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ABSTRACT

Despite the success of pretrained masked language models (MLM), why MLM
pretraining is useful is still a question not fully answered. In this work we the-
oretically and empirically show that MLM pretraining makes models robust to
lexicon-level spurious features, partly answering the question. Our explanation is
that MLM pretraining may alleviate problems brought by simplicity bias (Shah
et al., 2020), which refers to the phenomenon that a deep model tends to rely exces-
sively on simple features. In NLP tasks, those simple features could be token-level
features whose spurious association with the label can be learned easily. We show
that MLM pretraining makes learning from the context easier. Thus, pretrained
models are less likely to rely excessively on a single token. We also explore the
theoretical explanations of MLM’s efficacy in causal settings. Compared with Wei
et al. (2021), we achieve similar results with milder assumptions. Finally, we close
the gap between our theories and real-world practices by conducting experiments
on real-world tasks.

1 INTRODUCTION

Figure 1: The pitfall of simplicity bias
Shah et al. (2020): The solid line is a
simple (linear) decision boundary that
utilizes only one dimension, while the
dashed line is a more complex deci-
sion boundary that utilizes two dimen-
sions and maximizes the margin.

The question “why is masked language model (MLM) pre-
training (Devlin et al., 2019; Liu et al., 2019) useful?” has
not been totally answered. In this work, as an initial step
toward the answer, we show and explain that MLM pretrain-
ing makes the model robust to lexicon-level features that are
spuriously associated with the target label. It gives the model
a better generalization capability under distribution shift.

Previous studies have empirically shown the robustness of
MLM pretrained models. Hao et al. (2019) show that MLM
pretraining leads to wider optima and better generalization
capability. Hendrycks et al. (2020) and Tu et al. (2020) show
that pretrained models are more robust to out-of-distribution
data and spurious features. However, it remains unanswered
why pretrained models are more robust.

We conjecture that models trained from scratch suffer from
the pitfall of simplicity bias Shah et al. (2020) (Figure 1).
Shah et al. (2020) and Kalimeris et al. (2019) showed that
deep networks tend to converge to a simple decision bound-
ary that involves only a few features. The networks may not
utilize all the features and thus may not maximize the margin,
which results in worse robustness. A consequence of this could be that a model may excessively rely
on a feature that has spurious association with the label and ignore the other features that are more
robust. In the studies of Shah et al. (2020) and Kalimeris et al. (2019), they investigated networks
with continuous input. Lovering et al. (2021) discovered similar results on synthetic NLP tasks,
where the inputs are discrete. We will further explore this discrete setting in this work.

We start the exploration with the following assumptions: Let the sentence, label pair be X,Y .

Assumption 1. We assume that from X , we can extract two features X1 and X2.
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Assumption 2. X1 is a spurious feature that has strong association with Y . Specifically, it means
that, solely relying on X1, one can predict with high accuracy over the data distribution, but cannot
be 100% correctly.

Assumption 3. X2 is a robust feature based on which Y can be predicted with 100% accuracy.
Namely, there exists a deterministic mapping fX2→Y that maps X2 to Y .

The assumptions above are realistic in some NLP tasks. In NLP tasks, the input X is a sequence
of tokens. Some tasks satisfy Assumption 1: X can be decomposed into X1 and X2, where X1

is the presence of certain tokens, and X2 is the context of the token. Thus, X2 has a much higher
dimensionality than X1. As shown by the analysis of Gardner et al. (2021), there are indeed datasets
where Assumption 2 is true. However, if Assumption 3 is true, we would desire the model to rely on
X2, which contains the semantics of the input X .

