϵ(PLLM(Dtk
), rLLM(Dtk

)).

(“reason for future”)

7: Execute action at = πt(st) to receive reward rt and state st+1 from environment. (“act for now”)

8: Update the memory buffer Dt+1 ← Dt ∪ {(st, at, st+1, rt)}.
9: Set t← t+ 1.

10: until Htk −Ht > log 2, where Ht denotes the posterior entropy of θ⋆ conditioned on Dt.

(the switching condition is satisfied )

11: end for

for any given value function V , t1 < t2 and (s, a) ∈ S ×A.

Assumption C.5 is a regularity assumption on MDPs and is intrinsic to the agent design. In Appendix F, we prove that
d-dimensional Bayesian linear kernel MDPs (defined in Definition F.1), satisfy Assumption C.5 with the coefficient η =
d/ log(1 + d). Intuitively, Assumption C.5 restricts the increase of the information gain given one bit (log 2) reduction of
the posterior entropy.

Similar to other theoretical work on deep RL (Lazaric et al., 2010; Fan et al., 2020; Zhang et al., 2020), we introduce
the concentrability coefficient κ to bound the distribution shift between the current policy and the optimal policy. For the
simplicity of discussions, we define the optimal γ-discounted visitation measure ν⋆ starting from state s as

ν⋆(s′ | s) = 1

1− γ ·
∞∑
τ=0

γτ · P
(
sτ = s′

∣∣ s0 = s, si+1 ∼ Pθ⋆(· | si, π⋆(si)) for any 0 ≤ i < τ
)
, (C.2)

for any state s, s′ ∈ S . Here, ν⋆(· | s) describes the discounted average probability measure of the state that the optimal
policy π⋆ visits starting from state s in the current infinite horizon MDP. Now, we are ready to provide the full statement
of the concentrability coefficient as follows.

Assumption C.6 (Concentrability Coefficient). For RAFA (Algorithm 6), we assume that there exists a constant κ < ∞
such that

E

[
K−1∑
k=0

Eπk

[
tk+1−1∑
t=tk

Eθ⋆∼Ptk

[
Es∼ν⋆(· | st)

[(
(Bk −Bθ⋆)Vt

)2
(s, π⋆(s))

](
(Bk −Bθ⋆)Vt

)2
(st, πk(st))

∣∣∣∣∣Dtk

]]]

is bounded by κ2 · T , where we define (BkV )(s, a) = rLLM(Dtk
)(s, a) + γ · (PLLM(Dtk

)V )(s, a).

Intuitively, κ measures the hardness to generalize the low prediction error (Bk −Bθ⋆)Vt on the current trajectory induced
by {πk}K−1

k=0 to the optimal trajectory induced by π⋆ in the underlying MDP. We remark that we can drop the dependency
of the concentrability coefficient κ (Assumption C.6) if we modify RAFA to encourage efficient exploration in MDPs. We
will discuss the variants of RAFA with efficient exploration strategies in Appendix C.5.

In the following theorem, we give the bound of the Bayesian regret of RAFA (Algorithm 6) as follows.
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Theorem C.7. Under Assumptions C.3, C.5 , and C.6,the Bayesian regret of RAFA (Algorithm 6) satisfies

R(T ) = O
(
(κ+ 1)L ·

√
E[H0 −HT ]

1− γ ·
√
T +

ϵ

1− γ · T +
L · E[H0 −HT ]

1− γ

)
,

where κ is the concentrability coefficient defined in Assumption C.6, Ht is the posterior entropy of θ⋆ given the history

Dt = {(si, ai, ri, si+1)}t−1
i=0 , and L is the bound of |r + V (s)| for any reward r, state s, and value V .

Proof of Theorem C.7. See the detailed proof in Appendix D.3.

Theorem C.10 establishes the
√
T regret of RAFA (Algorithm 6) for a proper choice of the planning suboptimality ϵ,

e.g., ϵ = O(1/
√
T ). Here, the first term in the upper bound in Theorem C.10 is the leading term and involves several

multiplicative factors, namely the effective horizon 1/(1 − γ), the value bound L, and the cumulative posterior entropy
reduction H0 −HT throughout the T steps, which are common in the RL literature (Abbasi-Yadkori & Szepesvári, 2015;
Osband et al., 2013; Russo & Van Roy, 2014b;a; 2016; Lu & Van Roy, 2019). In particular, H0 highlights the prior
knowledge obtained through pretraining, asH0 quantifies the prior uncertainty of LLMs before incorporating any collected
feedback. Hence, H0 − HT highlights the uncertainty reduction achieved by reasoning and acting, as HT quantifies the
posterior uncertainty of LLMs after incorporating the collected feedback. In Appendix F, we prove that H0 − HT =
O(d · log T ) and the 1− δ probability bound on value functions L = O(

√
d · log(dT/δ)) for the d-dimensional Bayesian

linear kernel MDPs, which implies R(T ) = Õ((1 − γ)−1(κ + 1) ·
√
d3T ) with probability at least 1 − δ. Here Õ hides

the logarithmic factor.

C.5. RAFA with Efficient Exploration Strategies

In this section, we provide two variants of RAFA (Algorithm 6): (1) RAFA with optimistic bonus (Algorithm 7) and (2)
RAFA with posterior sampling (Algorithm 8). We also prove the bound of the Bayesian regret of each variant, which
demonstrates the effectiveness of the efficient exploration strategies.

C.5.1. OPTIMISTIC BONUS.

We incorporate the Optimism in Face of Uncertainty (OFU) principle to encourage efficient exploration. We design the
optimistic bonus by the information gain and implement a variant of RAFA in Algorithm 7. In particular, the bonus Γk(s, a)
takes the following form

Γk(s, a) =
√
2L ·

√
I(θ; ξ(s,a) | Dtk) (C.3)

for any (s, a) ∈ S×A and k < K. In Line 7 of Algorithm 7, we generate the policy πt by PLϵ(PLLM(Dtk
), rLLM(Dtk

)+Γk)
for any tk ≤ t < tk+1. Intuitively, the bonus is higher at the state-action pair with higher information gain, which
incentivizes the agent to explore those less visited states (with higher information gain). The design of optimistic bonus is
popular in RL literature (Cai et al., 2020; Zhou et al., 2021b; Jin et al., 2020; Liu et al., 2022b; Wang et al., 2023c) as it can
drop the concetrablility coefficient κ in the regret bound. In the following theorem, we prove the regret bound of RAFA
with optimistic bonus (Algorithm 7).

Theorem C.8. Under Assumptions C.3 and C.5, the Bayesian regret of RAFA with optimistic bonus (Algorithm 7) satisfies

R(T ) = O
(
L ·
√
E[H0 −HT ]

1− γ ·
√
T +

ϵ

1− γ · T +
L · E[H0 −HT ]

1− γ

)
,

where all the variables have the same definitions in Theorem C.7.

Proof of Theorem C.8. See the detailed proof in Appendix D.4.
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Algorithm 7 Reason for future, act for now (RAFA): The theoretical version with optimistic bonus.
1: input: An ϵ-optimal planner PLϵ, which returns an ϵ-optimal policy that maximizes the value function up to an ϵ

accuracy (Definition C.1), and the LLMs with posterior alignments.

2: initialization: Sample the initial state s0 ∼ ρ, set t = 0, and initialize the memory buffer D0 = ∅.

3: for k = 0, 1, . . . , do

4: Set tk ← t.

5: repeat

6: Design optimistic bonus Γk(s, a) =
√
2L ·

√
I(θ; ξ(s,a) | Dtk) for all (s, a) ∈ S ×A.

7: Planning ahead with the ϵ-optimal planner and LLMs (πt, Vt)← PLϵ(PLLM(Dtk
), rLLM(Dtk

) + Γk).

(“reason for future”)

8: Execute action at = πt(st) to receive reward rt and state st+1 from environment. (“act for now”)

9: Update memory Dt+1 ← Dt ∪ {(st, at, st+1, rt)}.
10: Set t← t+ 1.

11: until Htk −Ht > log 2, where Ht denotes the posterior entropy of θ⋆ conditioned on Dt.

(the switching condition is satisfied )

12: end for

Compared with Theorem C.7, the regret bound in Theorem C.8 is not dependent on the concentrability coefficient κ, which
demonstrates of effectiveness of efficient exploration in Algorithm 7. In Appendix F, we prove thatH0−HT = O(d·log T )
and the 1− δ probability bound on value functions L = O(

√
d · log(dT/δ)) for the d-dimensional Bayesian linear kernel

MDPs, which implies R(T ) = Õ((1− γ)−1 ·
√
d3T ) with probability at least 1− δ. Here Õ hides the logarithmic factor.
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C.5.2. POSTERIOR SAMPLING.

Algorithm 8 Reason for future, act for now (RAFA): The theoretical version with posterior sampling.
1: input: An ϵ-optimal planner PLϵ, which returns an ϵ-optimal policy that maximizes the value function up to an ϵ

accuracy (Definition C.1), and the LLMs satisfying Assumption C.9.

2: initialization: Sample the initial state s0 ∼ ρ, set t = 0, and initialize the memory buffer D0 = ∅.

3: for k = 0, 1, . . . , do

4: Set tk ← t.

5: repeat

6: Planning ahead with the ϵ-optimal planner and the posterior sampling mechanism of LLMs (defined in Assump-

tion C.9) (πt, Vt)← PLϵ(PLLM+PS(Dtk
), rLLM+PS(Dtk

)).

(“reason for future”)

7: Execute action at = πt(st) to receive reward rt and state st+1 from environment. (“act for now”)

8: Update memory Dt+1 ← Dt ∪ {(st, at, st+1, rt)}.
9: Set t← t+ 1.

10: until Htk −Ht > log 2, where Ht denotes the posterior entropy of θ⋆ conditioned on Dt.

(the switching condition is satisfied )

11: end for

As another method for efficient exploration, we assume there exists a mechanism that deploys posterior sampling and we
use this mechanism to encourage exploration for RAFA.

Assumption C.9 (LLMs with Posterior Sampling Mechanism). We assume that there exists a mechanism LLM+PS that

maps the memory buffer to the transition kernel and the reward, such that (rLLM+PS(D)(s, a)+ γ · (PLLM+PS(D)V )(s, a)) | D
and (Bθ⋆V (s, a)) | D are identically independent distributed for any (s, a) ∈ S × A, in-context dataset D, and value

function V . Here, θ⋆ is the data-generating parameter.

We remark that the bootstrap method (Efron, 1982) can approximate the mechanism in Assumption C.9. Widely used in
applied statistics (Davison & Hinkley, 1997) and the design of RL algorithms (Osband et al., 2016; Hao et al., 2019), the
bootstrap method takes an in-context dataset D and a functional estimator g as inputs. Depending on the configuration
of bootstrap, we generate the bootstrapped dataset D̃ from D by uniform sampling with replacement (Efron, 1982) or
weighted sampling with replacement (Newton & Raftery, 1994). Selecting LLMs as the functional estimator g and the
memory buffer D as the dataset D, we can use this bootstrap method to approximate the mechanism LLM+PS that is
introduced in Assumption C.9. From the statistics literature (Bickel & Freedman, 1981; Singh, 1981; Newton & Raftery,
1994), we also know that bootstrap distribution recovers the posterior distribution asymptotically.

Based on the mechanism introduced in Assumption C.9, we propose a variant of RAFA in Algorithm 8, where we use the
mechanism LLM+PS as the model estimator in the learning subroutine of RAFA. In Line 7 of Algorithm 7, we generate the
policy πt by PLϵ(PLLM+PS(Dtk

), rLLM+PS(Dtk
)). In the following, we give a simple explanation of how this mechanism helps

the agent to efficiently explore. By the Bayes’ rule, we have p(θ | D) ∝ L(D | θ)P0(θ), where L(D | θ) is the likelihood of
D given θ and P0 is the prior of θ. Taking the logarithm, we have log(p(θ | D)) = c + log(P0(θ)) + log(L(D | θ)) for a
constant c. Hence, the uncertainty of the posterior is higher (p(θ | D) is closer to 0) at the less visited states (the likelihood
of these states is closer to 0). Hence, if we sample the model estimator from the posterior, the agent is more exploratory at
the less visited states, which explains why the mechanism LLM+PS helps RAFA efficiently explore.

In the following theorem, we prove the regret bound of RAFA with posterior sampling (Algorithm 8).
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Theorem C.10 (Bayesian Regret). Under Assumptions C.5 and C.9, the Bayesian regret of RAFA with posterior sampling

(Algorithm 8) satisfies

R(T ) = O
(
L ·
√
E[H0 −HT ]

1− γ ·
√
T +

ϵ

1− γ · T +
L · E[H0 −HT ]

1− γ

)
,

where all the variables have the same definitions in Theorem C.7.

Proof of Theorem C.10. See the detailed proof in Appendix D.5.

Compared with Theorem C.7, the regret bound in Theorem C.10 is not dependent on the concentrability coefficient κ, which
demonstrates of effectiveness of efficient exploration in Algorithm 8. In Appendix F, we prove thatH0−HT = O(d·log T )
and the 1− δ probability bound on value functions L = O(

√
d · log(dT/δ)) for the d-dimensional Bayesian linear kernel

MDPs, which implies R(T ) = Õ((1− γ)−1 ·
√
d3T ) with probability at least 1− δ. Here Õ hides the logarithmic factor.

D. Main Proofs

D.1. LLMs with Posterior Alignments Perform BMA

Proof of Proposition C.4. Recall that PLLM(D) and rLLM(D) are the estimated transition kernel and reward induced by P LLM

that satisfies Assumption C.3. For any query state-action pair (s, a) and in-context dataset D, it holds that

(PLLM(D)V )(s, a) =

∫
S
V (s′)PLLM(D)(ds

′ | s, a)

=

∫
S
V (s′)

(∫
Θ

Pθ(ds
′ | s, a)Ppost(dθ | D)

)
=

∫
Θ

Ppost(dθ | D)
(∫

S
Pθ(ds

′ | s, a)V (s′)

)
= Eθ∼Ppost(· | D)[(PθV )(s, a)], (D.1)

where the second equality uses Assumption C.3 (Posterior Alignment), the third equality uses Fubin’s theorem, and the

last equality uses (2.3). For any query state-action pair (s, a) and in-context dataset D, it holds that

rLLM(D)(s, a) = EP LLM [r | D, s, a]

= EPpost [r | D, s, a]

= Eθ∼Ppost(· | D)[rθ(s, a)], (D.2)

where the second equality uses Assumption C.3 (Posterior Alignment) and the last equality uses (2.3). By the linearity of

expectation, we combine (D.1) and (D.2) to obtain

rLLM(D)(s, a) + (PLLM(D)V )(s, a) = Eθ∼Ppost(· | D)[rθ(s, a) + (PθV )(s, a)]

= Eθ∼Ppost(· | D)[(BθV )(s, a)],

where the last equality uses the definition of Bθ. Thus, we finish the proof of Proposition C.4.
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D.2. Contraction Property of the Posterior Variance

Proposition D.1 (Contraction Property of the Posterior Variance). Under Assumptions C.5, the posterior variance in

Algorithms 6, 7, and 8 satisfies the following two properties:

(i) Vθ∼Ptk

[
(BθVt)(s, a)

∣∣Dtk

]
≤ 2L2 · I(θ; ξ(s,a) | Dtk)

(ii) E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vθ∼Ptk

[
(BθVt)(st, at)

∣∣Dtk

]]]
≤ 8ηL2 · E[H0 −HT ],

where we denote the upper bound of the sum of any value function and the reward by a positive constant L, that is,

|r + V (s)| ≤ L for any reward r, state s, and estimated value function V .

