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ABSTRACT

Researchers have shown that neural similarity among humans predicts social closeness
and cooperative success, whereas innovation often emerges from interactions among
dissimilar individuals. We investigate whether these principles extend to artificial
intelligence by examining interactions between large language models (LLMs). In our
experiments, 276 model pairs interact across eight collaborative tasks spanning both
cooperation and novelty. We find that pairs with more similar representation spaces
achieve significantly higher cooperation but exhibit reduced novelty and creativity.
These findings suggest that representational similarity can be an important consideration
in multi-agent system design.

1 INTRODUCTION

The deployment of multiple LLMs in multi-turn, multi-agent interactions has progressed rapidly from
concept to practice, with recent investigations in applications to social simulations (Park et al.| [2023; | Xie
et al., 2024; Zhou et al., 2023)), coding (Wu et al., 2024; Ishibashi & Nishimura, |2024), and a range of
creative tasks such as brainstorming and scientific idea generation (Fukumura & Ito, 2025} |Su et al.| [2024).
In many collaborative tasks, prior work has found that interaction between multiple agents facilitates
stronger performance than single-agent systems (Talebirad & Nadiri, 2023; |Zhuge et al., 2023)). Beyond
treating multi-agent systems as tools, some have even proposed evolving LLMs through multi-agent
interaction (Lai et al., |2024; Eisenstein et al., [2025; Wu et al.| 2025)).

On the other hand, by their very nature, multi-agent systems are more complex than single-agent systems,
increasing the potential for unexpected behaviors (Piatti et al., | 2024; Hammond et al., 2025; [de Witt, |2025).
One central concern is whether agents can reliably cooperate with one another, since many multi-agent appli-
cations depend on effective collaboration. Being able to understand and predict the dynamics of multi-agent
systems is therefore essential. Yet, most efforts to date have focused on single-agent cases, while studies
of multi-agent systems have primarily focused on output-level behaviors rather than internal mechanisms.

This work provides an initial exploration of multi-agent interaction through the lens of representational
alignment. Specifically, we ask:

What is the relationship between representational similarity and interactive behavior of models?

Evidence from neuroscience and social sciences suggests that similar neural responses among humans
are significantly associated with their social closeness and cooperative performance (Parkinson et al.,
2018} Thornton & Mitchell, 2017 |Shen et al., 2025b; Reinero et al., 2021), while interaction between
dissimilar individuals often sparks innovation (Hewlett et al.l 2013 @stergaard et al., 2011). Analogously,
we hypothesize that models with higher representational similarity are more likely to cooperate and predict
one another, but exhibit reduced collective novelty and creativity.

To test this, we conduct experiments involving 276 model pairs spanning 23 open-weight LLMs from eight
model families. Specifically, we examine cooperation through four games: word guessing, public good,
divide-a-dollar, and the Keynesian Beauty Contest (KBC); and assess creativity and novelty through four
generative tasks: story writing, fictional biography, haiku composition, and vacation benefit brainstorming.

Our experiments reveal that representational similarity is a strong predictor of interactive outcomes. Figure/[T]
illustrates how these outcomes vary with increasing internal similarity across scenarios: cooperation perfor-
mance rises significantly as representational similarity increases. For example, in the word-guessing game
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Figure 1: The effect of representational similarity on each game outcome. Representational similarity is
quantified using linear Centered Kernel Alignment (CKA) (Kornblith et all 2019) with WikiText
2016). In the bar graph, the effect size reflects the relative change (%) in predicted outcomes
between the lowest and the highest observed value of representational similarity, with error bars indicating
95% confidence intervals. In the scatter plots, each point represents a model pair, and the y values are
adjusted via mixed-effects regression to control for model-specific tendencies, thereby isolating the effect
of representational similarity on interaction outcomes. Overall, greater similarity corresponds to higher
cooperation but lower novelty.

where one player attempts to identify their partner’s secret word, correct guesses increase by roughly 66.2%
(relative change) as representational similarity rises from the minimum to the maximum observed values.
By contrast, novelty declines consistently across the four creative tasks, though the magnitude and statistical
significance vary. These findings suggest a likely tradeoff: model pairs with higher representational similar-
ity tend to cooperate better, but also manifest reduced collective novelty. These results provide new insights
into the design of multi-agent systems, where single-model deployment is currently the dominant paradigm.

2 RELATED WORK

Neural Similarity as a Predictor of Interaction in Humans and Models. In neuroscience, similar
neural responses between humans significantly predict social dynamics: |Parkinson et al.| (2018) found
that friendship formation is predicted by similarity of neural response patterns to videos, as measured
by fMRIL Shen et al. (2025b) extended this analysis to the similarity of neural activations during
story-listening. Others have also shown that consistent neural activity patterns appear among personally
familiar individuals (Thornton & Mitchell, 2017; [Hyon et all, [2020). Such consistent findings suggest
that greater neural similarity may facilitate stronger social bonds. Moreover, a related body of research
has investigated the relationship between neural similarity and cooperative performance
[Hu et al} 2018} [Reinero et all 2021} [Réveill€ et al.l 2024), where it has been consistently found that higher
interbrain synchrony is positively associated with cooperation.

As Al models scale in size and improve in performance, their internal representations increasingly

align with human neural activity patterns (Goldstein et al.} 2022} [Schrimpf et al.| 2021}, [Caucheteux &
[King| 2022} [Shen et al, 20254; (Gurnee et al., [2023). For example, (Caucheteux & King (2022) showed
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that language algorithms predicting words exhibit representational patterns similar to brain responses
to sentences. [Shen et al.| (2025a) reported a strong correlation between brain-model similarity scores
and model performance across both language models and vision models. This growing evidence of
brain—model alignment motivates our central hypothesis. It raises the possibility that principles observed
in human cognition and social behavior may also extend to advanced artificial systems.

