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Abstract: Recognizing referee signals is crucial in human and RoboCup soccer1

games, where an emphasis currently lies on full robot autonomy through under-2

standing referee signals. To advance towards this goal, we introduce the Multi-3

Domain Referee Dataset aimed at high-efficiency action recognition in RoboCup4

and examine the transfer between simulated and real domains in strongly struc-5

tured settings. Our dataset includes 3,108 action sequences across four domains6

with over 183,000 images. Utilizing a recognition model on an Intel-Atom-based7

NAO robot, we demonstrate enhanced performance by merging real and synthetic8

data, and efficient learning of new signals with synthetic data updates, reducing9

acquisition efforts for future RoboCup rule modifications.10

1 Introduction11

The RoboCup competition, as a platform for testing autonomous systems in a real setting, requires12

robots to interpret human signals, particularly referee actions [1]. Despite the current emphasis on13

this research direction within the Standard Platform League, the performance of existing methods14

during recent research challenges remains low and varies considerably among teams. This can be15

attributed to the distinct challenges faced in the RoboCup environment as well as the lack of a16

common dataset that can be used for training recognition models.17

In this paper, we approach this goal by providing a comprehensive referee action dataset and inves-18

tigate the unique constraints and opportunities present in RoboCup. Unlike traditional human action19

recognition as defined in literature [2, 3, 4, 5, 6, 7, 8], RoboCup’s constraints stem from the use20

of an affordable humanoid robotic platform, leading to issues like using low-cost cameras, latency21

constraints, and limited compute capacity. To address these challenges, we present a dataset that not22

only models all referee actions used in the tournament but also utilizes the strengths of the RoboCup23

environment. Our contributions include:24

• A diverse dataset for referee action recognition in RoboCup, covering synthetic, hybrid, and real25

data in multiple environments.26

• An action recognition method utilizing the data to demonstrate its use as a potential benchmark.27

• Experiments showing the performance improvement compared to using single-domain data.28

2 Related Work29

Human Action Recognition (HAR) has been a long-standing problem to be solved in the computer30

vision community [9, 2, 3, 4, 6, 5, 7, 8, 10, 11, 12]. With the advent of deep learning, Simonyan31

and Zisserman [5] introduce a two-stream convolutional neural network for action recognition,32

laying the foundation of deep video action recognition. Subsequent works, such as the two-stream33

I3D [10], TSN [11], LRCNs [12] make progress on proposing networks to capture spatiotemporal34

features, with the attention mechanism [13, 14, 15] being introduced recently.35
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Figure 1: Static referee actions with real and synthetic data.

Human Action Recognition Datasets UCF101 [6], HMDB51 [16], and Kinetics [7] are widely-36

used video action recognition datasets, which cover a diverse set of human activities. However,37

collecting and annotating large-scale video datasets requires extensive work, and therefore, synthetic38

datasets are also used to train visual models for many computer vision tasks [17, 18, 19, 20, 21, 22,39

23]. Though models trained with synthetic data show good performance when testing on real-world40

scenarios [21, 22, 23], a domain gap remains to be an issue [24].41

3 Dataset Description42

The work aims at enabling referee gesture detection on mobile robots. To this end, we provide a43

dataset that contains rendered synthetic videos, two sets of videos with a chroma key background44

and different acquisition protocols, and a set of real videos for benchmarking in a realistic setting.45

In this work, the real data has been solely used for the purpose of testing. Examples of the gestures46

contained in our dataset are depicted in Fig 1.47

3.1 Real Data - Test Setting48

We collect data from the robot cameras at 6 different locations that cover a variety of backgrounds49

and lighting conditions representative of environments present during RoboCup. To record a single50

session, the robots are randomly placed on the field with all robots facing the referee, who performs51

the 12 actions present in RoboCup.52

Data Acquisition Challenges53

Collecting real data representative of the RoboCup environment is expensive and time-consuming54

due to extensive annotation, the field setup in different environments, and training individuals for55

performing the gestures. The real-time robotic framework used during acquisition can compromise56

further data quality, with issues like frame drops and camera resets causing non-consecutive frames.57

This disrupts synchronization and adds additional manual annotation effort, increasing the costs and58

potential human error. Despite these challenges, realistic data is essential for training models that59

generalize well. In our work, we therefore, examine two solutions: creating fully synthetic data and60

using chroma key sequences with synthetic backgrounds for training, while saving all fully real data61

for testing. Further details on these methods are provided in subsequent sections.62