Proof of Proposition D.1. We begin with the proof of the first property in Proposition D.1. Recall the definition that ξ(s,a)

denotes random variables (s′, r) in the underlying MDP given the current state s and action a. Define that gt(ξ(s,a)) =

(r + Vt(s
′))/(2L). Since the sum of any reward and value function is bounded by L, we know that |gt| ≤ 1/2. for any

tk ≤ t < tk+1, we have

2L · E[gt(ξ(s,a)) | θ,Dtk ] = (BθVt)(s, a)

2L · E[gt(ξ(s,a)) | Dtk ] = Eθ∼Pt

[
(BθVt)(s, a)

]
, (D.3)

for any query state s and action a. By the variational form of total variation (TV) distance dTV, we have

d2TV(P(ξ(s,a) | θ,Dt)∥P(ξ(s,a) | Dt)) =
(

sup
g:|g|≤1/2

E[g(ξ(s,a)) | θ,Dtk ]− E[g(ξ(s,a)) | Dtk ]
)2

≥
(
E[gt(ξ(s,a)) | θ,Dtk ]− E[gt(ξ(s,a)) | Dtk ]

)2
=

1

4L2
·
(
(BθVt)(s, a)− Eθ∼Pt

[
(BθVt)(s, a)

])2
, (D.4)

where the last equality is the result of (D.3). By taking the expectation with respect to θ ∼ Pt on (D.4), we have

Vθ∼Ptk

[
(BθVt)(s, a)

∣∣Dtk

]
= Eθ∼Pt

[(
(BθVt)(s, a)− Eθ∼Pt

[
(BθVt)(s, a)

])2]
≤ 4L2 · Eθ∼Pt

[
d2TV(P(ξ(s,a) | θ,Dtk)∥P(ξ(s,a) | Dtk))

]
≤ 2L2 · Eθ∼Pt

[
dKL(P(ξ(s,a) | θ,Dtk)∥P(ξ(s,a) | Dtk))

]
= 2L2 ·

(
H(ξ(s,a) | Dtk)−H(ξ(s,a) | θ,Dtk)

)
= 2L2 · I(ξ(s,a); θ | Dtk)

= 2L2 · I(θ; ξ(s,a) | Dtk), (D.5)

where the first equality uses the definition of variance, the first inequality uses (D.4) by taking the expectation with respect

to θ ∼ Pt, and the second inequality uses Pinsker’s inequality. Here, the second equality uses the definition of entropy and

the second last equality uses the definition of the information gain. Here, the last equality uses the fact that I(X;Y ) =

I(Y ;X) for any two random variables X and Y . Thus, we finish the proof of the first property in Proposition D.1.
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Next, we prove the second property in Proposition D.1. By the fact that at = πk(st) for any tk ≤ t < tk+1, we have

E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vθ∼Ptk

[
(BθVt)(st, at)

∣∣Dtk

]]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vθ∼Ptk

[
(BθVt)(st, π

k(st))
∣∣Dtk

]]]

≤ 2L2 · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

I(θ; ξ(st,πk(st)) | Dtk)
]]
,

where the inequality invokes (D.5). Under Assumption C.5 and the same switching condition in Algorithms 6, 7, and 8,

we have

E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vθ∼Ptk

[
(BθVt)(st, at)

∣∣Dtk

]]]

≤ 8ηL2 · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

I(θ; ξ(st,πk(st)) | Dt)
]]

≤ 8ηL2(H0 −HT ),

where the last inequality uses the chain rule of information gain. Thus, we finish the proof of the second property in

Proposition D.1.

D.3. Proof of Theorem C.7

Proof of Theorem C.7. Recall that we denote by πk = πtk and Vt is the estimated value function returned by the ϵ-optimal

planner PLϵ in Algorithm 6. By the definition of the Bayesian regret R(T ) and the tower property of the conditional

expectation, we have

R(T ) = E
[K−1∑
k=0

tk+1−1∑
t=tk

V π⋆

θ⋆ (st)− V πt

θ⋆ (st)
]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V π⋆

θ⋆ (st)− V πk

θ⋆ (st)
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vt(st)− V πk

θ⋆ (st)
]]

︸ ︷︷ ︸
term (a)

+E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V π⋆

θ⋆ (st)− Vt(st)
]]

︸ ︷︷ ︸
term (b)

, (D.6)

where the first equality uses the fact that πt = πtk for any tk ≤ t < tk+1 in Algorithm 6. By Definition C.1, we know that

Vt(s) = Qt(s, π
k(s)) for any tk ≤ t < tk+1. Then, we introduce the following performance difference lemma to bound

terms (a) and (b) in (D.6), respectively.

Lemma D.2 (Performance Difference). For an algorithm ALG with switching times K, estimated value functions

{(Qt, Vt)}T−1
t=0 , and the corresponding output policy {πk}K−1

k=0 for T -steps interaction. We assume that ALG switches

to the policy πk at the tk-th timestep for the k-th switch and Vt(s) = Qt(s, π
k(s)) for any s ∈ S and k < K. Then, we

have two parts of performance difference results for ALG as follows,
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• (Part I)

(1− γ) · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vt(st)− V πk

θ⋆ (st)
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Qt(st, at)−
(
Bθ⋆Vt

)
(st, at)

]]
︸ ︷︷ ︸

term (A): model prediction error

+ E
[K−1∑
k=0

Eπk

[(
Vt(stk+1

)− V πk

θ⋆ (stk+1
)
)
−
(
Vt(stk)− V πk

θ⋆ (stk)
)]]

︸ ︷︷ ︸
term (B): value inconsistency

, (D.7)

• (Part II)

(1− γ) · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V π⋆

θ⋆ (st)− Vt(st)
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)
[
(Bθ⋆Vt)(s, π

⋆(s))−Qt(s, π
⋆(s))

]]]
︸ ︷︷ ︸

term (A): model prediction error

+ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es′∼ν⋆(· | st)
[
(Qt(s, π

⋆(s))−Qt(s, π
k(s))

]]]
︸ ︷︷ ︸

term (B): optimization error

. (D.8)

where Eπk is taken with respect to the state-action sequence following st+1 ∼ Pθ⋆(· | st, at) and at = πk(st) for any

tk ≤ t < tk+1, while E is taken with respect to the prior distribution P0 of θ⋆, the iterative update of πk, and the

randomness of {(Qt, Vt)}T−1
t=0 . Here, the optimal γ-discounted visitation measure ν⋆ is defined in (C.2).

Proof of Lemma D.2. See the detailed proof in Appendix E.1.

By the first part of Lemma D.2, we analyze term (a) as follows,

(1− γ) · term (a) =E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Qt(st, at)−
(
Bθ⋆Vt

)
(st, at)

]]

+ E
[K−1∑
k=0

Eπk

[(
Vt(stk+1

)− V πk

θ⋆ (stk+1
)
)
−
(
Vt(stk)− V πk

θ⋆ (stk)
)]]

. (D.9)

Recall that we define (BkV )(s, a) = rLLM(Dtk
)(s, a) + (PLLM(Dtk

)V )(s, a) for any (s, a) and value V . By the definition

of ϵ-optimal planner (Definition C.1) and the planning procedure (πt, Vt) ← PLϵ(PLLM(Dtk
), rLLM(Dtk

)) in Line 6 of

Algorithm 6, we have

|Qt(st, at)−
(
Bθ⋆Vt

)
(st, at)| ≤ ϵ+

(
(Bk −Bθ⋆)Vt

)
(st, at)

= ϵ+
∣∣((Bk −Bθ⋆)Vt

)
(st, at)

∣∣ (D.10)
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for any tk ≤ t < tk+1. Then, we plug (D.10) into (D.9) to obtain

(1− γ) · term (a) ≤E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

∣∣((Bk −Bθ⋆)Vt
)
(st, at)

∣∣]]
︸ ︷︷ ︸

term (a1)

+ ϵ · T

+ E
[K−1∑
k=0

Eπk

[(
Vt(stk+1

)− V πk

θ⋆ (stk+1
)
)
−
(
Vt(stk)− V πk

θ⋆ (stk)
)]]

︸ ︷︷ ︸
term (a2)

. (D.11)

Under Assumption C.3 and C.5, we have

term (a1) = E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Eθ∼Ptk

[∣∣((Bk −Bθ)Vt
)
(st, at)

∣∣∣∣∣Dtk

]]]

≤
√
T ·
(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Eθ∼Ptk

[∣∣((Bk −Bθ)Vt
)
(st, at)

∣∣2∣∣∣Dtk

]]])1/2

=
√
T ·
(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vθ∼Ptk

[
(BkVt)(st, at)

∣∣Dtk

]]])1/2

, (D.12)

where the first equality uses the tower property of the conditional expectation and the definition that the posterior distri-

bution of θ⋆ given Dtk is Ptk . Here, the first inequality uses Cauchy-Schwarz inequality and the last equality invokes

Proposition C.4 and the definition of variance. Under Assumption C.5, we apply the second property in Proposition D.1

on the right-hand side of (D.12) to have

term (a1) ≤ 2
√
2ηL ·

√
E[H0 −HT ] ·

√
T . (D.13)

Since any value function is bounded by L, we bound term (a2) in (D.11) as follows,

term (a2) ≤ 4L · E[K]. (D.14)

To characterize the upper bound of the switching times K, we introduce the following lemma.

Lemma D.3 (Upper bound of Switching Times). If Htk −Htk+1
≥ log 2 for any k < K, then it holds that

K − 1 ≤ (H0 −HtK−1
)/log 2 ≤ (H0 −HT )/ log 2.

Proof of Lemma D.3. Since Htk −Htk+1
≥ log 2 , we have

H0 −HtK−1
=

K−2∑
k=0

Htk −Htk+1
≥ (K − 1) · log 2,

which implies

K − 1 ≤ (H0 −HtK−1
)/log 2 ≤ (H0 −HT )/ log 2.

Thus, we finish the proof of Lemma D.3.

31



Reason for Future, Act for Now: A Principled Architecture for Autonomous LLM Agents

As the switching condition in Algorithm 8 implies Htk −Htk+1
≥ log 2, we apply Lemma D.3 to have

E[K] ≤ 1 + E[H0 −HtK−1
]/log 2 ≤ (H0 −HT )/ log 2. (D.15)

Combining (D.14) and (D.15), we upper bound term (a2) in (D.11) as

term (a2) ≤ 4L · E[K] ≤ 4L+
4L · E[H0 −HT ]

log 2
. (D.16)

Plugging (D.13) and (D.16) into (D.11), we have

(1− γ) · term (a) ≤ 2
√
2ηL ·

√
E[H0 −HT ] ·

√
T + ϵ · T + 4L+

4L · E[H0 −HT ]

log 2
. (D.17)

Then, we invoke the second part of Lemma D.2 to decompose term (b) in (D.6) as follows,

(1− γ) · term (b) = E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)
[(
Bθ⋆Vt

)
(s, π⋆(s))−Qt(s, π

⋆(s))
]]]

+ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)
[
Qt(s, π

⋆(s))−Qt(s, π
k(s))

]]]

≤ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)
[∣∣((Bθ⋆ −Bk)Vt

)
(s, π⋆(s))

∣∣]]]
︸ ︷︷ ︸

term (b1)

+ ϵ · T

+ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)
[
Qt(s, π

⋆(s))−Qt(s, π
k(s))

]]]
︸ ︷︷ ︸

term (b2)

, (D.18)

where the inequality uses (D.10). For term (b1) in (D.18), we use the tower property of the conditional expectation to

obtain

term (b1) = E

[
K−1∑
k=0

Eπk

[
tk+1−1∑
t=tk

Eθ⋆∼Ptk

[Es∼ν⋆(· | st)
[∣∣((Bk −Bθ⋆)Vt

)
(s, π⋆(s))

∣∣](
(Bk −Bθ⋆)Vt

)
(st, πk(st))

·
(
(Bk −Bθ⋆)Vt

)
(st, π

k(st))
∣∣∣Dtk

]]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Eθ⋆∼Ptk

[
Gt,k(θ

⋆) ·
(
(Bk −Bθ⋆)Vt

)
(st, π

k(st))
∣∣∣Dtk

]]]
, (D.19)

where we define

Gt,k(θ
⋆) =

Es∼ν⋆(· | st)
[∣∣((Bk −Bθ⋆)Vt

)
(s, π⋆(s))

∣∣](
(Bk −Bθ⋆)Vt

)
(st, πk(st))

and Eθ⋆ | Dtk
[·] = Eθ⋆∼Ptk

[· | Dtk ] for notational simplicity.
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Applying Cauchy Schwartz inequality on the left-hand side of (D.19) several times, we have

term (b1) ≤ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(
Eθ⋆ | Dtk

[
G2

t,k(θ
⋆)
])1/2

·
(
Eθ⋆ | Dtk

[∣∣((Bk −Bθ⋆)Vt
)
(st, π

k(st))
∣∣2])1/2]]

≤ E
[K−1∑
k=0

Eπk

[(tk+1−1∑
t=tk

Eθ⋆ | Dtk

[
G2

t,k(θ
⋆)
])1/2

·
(tk+1−1∑

t=tk

Eθ⋆ | Dtk

[∣∣((Bk −Bθ⋆)Vt
)
(st, π

k(st))
∣∣2])1/2]]

≤
(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Eθ⋆ | Dtk

[
G2

t,k(θ
⋆)
]]])1/2

·
(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Eθ⋆ | Dtk

[∣∣((Bk −Bθ⋆)Vt
)
(st, π

k(st))
∣∣2]]])1/2

≤
√
κ2 · T ·

(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Eθ⋆ | Dtk

[∣∣((Bk −Bθ⋆)Vt
)
(st, π

k(st))
∣∣2]]])1/2

,

where the first three inequalities are all based on Cauchy Schwartz inequality and the last inequality uses the definition of

κ in Assumption C.6. Under Assumptions C.3 and C.5, we have

term (b1) ≤
√
κ2 · T ·

(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vθ∼Ptk

[
(BθVt)(st, at)

∣∣Dtk

]]])1/2

≤ 2
√
2ηLκ ·

√
E[H0 −HT ] ·

√
T , (D.20)

where the first inequality invokes Proposition C.4 and the definition of variance. Here, the second inequality invokes

Proposition D.1. By the definition of ϵ-optimal planner (Definition C.1), we know term (b2) in (D.18) is non-positive.

Then, plugging (D.20) into (D.18), we have

(1− γ) · term (b) ≤ 2
√
2ηLκ ·

√
E[H0 −HT ] ·

√
T + ϵ · T. (D.21)

Combining (D.6), (D.17), and (D.21), we have

R(T ) =
1

1− γ ·
(
term (a) + term (b)

)
≤ 2
√
2(κ+ 1)L ·

√
E[H0 −HT ]

1− γ ·
√
T +

2ϵ

1− γ · T +
4L

1− γ +
4L · E[H0 −HT ]

(1− γ) log 2

= O
(
(κ+ 1)L ·

√
E[H0 −HT ]

1− γ ·
√
T +

ϵ

1− γ · T +
L · E[H0 −HT ]

1− γ

)
.

Thus, we finish the proof of Theorem C.7.