Representational Similarity in Neural Networks. Researchers have long sought to understand the
behavior of neural networks by comparing their internal representations. A variety of metrics for
representational similarity in artificial neural networks have been proposed (Kornblith et al., 2019;
Hotelling| (1992; Morcos et al., 2018} Raghu et al., [2017} |[Kriegeskorte et al., |2008). One widely used
method is Centered Kernel Alignment (CKA; [Kornblith et al., [2019), which enables comparison of
representations between models regardless of their architecture or layer count. Several studies have
investigated the nuances of applying these metrics. IDing et al| (2021) evaluated the sensitivity of similarity
measures to changes in model behavior and showed that different metrics exhibit distinct weaknesses.
Moschella et al.| (2023) demonstrated that representational similarity can serve as a strong predictor of
model performance, in tasks such as classification with vision models.

Beyond standard similarity metrics, new approaches have been proposed for comparing representation
spaces. For example, model stitching—connecting two neural networks—has been argued to capture
aspects of representational structure that metrics like CKA cannot (Lenc & Vedaldil [2015} Bansal et al.|
2021). In this view, models with greater similarity are expected to achieve higher stitching success.
Hacohen & Weinshall (2020) proposed comparing the similarity of classification predictions in vision
models as an alternative perspective on model comparison.

Diversity, Creativity, and Collective Intelligence. Behavioral research on innovation finds that higher
diversity within a group of collaborators leads to increased novelty in their creations. For example, Uzzi
et al.|(2013) analyzed millions of scientific papers and found that the highest-impact science often arises
from groups that combined existing research in novel ways. Page (2019) formalizes this and proves
that functionally diverse groups outperform homogeneous ones on complex problems, demonstrating
superior problem-solving, innovation, and prediction accuracy. Similarly, Paulus| (2000) showed that the
effectiveness of brainstorming depends on cognitive diversity—that is, differences in how individuals
perceive and think. Our results empirically explore this human-inspired principle: Does representational
diversity within sets of LLM agents predict greater novelty in multi-agent creative tasks?

3 REPRESENTATIONAL SIMILARITY OF LLMS

To test our hypothesis: whether there is a relationship between representational similarity and interactive
behavior of models, we first need a way to measure representational similarity of LLMs. In this section,
we describe how we compute this similarity. It is important to note that CKA computation is conducted
independently of model interaction.

3.1 SIMILARITY METRICS

Representational similarity quantifies how similarly two neural models embed the same inputs. Measuring
similarity involves two steps: 1) extracting representational vectors from each model using a probe dataset
(i.e., a set of prompts) and 2) computing a similarity score between the extracted representations using
a metric.

Step 1. Extracting representations. The first step can be formalized as follows. The probe dataset D C X
contains m texts © € X, where X’ is the set of all possible texts. Thus, D= {x;}". For a neural model
with parameters 6, we define féf : X —R™ as the mapping from a text x € X’ to an n-dimensional activation
at the k-th layer, where 1 <k <[ and the model has [ layers. Stacking the embeddings for all z € D yields
a matrix RS € R™*", with the i-th row equal to £} (x;).

Step 2. Computing similarity. The next step is to compute similarity between the representational
spaces {R}',1 H<i<i, and {R‘éz}lgjglz, for two models with parameters 61,65, depths I1,l3, and hidden
dimensions n1,ns. A variety of similarity metrics (/) have been proposed, including Centered Kernel
Alignment (CKA; [Kornblith et al., [2019), Canonical Correlation Analysis (CCA; [Hotelling| [1992;
Morcos et al., 2018)), Singular Vector Canonical Correlation Analysis (SVCCA; [Raghu et al., 2017,
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and Representational Similarity Analysis (RSA; |Kriegeskorte et al.l 2008). Each defines a function
M :R™*M1 x R™*"2 R that takes two matrices (i.e., Rzl and R?)z) as input.

We use CKA (Kornblith et al.| 2019) given its popularity of use in prior work (Ciernik et al.| 2024
Shen et al., 2025a; [Liu et al., |2025). CKA enables the comparison between two models with different
architectures and different numbers of layers. There are four common CKA variants: linear CKA, RBF
CKA, unbiased linear CKA, and unbiased RBF CKA. These CKA values range in [0,1], with higher
values indicating greater similarity. Following prior work (Liu et al., 2025} Shen et al.| 20254} Zou et al.|
2023; [Raffel et al., 2020), we obtain fgl (x) and fgg (x) from the activation of the last token of each input
z at their respective layers. CKA scores are then calculated for every layer pair of the two models. That
is, CKA(R’;‘)1 7Rf,2) for all 1 <¢ <1y and 1 <j <ly, producing an I x I grid of scores.

To summarize similarity with a single score per model pair, there are multiple approaches. The first
approach is to average the CKA scores (i.e., global average): W This captures overall
similarity between all layers of the two models. Please note that identical model pairs can score below
1, since off-diagonal layer pairs (i # j) yield values less than 1. An alternative summary measure of
CKA is the layer-wise maximum-aligned average, which captures how well each layer aligns with its
best-matching layer in the other model. That is,

1 (ZimaijKA( gl,Rgz)+ijaxiCKA(Rgl,R;2)>'

2~ I Iy

With this measure, identical model pairs always achieve 1, since each layer’s best match is itself and
CKA(R),R))=1.