With these assumptions, in Section 2 we empirically demonstrate that spurious features in discrete
inputs can cause problems as in the continuous cases Shah et al. (2020); Kalimeris et al. (2019).
We show that, possibly due to the simplicity bias, a deep model is likely to excessively rely on X1

and to rely on X2 less. In Section 3.1 and Section 3.2 we provide a theoretical explanation of how
MLM pretraining makes a model robust to spurious features. Let Π1 be the conditional probability
P (X1|X2). We show (1) the relation between the mutual information I(Π1;Y ) ≥ I(X1;Y ) and
that (2) the convergence rate of learning from Π1 is of the same order as learning from X1. That is,
when the MLM model can perfectly model the probability P (X1|X2) and thus generate perfect Π1,
learning from Π1 is as easy as learning from X1. As a result, the model will be more likely to rely on
Π1. Since Π1 is estimated based on X2, higher reliance on Π1 also implies higher reliance on the
robust feature X2. This avoids the pitfall of simplicity bias that the model relies excessively on X1.
To relax Assumption 3, we make one step further by considering causal settings in Section 3.3.

The above results partly explain why MLM pretrining is useful for NLP. Denote a sequence of
tokens as X = 〈X1, X2, · · · , XL〉. During the MLM pretraining process, each token is masked
randomly at a certain probability, and the training objective is to predict the masked tokens with the
maximum likelihood loss. As a result, the model is capable of estimating the conditional probability
P (Xi|X \Xi) for all i = 1, 2, · · · , L. Even though which of the tokens is spurious is unknown, as
long as the spurious token has a non-zero probability to be masked during pretraining, MLM can
estimate its distribution conditioned on the context and thus can reduce the reliance on it.

Finally, we close the gap between our theories and reality. One major gap is that, in reality, we do not
use the conditional probability for downstream tasks. Instead, we feed the input X without masking
any token and fine-tune the model along with a shallow layer over its output. Regardless of that, we
hypothesize that the robustness brought by MLM pretraining still exists. To prove that, in Section 4
we use the toy example and verify the effect of MLM pretraining when using the common practice
for fine-tuning. In Section 5, we validate our theories with two real-world NLP tasks.

In sum, our study leads to new research directions. Firstly, we provide a new explanation of MLM
pretraing’s efficacy. Unlike the previous purely theoretical studies Saunshi et al. (2021); Wei et al.
(2021), our assumptions are milder and more realistic. Secondly, we study NLP robustness from the
perspective of self-supervised model, which has been widely used since Word2vec Mikolov et al.
(2013) and thus is indispensable to the generalization to unseen data. We reveal the mechanism that
leads to its robustness, which may enable us to further reinforce it in the future.

2 A TOY EXAMPLE

To show that spurious association can cause difficulty of convergence, we construct a toy example
with random variables X1, X2, Y and experimental variables (d2, ν). In our setting, the random
variables X1, X2, Y satisfy the assumptions mentioned above, and the experimental variables ν, d2

control the the strength the spurious association and the difficulty of learning from the robust features.
Finally, we measure the difficulty of the task for different (d2, ν) by counting the number of updates
required for a model to converge.

Specially, we design the relationship between the random variables in the following way. Let the
dimension of the random variables X1 and X2 be 2 and d2 respectively. Their value x1 ∈ X1 =
{e1, e2} and x2 ∈ X2 = {e1, · · · , ed2}, where ei is the one-hot vector whose ith element is 1. We
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1 layer 2 layers 3 layers
d2 ν w/o w/o pre w/ pre w/o pre w/ pre

50

0.04 3680 (189.5) 691 (55.8) 614 (169.1) 302 (47.2) 249 (53.7)
0.10 2664 (121.2) 530 (30.6) 441 (134.9) 242 (27.6) 180 (37.5)
0.25 1420 (96.0) 352 (23.8) 300 (62.0) 179 (13.8) 148 (28.7)
0.50 306 (79.8) 141 (40.7) 118 (33.4) 106 (23.1) 89 (24.0)

100

0.04 5466 (170.1) 945 (57.2) 689 (225.3) 431 (51.1) 275 (72.1)
0.10 3789 (99.2) 677 (32.2) 478 (142.9) 317 (30.3) 208 (44.3)
0.25 1952 (64.9) 428 (13.1) 330 (85.0) 214 (16.2) 169 (32.5)
0.50 330 (78.0) 156 (34.0) 133 (41.2) 128 (28.2) 112 (36.1)