D.4. Proof of Theorem C.8

Proof of Theorem C.8. Recall that we denote by πk = πtk , and Vt is the estimated value function returned by the ϵ-optimal

planner PLϵ in Algorithm 6. By the definition of the Bayesian regret R(T ) and the tower property of the conditional
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expectation, we have

R(T ) = E
[K−1∑
k=0

tk+1−1∑
t=tk

V π⋆

θ⋆ (st)− V πt

θ⋆ (st)
]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V π⋆

θ⋆ (st)− V πk

θ⋆ (st)
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vt(st)− V πk

θ⋆ (st)
]]

︸ ︷︷ ︸
term (a)

+E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V π⋆

θ⋆ (st)− Vt(st)
]]

︸ ︷︷ ︸
term (b)

, (D.22)

where the first equality uses the fact that πt = πtk for any tk ≤ t < tk+1 in Algorithm 6. By Definition C.1, we know that

Vt(s) = Qt(s, π
k(s)) for any tk ≤ t < tk+1. Then, we apply the first part of Lemma D.2 to analyze term (a) as follows,

(1− γ) · term (a) =E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Qt(st, at)−
(
Bθ⋆Vt

)
(st, at)

]]

+ E
[K−1∑
k=0

Eπk

[(
Vt(stk+1

)− V πk

θ⋆ (stk+1
)
)
−
(
Vt(stk)− V πk

θ⋆ (stk)
)]]

.

Recall that we define (BkV )(s, a) = rLLM(Dtk
)(s, a) + (PLLM(Dtk

)V )(s, a) for any (s, a) and value function V . By the

definition of ϵ-optimal planner (Definition C.1) and the planning procedure (πt, Vt)← PLϵ(PLLM(Dtk
), rLLM(Dtk

) + Γk) in

Algorithm 7, we have

|Qt(s, a)−
(
Bθ⋆Vt

)
(st, at)| ≤ ϵ+

(
(Bk −Bθ⋆)Vt

)
(s, a) + Γk(s, a) (D.23)

for any tk ≤ t < tk+1 and any (s, a) ∈ S ×A. Then, we plug (D.23) into (D.11) to obtain

(1− γ) · term (a) ≤E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(
(Bk −Bθ⋆)Vt

)
(st, at)

]]
︸ ︷︷ ︸

term (a1)

+ ϵ · T + E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Γk(st, at)
∣∣]]

︸ ︷︷ ︸
term (a2)

+ E
[K−1∑
k=0

Eπk

[(
Vt(stk+1

)− V πk

θ⋆ (stk+1
)
)
−
(
Vt(stk)− V πk

θ⋆ (stk)
)]]

︸ ︷︷ ︸
term (a3)

(D.24)

Under Assumption C.3, we have

term (a1) = E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Eθ∼Ptk

[(
(Bk −Bθ)Vt

)
(st, at)

∣∣∣Dtk

]]]

≤
√
T ·
(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Eθ∼Ptk

[∣∣((Bk −Bθ)Vt
)
(st, at)

∣∣2∣∣∣Dtk

]]])1/2

=
√
T ·
(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vθ∼Ptk

[
(BθVt)(st, at)

∣∣Dtk

]]])1/2

, (D.25)

where the first equality uses the tower property of the conditional expectation and the definition that the posterior distri-

bution of θ⋆ given Dtk is Ptk . Here, the first inequality uses Cauchy-Schwarz inequality and the last equality invokes

34



Reason for Future, Act for Now: A Principled Architecture for Autonomous LLM Agents

Proposition C.4 and the definition of variance. Under Assumption C.5, we apply the second property in Proposition D.1

on the right-hand side of (D.25) to have

term (a1) ≤ 2
√

2ηL ·
√

E[H0 −HT ] ·
√
T . (D.26)

Recall that the bonus Γk used in Algorithm 7 is defined by Γk(s, a) =
√
2L ·

√
I(θ; ξ(s,a) | Dtk) . For term (a2) in (D.24),

we have

term (a2) ≤
√
T ·
(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Γ2
k(st, at)

]])1/2

=
√
2L ·
√
T ·
(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

I(θ; ξ(st,at) | Dtk)
]])1/2

≤ 2
√
2ηL ·

√
T ·
(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

I(θ; ξ(st,at) | Dt)
]])1/2

, (D.27)

where the equality uses the definition of Γk in Algorithm 7. Here, the last inequality invokes Assumption C.5 and the

switching condition in Algorithm 7.

As at = πk(st), we further bound the right-hand side of (D.27) as follows,

term (a2) ≤ 2
√
2ηL ·

√
T ·
(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

I(θ; ξ(st,πk(st)) | Dt)
]])1/2

= 2
√
2ηL ·

√
E[H0 −HT ] ·

√
T , (D.28)

where the last inequality uses the chain rule of the information gain. Using the fact that any value function is bounded by

L, we bound term (a3) in (D.11) as

term (a3) ≤ 4L · E[K].

As the switching condition in Algorithm 7 implies Htk −Htk+1
≥ log 2, we apply Lemma D.3 to have

term (a3) ≤ 4L+
4L · E[H0 −HT ]

log 2
. (D.29)

Plugging (D.26), (D.28) and (D.29) into (D.11), we have

(1− γ) · term (a) ≤ 4
√
2L ·

√
E[H0 −HT ] ·

√
T + ϵ · T + 4L+

4L · E[H0 −HT ]

log 2
. (D.30)
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Then, we invoke the second part of Lemma D.2 to decompose term (b) in (D.22) as follows,

(1− γ) · term (b) = E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)
[(
Bθ⋆Vt

)
(s, π⋆(s))−Qt(s, π

⋆(s))
]]]

+ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)
[
Qt(s, π

⋆(s))−Qt(s, π
k(s))

]]]

≤ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)
[(
(Bθ⋆ −Bk)Vt

)
(s, π⋆(s))− Γk(s, π

⋆(s))
]]]

︸ ︷︷ ︸
term (b1)

+ ϵ · T

+ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)
[
Qt(s, π

⋆(s))−Qt(s, π
k(s))

]]]
︸ ︷︷ ︸

term (b2)

, (D.31)

where the inequality uses (D.23). Under Assumption C.3, we bound term (b1) in (D.31) as follows,

term (b1) = E

[
K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)

[
Eθ∼Ptk

[(
(Bk −Bθ)Vt

)
(s, π⋆(s))

∣∣∣Dtk

]
− Γk(s, π

⋆(s))

]]]

≤ E

[
K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)

[√
Eθ∼Ptk

[∣∣((Bk −Bθ)Vt
)
(s, π⋆(s))

∣∣2∣∣∣Dtk

]
− Γk(s, π

⋆(s))

]]]

= E

[
K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)

[√
Vθ∼Ptk

[
(BθVt)(s, π⋆(s))

∣∣Dtk

]
− Γk(s, π

⋆(s))

]]]
, (D.32)

where the first equality uses the tower property of the conditional expectation and the definition that the posterior distri-

bution of θ⋆ given Dtk is Ptk . Here, the first inequality uses Cauchy-Schwarz inequality and the last equality invokes

Proposition C.4 and the definition of variance. Under Assumption C.5, we apply the first property in Proposition D.1 to

have √
Vθ∼Ptk

[
(BθVt)(s, π⋆(s))

∣∣Dtk

]
− Γk(s, π

⋆(s)) ≤
√
2L ·

√
I(θ; ξ(s,π⋆(s)))− Γk(s, π

⋆(s))

=
√
2L ·

√
I(θ; ξ(s,π⋆(s)))−

√
2L ·

√
I(θ; ξ(s,π⋆(s)))

≤ 0, (D.33)

for any tk ≤ t < tk+1, k < K, and state s ∈ S. Here, the equality uses the definition of Γk in Algorithm 7. Plugging

(D.33) into (D.32), we have

term (b1) ≤ 0. (D.34)

By the definition of ϵ-optimal planner (Definition C.1), we know term (b2) in (D.18) is non-positive. Then, plugging (D.31)

into (D.31), we have

(1− γ) · term (b) ≤ ϵ · T. (D.35)
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Combining (D.22), (D.30), and (D.35), we have

R(T ) =
1

1− γ ·
(
term (a) + term (b)

)
≤ 4
√
2L ·

√
E[H0 −HT ]

1− γ ·
√
T +

2ϵ

1− γ · T +
4L

1− γ +
4L · E[H0 −HT ]

(1− γ) log 2

= O
(
L ·
√
E[H0 −HT ]

1− γ ·
√
T +

ϵ

1− γ · T +
L · E[H0 −HT ]

1− γ

)
.

Thus, we finish the proof of Theorem C.8.

D.5. Proof of Theorem C.10

Proof of Theorem C.10. For notational simplicity, we denote by θk the corresponding parameter for the mechanism

LLM+PS in Algorithm 8, which satisfies

(BθkV )(s, a) = rLLM+PS(Dtk
)(s, a) + γ · (PLLM+PS(Dtk

)V )(s, a), (D.36)

for any k < K, (s, a) ∈ S × A, and value function V . Recall the definition of optimal value V ⋆
θ given the parameter θ in

(C.1). Under Assumption C.9, we know that (BθkV )(s, a) | Dtk and (Bθ⋆V )(s, a) | Dtk follows the same distribution for

any k < K, (s, a) ∈ S × A, and value function V . By Bellman optimality equation in (C.1), we have that V ⋆
θk(s, a) | Dtk

and V ⋆
θ⋆(s, a) | Dtk follows the same distribution for any k < K, (s, a) ∈ S × A, and value function V . Recall that we

denote by πk = πtk and Vt is the estimated value function returned by the ϵ-optimal planner PLϵ in Algorithm 8. By the

definition of the Bayesian regret R(T ) and πt = πk for any tk ≤ t < tk+1 and k < K , we have

R(T ) = E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V π⋆

θ⋆ (st)− V πk

θ⋆ (st)
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V ⋆
θ⋆(st)− V πk

θ⋆ (st)
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Eθ⋆∼Ptk

[
V ⋆
θ⋆(st)− V πk

θ⋆ (st) | Dtk

]]]
, (D.37)

where the second equality uses the definition of optimal policy and (C.1). Here, the last equality uses the tower property

of the conditional expectation. Recall that θ⋆ | Dtk and θk | Dtk follows the same distribution Ptk for any tk ≤ t < tk+1,

which implies

Eθ⋆∼Ptk

[
V ⋆
θ⋆(st)− V πk

θ⋆ (st) | Dtk

]
= Eθ⋆∼Ptk

[
V ⋆
θ⋆(st) | Dtk

]
− Eθ⋆∼Ptk

[
V πk

θ⋆ (st) | Dtk

]
= Eθk∼Ptk

[
V ⋆
θk(st) | Dtk

]
− Eθ⋆∼Ptk

[
V πk

θ⋆ (st) | Dtk

]
= Eθ⋆,θk∼Ptk

[
V ⋆
θk(st)− V πk

θ⋆ (st) | Dtk

]
, (D.38)
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where the first and the second inequalities use the linear property of the conditional expectation. Plugging (D.38) into

(D.37), we have

R(T ) = E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Eθ⋆,θk∼Ptk

[
V ⋆
θk(st)− V πk

θ⋆ (st) | Dtk

]]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V ⋆
θk(st)− V πk

θ⋆ (st)
]]
, (D.39)

where the last equality uses the tower property of the conditional expectation.

Meanwhile, by Definition C.1, we have

max
s∈S
|V ⋆

θk(st)− Vt(st)| = max
s∈S
|max
a∈A

Q⋆
θk(s, a)−max

a
Qt(s, a)|

≤ max
(s,a)∈S×A

|Q⋆
θk(s, a)−Qt(s, a)|

= max
(s,a)∈S×A

∣∣((BθkV ⋆
θk)(s, a)− (BθkVt)(s, a)

)
+
(
(BθkVt)(s, a)−Qt(s, a)

)∣∣
≤ γ ·max

s∈S
|V ⋆

θk(st)− Vt(st)|+ max
(s,a)∈S×A

|(BθkVt)(s, a)−Qt(s, a)|, (D.40)

where the equality and the second equality uses the definitions of (Q⋆
θ, V

⋆
θ ) in (C.1). Here, the first inequality uses the fact

that the maximum operator is a contraction map, and the last inequality uses triangle inequality and (D.36). Rearranging

(D.40), we have

max
s∈S
|V ⋆

θk(st)− Vt(st)| ≤
1

1− γ · max
(s,a)∈S×A

|(BθkVt)(s, a)−Qt(s, a)|

≤ ϵ

1− γ , (D.41)

where the last inequality uses the definition of ϵ-optimal planner (Definition C.1), the planning procedure (πt, Vt) ←
PLϵ(PLLM+PS(Dtk

), rLLM+PS(Dtk
)) in Algorithm 8 and the definition of θk in (D.36). Then, we upper bound the right-hand

side of (D.39) as

R(T ) ≤ ϵ

1− γ · T + E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vt(st)− V πk

θ⋆ (st)
]]

︸ ︷︷ ︸
term (a)

. (D.42)

By the first part of Lemma D.2, we analyze term (a) in (D.42) as follows,

(1− γ) · term (a) =E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Qt(st, at)−
(
Bθ⋆Vt

)
(st, at)

]]

+ E
[K−1∑
k=0

Eπk

[(
Vt(stk+1

)− V πk

θ⋆ (stk+1
)
)
−
(
Vt(stk)− V πk

θ⋆ (stk)
)]]

. (D.43)

By the last inequality in (D.41), we have

|Qt(st, at)−
(
Bθ⋆Vt

)
(st, at)| ≤ ϵ+

(
(Bk −Bθ⋆)Vt

)
(st, at)

= ϵ+
∣∣((Bk −Bθ⋆)Vt

)
(st, at)

∣∣ (D.44)
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for any tk ≤ t < tk+1. Then, we plug (D.44) into (D.43) to obtain

(1− γ) · term (a) ≤E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

∣∣((Bk −Bθ⋆)Vt
)
(st, at)

∣∣]]
︸ ︷︷ ︸

term (a1)

+ ϵ · T

+ E
[K−1∑
k=0

Eπk

[(
Vt(stk+1

)− V πk

θ⋆ (stk+1
)
)
−
(
Vt(stk)− V πk

θ⋆ (stk)
)]]

︸ ︷︷ ︸
term (a2)

. (D.45)

Recall that Ptk denotes the posterior distribution of θ⋆ given Dtk . Under Assumption C.9, we know that the distribution of

θk | Dtk is also Ptk , where θk is defined in (D.36). Then, we have

term (a1) = E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Eθ⋆,θk∼Ptk

[∣∣((Bθk −Bθ⋆)Vt
)
(st, at)

∣∣∣∣∣Dtk

]]]

≤
√
T ·
(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Eθ⋆,θk∼Ptk

[∣∣((Bθk −Bθ⋆)Vt
)
(st, at)

∣∣2∣∣∣Dtk

]]])1/2

, (D.46)

where the first equality uses the tower property of the conditional expectation and the first inequality uses Cauchy-Schwarz

inequality. Note that E[|X −X ′|2] = 2V[X], if X and X ′ are two identically independently distributed variables. Recall

that Assumption C.9 tells that θk (defined in (D.36)) and the data-generating parameter θ⋆ are identically independently

distributed given Dtk , which implies

term (a1) ≤
√
2T ·

(
E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vθ∼Ptk

[
(BθkVt)(st, at)

∣∣Dtk

]]])1/2

. (D.47)

Under Assumption C.5, we apply the second property in Proposition D.1 on the right-hand side of (D.47) to have

term (a1) ≤ 4L ·
√
E[H0 −HT ] ·

√
T . (D.48)

Using the fact that any value function is bounded by L, we bound term (a2) in (D.11) as

term (a3) ≤ 4L · E[K].