We observe consistent trends between representational similarity and interactive behavior across both
aggregation methods and all four CKA variants. Unless otherwise noted, CKA refers to the global averages
of linear CKA. Results for other variants appear in Appendix

3.2 PROBE DATASET

A recent study (Ciernik et al.| [2024) shows that representational similarity can depend on the choice
of probe dataset. To examine whether the relationship between representational similarity and model
interactions depends on probe dataset, we use four probe datasets spanning different domains, from which
we compute a CKA score for each: WikiText (Merity et al.| 2016) for general language, GSMS8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021)) for mathematics, and Truthful QA (Lin et al.,[2021) for
truthfulness. From WikiText and MATH, we randomly sample 1000 prompts each. For GSM8K, we
use the entire test set (1319 prompts), and for TruthfulQA, we use the full dataset (817 prompts).

3.3 REPRESENTATIONAL SIMILARITY RANGE

We consider 23 open-weight LLMs spanning eight families and sizes ranging from 1B to 72B parameters,
yielding 276 model pairs. The full model list is provided in Table [I{in Appendix. These models exhibit a
wide range of representational similarity. For example, using the global average score with WikiText as the
probe dataset, values range from 0.106 (gemma-3-4b-it vS. gemma-3-12b-it)to 0.92 (phi-4 Vs.
phi-4). Using the average of maximum-aligned scores, values range from 0.288 (gemma-3-4b-it Vs.
gemma-3-12b-it) to 1 (for all identical model pairs). The complete set of CKA scores for all 276 pairs
is shown in Figures [6]and[7] We find that the Gemma family (Team et al., 2025)) generally exhibits lower
similarity to other models, while pairs within the same family tend to show higher similarity. Figure
also reports correlations across different CKA variants, where similarities computed with GSM8K and
WikiText display relatively lower agreement.

4 COOPERATION INCREASES WHEN SIMILAR MODELS MEET

Building on evidence that greater interbrain synchrony among humans is strongly linked to increased
cooperation, we test the hypothesis that model pairs with higher representational similarity will demonstrate
increased cooperative behavior.
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4.1 GAME SETTINGS & ANALYSIS

We use four game settings that involve cooperation: word guessing (Gero et al., 2020; Shaikh et al.,
2023), public goods (Hauert et al., 2006), divide-a-dollar (Kalai, |1977), and the Keynesian Beauty Contest
(KBC) (Dutfy & Nagell [1997). Word games have been used to examine how players infer their partners’
mental models. The latter three games have been widely adopted in economics and social science to study
cooperative dynamics. The following presents a description of each game rule along with associated out-
come metrics, which capture the extent to which the two agents cooperated with one another during a game:

¢ Word Guessing: In the game, one player chooses their own target word that begins with a given letter
(“a” to “z”) and provides one-word hint to the other player. Here, the player is instructed to make the
hint different from the target word. The other player should guess that secret word based on the hint
and the given starting letter. Each round is one-shot and independent. We use the number of correct
guesses over 26 rounds, one for each letter in the alphabet, as the outcome metric.

* Public Good: The game repeats for five rounds and shows an agents ability to reason over individual
and group incentives. At the beginning of the game, each agent begins with $100 of their own money
and decides how much to contribute to a public pot every round. After their contribution is collected
into the public pot each round, the value increases by 30% and is evenly redistributed back to each
agent. We use each agent’s total asset value accumulated over five rounds as the outcome metric.

* Divide a Dollar: The game repeats for five rounds, and players must make collaborative decisions in
order to maximize self-gain. Each round, $1 is available, and players should demand how much of the
$1 they want. If the total amount requested is not above $1, players receive the amount they requested.
If the total amount requested exceeds $1, agents don’t receive anything. We use each agent’s total asset
value accumulated over five rounds as the outcome metric.

* KBC: The game repeats for five rounds and incentivizes recursively reasoning about the other player’s
reasoning process and decisions. At the beginning of each round, players choose a number between
0 and 100, guessing the closest number to 2/3 of the average of the numbers from both agents. The
score is based on how close their number is to 2/3 of the average: 100— |their number —2/3 x average|.
We use the total score of each player over the five rounds as the outcome metric.

In all games except the word guessing game where each round is one-shot and independent, players are
shown the other’s choice and reasoning at the end of each round. A higher game outcome value indicates
stronger cooperation in that game. For example, in the word guessing game, performance depends on how
accurately each agent guesses the other’s secret words—reflecting their ability to interpret their partner and
infer unknown information. In the public goods game, achieving high returns requires both cooperation
and alignment: purely selfish strategies yield low payoffs, and exploitation due to misunderstanding also
reduces outcomes.

We evaluate all 276 possible pairs of the 23 models listed in Table [T} Because the word guessing game
is asymmetric, we consider ordered pairs, resulting in 529 model pairings. Each pair interacts across all
four games, with temperature set to 0.7 and at least 4 independent samples collected per pair for each
game. The average game outcome for each model is presented in Figure[0]in Appendix [C]

To analyze the relationship between representational similarity and interaction outcomes, we fit a
mixed-effects linear regression model (Bates et al.,[2015). In our experimental setup, using a simple linear
regression or Pearson correlation would be inappropriate because these tests assume independent data
points, whereas our setup produces multiple samples per model pair, and each model appears in multiple
pairs. Mixed-effects regression is the standard approach for handling such non-independence (Brown)
2021). In particular, it allows us to account for variance attributable to individual models (e.g., differences
in capability) by including model-specific random effects, thereby isolating the effect of representational
similarity on interactive outcomes. Specifically, we estimate the following mixed-effects regression:

Y%j :Oé+5CKAZ] +ui+vj +€ij7

where Y;; is the interactive outcome of interest, and CKA,;; is the similarity measure between models
1 and j. The terms u; and v; represent random effects associated with models ¢ and j, respectively, where
these terms capture unobserved heterogeneity at the level of model 7 and model 7, respectively. Lastly,
€ij~N(0,02) is an error term.