500

0.04 11127 (265.9) 1953 (112.5) 857 (442.6) 792 (69.8) 431 (88.4)
0.10 7912 (169.2) 1279 (67.5) 657 (234.9) 550 (46.7) 402 (97.0)
0.25 4321 (152.3) 772 (35.5) 501 (133.5) 399 (42.3) 391 (66.0)
0.50 576 (150.0) 392 (70.2) 407 (81.1) 367 (69.1) 386 (80.0)

Table 1: The number of iterations a model w/ or w/o pretraining requires to converge. The number is
the average of 25 runs with different random seeds, and the number in parentheses is the standard
deviation.

make X1 depends only on X2, so it is not a causal feature of Y . We control the strength of the
association between X1 and Y with ν < 0.5, making X1 = Y with probability 1 − ν. Given a ν,
we design the relation between X1 and X2 in a way that maximize the number of dimensions in X2

containing no information about X1. Denote with Ẋ2 the middle 2νd2 dimensions of X2, i.e. the
bd2/2− νd2cth to the bd2/2 + νd2cth elements in X2, the random process is as follows

X2 = ei, i ∼ Uniform(1, d2)

Y =

{
−1 if X2 = ei for some i < d2/2

+1 otherwise

X1 =

{
ei, i ∼ Uniform(1, 2) If ẋ2 6= 0

f(X2) Otherwise
,

(1)

where f(X2) = e1 if X2 = ei for some i < d2/2, and f(X2) = e2 otherwise 1. In this way,
predicting Y solely based on the spurious feature X1 can achieve accuracy 1− ν.

We then inspect the effect of using different (ν, d2), the strength of spurious association between X1

and Y and the difficulty of learning from X2. Since it is a linearly separable problem, we choose
linear networks as our model. We draw training samples ([X1;X2], Y ) pairs from the random process
defined in 1. We use Adam optimization with learning rate 0.001 and the cross-entropy loss. In
addition to single-layer linear networks, we also try over-parameterized 2-layer and 3-layer linear
networks. The hidden size is [10, 32]. Since the task is linear separable and our model is also linear,
we can check whether the learned weight can lead to 100% accuracy in the defined distribution. We
check it every 25 iterations. We say a model has converged if it is 100% accurate for 5 consecutive
checks. We report the number of the iterations required before it converges for different ν and d2.

Even though it is a linear-separable convex optimization problem, our results in Table 1 show that
the strength of the spurious association can impact the number of iterations required to converge.
We observe that when ν < 0.5, the models tend to be trapped by the spurious feature, sticking at
accuracy 1 − ν for iterations. When the spurious relation between X1 and Y is stronger, i.e. ν is
smaller, the number of iterations required to converge is larger. In addition, the number of iterations
is also larger when the d2 is larger. An intuitive explanation is that the learning signal from X2 is
more sparse when d2 is larger.

1Uniform(a, b) is the uniform distribution over {n}bn=a.
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3 A THEORETICAL EXPLANATION OF THE EFFICACY OF MLM PRETRAINING

3.1 P (X1|X2) IS MORE INFORMATIVE THAN X2

The toy example above motivates us to consider the information contained in P (X1|X2). In the toy
example, when predicting P (Y = 0|X), if we simply output P (X1 = e1|X2), then the accuracy of
our prediction of Y will be as high as predicting Y solely based on X1. It motivates us to inspect
the reliability of the estimated P (X1|X2) as a feature for the prediction of Y compared to X1. Let
Π1 be a |X1|-dimensional random variable whose value is P (X1|X2) 2. We can prove that when
P (X1|X2) is estimated perfectly, Π1 is at least as informative as X1.