As the switching condition in Algorithm 8 implies Htk −Htk+1
≥ log 2, we apply Lemma D.3 to have

term (a2) ≤ 4L+
4L · E[H0 −HT ]

log 2
. (D.49)

Plugging (D.48) and (D.49) into (D.45), we have

(1− γ) · term (a) ≤ 4L ·
√
E[H0 −HT ] ·

√
T + ϵ · T + 4L+

4L · E[H0 −HT ]

.
(D.50)

Combining (D.42) and (D.50), we obtain

R(T ) ≤ 4
√
2L ·

√
E[H0 −HT ]

1− γ ·
√
T +

2ϵ

1− γ · T +
4L

1− γ +
4L · E[H0 −HT ]

(1− γ) log 2

= O
(L ·√E[H0 −HT ]

1− γ ·
√
T +

ϵ

1− γ · T +
L · E[H0 −HT ]

1− γ
)
.

Thus, we finish the proof of Theorem C.10.
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D.6. Relaxing Assumption C.3 for Theorem C.7

In this section, we show that Assumption C.3 (posterior alignment) can be relaxed for Theorem C.7 to accommodate a
generalization error. We remove the dependency on Assumption C.3 (Posterior Alignment) by introducing the following
assumptions.

Algorithm 9 The data collection process for the pretraining dataset.
1: input: Some (mixed) data collection policy πcollect.

2: initialization: Initialize the pretraining dataset Dpre = ∅.

3: for n = 1, . . . , N do

4: Reset the environment such that θ⋆ ∼ P0.

5: Receives s0 from the environment.

6: Initialize the memory buffer D0 = ∅.

7: for t = 0, . . . , T do

8: Execute action at ∼ πcollect(st) to receive reward rt = rθ⋆(st, at) and state st+1 ∼ Pθ⋆(· | st, at) from the

environment.

9: Update memory buffer Dt+1 ← Dt ∪ {(st, at, st+1, rt)}.
10: end for

11: Uniformly sample t0 ∈ {0, . . . , T} and update the pretraining dataset Dpre = Dpre ∪ {(st0+1, rt0 ,Dt0 , st0 , at0)}
12: end for

13: output: The pretraining dataset Dpre.

First, we characterize the data generation process for the pretraining dataset in the following assumption.

Assumption D.4 (Pretraining Dataset Generation). We assume that the pretraining dataset Dpre consists N i.i.d. tuples of

(s′, r,D, s, a) generated by Algorithm 9.

For the pretraining dataset Dpre, we denote by Ppre the conditional distribution of (s′, r) given (D, s, a). We show that Ppre
is equivalent to Ppost as follows,

Ppre(s
′, r | D, s, a) =

∫
θ

Ppre(s
′, r | s, a, θ)Ppre(dθ | D, s, a)

=

∫
Θ

Pθ(s
′ | s, a)1(r = rθ(s, a))Ppre(dθ | D, s, a)

=

∫
Θ

Pθ(s
′ | s, a)1(r = rθ(s, a))Ppost(dθ | D)

= Ppost(ξ(s,a) | D, s, a), (D.51)

where the first equality uses Line 8 in Algorithm 9, the second equality uses the definition of the posterior of θ⋆ in (2.2)
and the fact that θ and (s, a) are conditionally independent given D, and the last equality uses (2.3). Denote by FLLM the
function class of LLMs. In the next assumption, we assume that the function class FLLM contains the posterior of ξ(s,a) in
the underlying MDP, which is the conditional distribution of (s′, r) given (D, s, a) from Dpre.

Assumption D.5 (Realizability). We assume that there exists a LLM LLMPA with a posterior alignment, that is, there

exists P LLMPA ∈ FLLM, such that P LLMPA
(
ξ(s,a)

∣∣D, s, a) = Ppost
(
ξ(s,a)

∣∣D, s, a), for any query state-action pair (s, a) and

in-context dataset D.

40



Reason for Future, Act for Now: A Principled Architecture for Autonomous LLM Agents

We introduce the following assumption to require that LLMs are MLEs in the pretraining dataset with uniform coverage.

Assumption D.6. We assume that LLMs used in RAFA are Maximum Likelihood Estimators (MLEs) in the pretraining

dataset Dpre satisfying Assumption D.4, that is,

P LLM = argmax
P̂∈FLLM

∑
(s′,r,D,s,a)∈Dpre

log P̂ (s′, r | D, s, a).

Denote by ρpre the marginal population distribution of (D, s, a) from Dpre. We also assume that the pretraining dataset

satisfies the following coverage condition:

ζ = sup
t<T

{∥∥∥∥ µt

ρpre

∥∥∥∥
∞

+

∥∥∥∥ µ⋆
t

ρpre

∥∥∥∥
∞

}
<∞. (D.52)

Here, µt is the marginal distribution of (Dtk , st, π
k(st)) and µ⋆

t is the marginal distribution of (Dtk , st, π
⋆(s)) with

s ∼ ν⋆(· | st) and (st,Dtk) following the trajectory distribution of RAFA (Algorithm 6), where ν⋆ is defined in (C.2).

We provide the generalization of Theorem C.7 in the following corollary, which removes the dependency on Assumption
C.3 (Posterior Alignment).

Corollary D.7 (Generalization of Theorem C.7). Under Assumptions D.5, D.6, C.5 , and C.6,the Bayesian regret of RAFA

(Algorithm 6) satisfies

R(T ) = O
(
(κ+ 1)L ·

√
E[H0 −HT ]

1− γ ·
√
T +

ϵ

1− γ · T +
L · E[H0 −HT ]

1− γ + ζ ·
√

log(|FLLM|/δ)
N

· T︸ ︷︷ ︸
Additional Regret Compared with Theorem C.7

)
,

with probability at least 1− δ. Here, ζ is defined in (D.52), |FLLM| is the cardinality of the function class for LLMs, and N

is the size of the pretraining dataset.

Comparing Corollary D.7 with Theorem C.7, we remark that the additional regret decays to zero if Npre tends to infinity.
Hence, we can recover the regret bound based on Assumption C.3 (posterior alignment) approximately if the pretraining
dataset has uniform coverage and is large enough.

Proof of Corollary D.7. We start with a standard concentration result for the maximum-likelihood estimate (MLE).

Lemma D.8 (MLE Concentration). Let F be a finite function class used to model a conditional distribution PY |X(y|x)
for x ∈ X and y ∈ Y . Assume there is f⋆ ∈ F such that P(y|x) = f⋆(y|x) (realizablility condition). Let {(xi, yi)}Ni=1

denote a dataset of i.i.d. samples where xi ∼ PX(x) and yi ∼ PY |X (·|xi). Let f̂ be the MLE, which satisfies

f̂ = argmax
f∈F

N∑
i=1

log f (yi|xi) .

Then, it holds that

Ex∼PX

[
dTV

(
f̂(·|x), pY |X(·|x)

)]
≤ 8 log(|F|/δ)

Npre
,

with probability at least 1− δ.

Proof of Lemma D.8. See the proof of Theorem 21 of Agarwal et al. (2020).
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Under Assumptions D.5 and D.6, we apply Lemma D.8 to show that

E(D,s,a)∼ρpre

[
dTV(P

LLMPA(·| D, s, a)∥P LLM(·| D, s, a))
]
≤
√

8 log(|FLLM|/δ)
N

holds with probability at least 1− δ.

For any fixed distribution µ of (D, s, a) satisfying ∥µ/ρpre∥∞ <∞, we use Hölder’s inequality to know that

E(D,s,a)∼µ

[
dTV(P

LLMPA(·| D, s, a)∥P LLM(·| D, s, a))
]
≤
∥∥∥∥ µ

ρpre

∥∥∥∥
∞
· E(D,s,a)∼ρpre

[
dTV(P

LLMPA(·| D, s, a)∥P LLM(·| D, s, a))
]

≤
∥∥∥∥ µ

ρpre

∥∥∥∥
∞
·
√

8 log(|FLLM|/δ)
N

(D.53)

holds with probability at least 1 − δ. Here, ∥ · ∥∞ denotes the infinity norm. We denote the Bellman operator induced

by LLMPA (the LLM with a posterior alignment) and Dtk as B̃k, which is defined as (B̃kV )(s, a) = rLLMPA(Dtk
)(s, a) +

(PLLMPA(Dtk
)V )(s, a) for any s, a, and value function V . Then, by the definition of Bk, we have∣∣∣((B̃k −Bk)Vt

)
(s, a)

∣∣∣ = |EP LLMPA [r + γ · V (s′)]− EP LLM [r + γ · V (s′)]|

≤ 2L · dTV(P
LLMPA(·| Dtk , s, a)∥P LLM(·| Dtk , s, a)), (D.54)

where the first inequality uses the definition of L (recall that L is the bound of | r + V (s)| for any reward r, state s, and

value V ) and Hölder’s inequality. In the proof of Theorem C.7 (the analysis of the regret of RAFA), we need to modify

(D.11) and (D.18) with the following inequality

∣∣((Bk −Bθ⋆)Vt
)
(s, a)

∣∣ = ∣∣((B̃k −Bθ⋆)Vt
)
(s, a)

+
(
(B̃k −Bk)Vt

)
(s, a)

∣∣
≤
∣∣((B̃k −Bθ⋆)Vt

)
(s, a)

∣∣
+ 2L · dTV(P

LLMPA(·| Dtk , s, a)∥P LLM(·| Dtk , s, a)),

which holds for any state s ∈ S and action a ∈ A. By Proposition C.4 (LLMs with posterior alignments perform BMA)

and the fact that B̃k is the Bellman operator induced by LLMPA (the LLM with a posterior alignment) and Dtk , we can

analyze [(B̃k − Bθ⋆)Vt)(s, a)] in the same way as in the previous proof of Theorem C.7 (the analysis of the regret of

RAFA). It is clear that the additional regret by relaxing Assumption C.3 (Posterior Alignment) is less than

1

1− γ · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

2L · dTV(P
LLMPA(·| Dtk , s, a)∥P LLM(·| Dtk , s, a))

]]

+
1

1− γ · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | st)

[
2L · dTV(P

LLMPA(·| Dtk , s, a)∥P LLM(·| Dtk , s, a))
]]]

≤ 8L ·
√

2 log(|FLLM|/δ)
N

· ζ · T, (D.55)

with probability at least 1 − δ, where the inequality uses (D.53) and the definition of ζ in (D.52). Combining (D.55) and

Theorem C.7, we conclude the proof of Corollary D.7.
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E. Missing Proofs in Appendix D

E.1. Proof of Lemma D.2

Proof of Lemma D.2. We prove the first part as follows. The Bellman equation (Sutton & Barto, 2018) connects Qπ
θ (s, a)

and V π
θ (s) by

Qπ
θ (s, a) = rθ (s, a) + γ (PθV

π
θ ) (s, a) , V π

θ = Qπ
θ

(
s, a
)
. (E.1)

By the definition of Bθ, we rewrite (E.1) as Qπ
θ (s, a) = (BθV

π
θ )(s, a). For the left-hand side of (D.7) in the first part of

Lemma D.2, we have

E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vt(st)− V πk

θ⋆ (st)
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Qt(st, at)− (Bθ⋆V πk

θ⋆ )(st, at)
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Qt(st, at)− (Bθ⋆Vt)(st, at)
]]

︸ ︷︷ ︸
term (A)

+ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(Bθ⋆Vt)(st, at)− rθ⋆(st, at)− γ · Vt(st+1)
]]

︸ ︷︷ ︸
term (C1)

+ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

rθ⋆(st, at) + γ · V πk

θ⋆ (st+1)− (Bθ⋆V πk

θ⋆ )(st, at)
]]

︸ ︷︷ ︸
term (C2)

+ γ · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Vt(st+1)− V πk

θ⋆ (st+1)
]]

︸ ︷︷ ︸
term (D)

, (E.2)

where the first equality uses at = πk(st), the condition Q(s, πk(s)) = Vt(s) for any tk ≤ t < tk+1 and k < K in Lemma

D.2, and (E.1) . Since we have

(Bθ⋆V )(st, at) = rθ⋆(s, a) + γ · Est+1∼Pθ⋆ (· | st,at)

[
V (st+1)

]
,

terms (C1) and (C2) in (E.2) are zero. Meanwhile, term (D) in (E.2) satisfies

term (D) = E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(
Vt(st)− V πk

θ⋆ (st)
)]]

+ E
[K−1∑
k=0

Eπk

[(
Vt(stk+1

)− V πk

θ⋆ (stk+1
)
)
−
(
Vt(stk)− V πk

θ⋆ (stk)
)]]

︸ ︷︷ ︸
term (B)

, (E.3)

where term (B) is defined in the first part of Lemma D.2. Rearranging (E.2) and (E.3), we prove the first part of Lemma

D.2.
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Next, we show the proof of the second part of Lemma D.2, we. For the left-hand side of (D.8), we have

E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V π⋆

θ⋆ (st)− Vt(st)
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(Bθ⋆V π⋆

θ⋆ )(st, π
⋆(st))−Qt(st, π

k(st))
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(Bθ⋆V π⋆

θ⋆ )(st, π
⋆(st))− (Bθ⋆Vt)(st, π

⋆(st))
]]

+ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(Bθ⋆Vt)(st, π
⋆(st))−Qt(st, π

k(st))
]]

(E.4)

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

γ · Es′∼Pθ⋆ (· | st,π⋆(st))[V
π⋆

θ⋆ (s′)− Vt(s′)]
]]

+ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(Bθ⋆Vt)(st, π
⋆(st))−Qt(st, π

k(st))
]]
, (E.5)

where the first equality uses the Bellman optimality equation in (C.1), the condition Qt(s, π
k(s)) = Vt(s), and

Q⋆
θ⋆(s, π⋆(s)) = V ⋆

θ⋆(s) for any state s, tk ≤ t < tk+1, and k < K. Here, the last equality uses the defini-

tion of Bθ⋆ . For the simplicity of discussions, we define functions Ft,Mt ∈ {S 7→ R} and the linear operator

T ∈
{
{S 7→ R} 7→ {S 7→ R}

}
as

Ft(s) = V π⋆

θ⋆ (s)− Vt(s),

Mt(s) = (Bθ⋆Vt)(s, π
⋆(s))−Qt(st, π

k(s)),

(T f)(s) = Es′∼Pθ⋆ (· | s,π⋆(s))[f(s
′)], (E.6)

for any state s and function f ∈ {S 7→ R}. Here, we denote by {S 7→ R} the class of all the functions defined on S . By

the definitions of Ft, Mt, and T in (E.6), it is clear that

Ft(s) =Mt(s) + γ ·
(
T Ft

)
(s), (E.7)

for any state s ∈ S. Then, we introduce the following lemma to bound Ft by (E.7).

Lemma E.1. For the operator T defined in (E.6), two arbitrary bounded functions f,m defined on the state space S, and

any γ ∈ [0, 1), if

f(s) = m(s) + γ · (T f)(s) (E.8)

holds for any state s ∈ S, then it holds that for any state s ∈ S,

f(s) =

∞∑
τ=0

γτ ·
(
(T ◦ . . . ◦ T )︸ ︷︷ ︸

τ times

m
)
(s). (E.9)
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Proof of Lemma E.1. By the condition in (E.8), we have

f(s) = m(s) + γ ·
(
T
(
m+ γ · (T f)

))
(s)

= m(s) + γ · (Tm)(s) + γ2 ·
(
(T ◦ T )f

)
(s), (E.10)

where the last equality relies on the linearity of the operator T . Repeating the process in (E.10) for N ∈ N times, we have

that

f(s) = γN+1 ·
(
(T ◦ . . . ◦ T )︸ ︷︷ ︸
(N + 1) times

f
)
(s) +

N∑
τ=0

γτ ·
(
(T ◦ . . . ◦ T )︸ ︷︷ ︸

τ times

m
)
(s). (E.11)

Since both f andm are bounded functions, we use (E.6) to know that (T ◦ . . . ◦ T )︸ ︷︷ ︸
τ times

f and (T ◦ . . . ◦ T )︸ ︷︷ ︸
τ times

m are also bounded

for any τ ∈ N. As γ ∈ [0, 1), we let N tend to the infinity to transform (E.11) to

f(s) =

∞∑
τ=0

γτ ·
(
(T ◦ . . . ◦ T )︸ ︷︷ ︸

τ times

m
)
(s),

for any state s ∈ S. Then, we conclude the proof for Lemma E.1.