To evaluate whether similarity predicts the interactive outcome, the key quantities are the estimated slope of
CKA;;j (i.e., B) and its statistical significance. We therefore report 3 with its p-value throughout the paper:
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4.2 DOES REPRESENTATIONAL SIMILARITY PREDICT COOPERATION?
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Figure 2: Regression coefficient of representational similarity on game outcomes. Error bars denote 90%,
95%, and 99% confidence intervals. Across games and datasets, the graphs show a positive effect of
similarity on outcomes, with WikiText-based similarity exhibiting the strongest effect.

Our results reveal that representational similarity can predict cooperative outcomes. In the word guessing
game, correct guesses increase by approximately 88.2, 58.0, 63.3, and 59.4% (relative changes) for each
unit increase in representational similarity (i.e., from O to 1) measured with WikiText, GSM8K, MATH,
and Truthful QA, respectively. In the public good game, each player’s total asset value rises by 34.8, 32.4,
33.0, and 29.8% across the four probe datasets. For divide-a-dollar, asset values increase by 29.9, 15.3,
16.2, and 13.7%. Finally, in KBC, scores increase significantly but modestly—4.5, 4.7, 4.2, and 3.4%. All
effects are found to be statistically significant (Figure ). Among the four games, KBC shows the weakest
effect. This is expected: the game has a unique Nash equilibrium in which both players always choose
zero, which makes the optimal strategy fixed regardless of representational similarity. For instance, we
observe that a certain model such as GPT-0Ss-20B always chooses 0 regardless of the partner’s decision.
Nevertheless, even here, we observe a significant upward trend with increasing similarity.

The pattern persists across probe datasets, implying its generalizability. Moreover, we find no difference
in effect size across datasets (please refer to Figure [2). This contrasts with a previous finding [Ciernik
et al.[(2024), which showed that the correspondence between representational similarity and task behavior
depends on the dataset. The same trend holds across other CKA variants as well (see Appendix [D.T).

5 NOVELTY DECREASES WHEN SIMILAR MODELS MEET

Next, we examine whether representational similarity predicts novelty in collaborative generative tasks.
For this purpose, we adapt four tasks—story writing, fictional biography, haiku composition, and vacation
benefit brainstorming—from NoveltyBench (Zhang et al., 2025), a benchmark originally designed to
evaluate an individual model’s ability to produce high-quality and original ideas. Because NoveltyBench
tasks are defined for single-agent settings, we extend them to the multi-agent case: each of the two models
first generates a set of brainstorming ideas, after which each model produces a final output based on the
combined brainstorms. The four generative tasks are as follows:

¢ Story Writing: Players brainstorm an outline of a story about a girl and her dog, then individually
write a five-sentence story after reviewing the combined brainstorm.

* Biography Writing: Players brainstorm an outline for a short biography of a fictional person, then
individually write a biography based on the combined brainstorm.

¢ Haiku Writing: Players brainstorm a plot for a haiku about a whale and a walnut tree, then individually
compose a haiku after reviewing the combined brainstorm.

* Vacation Benefit Brainstorming: Players brainstorm possible benefits of going on vacation, then
individually write one best aspect after reviewing the combined brainstorm.

As with the cooperative games, we evaluate all 276 pairs, using a temperature of 0.7. For each pair, we
sample 10 generations in accordance with NoveltyBench. We also conduct mixed-effects regression to
identify whether representational similarity can predict novelty.

Because novelty encompasses multiple dimensions, we evaluate it using several metrics: the number of
distinct responses produced, the quality of those responses, and the extent to which outputs differ from
those generated without interaction with another agent. The first two, response uniqueness and quality,
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are assessed using NoveltyBench’s proposed metrics, while the last is measured as the mutual information
between outputs produced through joint brainstorming and those generated without interaction. We
describe the evaluation methodologies in more detail below.
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Figure 3: Regression coefficient of representational similarity on response uniqueness. Error bars denote
90%, 95%, and 99% confidence intervals. The graphs reveal a consistent downward trend: as models
become more similar, response uniqueness declines. The strongest effect is observed in the haiku task.

5.1 DOES REPRESENTATIONAL SIMILARITY PREDICT UNIQUENESS AND QUALITY?

First, to assess response uniqueness and quality, we use the NoveltyBench evaluation pipeline using au-
toraters (Zhang et al., 2025)). NoveltyBench defines the two measures, uniqueness and quality, over a set of
samples. For uniqueness, the benchmark clusters 10 generations using a fine-tuned deberta-v3-large
model according to content distinctiveness and then counts the number of clusters, which serves as the
uniqueness metric. A higher cluster count indicates that models are able to generate more diverse ideas. For
response quality, the benchmark relies on Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al.,2024),
with outputs rescaled to a 1—10 range for a more interpretable scoreﬂ

As shown in Figure [3] response uniqueness decreases consistently with increasing representational
similarity across all tasks and probe datasets. The effect is strongest in haiku composition (coeff =—3.425,
CI=|—4.803,—2.047], p<.001). By contrast, response quality shows no systematic trend with similarity.
Fictional biography and haiku tasks exhibit nonsignificant negative slopes of similarity (coeff=—0.397,
p=.456 for biography; coeff =—0.115, p=.724 for haiku), while story writing and vacation tasks show a
nonsignificant positive slope (coeff=0.279, p=.420 for story; coeff=0.039, p=.901 for vacation). This
implies that interaction with dissimilar models tend to generate more diverse responses, without reducing
quality.
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Figure 4: Regression coefficients of representational similarity on mutual information. Error bars denote
90%, 95%, and 99% confidence intervals. The graphs reveal a decreasing trend in novelty with increasing
similarity: as models become more similar, the shared information between the amalgam response (i.e.,
response generated after joint brainstorming) and the individual response (i.e., response generated after
solo brainstorming) increases.