3.2 Synthetic Data63

We create synthetic data by modeling the 3D environment in the procedural 3D animation framework64

Side FX Houdini that closely resembles the setup during RoboCup. Subsequently, photo-realistic65

referee action sequences are rendered from diverse camera views, utilizing the flexibility to adjust66

camera positions, referee poses, models, and textures. This facilitates the efficient creation of a67

diverse, large-scale dataset with precise and easy annotation of the generated video sequences.68

Simulation environment setup The simulation environment is defined by the official field definition69

and a model of the NAO robot with differently colored jerseys. To represent the referee, we a 3D70

human models that encompass different body shapes and textures is used.71

Robot positions In our simulated setup, robots and cameras are randomly distributed across the72

field, remaining stationary during a single data session to enable data fusion from multiple robots,73
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(a) Green Screen. (b) Masked Image. (c) Augmented.

Figure 2: Chrome key data collection and augmentation. Figure 3: Action recognition pipeline.

with positions randomized between sessions for real data variation. As cameras are distributed over74

the whole field, certain viewpoints are not suitable for observing the referee’s actions. A detailed75

analysis of the impact of the relative position on action recognition is conducted by categorizing76

camera positions. Positions with robots’ cameras one-quarter field away from the referee and with a77

view angle below 45◦ are labeled as easy positions, others as hard positions.78

Backgrounds We augment the simulated images with a set of 65 synthetic backgrounds. The back-79

grounds are generated using Stable Diffusion [25] with prompts representative of the environments80

encountered during RoboCup such as crowded exhibition centers.81

3.3 Real Data - Chroma Key82

A high-quality animation framework and raytracing renderer is utilized for generating synthetic data.83

However, a domain gap still remains, which we approach by collecting additional data from NAO84

robots. Using a single robot for recording yields one video per location, whichr equired multiple85

sessions at varied locations to model diverse backgrounds. Thus, we record in front of chroma key86

backgrounds (Greenscreen), where post-processing allows the insertion of different backgrounds, as87

shown in Fig 2.88

Two data collection methods for chroma key images are employed, differing in the number of robot89

per session and location. In Chroma Key Front (CK Front), a single robot, positioned directly in90

front of the referee according to the RoboCup 2022 rules, is used with 9 individuals participating.91

Extending this, Chroma Key Game (CK Game) follows the RoboCup 2023 rules, utilizing multiple92

robots in varied field positions, with 5 referees participating.93

Chroma Key Front This setting comprises videos from a single robot placed in front of the referee,94

allowing for an easy background extraction and action recognition. In each session, the chroma95

key background is manually removed. Adhering to RoboCup 2022 rules, class 12 is absent in this96

dataset, enabling the study of our approach’s learning capabilities with a synthetic data-exclusive97

class. This can indicate, how much new real data needs to be collected for future rule changes.98

Chroma Key Game In this setting, robots are randomly placed on the field, with the layout being99

changed for each session to provide sufficient variability. Fig 2a shows the view from one of the100

robots Adobe Premiere has been used to generate a mask of the greenscreen. The same methodology101

as for annotation of real data has been used, which helps to synchronize annotations between robots.102

4 Action Recognition103

To gain deep insight into our dataset and to provide a public benchmarking model to all RoboCup104

teams, we develop an approach for human action recognition designed for low-resource contexts.105

The method employs a MobileNet [26] architecture for image feature extraction as a backbone.106

After resizing each image from a window of 15 frames to 90 x 120 px, the corresponding deep107

feature is extracted. To further capture the temporal relationships among the images, the sequence108

of 15 deep features is further processed by a GRU [27]. The GRU’s 64-dimensional output is109

directed through 2 subsequent dense layers, each with a preceding Dropout layer [28] and ReLU[29]110

activation functions. Finally, the class is predicted directly from the logits. Our approach is further111

depicted in Fig 3 for clarity.112
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SYN
easy

SYN
hard

CK
front

CK
game

Test
full

Test
easy

Test
hard

✓ 27.9 33.3 16.1
✓ ✓ 21.9 25.2 14.6

✓ 30.8 28.0 37.1
✓ 60.4 65.0 50.2

✓ ✓ 69.3 74.3 58.4

Table 1: Test accuracy, single-domain training.