By (E.7) and Lemma E.1, we have

Ft(s) =

∞∑
τ

γτ ·
(
(T ◦ . . . ◦ T )︸ ︷︷ ︸

τ times

Mt

)
(s)

Recalling the definition of the optimal γ-discounted visitation measure in (C.2), we further have

Ft(s) =
1

1− γ · Es′∼ν⋆(· | s)[Mt(s
′)]. (E.12)

Plugging (E.12) and (E.6) into (E.5), we have

E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V π⋆

θ⋆ (st)− Vt(st)
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

1

1− γ · Es′∼ν⋆(· | s)
[
(Bθ⋆Vt)(st, π

⋆(st))−Qt(st, π
k(st))

]]]

=
1

1− γ · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | s)
[
(Bθ⋆Vt)(s, π

⋆(s))−Qt(s, π
⋆(s))

]]]

+
1

1− γ · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Es∼ν⋆(· | s)
[
(Qt(s, π

⋆(s))−Qt(s, π
k(s))

]]]
. (E.13)

Multiplying (1− γ) on the two sides of (E.13), we prove the second part of Lemma D.2.

E.2. Proof of Proposition C.2

Proof of Proposition C.2. We now prove that the value iteration algorithm with a truncated horizon U (Algorithm 5) satis-

fies the definition of ϵ-optimal planner (Definition C.1), where U is dependent on ϵ. For notational simplicity, we denote

maxs∈S and maxa∈A as maxs and maxa.
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Let

ϵ† = max
s,a

∣∣Q(1)(s, a)− r(s, a)− γ(PV (1))(s, a)
∣∣. (E.14)

Note that the convergence analysis of the value iteration algorithm in Sutton & Barto (2018) gives

max
s,a

∣∣Q(1)(s, a)−Q(2)(s, a)
∣∣ ≤ γU−2 max

s,a

∣∣Q(U−1)(s, a)−Q(U)(s, a)
∣∣,

which implies

max
s,a

∣∣Q(1)(s, a)−Q(2)(s, a)
∣∣ ≤ γU−2L. (E.15)

We have

ϵ† = max
s,a

∣∣Q(1)
θ (s, a)− r(s, a)− γ(PV (2))(s, a)

+ γEs′∼P (· | s,a)
[
V (1)(s′)− V (2)(s′)

]∣∣
= γ ·max

s,a

∣∣Es′∼P (· | s,a)
[
V (1)(s′)− V (2)(s′)

]∣∣
= γ ·max

s,a

∣∣Es′∼P (· | s,a)
[
max

a
Q(1)(s′, a)−max

a
Q(2)(s′, a)

]∣∣
≤ γ ·max

s,a

∣∣Es′∼P (· | s,a)
[
max

a

∣∣Q(1)(s′, a)−Q(2)(s′, a)
∣∣]∣∣

≤ γU−1L, (E.16)

where the first and third equalities are based on Algorithm 5, the second last inequality uses the contraction property of the

maximum operator, and the last inequality uses (E.15). To let ϵ† < ϵ, it suffices to set U ≥ 1 + ⌈logγ(ϵ/L)⌉. Note that the

policy π returned by Algorithm 5 satisfies π(s) = argmaxaQ
(1)(s, a). Thus, we prove Proposition C.2.

F. Linear Special Case
We specialize RAFA to a linear setting and characterize the Bayesian regret. In particular, we define a Bayesian variant of
linear kernel MDPs (Yang & Wang, 2020; 2019; Cai et al., 2020; Zhou et al., 2021b). Here, Es′∼Pθ(· | s,a)V (s′) is linear in a
feature ψV (s, a) ∈ Rd for an arbitrary parameter θ ∈ Rd, while the prior and posterior distributions of the data-generating
parameter θ⋆ ∈ Rd are Gaussian. Specifically, ψV (s, a) maps the value function V and the state-action pair (s, a) to a
d-dimensional vector. Recall that ρ is the initial distribution of states, t is the step index, and T is the total number of steps.
Also, Pt is the posterior distribution at the t-th step.

Definition F.1 (Bayesian Linear Kernel MDP (Ghavamzadeh et al., 2015; Yang & Wang, 2020; 2019; Cai et al., 2020;

Zhou et al., 2021b)). A Bayesian linear kernel MDP M satisfies

V (st+1) | st, at ∼ N (ψV (st, at)
⊤θ, 1)

for all t ≥ 0, (st, at) ∈ S × A, st+1 ∼ Pθ(· | st, at), θ ∈ Rd, as well as all value function V . Here, ψV (s, a) maps

V and (s, a) to a d-dimensional vector, which satisfies ∥ψV (s, a)∥2 ≤ R for all (s, a) ∈ S × A and all V . Also, M

also satisfies |Es0∼ρV (s0)| ≤ R for all V . Here, R is a positive constant that is independent of t and T . The prior

distribution of the data-generating parameter θ⋆ ∈ Rd is N (0, λId), where λ is a positive constant. Here, ψV is known
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and θ⋆ is unknown. Without loss of generality, we assume that the reward function is deterministic and known, i.e.,

(BθV )(·, ·) = r(·, ·) + γ · (PθV )(·, ·) for a known reward function r and any θ.

By Definition F.1, we obtain the closed form of the posterior Pt as follows,

θ | Dt ∼ N (θ̂t; Σ
−1
t ),

where

θ̂t =
(
λId +

t−1∑
i=0

ψVi(si, ai)ψVi(si, ai)
⊤
)−1(t−1∑

i=0

ψVi(si, ai)Vi(si+1)
)

(F.1)

and

Σt = λId +

t−1∑
i=0

ψVi
(si, ai)ψVi

(si, ai)
⊤
. (F.2)

Hence, the posterior entropy is

Ht = H(Pt) = 1/2 · log(det(Σt)) + d/2 · (1 + log(2π)). (F.3)

We specialize the switching condition in Algorithm 8 as follows,

Htk −Ht = 1/2 · log(det(Σtk))− 1/2 · log(det(Σt)) > log 2, (F.4)

which is equivalent to det(Σtk) > 4 · det(Σt). This switching condition is also similarly adopted in work for RL (Zhou
et al., 2021b; Abbasi-Yadkori & Szepesvári, 2015). As a result, we have

det(Σtk) ≤ 4 · det(Σt) (F.5)

for all tk ≤ t < tk+1 and k < K.

Verification of Assumption C.5 We verify the regularity assumption (Assumption C.5.) on Bayesian linear kernel MDPs
as follows. By (F.4), the condition

Ht1 −Ht2 = 1/2 · log(det(Σt1))− 1/2 · log(det(Σt2)) ≤ log 2

is equivalent to det(Σt1) ≤ 4 det(Σt2). Since t1 < t2 and the posterior variance matrix is positive definite, we have
Σ−1

t1 ⪰ Σ−1
t1 and det(Σ−1

t2 ) ≤ 4 det(Σ−1
t1 ). By the definition of the information gain and (F.4), we have

I(θ; ξ(s,a) | Dt) = H(θ | Dt)−H(θ | ξ(s,a),Dt)

= 1/2 · log
(
det(ψVt2

(s, a)ψ⊤
Vt2

(s, a) + Σt)

det(Σt)

)
= 1/2 · log

(
1 + ψVt2

(s, a)⊤Σ−1
t ψVt2

(s, a)
)
, (F.6)

for t = t1 and t2. Here, the last equality uses the matrix determinant lemma.

Plugging (F.9) into (F.6), we have

I(θ; ξ(s,a) | Dt2) = 1/2 · log(1 + ψVt2
(s, a)⊤Σ−1

t ψVt2
(s, a))

= 1/2 · log(1 + ψVt2
(s, a)⊤Σ−1

t ψVt2
(s, a))

≥ log(1 + d)/(2d) · ∥ψVt2
(s, a)∥2

Σ−1
t2

, (F.7)
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where the second equality uses the matrix determinant lemma and the first inequality uses the fact that log(1 + x)/x is an
increasing function for x ≥ 0 and

0 ≤ ψVt2
(s, a)⊤Σ−1

t ψVt2
(s, a)

≤ ψVt2
(s, a)⊤

(
ψVt2

(s, a)ψVt2
(s, a)⊤

)−1
ψVt2

(s, a)

= tr
(
ψVt2

(s, a)ψVt2
(s, a)⊤

(
ψVt2

(s, a)ψVt2
(s, a)⊤

)−1
)

= d. (F.8)

Here, the first inequality uses the nonnegativity of a quadratic form, the first equality uses tr(a⊤b) = tr(ba⊤) for two
arbitrary vectors a and b, and the second inequality uses (F.2). By (F.2), we know that

∥ψVt2
(s, a)∥2

Σ−1
t1

≤ 4 · ∥ψVt2
(s, a)∥2

Σ−1
t2

, (F.9)

where the inequality invokes the following lemma (Lemma F.2).

Lemma F.2 (Lemma 12 in Abbasi-Yadkori et al. (2011)). Suppose A,D ∈ Rd×d are two positive definite matrices

satisfying that A ⪰ D, then for any x ∈ Rd, ∥x∥A ≤ ∥x∥D ·
√
det(A)/ det(D).

Rearranging (F.7) , we have

8d

log(1 + d)
· I(θ; ξ(s,a) | Dt2) ≥ 4 · ∥ψVt2

(s, a)∥2
Σ−1

t2

≥ ∥ψVt2
(s, a)∥2

Σ−1
t1

≥ log(1 + ψVt2
(s, a)⊤Σ−1

t1 ψVt2
(s, a))

= 2 · I(θ; ξ(s,a) | Dt1), (F.10)

where the second inequality uses (F.9), the last inequality uses the fact that x ≥ log(1 + x) for any x ≥ 0, and the last
equality use (F.6). By (F.10), we know that Bayesian linear kernel MDPs (Definition F.1) satisfy Assumption C.5 with the
coefficient η = d/ log(1 + d).

Analysis of the Cumulative Posterior EntropyH0−HT . Next, we study the upper bound of the cumulative Information
gain H0 −HT in Bayesian linear kernel MDPs. By the definition of Σt in (F.2), we have log det(Σ0) = d · log λ and

log det(ΣT ) = log det
(
λId +

T−1∑
t=0

ψVt
(st, at)ψ

⊤
Vt
(st, at)

)
≤ d · log

(
1/d · tr

(
λId +

T−1∑
t=0

ψVt(st, at)ψ
⊤
Vt
(st, at)

))
= d · log

(
1/d ·

(
λd+

T−1∑
t=0

∥ψVt
(st, at)∥22

))
≤ d · log(λ+ TR2/d) (F.11)

almost surely. Here, the first inequality uses the relationship between the trace and the determinant of a square matrix,
the second equality uses tr(a⊤b) = tr(ba⊤) for two arbitrary vectors a and b, and the last inequality uses the fact that
∥ψV (s, a)∥2 is upper bounded by R for all (s, a) ∈ S ×A and V . Hence, we have

H0 −HT = O
(
d · log(1 + TR2/(dλ))

)
(F.12)

almost surely.
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Regret Bounds. With the verification of Assumption C.5 and the analysis of the upper bound of the cumulative In-
formation gain H0 − HT in Bayesian linear kernel MDPs, we are ready to specialize the theorems in Appendix C in
Bayesian linear kernel MDPs if we determine an appropriate L (the bound of the value). We analyze the bound of V (s′)
for s′ ∼ Pθ(s, a) and θ ∼ N (µ, λId). Define that ϵ̃ ∼ N (0, 1). By Definition F.1, we have

|V (s′)| = |ϵ̃+ ψV (s, a)
⊤θ|

≤ |ϵ̃|+ |ψV (s, a)
⊤(θ − µ)|+ |ψV (s, a)

⊤µ|
≤ |ϵ̃|+ ∥ψV (s, a)∥2 · ∥θ − µ∥2 + ∥ψV (s, a)∥2 · ∥µ∥2
≤ |ϵ̃|+R · ∥θ∥2 +R · ∥µ∥2, (F.13)

where the first inequality uses the triangle inequality, the second inequality uses the Cauchy-Schwartz inequality, and the
last inequality uses the definition of R in Definition F.1. By Definition F.1, (F.13), and the tail behavior of the Gaussian
distribution (Ghosh, 2021), we have

|V (s)| ≤
√
2 · log(2/δ) +R · ∥µ∥2 +R ·

√
2λd · log(2dδ)

for any s ∈ S and value function V with probability at least 1 − δ. Since the prior distribution of θ is N (0, λId), it is
natural to restrict µ such that ∥µ∥2 ≤ cd · log(2d)) for some absolute constant c. Then, we apply the union bound of all T
value functions in RAFA and the variants (Algorithms 6, 7, and 8) to have

|Vt(s)| ≤
√

2 · log(2T/δ) +R · ∥µ∥2 +R ·
√

2λd · log(2dTδ)
≤ (c+ 1)R ·

√
2λd log(2dT/δ)) (F.14)

for any t < T , s ∈ S , and value function V with probability at least 1 − δ. Hence, we can select L = (c + 1)R ·√
2λd log(2dT/δ) in Theorems C.7, C.8, and C.10. By specializing Theorems C.7, C.8, and C.10, we summarize the

corresponding regret bounds in Table 3 for Algorithms 6, 7, and 8, respectively. Here, we choose the planning suboptimality
of PLϵ to be ϵ = O(1/

√
T ) and all the bounds hold with probability at least 1− δ.

Algorithm Bayesian Regret

RAFA (Algorithm 6) O((1− γ)−1(κ+ 1)
√
d3T · log(dT/δ))

RAFA with Optimistic Bonus (Algorithm 7) ((1− γ)−1
√
d3T · log(dT/δ))

RAFA with Posterior Sampling (Algorithm 8) O((1− γ)−1
√
d3T · log(dT/δ))

Table 3. Bayesian regret of variants of RAFA in Bayesian linear kernel MDPs (see Definition F.1). Here, we choose the planning
suboptimality of PLϵ to be ϵ = O(1/

√
T ) and all the bounds hold with probability at least 1− δ.

G. More Experiments
In what follows, we provide the detailed setups and additional results of our experiments.

G.1. Game of 24

Task Setup. Figure 10 gives an illustrative example for Game of 24.
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[Illustrative example for Game of 24]

• Numbers: [2, 5, 8, 11]

• Arithmetic Operations: [+, −, ×, /, (, )]

• Solution:

(11− 5)× 8/2 = 24

Figure 10. An illustrative example of the Game of 24. The player uses combinations of basic arithmetic operations with four given
numbers to get 24.
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Figure 11. Sample efficiency on Game of 24. RAFA agent achieves strong performance due to an orchestration of reasoning and acting.
The success rate at a given step is the number of tasks that is solved within the given step.