5.2 DOES REPRESENTATIONAL SIMILARITY PREDICT MUTUAL INFORMATION?

We next examine whether representational similarity has a significant effect on output novelty—specifically,
how far a model’s responses generated after joint brainstorming (“amalgam response’) deviate from the

"None of the helper models used in this section are reused as players in the games.
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model’s outputs conditioned only on its individual brainstorm (“individual response”). To capture this,
we compare amalgam and individual responses using mutual information (Kraskov et al.,2004), which
quantifies how much information individual responses share with those produced in the joint setting. Such
information-theoretic approaches have recently been applied to investigate textual characteristics (e.g.,
information distribution across paragraphs) (Venkatraman et al., 2023}, Clark et al., 2023; Mu et al., 2025).

To calculate mutual information, we follow the method from Mu et al.| (2025). Formally, let S 4 denote an
amalgam response and Sy denote an individual response. We compute the mutual information I(S4;S7)
as Hy(Sa)—Hy(Sa|Sr). Ho(S4) denotes the total information content of the amalgam response, and
Hy(S4 | Sr) denotes the residual information of the amalgam response given the individual response,
both measured under a reference language model with parameters 6. To calculate Hy(S4), we sum
the cross-entropy over all tokens in the amalgam response under the model with parameters 6. The
cross-entropy of a token quantifies the model’s prediction error for that token given its preceding context,
thereby reflecting its uncertainty. Similarly, Hy(S4 |.S7) is computed by summing the cross-entropy of
each token in the amalgam response when the individual response is prefixed to the amalgam response.
A smaller difference between Hy(S4) and Hy(S4 | Sr) indicates that the amalgam response deviates
more from the individual response, thereby reflecting higher novelty. Following Mu et al.| (2025), we
use Llama-3.1-8B-Instruct as the reference model

Our analysis shows a significant positive effect of representational similarity on mutual information,
which suggests that interactions between more similar models generate less novel outputs with respect
to the individual model responses. The trend appears across all tasks and probe datasets (Figure ). In
particular, the haiku task exhibits the strongest effect of representational similarity on mutual information
(coeff=1.310, CI=[1.034,1.585], p<.001).

6 WHY DOES THE TREND APPEAR?

So far, we have identified a strong trend between representational similarity and interactive behaviors
of models. This naturally raises the question of why such a trend emerges. In this section, we test several
hypotheses regarding what drives the trend.

Confounding Effects of Behavioral Similarity. Models with higher representational similarity may
behave more similarly (e.g., bid the same amount in divide-a-dollar), and this behavioral similarity might
have led directly to greater measured cooperation. To test this, we conducted a mixed-effects regression
controlling for behavioral differences in the public goods, divide-a-dollar, and KBC games. This allows us
to isolate the effect of representational similarity from behavioral similarity. Because these games instruct
models to make numerical choices, it is straightforward to estimate behavioral difference as the absolute
gap between the two models’ choices.

Our analysis shows that behavioral difference alone cannot explain the observed trends. In both the
public good and divide-a-dollar games, representational similarity remains a significant predictor, while
behavioral difference is insignificant (coeff. rep. sim. =52.118, p <.001, coeff. beh. diff. =—0.036,
p =086 for public good; coeff. rep. sim. =0.435, p < .001, coeff. beh. diff. =—0.020, p=.281 for
divide-a-dollar). This suggests that behavioral similarity is not what drives the trend. By contrast, in the
KBC game, behavioral difference shows a significant effect, while representational similarity does not
(coeff. rep. sim. =9.024, p=.178, coeff. beh. diff. =—0.327, p<.001). As discussed in Section[d, KBC
has a unique Nash equilibrium in which both players choose 0, which leads to convergence in choices.
This structural property of the game likely explains why behavioral difference dominates in this case.

Factors Underlying Representational Similarity. Representational similarity is influenced by several
architectural and design-related components, including whether two models are identical, belong to the
same model family, share the same tokenizer, or differ in size. Any of these factors could potentially
have driven the observed behavioral trends by influencing similarity. To investigate this, we conducted
a mixed-effects regression controlling for four key factors: (1) identical model pairing, (2) within-family

>They select the model under the requirement that the mutual information values satisfy symmetry and
non-negativity. For robustness, we additionally compute mutual information with the base model Llama-3.1-8B,
identified by [Mu et al] (2025) as a strong alternative reference model. Results, shown in Appendix [D.4] continue
to show a significant association with representational similarity. One might further suspect a same-family bias when
the reference model is used to evaluate Llama models. To address this, we analyze model pairs excluding the Llama
family and report the results in Appendix@ The results still show the significant effect of similarity.
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Figure 5: Regression coefficients of representational similarity (CKA) and four other factors across
cooperation and novelty games. To enable comparison across predictors, all variables were rescaled to
[0,1] in the regression. The graphs show that representational similarity is the strongest predictor.

pairing, (3) shared tokenizer, and (4) model size difference. In this analysis, all predictors and outcome
variables were rescaled to [0,1] to allow comparison of effect sizes of predictors. If these factors were
mainly responsible for the trend, we would expect representational similarity to lose significance once
they were controlled for, while the factors themselves would show significant effects.

Our analysis finds that representational similarity is the strongest predictor on cooperation and novelty,
compared to the four factors (Figure [5). In cooperation games, all predictors except tokenizer are
significant, with representational similarity showing the largest effect (coeff = 0.060, p = .001). For
response uniqueness, none of the four factors are significant, while representational similarity shows a
significant effect (coeff = —0.087, p=.026). For mutual information, only representational similarity and
within-family are significant, with similarity again showing the stronger impact (coeff =0.049, p <.001).
Taken together, these findings suggest that the four examined factors do not fully explain the trend. Instead,
representational similarity itself—likely influenced by deeper, unmeasured aspects of model design and
training—remains the primary driver of the observed behavioral patterns. Further exploration of the reason
for the trend is left for future work.