Lemma 1. When X1, X2 are discrete, if Π1 perfect, namely the value of Π1 is exactly P (·|X2), then
the mutual information I(X1; Π1) = I(X1;X2). (Proof: Appendix A.1)

Compared to previous works Hjelm et al. (2019); Belghazi et al. (2018); Oord et al. (2018); Kong et al.
(2020) that show some self-supervised training objectives are lower bounds of the mutual information
I(X1;X2), we directly show that the output of the MLM, Π, maximizes the mutual information, since
I(X1; f(X2)) ≤ I(X1;X2) for any f . Moreover, instead of explaining the efficacy of pretraining
with the infomax principle Linsker (1988); Bell & Sejnowski (1995), our theories below provide a
different perspective.

Theorem 1. If Π is perfect,
I(Π;Y ) ≥ I(X1;Y ) (2)

Proof. Since Π is perfect, by Lemma 1, we have

I(X1;X2) = I(X1; Π). (3)

By data processing inequality, Equation 3 implies I(X1;X2|Π) = 0. By Assumption 3, a deter-
ministic mapping fX2→Y from X2 to Y exists. Applying data processing inequality again, we
have

I(X1, X2|Π) ≥ I(X1, fX2→Y (X2)|Π) = I(X1, Y |Π) ≥ 0, (4)

which implies I(Y,X1|Π) = 0. Accordingly,

H(Y |Π) = H(Y |X1,Π) ≤H(Y |X1) (5)

Theorem 1 shows that Π is a more informative feature thanX1. However, a model does not necessarily
rely more on a more informative feature if it is not easy. We will discuss more in the next section.

3.2 LEARNING FROM Π IS EASY

It is important that learning from Π is easy. Because of simplicity bias, a neural network model is
likely to rely on the easy-to-learn features Shah et al. (2020); Kalimeris et al. (2019). We conjecture
that a model excessively relies on the spurious feature X1 when learning from X1 is easier than
learning from the robust feature X2. If learning from Π is easy, then the model will rely on Π
more and thus will rely on X1 less. However, features with higher mutual information to Y are not
necessarily easy to learn. For instance, although X2 is more informative, models tend to rely on X1

instead of X2 at the beginning of the training process. To show that MLM can mitigate the issue
brought by simplicity bias, we need to show learning from Π is easy.

Therefore, we have the following theorem that implies learning from Π is at least as easy as learning
from X1:

Theorem 2. Let h̃(Dn)
X1

: X1 → Y be the classifier trained with MLE loss using n data pairs

(x
(1)
1 , y(1)), (x

(2)
1 , y(2)), · · · (x(n)

1 , y(n)), and the converged classifier be h̃∗X1
. There exists a learning

2We will omit the subscript of Π1 when there is no ambiguity.
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(a) Causal setting

Z Y
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X1

(b) Anticausal setting

Z X2

X1

Y

X3

(c) A case where I(Π3;Y ) ≥
I(Π1;Y ) is possible.

Figure 2: The causal settings of the (X,Y ) pairs.

Ours Wei et al. (2021)

structural assumption X,Y follow Figure 2b. X,Y follow an HMM.
linear independence assum. {P (X1|y)|y ∈ Y} {P (X0|H0 = h)|h ∈ H}
implication I(P (X1|X2);Y ) = I(X2;Y ) I(P (H0|X);Y ) = I(X;Y )

Table 2: Comparison between Theorem 4 in this work and Theorem 3.3 in Wei et al. (2021).

algorithm, which generates h̃(Dn)
Π : Π → Y using (Π1, y

(1)), (π(2), y(2)), · · · , (π(n), y(n)), such
that the following three properties are satisfied: (1)

E
[
DKL

[
h̃

(Dn)
Π

∥∥∥ h̃∗Π]] = O

(
1

n

)
, (6)

which is asymptotically at the same rate as E
[
DKL

[
h̃

(Dn)
X1

∥∥∥ h̃∗X1

]]
. (2) Over the distribution of

(X,Y ), the expected loss of the converged classifier h̃∗Π is not greater than the expected loss of h̃∗X1
.

(3) h̃∗Π is a linear model, whose input is Π. (Proof: Appendix A.2)

The remaining question is whether deep learning models used in common practices can perform
at least as well as the algorithm in Theorem 2. Indeed, without any knowledge of deep learning
models, it is impossible to theoretically prove that a model will necessarily rely on Π instead of X1.
Therefore, in Section 4 and Section 5 we will empirically validate that our theorems are applicable in
the real world scenarios.