Following Yao et al. (2023a), we use the same subset indexed 901-1,000 from a total of 1,362 tasks collected from
4nums.com. The index is arranged from easy to hard by human solving time so the subset is relatively challenging.
The agent receives a reward of 1 if the proposed formula is correct and the proposed formula is accepted and concatenated
into the state; if the final result is exactly 24, the agent receives a reward of 10, and the episode terminates. Otherwise, the
agent receives a reward of 0, and the proposed formula is not accepted. We limit the maximum trials for each task to 20
to avoid meaningless retries. The task is successful if the agent receives a return larger than 10 1 (i.e., find a valid solution
within 20 steps). We report the final success rate and sample efficiency for each method on the subset of 100 tasks. Notably,
a task is considered successful if the RAFA agent returns one and only one correct formula, which is more strictly evaluated
than Tree of Thoughts (ToT, Yao et al. (2023a)): we allow open-loop agents like ToT to retry 20 times and consider them
successful if they generate a valid solution in any of the 20 trials. For CoT (Wei et al., 2022) and Reflexion (Shinn
et al., 2023) agents, we allow them to reflect on the environment’s feedback but require them to generate a plan immediately
without sophisticated reasoning.

RAFA Setup. In the Game of 24, the RAFA agent uses ToT as the planner, regenerates a plan when the agent receives a
zero reward and continues acting according to the previous plan when the agent receives a positive reward. We set the base
ToT planner with beam search width b = 1, 2 and use both gpt-3.5-turbo and gpt-4 to test the RAFA’s boost-up
over LLM agents with different reasoning abilities. We set the temperature t = 0.2 by default to favor rigorous reasoning

1For gpt-3.5-turbo, we report the success rate when the agent receives a return no less than 3 (i.e., find all sub-steps to get 24

but not necessarily generate a whole correct formula). This is because ToT with gpt-3.5-turbo is known to suffer from correctly

get a whole formula due to limited reasoning ability and non-perfect prompts. See https://github.com/princeton-nlp/tree-of-thought-

llm/issues/24 for more details.
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and t = 0.7 for majority voting.

Reduced Hallucination Through Interaction. A comprehensive review of various method proposals revealed signifi-
cant hallucination, especially with gpt-3.5-turbo. A common hallucination is that the agent believes she can reuse
the same number (e.g. using the number 2 twice as illustrated in Figure 2). RAFA efficiently mitigates such hallucination
by actively interacting with the environment, displaying exceptional hallucination resistance and improved performance.

Enhanced Efficiency Through Planning. Evidenced in Figure 5, the RAFA agent substantially surpasses the
Reflexion baseline, reflecting heightened efficiency and minimized regret by negating careless trials. For example,
without carefully planning, agent may give negative answers, e.g,“Impossible to obtain 24 with the given numbers, or
unchecked answers, e.g.,“Answer: 6 * 9 / (3 - 2) = 24”. This reduction of careless trails is especially achieved when a
strong backbone LLMs (e.g., gpt-4) is used, even with a basic planning method, such as BFS with B = 1.

Ablation Study. The RAFA agent’s performance is dissected by individually examining its components: (1) Planning
modules or model/elite LLM, (2) Reflection modules or critic LLM, and (3) Different LLMs. Results, displayed in Table 3
and Figure 5, affirm the substantial contribution of each segment to the aggregate performance. Compared to absent or
rudimentary zero-shot planning, a basic planner markedly enhances overall performance. However, augmenting planner
strength only offers marginal performance enhancements. Both critic LLM and robust LLM usage emerge as pivotal for
optimal performance.

G.2. ALFWorld

Elite LLM

Reasoning

Model LLM

You see a fork 1
and a cup 1.

You see a cd 1
and a cup 1.

Take egg 1

Take cup 1
from

drawer 1

Go to
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1 and an egg 1.

Go to
drawer 1

Go to
cabinet 1

Go to
countertop

1

Critic LLM

You see a
cd 1.

Egg 1 is
picked up.

Cup 1 is
picked up.

Goal: heat an egg and 
put it on dining table

You see a
cabinet 1, a
countertop 1, a
diningtable 1,
and a drawer 1.

Acting

Env

...

Go to
countertop 1

Figure 12. An illustration of RAFA in the ALFWorld environment.

Task Setup. The action space of ALFWorld consists of high-level actions such as “heat a potato with a microwave”,
which is executed in the underlying embodied simulator through low-level action primitives. The egocentric visual obser-
vations of the simulator are translated into natural language before being provided to the agent. The state is the history of
the observations. If a task goal can be precisely achieved by the agent, it will be counted as a success.

RAFA Setup. In the ALFWorld environment, the RAFA planner is instantiated as Breadth First Search (BFS). Specif-
ically, B and U are both set to 2, and we use gpt-3 (text-davinci-003) for the Critic, Model, and Elite
modules. Besides, since it is challenging to prompt the LLM with the stored full trajectories in the memory buffer due
to the token limit, we make the following modifications: the Model LLM instance uses only the partial trajectory exe-
cuted so far in the current episode, and the Elite LLM instance uses the same partial executed trajectory with additional
model-generated state-action pairs during the planning subroutine. When switching is triggered after 20 failed timesteps
(i.e., an episode), a summary from the failure trajectory is generated by gpt-4 and added to the Critic prompt.

Reduced Hallucination Through Interaction. The baselines are more likely to hallucinate when the target object is not
found after exploring many locations. On the other hand, the critic LLM used in RAFA is able to probe the hallucination by
generating the summary “In this environment, my critic assigned a 1/3 value after taking a knife. However, the task is to
take and cool a tomato.” and avoid it in the next episode. Therefore, RAFA is more sample-efficient due to an orchestration
of reasoning and acting and the ability to mitigate hallucination through interaction.
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Ablation Study. To better understand the role that the planning subroutine plays in the RAFA algorithm, we conduct
ablation studies on the search depth U and search breadth B. The results are shown in Figure 13 and 14, respectively. We
observe that when setting the search depth to B = U = 2, the success rate is higher than when setting the search depth
to U = 1 or setting the search breadth B = 1, especially at the initial episode. This indicates that the reasoning ability
of RAFA is enhanced through the planning subroutine. Besides, the algorithm is also more sample-efficient when setting
B = U = 2, indicating a better capacity for learning and planning through interaction and reasoning.
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Figure 13. Ablation on the search depth U in the ALF-
World environment.
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Figure 14. Ablation on the search breadth B in the ALF-
World environment.

G.3. BlocksWorld

Task Setup. The reported success rates are averaged in tasks that require different minimum steps. Specifically, the
evaluation is conducted in 57 4-step tasks and 114 6-step tasks. We set the state as the current arrangement of the blocks
and the actions contain Stack, Unstack, Put, and Pickup, coupled with a block being operated.

Unstack yellow
block from blue

block

s1

Model LLM Critic LLM

Pick up the
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Unstack purple
block from red

block

Elite LLM

ReasoningGoal: blue block on top
of the orange block

Acting

Env

...

Unstack yellow
block from blue

block

Figure 15. Illustration of RAFA in the BlocksWorld environment.

RAFA Setup. The search space is up to 54 for a 4-step task and is up to 56 for a 6-step task. For 4-step tasks, RAFA
can achieve over 50% success rate within 8 learning steps with Vicuna-13B(v1.3) and achieve over 80% success
rate within 8 learning steps with Vicuna-33B(v1.3). For 6-step tasks, RAFA can achieve over 40% success rate
within 20 learning steps with Vicuna-13B(v1.3) and achieve over 50% success rate within 20 learning steps with
Vicuna-33B(v1.3). Empirical results show that Vicuna could produce wrong state transition in the planning phase.
RAFA can mitigate hallucination with feedback from failure trajectories and active exploration. One can draw such a
conclusion by comparing RAFA with RAP as RAP does not receive feedback from the real environment.
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G.4. Tic-Tac-Toe

Task Setup. Tic-Tac-Toe (Beck, 2008) is a competitive game in which two players take turns to mark a three-by-three
grid with X or O, and a player succeeds when their marks occupy a diagonal, horizontal, or vertical line.

Elite LLM

Reasoning

Dynamic
Model LLM Critic LLM Not

done

Opponent
Model LLM

O | 2 | 3
-----------
4 | X | X

-----------
O | 8 | 9

O | 2 | 3
-----------
O | X | X

-----------
X | 8 | 9

O | 2 | 3
-----------
O | X | X

-----------
7 | 8 | 9

O | 2 | 3
-----------
X | X | X

-----------
O | 8 | 9

Fail

O | O | 3
-----------
4 | X | X

-----------
7 | 8 | 9

O | O | 3
-----------
X | X | X

-----------
7 | 8 | 9

Fail

Acting

O | 2 | 3
-----------
4 | X | X

-----------
7 | 8 | 9

Env

...

Opponent action

Figure 16. Illustration of RAFA (playing O) in the Tic-Tac-Toe game. States are represented by a numbered 3 × 3 grid and actions are
represented by a number between 1-9. The opponent is considered part of the environment.

We adopt the convention that X plays first. As illustrated below in Figure 16, we use a numbered 3 × 3 grid to represent
a state and a number between 1 and 9 to represent an action, which also illustrates the transition and reward function.
Although Tic-Tac-Toe is a solved game with a forced draw assuming the best play from both players, it remains a challenge
for LLMs to accomplish this task even when prompted to play only the optimal moves. We collected the battle outcomes
between different LLM models in Table 4, where we notice that gpt-4 performs worse when playing as “O”. Thus, in our
experiments, we let RAFA play as “O” and let baseline LLM models play as “X”.

X wins : Tie : O wins
O

gpt-3.5 gpt-4

X
gpt-3.5 55% : 35% : 10% 90% : 0% : 10%

gpt-4 65% : 15% : 20% 90% : 0% : 10%

Table 4. Probability of “X wins,” “Tie,” and “O wins” in Tic-Tac-Toe. The results are obtained by averaging over 20 simulated games.

RAFA Setup. For implementation, we set B = 3 and adopt MCTS to evaluate the proposed actions. We set U = 4
which is the maximum game depth. We set a prediction-based switching condition triggered when the prediction does not
agree with the observation. Specifically, policy switches when one of the following events occurs:

• The RAFA agent takes an action and predicts the next state, which is different from the observed next state.

• Before the opponent takes an action, the RAFA agent tries to predict such an action, which is different from the actual
action that the opponent takes.

• After the opponent takes an action, RAFA agent predicts the next state, which is different from the observed next state.
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• The RAFA agent predicts the current game status (X wins, O wins, Tie, Not finished), which is different from the
environment’s feedback.

Besides, we use the ground truth of those predictions to update the agent’s belief of the world, which also implicitly affects
the agent’s policy.

We define a discrete reward function with r = −1, 0, 1 corresponding to lose, tie, and win. The agent only gets rewards
when the current episode is completed. We define the score of an agent as its expected reward which can be approximated
by simulation. The empirical results are shown in figure 17. We conduct experiments using both gpt-4 as the backend.
The score of RAFA (B = 4) increases as it interacts more with the environment. By analyzing the generated trajectories,
we also notice that although RAFA agent is not perfect, it exploits the weakness of the baseline model well, which is why
it almost never loses after 7 episodes.
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Figure 17. Score curves in the Tic-Tac-Toe game. We use gpt-4 as backend. Results are averaged across 10 simulations and smoothed
with a window size of 5.

H. Prompts
In this section, we give details of the prompts used for each task.

H.1. Game of 24

Critic LLM. For the LLM instance of the Critic, we prompt it with the current action (formula) with reward and
feedback from the environment. The critic is required to determine whether each formula is valid or not and give a ”sure”
or ”impossible” label for the formula. We use critic prompts to generate reflection for formula proposal and evaluation,
respectively.

Critic prompt (for formula proposal)

Now we would like to play a game of 24. That is, given 4 numbers, try to use them with

arithmetic operations (+ - * /) to get 24. Now we consider the following puzzle:

{input}.

Here is an attempt answer:

{answer}

And we have the following feedback:

{feedback}
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Now using the above feedback, give 'sure' or 'impossible' labels for each formula with

left numbers from each step. Give 'sure' if the formula is correct and can lead to 24

and give 'impossible' if the formula is incorrect or illegal. First repeat the formula

with left numbers from each step above and then give the label, with the following

form: {{formula}} (left: {{left numbers}}): {{label}}.

Critic prompt (for formula evaluation)

Now we would like to play a game of 24. That is, given 4 numbers, try to use them with

arithmetic operations (+ - * /) to get 24. Now we consider the following puzzle:

{input}.

Here is an attempt answer:

{answer}

And we have the following feedback:

{feedback}

Now using the above feedback, give 'sure' or 'impossible' labels for left numbers from

each step. Give 'sure' if the formula is correct and left numbers can lead to 24 and

give 'impossible' if the formula is incorrect or illegal. First repeat the left numbers

from each step above and then give the label, with the following form: {{left

numbers}}: {{label}}.

Elite LLM. We adopt the same prompts used in Tree-of-Thoughts (Yao et al., 2023a) to propose and evaluate formulas,
except that we concatenate the reflections from each step to avoid making repeated mistakes.

Elite prompt (for formula proposal)

Now we would like to play a game of 24. That is, given 4 numbers, try to use them with

arithmetic operations (+ - * /) to get 24.

Evaluate if given numbers can reach 24 and choose labels from 'sure', 'likely' and

'impossible'.

What you have learned about the puzzle are summarized below.

{reflections}

Now use numbers and basic arithmetic operations (+ - * /) to generate possible next

steps. Make sure use steps that is sure to leads to 24 and avoid steps that are

impossible to generate 24. Note that it is possible that we are considering

intermediate steps so the numbers of the input may be less than 4.

Example:

Input: 2 8 8 14

Possible next steps:

2 + 8 = 10 (left: 8 10 14)

8 / 2 = 4 (left: 4 8 14)

14 + 2 = 16 (left: 8 8 16)

2 * 8 = 16 (left: 8 14 16)

8 - 2 = 6 (left: 6 8 14)

14 - 8 = 6 (left: 2 6 8)

55



Reason for Future, Act for Now: A Principled Architecture for Autonomous LLM Agents

14 / 2 = 7 (left: 7 8 8)

14 - 2 = 12 (left: 8 8 12)

Example:

Input: 2 5 8

5 - 2 = 3 (left: 3 8)

5 * 2 = 10 (left: 10 8)

8 / 2 = 4 (left: 4 5)

Now try with the following input:

Input: {input}

Possible next steps:

{input}

Elite prompt (for formula evaluation)

Now we would like to play a game of 24. That is, given 4 numbers, try to use them with

arithmetic operations (+ - * /) to get 24.

Evaluate if given numbers can reach 24 and choose labels from 'sure', 'likely' and

'impossible'.

What you have learned about the puzzle are summarized below.

{reflections}

If the given numbers are already in the feedback above, just give the answer. Otherwise

enumerate possible steps and try to give an approximate answer. Give the final answer

in a separated line.

{input}

Elite prompt (for last step formula evaluation)

Now we would like to play a game of 24. That is, given 4 numbers, try to use them with

arithmetic operations (+ - * /) to get 24.

Evaluate if given numbers can reach 24 and choose labels from 'sure', 'likely' and

'impossible'.

What you have learned about the puzzle are summarized below.

{reflections}

Use numbers and basic arithmetic operations (+ - * /) to obtain 24. Given an input and

an answer, give a judgement (sure/impossible) if the answer is correct, i.e., it uses

each input exactly once and no other numbers, and reach 24.

Input: 4 4 6 8

Answer: (4 + 8) * (6 - 4) = 24

Judge:

sure

Input: 2 9 10 12

Answer: 2 * 12 * (10 - 9) = 24

Judge:

sure
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Input: 4 9 10 13

Answer: (13 - 9) * (10 - 4) = 24

Judge:

sure

Input: 4 4 6 8

Answer: (4 + 8) * (6 - 4) + 1 = 25

Judge:

impossible

Input: 2 9 10 12

Answer: 2 * (12 - 10) = 24

Judge:

impossible

Input: 4 9 10 13

Answer: (13 - 4) * (10 - 9) = 24

Judge:

impossible

Input: {input}

Answer: {answer}

Judge:

For Chain-of-Thought baselines, we adopt the same methodology, and keep the original prompts except for adding reflec-
tions as below.