7 FUTURE DIRECTIONS AND OPEN QUESTIONS

Existing multi-agent system designs often rely on a single model without exploring the optimal combination
of models (Lai et al.l 2024; [Park et al.l 2023} Xie et al., 2024; Zhou et al., [2023; |Wu et al., 2024 (Ishibashi
& Nishimura, 2024). Our findings suggest that which models are combined has a significant effect on
their interactions. In neuroscience and social science, researchers have long studied the nature of human
social dynamics (Parkinson et al.l 2018} [Thornton & Mitchell, 2017} |Shen et al., |2025b; Reinero et al.,
2021} Page, |2019; [Paulus| 2000). We argue that such efforts should also be made in the AI community,
and our experiments provide an initial step in that direction.

The relationship between representational similarity and model interaction is likely context-dependent.
We already observed that the effect size of similarity varies across games. For instance, in KBC, which has
a unique Nash equilibrium, the link between similarity and interaction becomes weaker. Other evidence is
also found in neuroscience and social science. Some studies show that diversity can foster cooperation (San{
tos et al., 2008; |2012; Wang et al.| [2025)), and certain creativity research suggests that greater similarity can
yield higher originality (Koo et al., 2024; Bastian et al., 2018} Miura & Hidal [2004). These findings imply
that there might be no universal relationship between similarity and interactive dynamics. Understanding
when the trend emerges, when it disappears, and when it reverses will require further research. Such
insights will be crucial for improving multi-agent system design in diverse application domains.

Another direction is to investigate the mechanisms underlying these trends. In this work, we used CKA
as our measure of representational similarity. However, metrics like CKA capture only limited aspects of
representational spaces, making it difficult to pinpoint which specific features of representations drive the
trends. Future work can examine this at the neuron level—e.g., which neurons are preferentially activated
when a model interacts with another model of higher representational similarity. Such analyses could
enable us to deliberately steer cooperation or collective novelty through targeted activation steering.
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A MODEL LIST

Table 1: Full list of models involved in the interaction experiments

Family  Model Name Checkpoint / Repo Size Tokenizer Reference
Qwen2.5- Qwen/Qwen2.5-3B— 3.09B BPE Team| (2024)
3B-Instruct Instruct

Qwen 5 en2s- Qwen/Qwen2.5-7B- 7.61B BPE Team|(2024)
7B-Instruct Instruct
Qwen2.5- Owen/Qwen2.5-14B- 14.7B BPE Team! (2024)
14B-Instruct Instruct
Qwen2.5- Qwen/Qwen2.5-72B- 72.7B BPE Team|(2024)
72B-Instruct Instruct
Llama- meta—-llama/Llama— 321B tiktoken Grattafiori

Llama 3.2-3B-Instruct 3.2-3B-Instruct et al. (2024)
Llama-3.2-11B- meta-1llama/Llama- 10.6B tiktoken Grattafiori
Vision-Instruct 3.2-11B-Vision— et al.| (2024)

Instruct
Llama- meta-1llama/Llama— 70.6B tiktoken Grattafiori
3.3-70B-Instruct  3.3-70B-Instruct et al.| (2024)
Gemma-3-1B-IT google/gemma-3-1b— 1.0B  SentencePiece [Team et al.

it (2025)

Gemma Gemma-3-4B-IT google/gemma-3-4b-  4.0B  SentencePiece [ITeam et al.

it (2025)
Gemma- google/gemma-3-12b— 122B SentencePiece [Team et al.
3-12B-IT it (2025)
Gemma- google/gemma-3-27b— 27.0B SentencePiece [Team et al.
3-27B-IT it (2025)
Falcon3- tiiuae/Falcon3-3B- 3.23B BPE Almazrouei

Falcon 3B-Instruct Instruct et al.[(2023)
Falcon3- tiiuvae/Falcon3-7B—- 7.46B BPE Almazrouei
7B-Instruct Instruct et al.| (2023)
Falcon3- tiiuae/Falcon3-10B- 10.3B BPE Almazrouel
10B-Instruct Instruct et al.| (2023)
Phi- Lexius/Phi-3.5- 3.8B  SentencePiece |Abdin et al.

. 3.5-mini-instruct mini-instruct (20244l
Fhi Phi-3-medium- microsoft/Phi-3- 14B  SentencePiece |Abdin et al.
128k-instruct medium-128k— (20244
instruct
Phi- microsoft/Phi-4- 3.8B tiktoken Abdin et al.
4-mini-instruct mini-instruct (2024b)
Phi-4 microsoft/phi-4 14.7B tiktoken Abdin et al.
(2024b)

Mistral Mistral-Nemo- mistralai/Mistral-  12.2B tekken Jiang et al.
Instruct-2407 Nemo—-Instruct-2407 2024)
Ministral- mistralai/ 8.02B tekken Jiang et al.
8B-Instruct-2410 Ministral-8B- 2024)

Instruct-2410
OpenAl  GPT-OSS-20B openai/gpt-oss—20b  21.5B 0200k _harmony |OpenAl et al.
(2025)

OLMo OLMo- allenai/OLMo—2— 1.48B cl100k OLMo et al.
2-1B-Instruct 0425-1B-Instruct (2025)
OLMo- allenai/OLMo—-2- 13.7B cl100k OLMo et al.
2-13B-Instruct 1124-13B-Instruct (2025)
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B REPRESENTATIONAL SIMILARITY OF MODEL PAIRS