3.3 EXTENDING WITH CAUSAL MODELS

We make a step further by relaxing Assumption 3. By treating X1 as a confounder we can see how
MLM pre-training is helpful in the causal and anticausal settings as in Kaushik et al. (2021).
Theorem 3. Even if Assumption 3 is not true, Theorem 1 still holds if X1, X2, Y follow the causal
setting in Figure 2a.

Proof. By the structure of X1, X2, Y , inequality 4 holds even if the deterministic mapping fX2→Y
does not exist.

Theorem 4. Assume that the set of vectors {P (X1|Y = y)|y ∈ Y} is linear independent, and if
X1, X2, Y follow the anticausal setting in Figure 2b, then I(Π;Y ) ≥ I(X2;Y ).

Proof. The assumption is a special case of the one in Lee et al. (2020), so similar techniques can be
used: According to the structure of X1, X2, Y , we have

P (X1|X2) =
∑
y

P (X1|y)P (y|X2). (7)

Therefore, if {P (X1|Y = y)|y ∈ Y} is linearly independent, P (y|X2) can be recovered from
Π = P (X1|X2).
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Note that this theorem is very similar to Theorem 3.3 in Wei et al. (2021). However, the assumptions
required in ours are weaker and more realistic, and the implication is very similar (Table 2): (1)
Structure assumption: Wei et al. (2021) assumed that X is generated from a HMM process with
hidden variables H0, H1, · · · , which is stronger assumption than our assumption that X1, X2 follow
the anticausal setting. (2) Independence assumption: Wei et al. (2021) assumed that the vectors
in {P (X0|H0 = h)|h ∈ H} need to be linearly independent. In comparison, we require only the
independence in {P (X1|Y = y)|y ∈ Y}. Our assumption is more realistic because the number of
hidden states |H|must be very large ifX is generated from the HMM model, and |Y| tends to be much
smaller than |H|. For example, in binary classification cases, our assumption holds as long as P (X1)
is not independent of P (Y ). (3) Implication: If we further assume that I(X2;Y ) = I(X;Y ), then
we reach a similar conclusion that P (Y |X) can be recovered from Π = P (X1|X2) by applying a
linear function.

3.4 LIMITATIONS OF OUR THEOREMS

Our theories do not ensure that Π1 is the most informative feature to learn from. Consider tokens in a
sentence X = 〈X1, X2, · · · , XL〉 and let Πi be the conditional probability P (Xi|X \Xi). A token
with spurious association with the label can locate arbitrary position in the sentence, and its location
is unknown during pretraining. That is, the pretrained model is able to generate Πi for all i. Without
loss of generality, assume X1 is the spurious token. It is possible that there exists some i such that
I(Π1;Y ) < I(Πi;Y ), and that Πi is predicted relying on X1. Concretely, here is an example for the
causal setting with three features: X3 is independent of X1 and X2 given Y (Figure 2c). Using the
results in Theorem 4, there is a linear mapping that can recover P (Y |X1, X2) from Π3. Therefore, it
is possible that I(Π3;Y ) > I(Π1;Y ) if I(X1, X2;Y ) > I(Π1;Y ) depending on the distribution of
the data. We leave the study of I(Πi;Y ) for future work.

Another limitation is that, in practice, NLP practitioners do not use the conditional probability
predicted by the pretrained model. Instead, people stack a simple layer over the pretrained model,
and fine-tune the whole model on downstream tasks. Regardless of this, we conjecture that the
representation encoded by an MLM pretrained model still contains the information of {Πi}ni=1 and
thus is robust to spurious lexicon-level feature.

4 TOY EXAMPLE WITH A PRETRAINED MODEL

As the first step to close the gap between our theories and the real world, we repeat the toy experiments
with pretraining. Before fitting the model with Y , we first pretrain the first layer to predict X1 based
on masked X . What we want to show is that, after pretraining, the representation encoded by the
layer will have the equivalent role of Π even when the input is not masked.