Elite prompt (for chain-of-thought proposals)

Now we would like to play a game of 24. That is, given 4 numbers, try to use them with

arithmetic operations (+ - * /) to get 24.

Evaluate if given numbers can reach 24 and choose labels from 'sure', 'likely' and

'impossible'.

What you have learned about the puzzle are summarized below.

{reflections}

Now just remember the tips from before (if any) and focus on the new task. Use numbers

and basic arithmetic operations (+ - * /) to obtain 24. Each step, you are only allowed

to choose two of the remaining numbers to obtain a new number.

Input: 4 4 6 8

Steps:

4 + 8 = 12 (left: 4 6 12)

6 - 4 = 2 (left: 2 12)

2 * 12 = 24 (left: 24)

Answer: (6 - 4) * (4 + 8) = 24

Input: 2 9 10 12

Steps:

12 * 2 = 24 (left: 9 10 24)

10 - 9 = 1 (left: 1 24)

24 * 1 = 24 (left: 24)

57



Reason for Future, Act for Now: A Principled Architecture for Autonomous LLM Agents

Answer: (12 * 2) * (10 - 9) = 24

Input: 4 9 10 13

Steps:

13 - 10 = 3 (left: 3 4 9)

9 - 3 = 6 (left: 4 6)

4 * 6 = 24 (left: 24)

Answer: 4 * (9 - (13 - 10)) = 24

Input: 1 4 8 8

Steps:

8 / 4 = 2 (left: 1 2 8)

1 + 2 = 3 (left: 3 8)

3 * 8 = 24 (left: 24)

Answer: (1 + 8 / 4) * 8 = 24

Input: 5 5 5 9

Steps:

5 + 5 = 10 (left: 5 9 10)

10 + 5 = 15 (left: 9 15)

15 + 9 = 24 (left: 24)

Answer: ((5 + 5) + 5) + 9 = 24

Input: {input}

H.2. ALFWorld

Critic LLM. For the LLM instance of the Critic, we prompt it with successful examples for each of the six task
types to generate the value within each episode. Specifically, the critic LLM first determines if the value of the current
state changes. If it changes, the critic LLM then generates the scalar value with the corresponding reason. We provide the
following two examples in the put and cool tasks, respectively.

Critic prompt (for value generation), "put" task

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a

cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder

2, a handtowelholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1, a toiletpaperhanger

1, and a towelholder 1.Your task is to: put some spraybottle on toilet.

> critic: My task requires two sub-goals in order: take a spraybottle and put the

spraybottle on the toilet. My current state satisfies zero of the two sub-goals. The

value is 0/2=0.

> OK.

On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.

> OK.

The cabinet 2 is closed.

> OK.

You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a

spraybottle 2.

> OK.

You pick up the spraybottle 2 from the cabinet 2.
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> critic: Now I take a spraybottle. My current state satisfies the first of the two

sub-goals: take a spraybottle. The value is 1/2=0.5.

> OK.

On the toilet 1, you see a soapbottle 2.

> OK.

You put the spraybottle 2 in/on the toilet 1.

> critic: Now I put the spraybottle on the toilet. My current state satisfies all the

two sub-goals. The value is 2/2=1.

Critic prompt (for value generation), "cool" task

You are in the middle of a room. Looking quickly around you, you see a cabinet 16, a

cabinet 15, a cabinet 14, a cabinet 13, a cabinet 12, a cabinet 11, a cabinet 10, a

cabinet 9, a cabinet 8, a cabinet 7, a cabinet 6, a cabinet 5, a cabinet 4, a cabinet

3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 2, a countertop 1, a

diningtable 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a fridge 1,

a garbagecan 1, a microwave 1, a safe 1, a sinkbasin 1, a stoveburner 4, a stoveburner

3, a stoveburner 2, a stoveburner 1, and a toaster 1.

Your task is to: cool some pan and put it in stoveburner.

> critic: My task requires three sub-goals in order: take a pan, cool the pan with

fridge, and put the pan in the stoveburner. My current state satisfies zero of the

three sub-goals. The value is 0/3=0.

> OK.

On the stoveburner 1, you see nothing.

> OK.

On the stoveburner 2, you see a pot 1.

> OK.

On the stoveburner 3, you see a pan 1.

> OK.

You pick up the pan 1 from the stoveburner 3.

> critic: Now I take a pan. My current state satisfies the first of the three

sub-goals: take a pan. The value is 1/3=0.333.

> OK.

The fridge 1 is closed.

> OK.

You cool the pan 1 using the fridge 1.

> critic: Now I cool the pan. My current state satisfies the first two of the three

sub-goals: take a pan and cool the pan with fridge. The value is 2/3=0.667.

> OK.

On the stoveburner 1, you see nothing.

> OK.

You put the pan 1 in/on the stoveburner 1.
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> critic: Now I put the pan in the stoveburner. My current state satisfies all the

three sub-goals. The value is 3/3=1.

In addition to the prompt for value generation within each episode, we also prompt the Critic LLM to generate summary
feedback according to the past failure trajectory. We use the same prompt for all six task types. Specifically, it contains the
full failure trajectory (observation only), as well as the failure feedback at the end of each trajectory.

Critic prompt (for feedback generation)

You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a

cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a

countertop 3, a countertop 2, a countertop 1, a drawer 3, a drawer 2, a drawer 1, a

fridge 1, a garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a shelf 1, a sinkbasin

1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.

Your task is to: put a clean plate in countertop.

> critic: My task requires three sub-goals in order: take a plate, clean the plate with

sinkbasin, and put the plate on the countertop. My current state satisfies zero of the

three sub-goals. The value is 0/3=0.

> OK.

The drawer 1 is closed.

> OK.

You open the drawer 1. The drawer 1 is open. In it, you see a creditcard 2, a knife 1,

and a spatula 2.

> OK.

On the stoveburner 2, you see a pan 1.

> OK.

You pick up the pan 1 from the stoveburner 2.

> critic: Now I take a pan. My current state satisfies the first of the three

sub-goals: take a plate. The value is 1/3=0.167.

> OK.

On the sinkbasin 1, you see nothing.

> OK.

You put the pan 1 in/on the sinkbasin 1.

> OK.

The microwave 1 is closed.

> OK.

You open the microwave 1. The microwave 1 is open. In it, you see a potato 1.

> OK.

On the garbagecan 1, you see a soapbottle 2.

> OK.

The microwave 1 is open. In it, you see a potato 1.

> OK.

On the coffeemachine 1, you see nothing.

> OK.

On the countertop 2, you see a bread 1, a cellphone 2, a cellphone 1, a papertowelroll

1, a plate 2, and a soapbottle 1.
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> OK.

The drawer 2 is closed.

> OK.

You open the drawer 2. The drawer 2 is open. In it, you see a spatula 1.

> OK.

On the sinkbasin 1, you see a pan 1.

> OK.

On the cabinet 3, you see a cup 1.

> OK.

On the countertop 1, you see a apple 2, a dishsponge 2, a potato 3, and a potato 2.

STATUS: FAIL

Failure feedback: In this environment, my critic assigned a 1/3 value after taking a

pan. However, the task is to take and clean a plate. I noticed that the plate was found

on countertop 2. In the next trial, I will go to countertop 2 to take the plate, then

go to a sinkbasin to clean the plate.

You are in the middle of a room. Looking quickly around you, you see a cabinet 20, a

cabinet 19, a cabinet 18, a cabinet 17, a cabinet 16, a cabinet 15, a cabinet 14, a

cabinet 13, a cabinet 12, a cabinet 11, a cabinet 10, a cabinet 9, a cabinet 8, a

cabinet 7, a cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet

1, a coffeemachine 1, a countertop 3, a countertop 2, a countertop 1, a drawer 3, a

drawer 2, a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a shelf 3, a shelf 2,

a shelf 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a

stoveburner 1, and a toaster 1.

Your task is to: put two saltshaker in drawer.

> critic: My task requires four sub-goals in order: take the first saltshaker, put the

first saltshaker in the drawer, take the second saltshaker, and put the second

saltshaker in the drawer. My current state satisfies zero of the four sub-goals. The

value is 0/4=0.

> OK.

On the coffeemachine 1, you see a cup 1, a fork 4, and a potato 2.

> OK.

On the toaster 1, you see a pan 1 and a knife 1.

> OK.

On the countertop 3, you see a bowl 2, a houseplant 1, a knife 2, a peppershaker 1, a

saltshaker 4, a soapbottle 1, a spatula 2, and a tomato 3.

> OK.

You pick up the saltshaker 4 from the countertop 3.

> critic: Now I take the first saltshaker. My current state satisfies the first of the

four sub-goals: take the first saltshaker. The value is 1/4=0.25.

> OK.

The drawer 1 is open. In it, you see nothing.

> OK.
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You put the saltshaker 4 in/on the drawer 1.

> critic: Now I put the first creditcard in the dresser. My current state satisfies the

first two of the four sub-goals: take the first saltshaker and put the first saltshaker

in the drawer. The value is 2/4=0.5.

> OK.

On the stoveburner 1, you see a bread 1.

> OK.

On the stoveburner 2, you see a potato 1, a pot 2, and a knife 3.

> OK.

On the stoveburner 3, you see a fork 1, a fork 2, and a cup 2.

> OK.

On the stoveburner 4, you see a peppershaker 1 and a pan 2.

> OK.

You pick up the peppershaker 1 from the stoveburner 4.

> critic: Now I take the second saltshaker. My current state satisfies the first three

of the four sub-goals: take the first saltshaker, put the first saltshaker in the

drawer, and take the second saltshaker. The value is 3/4=0.75.

> OK.

The drawer 1 is open. In it, you see a saltshaker 4.

> OK.

You put the peppershaker 1 in/on the drawer 1.

> critic: Now I put the second creditcard in the dresser. My current state satisfies

all the four sub-goals. The value is 4/4=1.

STATUS: FAIL

Failure feedback: In this environment, my critic assigned a 1/4 value after taking a

saltshaker and a 3/4 value after taking a peppershaker. However, the task is to put two

saltshaker in the drawer. I noticed that one saltshaker was put on the countertop 3. I

didn't find the second saltshaker in this trial. In the next trial, I will first go to

countertop 3 to take the first saltshaker and then explore other locations to find a

second saltshaker, including drawer 2-3, shelf 1-3, and cabinet 1-20.

You are in the middle of a room. Looking quickly around you, you see a cabinet 5, a

cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 3, a

countertop 2, a countertop 1, a drawer 3, a drawer 2, a drawer 1, a fridge 1, a

garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a shelf 1, a sinkbasin 1, a

stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.

Your task is to: put a cool tomato in microwave.

> critic: My task requires three sub-goals in order: take a tomato, cool the tomato

with fridge, and put the tomato in the microwave. My current state satisfies zero of

the three sub-goals. The value is 0/3=0.

> OK.

On the countertop 1, you see a mug 1, and a saltshaker 1.

> OK.
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On the sinkbasin 1, you see a fork 1, a glassbottle 2, a spatula 1, and a spoon 3.

> OK.

You pick up the fork 1 from the sinkbasin 1.

> critic: Now I take a fork. My current state satisfies the first of the six sub-goals:

take a fork. The value is 1/3=0.333.

> OK.

On the countertop 2, you see a butterknife 2, a butterknife 1, a cellphone 1, a

glassbottle 1, a knife 1, a lettuce 3, a peppershaker 1, a statue 2, a statue 1, and a

vase 1.

> OK.

On the countertop 3, you see a bread 1, a butterknife 3, a creditcard 2, a houseplant

1, a knife 3, a knife 2, a mug 2, a peppershaker 2, and a spatula 2.

> OK.

On the stoveburner 4, you see a pan 1.

> OK.

The drawer 3 is closed.

> OK.

You open the drawer 3. The drawer 3 is open. In it, you see a saltshaker 3.

> OK.

The fridge 1 is closed.

> OK.

On the countertop 3, you see a bread 1, a butterknife 3, a creditcard 2, a houseplant

1, a knife 3, a knife 2, a mug 2, a peppershaker 2, and a spatula 2.

> OK.

On the cabinet 1, you see a dishsponge 1.

> OK.

The cabinet 2 is closed.

> OK.

You open the cabinet 2. The cabinet 2 is open. In it, you see nothing.

> OK.

On the cabinet 3, you see a cd 1 and a plate 4.

STATUS: FAIL

Failure feedback: In this environment, my critic assigned a 1/3 value after taking a

fork. However, the task is to take and cool a tomato. I didn't find the tomato in this

trial. In the next trial, I will explore other locations to find a tomato, including

cabinet 4, cabinet 5, coffeemachine 1, microwave 1, shelf 1-3, stoveburner 1-4 and

toaster 1, etc.

Model LLM and Elite LLM. We use the same prompt for both the Model LLM and the Elite LLM. Specifically, we
simply prompt these two instances with the successful past trajectories (observations and actions) for each task type and
expect the Model LLM and Elite LLM to generate the possible next observation and the potential actions, respectively.
Below, we provide two prompt examples in the put and cool tasks, respectively.
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Model & Elite prompt, "put" task

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a

cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder

2, a handtowelholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1, a toiletpaperhanger

1, and a towelholder 1.

Your task is to: put some spraybottle on toilet.

> go to cabinet 1

On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.

> go to cabinet 2

The cabinet 2 is closed.

> open cabinet 2

You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a

spraybottle 2.

> take spraybottle 2 from cabinet 2

You pick up the spraybottle 2 from the cabinet 2.

> go to toilet 1

On the toilet 1, you see a soapbottle 2.

> put spraybottle 2 in/on toilet 1

You put the spraybottle 2 in/on the toilet 1.

Model & Elite prompt, "cool" task

You are in the middle of a room. Looking quickly around you, you see a cabinet 16, a

cabinet 15, a cabinet 14, a cabinet 13, a cabinet 12, a cabinet 11, a cabinet 10, a

cabinet 9, a cabinet 8, a cabinet 7, a cabinet 6, a cabinet 5, a cabinet 4, a cabinet

3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 2, a countertop 1, a

diningtable 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a fridge 1,

a garbagecan 1, a microwave 1, a safe 1, a sinkbasin 1, a stoveburner 4, a stoveburner

3, a stoveburner 2, a stoveburner 1, and a toaster 1.

Your task is to: cool some pan and put it in stoveburner.

> go to stoveburner 1

On the stoveburner 1, you see nothing.

> go to stoveburner 2

On the stoveburner 2, you see a pot 1.

> go to stoveburner 3

On the stoveburner 3, you see a pan 1.

> take pan 1 from stoveburner 3

You pick up the pan 1 from the stoveburner 3.

> go to fridge 1

The fridge 1 is closed.

> cool pan 1 with fridge 1

You cool the pan 1 using the fridge 1.

> go to stoveburner 1

On the stoveburner 1, you see nothing.
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> put pan 1 in/on stoveburner 1

You put the pan 1 in/on the stoveburner 1.

H.3. Blocksworld

Critic LLM. We evaluate RAFA and RAP with the reward scheme proposed by (Hao et al., 2023). We prompt the
language model with the previous state-action trajectory and calculate the log probabilities of taking each feasible action.
Given the action taken in the current state, the Model LLM predicts the next state and we calculate the percentage of
subgoals completed in the next state. We adopt the prompt examples from (Hao et al., 2023) to ensure the fairness in
comparison.