Falcon3-10B-Instruct [
Falcon3-3B-Instruct [E&

Falcon3-7B-Instruct (&8

Llama-3.2-11B-Vision-Instruct &
0.8
Llama-3.3-70B-Instruct [
Ministral-8B-Instruct-2410 (22
Mistral-Nemo-Instruct-2407 [R&23
OLMo-2-0425-1B-Instruct
OLMo-2-1124-13B-Instruct

0.6

Phi-3-medium-128k-instruct

Phi-3.5-mini-instruct

Phi-4-mini-instruct
Qwen2.5-14B-Instruct [UEERVEERUEL .80 0.78 .83 0.65 0.70
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Figure 6: Representational similarity of model pairs using WikiText, where CKA scores across layers
are aggregated into a global average.
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Figure 7: Representational similarity of model pairs using WikiText, where CKA scores across layers
are aggregated into a maximum-aligned average.
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Figure 8: Correlation between different CKA scores
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D DETAILED RESULTS

D.1 MIXED-EFFECTS REGRESSION RESULTS FOR COOPERATION

Tables 29| show strong positive trends across all datasets, CKA variants, and games.

D.1.1 WHEN USING THE GLOBAL AVERAGE

Table 2: Word guessing game. We fit a mixed-effects regression between game outcome and
representational similarity. Here, the summary similarity score is calculated using a global average. (3
indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 5.

Dataset Metric Intercept | £ 95% CI P

CKA (linear) 819 [ 723 1[545,901] | 1.5x10°
WikiText | unbiased CKA (linear) 826 | 7.16 | [5.40,892] | 1.6x10~1°
CKA (RBF) 826 | 7.33 | [5.60,9.06] | 9.0x10~'7
unbiased CKA (RBF) 776 | 798 | [6.02,9.94] | 1.5x101°
CKA (linear) 1058 | 6.13 | [4.88,7.38] | 6.9x10~22
GSM8K | unbiased CKA (linear) 10.67 | 6.03 | [4.80,7.26] | 9.3x10722
CKA (RBF) 10.63 | 590 | [4.68,7.12] | 3.4x10~2!
unbiased CKA (RBF) 1055 | 627 | [4.97,7.56] | 2.4x10~2!
CKA (linear) 9.85 624 | [4.94,753] | 3.2x10~ 2%
MATH unbiased CKA (linear) 9.95 6.13 | [4.86,7.41] | 4.3x102t
CKA (RBF) 9.71 625 | [4.92,757] | 2.5x10720
unbiased CKA (RBF) 9.75 6.51 | [5.16,7.87] | 4.7x10~2!
CKA (linear) 1003 | 5.96 | [4.58,7.33] | 1.8x 10—1:

unbiased CKA (linear) 10.14 | 590 | [4.54,7.25] | 1.3x10~
TruthfulQA CKA (RBF) 10.11 | 5.75 | [4.39,7.12] | 1.6x10~16
unbiased CKA (RBF) 9.93 621 | [4.76,7.66] | 4.8x10~Y7

Table 3: Public good game. We fit a mixed-effects regression between game outcome and representational
similarity. Here, the summary similarity score is calculated using a global average. ( indicates the
coefficient of similarity, and the 95% CI represents the confidence interval of (.

Dataset Metric Intercept B 95% CI P

CKA (linear) 14895 | 51.77 | [30.82,72.73] | 1.3x10°©
WikiTex | tnbiased CKA (linear) || 1496 | 51.03 | [3044,71.62] | 1.2x10°°
CKA (RBF) 1483 | 5436 | [32.95,75.77) | 6.5x10°7
unbiased CKA (RBF) || 1494 | 51.31 | [29.66,72.96] | 3.4x10~°
CKA (linear) 162.99 | 52.81 | [34.48,71.14] | 1.6x10°%
GsMgk | Unbiased CKA (linear) || 1638 | 5203 | [33.84,7021] | 2.1x10~*
CKA (RBF) 1629 | 5244 | [34.45,7044] | 1.1x10~8
unbiased CKA (RBF) || 163.1 | 52.82 | [34.14,71.51] | 3.0x10~8
CKA (linear) 15753 | 5201 | 3391, 70.10] | 1.8x10° %
MATH | tnbiased CKA (linear) || 1583 | 5131 | [3342,69.21] | 19107
CKA (RBF) 1560 | 52.85 | [34.48,71.23] | 1.7x10~8
unbiased CKA (RBF) || 157.6 | 5225 | [33.65,70.84] | 3.6x10~8
CKA (linear) 15993 | 47.62 | [29.16, 66.08] | 4.3x 10—:

unbiased CKA (linear) | 160.8 | 47.06 | [28.78,65.34] | 4.5x10~
TruthfulQA CKA (RBF) 1607 | 45.83 | [27.64,64.02] | 7.9%10°7
unbiased CKA (RBF) || 160.1 | 47.55 | [28.61,66.49] | 8.7x10~7
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Table 4: Divide-a-dollar game. We fit a mixed-effects regression between game outcome and
representational similarity. Here, the summary similarity score is calculated using a global average. (8

indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept | S 95% CI P

CKA (linear) 1.47 044 | [0.21,0.67] | 0.00014

WikiText unbiased CKA (linear) 1.47 044 | 10.22,0.67] 0.00011
CKA (RBF) 1.48 045 | [0.23,0.67] | 7.7x107°