Specifically, the experimental design is as follows: We use the two-layer and three-layer MLP
architectures same as in Section 2. When pretraining, we mask X1 in X by using X ′ = [0, 0;X2] as
inputs. Let the output from the first linear layer as Z = WX ′. The loss function is the cross-entropy
between X1 and the softmax over [z1, z2]. After pretraining, we fine-tune the pretrained model with
([X1;X2], Y ) pairs, and report the average number of iterations required to converge for 25 different
random seeds.

We want to eliminate the possibility that the faster convergence of the pretrained model is because
of larger initial weights over X1. Therefore, after pretraining, we manually create a path from X1

to Z. We do so by initializing the weights of the third and fourth row of W with [k,−k, 0, · · · , 0]
and [−k, k, · · · , 0, 0] respectively, where k is the average of the absolute value of the weights in the
pretrained part, i.e. the weights of the first two rows in W . In this way, the information from X1 has
the same scale as the pretrained representation [Z1, Z2], and thus it can compete with [Z1, Z2] fairly.

Table 1 shows that pretraining can always reduce the number of iterations required to converge when
ν < 0.50. The effect is more significant when d2 is larger. It could be because of the higher sparsity
of the learning signal from X2 when d2 is larger.

We further inspect how the importance over the inputs changes in the process of training. The
importance can be inferred from the product of the linear layers. We observe that if the model is
not pretrained, the weights over X1 grow faster than the weights over X2 at the beginning (the
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Figure 3: The average weights over the features during training a two-layer model. From left to
right, (d2, ν) = (50, 0.04), (500, 0.04), (50, 0.04), (500, 0.04). The two figures left/right side are the
curves of model without and with pretraining respectively. Blue, green, purple curves represent the
average weights over features in X1, X2, and Ẋ2 (the middle part of X2) respectively. The orange
curve represents the accuracy.

first row Figure 3). The model cannot converge to 100% accuracy until weights on Ẋ2, the middle
dν × d2e dimensions of X2, become greater than the weights on X1. In addition, after the model
converges, weights over X1 is still greater than weights over X2. On the other hand, if the model
is pretrained, weights over X1 stop growing after a few steps (the second row in Figure 3). The
above observations are aligned with our conjecture that the pretrained representation mitigates the
robustness issue brought simplicity bias.

5 EXPERIMENTS

We experiment on real world NLP tasks to verify the relation between the capability of modeling
the distribution of spurious features Π1 and robustness. We facilitate datasets with known spurious
features. We first pretrain models on the training dataset with different masking policies. One of them
does not mask the spurious tokens, leading to the reduced capability of modeling Π1. Afterward,
we fine-tune the models using the target label and evaluate their robustness on a testing set where
the spurious association does not exist. Our results show that the models are less robust if spurious
tokens are not masked during pretraining. This validates our theories that the capability of modeling
the distribution of spurious features is important for the models’ robustness.

5.1 DOWSTREAM TASKS

Hate Speech Detection Previous study has shown that hate speech detection datasets tend to have
lexical bias Dixon et al. (2018). That is, models rely excessively on the presence or the absence of
certain words when predicting the label. Here we follow the formulation of lexical bias in hate speech
detection proposed by Zhou et al. (2021). We focus on the effect of non-offensive minority identity
(NOI) mentions, such as “woman”, “gay”, “black”. Those mentions are often highly associated
with hateful instances. However, it is more desirable that a model does not rely on those mentions.
Therefore, we can see the presence of NOI as a spurious feature.

Name Entity Recognition (NER) Lin et al. (2020) has shown that name entity recognition (NER)
models perform worse when the name entities are not seen in the training data. In this case, we can
see the content of the name entities as a spurious feature. Models may learn to memorize the name
entities when fitting the training data, while we may desire the model to recognize name entities
according to the context.