Critic prompt example (for log probability), "step-4" task

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here

are the actions I can do

Pick up a block

Unstack a block from on top of another block

Put down a block

Stack a block on top of another block

I have the following restrictions on my actions:

I can only pick up or unstack one block at a time.

I can only pick up or unstack a block if my hand is empty.

I can only pick up a block if the block is on the table and the block is clear. A block

is clear if the block has no other blocks on top of it and if the block is not picked

up.

I can only unstack a block from on top of another block if the block I am unstacking

was really on top of the other block.

I can only unstack a block from on top of another block if the block I am unstacking is

clear.

Once I pick up or unstack a block, I am holding the block.

I can only put down a block that I am holding.

I can only stack a block on top of another block if I am holding the block being

stacked.

I can only stack a block on top of another block if the block onto which I am stacking

the block is clear.

Once I put down or stack a block, my hand becomes empty.

[STATEMENT]

As initial conditions I have that, the red block is clear, the yellow block is clear,

the hand is empty, the red block is on top of the blue block, the yellow block is on

top of the orange block, the blue block is on the table and the orange block is on the

table.

My goal is to have that the orange block is on top of the red block.
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My plan is as follows:

[PLAN]

unstack the yellow block from on top of the orange block

put down the yellow block

pick up the orange block

stack the orange block on top of the red block

[PLAN END]

[STATEMENT]

As initial conditions I have that, the orange block is clear, the yellow block is

clear, the hand is empty, the blue block is on top of the red block, the orange block

is on top of the blue block, the red block is on the table and the yellow block is on

the table.

My goal is to have that the blue block is on top of the red block and the yellow block

is on top of the orange block.

My plan is as follows:

[PLAN]

pick up the yellow block

stack the yellow block on top of the orange block

[PLAN END]

[STATEMENT]

As initial conditions I have that, the red block is clear, the blue block is clear, the

orange block is clear, the hand is empty, the blue block is on top of the yellow block,

the red block is on the table, the orange block is on the table and the yellow block is

on the table.

My goal is to have that the blue block is on top of the orange block and the yellow

block is on top of the red block.

My plan is as follows:

[PLAN]

unstack the blue block from on top of the yellow block

stack the blue block on top of the orange block

pick up the yellow block

stack the yellow block on top of the red block

[PLAN END]

[STATEMENT]
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As initial conditions I have that, the red block is clear, the blue block is clear, the

yellow block is clear, the hand is empty, the yellow block is on top of the orange

block, the red block is on the table, the blue block is on the table and the orange

block is on the table.

My goal is to have that the orange block is on top of the blue block and the yellow

block is on top of the red block.

My plan is as follows:

[PLAN]

unstack the yellow block from on top of the orange block

stack the yellow block on top of the red block

pick up the orange block

stack the orange block on top of the blue block

[PLAN END]

Model LLM. we prompt the Model LLM with few-shot examples and the current state and action. The Model LLM
generates the predicted next state description. We adopt the prompt examples from (Hao et al., 2023) to ensure the fairness
in comparison.

Model prompt template, "Pick up" action

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here

are the actions I can do

Pick up a block

Unstack a block from on top of another block

Put down a block

Stack a block on top of another block

I have the following restrictions on my actions:

I can only pick up or unstack one block at a time.

I can only pick up or unstack a block if my hand is empty.

I can only pick up a block if the block is on the table and the block is clear. A block

is clear if the block has no other blocks on top of it and if the block is not picked

up.

I can only unstack a block from on top of another block if the block I am unstacking

was really on top of the other block.

I can only unstack a block from on top of another block if the block I am unstacking is

clear. Once I pick up or unstack a block, I am holding the block.

I can only put down a block that I am holding.

I can only stack a block on top of another block if I am holding the block being

stacked.

I can only stack a block on top of another block if the block onto which I am stacking

the block is clear. Once I put down or stack a block, my hand becomes empty.
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After being given an initial state and an action, give the new state after performing

the action.

[SCENARIO 1]

[STATE 0] I have that, the white block is clear, the cyan block is clear, the brown

block is clear, the hand is empty, the white block is on top of the purple block, the

purple block is on the table, the cyan block is on the table and the brown block is on

the table.

[ACTION] Pick up the brown block.

[CHANGE] The hand was empty and is now holding the brown block, the brown block was on

the table and is now in the hand, and the brown block is no longer clear.

[STATE 1] I have that, the white block is clear, the cyan block is clear, the brown

block is in the hand, the hand is holding the brown block, the white block is on top of

the purple block, the purple block is on the table and the cyan block is on the table.

[SCENARIO 2]

[STATE 0] I have that, the purple block is clear, the cyan block is clear, the white

block is clear, the hand is empty, the white block is on top of the brown block, the

purple block is on the table, the cyan block is on the table and the brown block is on

the table.

[ACTION] Pick up the cyan block.

[CHANGE] The hand was empty and is now holding the cyan block, the cyan block was on

the table and is now in the hand, and the cyan block is no longer clear.

[STATE 1] I have that, the cyan block is in the hand, the white block is clear, the

purple block is clear, the hand is holding the cyan block, the white block is on top of

the brown block, the purple block is on the table and the brown block is on the table.

Model prompt template, "Unstack" action

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here

are the actions I can do

Pick up a block

Unstack a block from on top of another block

Put down a block

Stack a block on top of another block

I have the following restrictions on my actions:

I can only pick up or unstack one block at a time.

I can only pick up or unstack a block if my hand is empty.

I can only pick up a block if the block is on the table and the block is clear. A block

is clear if the block has no other blocks on top of it and if the block is not picked

up.
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I can only unstack a block from on top of another block if the block I am unstacking

was really on top of the other block.

I can only unstack a block from on top of another block if the block I am unstacking is

clear. Once I pick up or unstack a block, I am holding the block.

I can only put down a block that I am holding.

I can only stack a block on top of another block if I am holding the block being

stacked.

I can only stack a block on top of another block if the block onto which I am stacking

the block is clear. Once I put down or stack a block, my hand becomes empty.

After being given an initial state and an action, give the new state after performing

the action.

[SCENARIO 1]

[STATE 0] I have that, the white block is clear, the cyan block is clear, the brown

block is clear, the hand is empty, the white block is on top of the purple block, the

purple block is on the table, the cyan block is on the table and the brown block is on

the table.

[ACTION] Unstack the white block from on top of the purple block.

[CHANGE] The hand was empty and is now holding the white block, the white block was on

top of the purple block and is now in the hand, the white block is no longer clear, and

the purple block is now clear.

[STATE 1] I have that, the purple block is clear, the cyan block is clear, the brown

block is clear, the hand is holding the white block, the white block is in the hand,

the purple block is on the table, the cyan block is on the table and the brown block is

on the table.

[SCENARIO 2]

[STATE 0] I have that, the purple block is clear, the cyan block is clear, the white

block is clear, the hand is empty, the cyan block is on top of the brown block, the

purple block is on the table, the white block is on the table and the brown block is on

the table.

[ACTION] Unstack the cyan block from on top of the brown block.

[CHANGE] The hand was empty and is now holding the cyan block, the cyan block was on

top of the brown block and is now in the hand, the cyan block is no longer clear, and

the brown block is now clear.

[STATE 1] I have that, the purple block is clear, the brown block is clear, the cyan

block is in the hand, the white block is clear, the hand is holding the cyan block, the

purple block is on the table, the white block is on the table and the brown block is on

the table.
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Model prompt template, "Put down" action

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here

are the actions I can do

Pick up a block

Unstack a block from on top of another block

Put down a block

Stack a block on top of another block

I have the following restrictions on my actions:

I can only pick up or unstack one block at a time.

I can only pick up or unstack a block if my hand is empty.

I can only pick up a block if the block is on the table and the block is clear. A block

is clear if the block has no other blocks on top of it and if the block is not picked

up.

I can only unstack a block from on top of another block if the block I am unstacking

was really on top of the other block.

I can only unstack a block from on top of another block if the block I am unstacking is

clear. Once I pick up or unstack a block, I am holding the block.

I can only put down a block that I am holding.

I can only stack a block on top of another block if I am holding the block being

stacked.

I can only stack a block on top of another block if the block onto which I am stacking

the block is clear. Once I put down or stack a block, my hand becomes empty.

After being given an initial state and an action, give the new state after performing

the action.

[SCENARIO 1]

[STATE 0] I have that, the white block is clear, the purple block is clear, the cyan

block is in the hand, the brown block is clear, the hand is holding the cyan block, the

white block is on the table, the purple block is on the table, and the brown block is

on the table.

[ACTION] Put down the cyan block.

[CHANGE] The hand was holding the cyan block and is now empty, the cyan block was in

the hand and is now on the table, and the cyan block is now clear.

[STATE 1] I have that, the cyan block is clear, the purple block is clear, the white

block is clear, the brown block is clear, the hand is empty, the white block is on the

table, the purple block is on the table, the cyan block is on the table, and the brown

block is on the table.

[SCENARIO 2]
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[STATE 0] I have that, the purple block is clear, the black block is in the hand, the

white block is clear, the hand is holding the black block, the white block is on top of

the brown block, the purple block is on the table, and the brown block is on the table.

[ACTION] Put down the black block.

[CHANGE] The hand was holding the black block and is now empty, the black block was in

the hand and is now on the table, and the black block is now clear.

[STATE 1] I have that, the black block is clear, the purple block is clear, the white

block is clear, the hand is empty, the white block is on top of the brown block, the

purple block is on the table, the brown block is on the table, and the black block is

on the table.

Model prompt template, "Stack" action

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here

are the actions I can do

Pick up a block

Unstack a block from on top of another block

Put down a block

Stack a block on top of another block

I have the following restrictions on my actions:

I can only pick up or unstack one block at a time.

I can only pick up or unstack a block if my hand is empty.

I can only pick up a block if the block is on the table and the block is clear. A block

is clear if the block has no other blocks on top of it and if the block is not picked

up.

I can only unstack a block from on top of another block if the block I am unstacking

was really on top of the other block.

I can only unstack a block from on top of another block if the block I am unstacking is

clear. Once I pick up or unstack a block, I am holding the block.

I can only put down a block that I am holding.

I can only stack a block on top of another block if I am holding the block being

stacked.

I can only stack a block on top of another block if the block onto which I am stacking

the block is clear. Once I put down or stack a block, my hand becomes empty.

After being given an initial state and an action, give the new state after performing

the action.

[SCENARIO 1]
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[STATE 0] I have that, the white block is clear, the purple block is clear, the cyan

block is in the hand, the brown block is clear, the hand is holding the cyan block, the

white block is on the table, the purple block is on the table, and the brown block is

on the table.

[ACTION] Stack the cyan block on top of the brown block.

[CHANGE] The hand was holding the cyan block and is now empty, the cyan block was in

the hand and is now on top of the brown block, the brown block is no longer clear, and

the cyan block is now clear.

[STATE 1] I have that, the cyan block is clear, the purple block is clear, the white

block is clear, the hand is empty, the cyan block is on top of the brown block, the

brown block is on the table, the purple block is on the table, and the white block is

on the table.

[SCENARIO 2]

[STATE 0] I have that, the purple block is clear, the black block is in the hand, the

white block is clear, the hand is holding the black block, the white block is on top of

the brown block, the purple block is on the table, and the brown block is on the table.

[ACTION] Stack the black block on top of the purple block.

[CHANGE] The hand was holding the black block and is now empty, the black block was in

the hand and is now on top of the purple block, the purple block is no longer clear,

and the black block is now clear.

[STATE 1] I have that, the black block is clear, the white block is clear, the hand is

empty, the black block is on top of the purple block, the white block is on top of the

brown block, the brown block is on the table, and the purple block is on the table.
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H.4. Tic-Tac-Toe

Elite LLM

Elite prompt, propose n actions

In the game of Tic-Tac-Toe, two players, "X" and "O," alternate placing their symbols

on a 3x3 grid. The objective is to be the first to get three of their symbols in a row,

either horizontally, vertically, or diagonally. We use numbers to indicate empty

positions, and then replace them with "X" or "O" as moves are made. For example, an

empty board is denoted by

1 | 2 | 3

---------

4 | 5 | 6

---------

7 | 8 | 9

Your task is to identify the optimal position for the next move based on the current

board state. Assume that it's your turn and you're playing as "{role}". Please make

sure the optimal position is EMPTY. For example, in the following Tic-Tac-Toe Board:

1 | 2 | 3

---------

4 | X | 6

---------

7 | 8 | 9

Position 5 is occupied by "X". Thus, position 5 is not an optimal position. Provide

only the optimal position in the first line. In the second line, give a brief

explanation for this choice.

Current Tic-Tac-Toe Board:

{state}

Role: {role}

Optimal Position:

Model LLM

Model prompt, predict next state

Predict the Next State of the Tic-Tac-Toe Board
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In a game of Tic-Tac-Toe, two players, "X" and "O," take turns to place their symbols

on a 3x3 grid. Your task is to predict what the board will look like after a specified

move has been made.

Examples

{examples}

Now, Predict the Next State of the Following Tic-Tac-Toe Board:

Initial Tic-Tac-Toe Board:

{state}

Move: Player puts "{role}" in position {action}.

Updated Board:

Model prompt, predict opponent’s action

In Tic-Tac-Toe, each player takes turns placing their respective symbols ("X" or "O")

on a 3x3 board. Your task is to predict where the opponent will place their symbol

based on their past moves and the current board state.

Example

Tic-Tac-Toe Board:

O | X | O

---------

X | O | X

---------

7 | 8 | X

Opponent's Move: "O" in position 7

{examples}

Here's how the Tic-Tac-Toe board currently looks:

Tic-Tac-Toe Board:

{state}

Given the history and current board state, where do you think the opponent will place

their "{role}" next? Please make sure the output is an empty position without "X" or

"O".

Opponent's Move: "{role}" in position
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Critic LLM

Critic prompt, evaluate winner

Determine the Winner in a Tic-Tac-Toe Game

In Tic-Tac-Toe, two players, "X" and "O" take turns to place their respective symbols

on a 3x3 board. The first player to get three of their symbols in a row, either

horizontally, vertically, or diagonally, wins the game. Your task is to evaluate the

board state and determine if there is a winner.

Examples

Example

Tic-Tac-Toe Board:

O | X | O

---------

X | X | X

---------

O | O | X

Question: Is there a winner?

Answer: Let's think step by step.

First row: O X O, no winner

Second row: X X X, X wins

Therefore, "X" wins

Example

Tic-Tac-Toe Board:

X | 2 | O

---------

4 | O | X

---------

O | X | 9

Question: Is there a winner?

Answer: Let's think step by step.

First row: X 2 O, no winner
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Second row: 4 O X, no winner

Third row: O X 9, no winner

First column: X 4 O, no winner

Second column: 2 O X, no winner

Thrid column: O X 9, no winner

Main diagonal: X O 9, no winner

Anti-diagonal: O O O, O wins

Therefore, "O" wins.

{examples}

Now, for the Current Tic-Tac-Toe Board:

Tic-Tac-Toe Board:

{state}

Question: Is there a winner?

Answer: Let's think step by step.

Critic prompt, evaluate tie (when there is no winner)

In the game of Tic-Tac-Toe, two players alternate turns to fill a 3x3 grid with their

respective symbols: "X" and "O". A board is considered "completely filled" when all

nine cells of the grid contain either an 'X' or an 'O', with no empty spaces or other

characters.

Examples:

{examples}

Now for the Current Tic-Tac-Toe Board:

Tic-Tac-Toe Board:

{state}

Is the board completely filled?

Answer:
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