SYN
easy

SYN
hard

CK
front

CK
game

Test
full

Test
easy

Test
hard

✓ ✓ 52.8 54.7 48.7
✓ ✓ 74.4 82.5 56.6
✓ ✓ ✓ 76.1 85.6 55.4
✓ ✓ ✓ 46.8 52.5 34.5
✓ ✓ ✓ 72.5 81.3 53.2
✓ ✓ ✓ ✓ 73.3 79.4 59.9

Table 2: Test accuracy, multi-domain training.

5 Experiments and Results113

In our experiments, we assessed baseline performance using single-domain training with synthetic,114

chroma key data. Synthetic data was divided into easy and hard sets (3.2), and evaluation used real115

test data, also split into easy and hard (3.1). Considering the application of RoboCup, the test easy116

class is of major interest, as it best represents the current tournament scenario where only the robot117

locations that are known to have good viewing angles need to be considered for making a decision.118

Results for single- and multi-domain training are presented in Tables 1 and 2 respectively. In this119

section, the domains synthetic and chroma key will be indicated by their abbreviations SYN and120

CK.121

Single Domain Performance Investigating the set of single domain experiments in Table 1, the122

performance improves for an increasing overlap between the training and testing domains. On the123

full test set, this corresponds to the sequence of SYN, CK Front and CK Game. CK Game has124

the strongest performance by a large margin, with 60.4% and 65.0% accuracy on test full and easy125

respectively. SYN and CK front both exhibit a considerably lower performance, which can be at-126

tributed to the two different domain gaps. The former has a considerably different image appearance,127

while the latter covers a much smaller domain of viewing angles. Using SYN hard for training de-128

teriorates results, likely because recognizing actions from hard positions backpropagates incorrect129

signals, reducing model performance.130

Multi-Domain Performance We tested various combinations of SYN, CK Front, and CK Game for131

multi-domain training to determine optimal data collection and augmentation strategies. This can132

help in making decisions to extend the dataset when new rules or actions are introduced at RoboCup.133

These results are provided in Table 2.134

Combining SYN and CK Front considerably improves performance despite their individual domain135

gaps with the test real data. Performance jumps by 24.8% and 22.0% on test full when using them136

jointly. This improvement can be attributed to the complementary domain gaps which allows the137

training to cover the full domain when using them together. Further adding the CK Game data138

allows us to raise the model’s accuracy to 76.1%. For our task, this supports the use of a multi-139

domain dataset, that contains large portions of data that are cheap to generate on a large scale.140

Amount of Data As the data collection and annotation require a large amount of resources, we141

provide an analysis of the model performance on a lower amount of data. The results indicate that142

even combining SYN data with a single referee from a CK dataset can improve the performance143

considerably from 27.9% to 70%, which is a promising perspective for data collection.144

6 Conclusion145

In this work, we presented a new multi-domain referee action dataset that aims at providing the basis146

for bringing more autonomy to the RoboCup competition. Comprehensive experiments demonstrate147

that combining different domains improves the performance considerably and allows easy adaptabil-148

ity of the dataset to future rule changes. Finally, the implemented action recognition method is able149

to run in real-time on low-performance robot hardware and can serve as a baseline to benchmark150

future approaches.151
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[17] C. De Souza, A. Gaidon, Y. Cabon, and A. López. Procedural generation of videos to train196

deep action recognition networks. In Proceedings of the IEEE/CVF Conference on Computer197

Vision and Pattern Recognition, 2017.198

[18] O. Matthews, K. Ryu, and T. Srivastava. Creating a large-scale synthetic dataset for human199

activity recognition. arXiv preprint arXiv:2007.11118, 2020.200

[19] J.-N. Zaech, C. Gao, B. Bier, R. Taylor, A. Maier, N. Navab, and M. Unberath. Learn-201

ing to Avoid Poor Images: Towards Task-aware C-arm Cone-beam CT Trajectories. In202

Medical Image Computing and Computer Assisted Intervention – MICCAI 2019, pages203

11–19, Cham, 2019. Springer International Publishing. ISBN 978-3-030-32254-0. doi:204

10.1007/978-3-030-32254-0 2.205

[20] M. Unberath, J.-N. Zaech, S. C. Lee, B. Bier, J. Fotouhi, M. Armand, and N. Navab. DeepDRR206

– A Catalyst for Machine Learning in Fluoroscopy-guided Procedures. arXiv:1803.08606207

[physics], Mar. 2018.208

[21] J. Marin, D. Vázquez, D. Gerónimo, and A. M. López. Learning appearance in virtual scenar-209
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