5.1.1 DATASETS

Hate Speech Detection We use a portion of the dataset proposed by Founta et al. (2018). In their
original dataset, only a small number of hateful instances contain NOI. Our preliminary experiments
show that the model without pretraining does not suffer much from the bias of NOI when training
with the full data. Therefore, we create a dataset, whose positive (hateful) instances are all the positive
samples in the original dataset that contain NOI. As for negative instances, we sample them randomly
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Mask Policy
NER Hate Speech Detection

Origin Unseen All (12893) NOI (602)
F1 ↑ F1 ↑ Accuracy ↑ F1 ↑ Accuracy ↑ FPR ↓

scratch 61.5 0.5 38.7 0.6 83.9 1.6 80.3 1.4 74.8 1.5 46.3 7.2

vanilla 74.2 0.4 56.5 1.3 83.1 0.8 78.5 0.8 75.8 0.5 25.1 1.8

unmask random 72.7 0.6 56.5 0.8 83.3 1.1 78.9 1.1 75.8 0.9 25.7 2.3

unmask spurious 72.9 0.5 53.2 0.8 84.1 0.7 79.8 0.6 73.7 1.0 32.5 2.1

remove spurious 69.8 0.5 56.7 0.8 82.4 1.0 77.8 1.0 77.3 0.6 21.7 2.0

Table 3: The performance on downstream tasks. For the hate speech detection task, we also report
false positive detection (FPR) on the NOI subset, which is a set of instances containing non-offensive
minority identity mentions, e.g. “women”, “black”. The results are the average of 5 runs, and the
smaller number is the standard deviation.

from the original training set. We control the number of negative instances so the ratio of positive and
negative instances is the same as the original dataset. We create both the training and the validation
splits in this way, and use the original full testing set for evaluation. We also evaluate the models on a
NOI subset where all the instances contain NOI. Note that the testing set is from the real world, so
the NOIs in the testing set do not spuriously associate with label as strong as in the training set.

NER We use the standard NER dataset Conll-2003 Tjong Kim Sang & De Meulder (2003). To
create a testing set with name entities unseen in the training set, we replace the name entities in
the original validation and testing splits with the entities from WNUT-17 Derczynski et al. (2017).
Specifically, we replace the LOC, ORG, PER entities with the corresponding type of entities in
WNUT-17, while the MISC entities remain untouched.

5.2 MASKING POLICIES

For each sentence with ns spurious tokens, we experiment with different masking policies: (1)
scratch: We do not pretrain the model before fine-tuning. (2) vanilla: During pretraining, we mask
each token with 15% probability, which is same as the original implementation in Devlin et al. (2019).
(3) unmask random: This is similar to vanilla MLM, but we uniformly randomly select ns tokens
from the whole sentence and unmask them if they have been masked. (4) unmask spurious: This is
similar to vanilla MLM, but we unmask all the spurious tokens. (5) remove spurious: We replace
spurious tokens with a special “[unk]” token, and we unmask them. Note that this setting can be seen
as an oracle setting, since in most applications the spurious features are unknown.

We will inspect the effect of masking spurious tokens by comparing setting (3), (4), (5). Note that
these three setting have the same expected number of masked tokens. Therefore, it rules out the
possibility that their downstream performance differs because of the number of masked tokens.

5.3 IMPLEMENTATION DETAILS

For both of the tasks and all the MLM settings, including the scratch setting, we tokenize the
input with the bert-base-uncased tokenizer. We use the bert-base-uncased architecture and also the
pretrained embedding layer, which is frozen through the pretraining process. We use the existing
token embedding to deal with the unseen tokens in the testing set, and this setting is commonly used
before contexualized word embeddings were invented. We repeat each experiment 5 times. We
include more details in Appendix A.4.

5.4 RESULT AND DISCUSSION

Results in Table 3 validate our theorems. For both of the tasks, unmask random performs better than
unmask spurious under distribution shift. Specifically, unmask random has higher F1 on the unseen
set of the NER task, and unmask random has a lower false positive rate (FPR) on the NOI set. Also,
unmask random performs similarly to vanilla. This implies that modeling the condition distribution
of spurious tokens in the original random masking pretraining can reduce models’ reliance on them.
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Note that unmask random and unmask spurious have similar in-distribution performance, so the
performance difference is not due to better in-distribution generalization suggested by Miller et al.
(2021).

We also compare unmask random with the oracle setting remove spurious. We notice that even though
remove spurious performs as well as random, remove spurious hurts the performance in the seen set.
It indicates that modeling the conditional distribution of spurious tokens has effects beyond simply
removing them from the model. On the other hand, remove spurious performs better in the hate
speech detection task. A possible explanation is that NOI mentions contain little useful information
for the task.

6 RELATED WORK

Recently, there are efforts attempting to explain the effectiveness of massive language modeling
pretraining. Theoretically, Saunshi et al. (2021) explore why auto-regressive language models help
solve downstream tasks. However, their explanation is based on the assumption that the downstream
tasks are natural tasks, i.e. tasks that can be reformulated as sentence completion tasks. Their
explanation also requires the pretrained language model to perform well for any sentence completion
tasks, which is not likely to be true in the real world. Wei et al. (2021) analyze the effect of fine-tuning
a pretrained MLM model. Nonetheless, they have stronger assumptions as described in Section A.4.
Aghajanyan et al. (2020) show that pretrained models have lower intrinsic dimension, providing a
generalization bound based on Arora et al. (2018). However, why pretrained models have lower
intrinsic dimension is unknown. Merrill et al. (2021) show that the parameter norm growth during
training makes transformer a saturated model, which can be described in terms of formal languages.
Empirically, Zhang & Hashimoto (2021) show that the effectiveness of MLM pretraining cannot
be explained by formulating the downstream tasks as sentence completion problems. Sinha et al.
(2021) find evidence supporting the hypothesis that masked language models benefit from modeling
high-order word co-occurrence instead of word order. There are also some theories explaining the
efficacy of non-MLM pretraining Lee et al. (2020); Saunshi et al. (2019); Zhang & Stratos (2021).

Many of the previous studies on robust NLP focus on supervised learning Wang et al. (2021); Utama
et al. (2020b;a); Karimi Mahabadi et al. (2020); Chang et al. (2020); He et al. (2019); Sagawa* et al.
(2020); Kennedy et al. (2020); Chiang et al. (2020). However, without self-supervised learning,
a model can impossibly extrapolate to out-of-distribution data when the domain shifts. Our work
also complements previous studies that focus on the bias or robustness of a model generated by
the pretraining process Kumar et al. (2020); Hawkins et al. (2020); Vargas & Cotterell (2020); Liu
et al. (2020); Gonen & Goldberg (2019); Kurita et al. (2019); Zhao et al. (2019). In this work we
investigate the pretraining process itself.

7 IMPLICATION AND CONCLUSION

Our results provide possible explanations for some common practices found effective empirically.
First, it could explain why continuing pretraining on target dataset is useful Gururangan et al. (2020).
It may be because continuing pretrained models model the distribution of spurious features in the
target dataset better. Thus the model can better avoid the simplicity pitfall. Second, it provides
reasons for more complex masking policies, such as masking continuous random spans Clark et al.
(2020); Joshi et al. (2020). It may improve the robustness to spurious features that contain more than
one token. Third, if MLM can alleviate the simplicity bias and help the model to achieve a greater
margin, it may also imply that the model has wider optima, explaining the finding in Hao et al. (2019).
On the other hand, a pretrained model’s capability of utilizing more features may also suggest that
pretraining makes the decision boundary simpler.

In sum, we show a benefit of MLM pretraining, which partly explains its efficacy. We first empirically
demonstrate the presence of simplicity bias when the input is discrete. We then theoretically and
empirically explain how MLM pretraining can alleviate the problem brought by it. Finally, we close
the gap between our theories and real-world practices with experiments on real-world NLP tasks.
Our theories reveal a desirable mechanism of MLM pretraining, suggesting that reinforcing this
mechanism could be a promising future research direction.
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