unbiased CKA (RBF) 1.46 0.46 | [0.22,0.70] | 0.00017

CKA (linear) 1.66 0.25 | [0.08,0.43] 0.0046

GSMSK unbiased CKA (linear) 1.66 0.25 | [0.08,0.43] 0.0040

CKA (RBF) 1.65 0.26 | [0.09, 0.44] 0.0027

unbiased CKA (RBF) 1.66 0.25 | [0.07,0.43] 0.0074

CKA (linear) 1.63 0.26 | [0.08,0.44] 0.0046

MATH unbiased CKA (linear) 1.63 0.27 | [0.09, 0.45] 0.0036

CKA (RBF) 1.61 0.28 | [0.10,0.47] 0.0027

unbiased CKA (RBF) 1.63 0.26 | [0.07,0.45] 0.0066

CKA (linear) 1.64 0.23 | [0.04,0.41] 0.0185

unbiased CKA (linear) 1.64 0.23 | [0.05,0.42] 0.0140

TruthfulQA CKA (RBF) 163 | 025 | [0.06,043] | 0.0090

unbiased CKA (RBF) 1.65 0.21 | [0.01,0.41] 0.0352

Table 5: KBC game. We fit a mixed-effects regression between game outcome and representational
similarity. Here, the summary similarity score is calculated using a global average.  indicates the

coefficient of similarity, and the 95% CI represents the confidence interval of (3.

Dataset Metric Intercept B 95% CI P
CKA (linear) 41864 | 1872 | [5.75, 31.68] | 0.0047
WikiTex( | umbiased CKA (inear) || 4188 | 18.53 | [5.70,31.36] | 0.0046
CKA (RBF) 4194 | 1794 | [4.77,31.10] | 0.0076
unbiased CKA (RBF) || 4193 | 17.77 | [447.31.07] | 00088
CKA (lincar) 42349 [ 19.78 | [7.73, 31.84] | 0.0013
Gsvsk | umbiased CKA (lnear) || 4237 | 19.82 | [7.89,31.76] | 0.0011
CKA (RBF) 4238 | 1860 | [6.76,3044] | 0.0021
unbiased CKA (RBF) || 4237 | 1930 | [6.99.31.60] | 0.0021
CKA (lincar) 3202 [ 1771 | [3.90, 29.52] | 0.0033
VATH | unbiased CKA linear) | 4224 | 17.68 | [5.84,2951] | 0.0034
CKA (RBF) 4220 | 1731 | [5.34.2927] | 0.0046
unbiased CKA (RBF) || 4225 | 17.15 | [5.06,29.24] | 0.0054
CKA (linear) 3378 | 1446 | [2.33,26.60] | 0.0195
unbiased CKA (linear) || 4239 | 14.69 | [2.69.26.69] | 0.0164
TruthfulQA CKA (RBF) 4241 | 1368 | [1.75.2561] | 0.0246
unbiased CKA (RBF) || 4243 | 1335 | [0.90,25.80] | 0.0356
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D.1.2 'WHEN USING THE AVERAGE OF MAXIMUM-ALIGNED SCORES

Table 6: Word guessing game. We fit a mixed-effects regression between game outcome and represen-
tational similarity. Here, the summary similarity score is calculated using the average of maximum-aligned
scores. [ indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept | [ 95% C1 D
CKA (linear) 837 | 558 | [4.14,7.02] | 35x10 *
WikiText | tnbiased CKA (linear) 578 | 9.10 | [7.15,11.05] | 6.3x10~20
CKA (RBF) 8.31 576 | [4.36,7.16] | 6.4x10716
unbiased CKA (RBF) 844 | 564 | [427,7.01] | 7.1x10716
CKA (linear) 1064 | 379 | [3.00,4.58] | 3.6x10~ 2T
GSMsKk | unbiased CKA (linear) 1030 | 449 | [3.62,537] | 1.3x10723
CKA (RBF) 1050 | 3.92 | [3.11,4.73] | 2.5x102!
unbiased CKA (RBF) 1061 | 3.80 | [3.02,4.59] | 3.2x1072!
CKA (linear) 996 | 432 [336,527] | 81x10° 7
MATH unbiased CKA (linear) 9.27 551 | [440,6.62] | 1.6x10722
CKA (RBF) 968 | 456 | [3.53,5.59] | 4.2x107!8
unbiased CKA (RBF) 979 | 445 | [345,5.46] | 5.1x107'®
CKA (linear) 1024 | 384 | [292,476] | 3.9x10° 10
unbiased CKA (linear) 9.53 5.05 | [3.95,6.16] | 3.2x10~%°
TruthfulQA CKA (RBF) 1012 | 393 | [297,4.89] | 1.0x10-15
unbiased CKA (RBF) 1028 | 3.79 | [2.87,4.71] | 7.8x10716

Table 7: Public good game. We fit a mixed-effects regression between game outcome and representational
similarity. Here, the summary similarity score is calculated using the average of maximum-aligned scores.

5 indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept B 95% CI P

CKA (linear) 150.11 | 39.99 | [20.48,59.50] | 5.9x 107
WikiText | Unbiased CKA (linear) || 139.0 | 5508 | [30.95,79.20] | 7.7x10~°
CKA (RBF) 1499 | 4093 | [21.96,59.90] | 2.4x10~°
unbiased CKA (RBF) || 1509 | 39.97 | [21.39,58.54] | 2.5x 1075
CKA (linear) 16433 | 30.77 | [19.18,4237] | 2.0x107
GsMgk | unbiased CKA (linear) || 1621 | 3551 | [22.64,48.38] | 6.4x10~°
CKA (RBF) 162.8 | 32.58 | [20.68,44.49] | 8.2x10~®
unbiased CKA (RBF) || 1639 | 31.47 | [19.86,43.08] | 1.1x107
CKA (lincar) 15077 | 33.66 | [19.01,47.41] | 1.6x10°
MATH | unbiased CKA (inear) || 1559 | 4041 | [24.75,56.07] | 4.2x10°7
CKA (RBF) 1567 | 37.00 | [22.26,51.74] | 8.7x10°7
unbiased CKA (RBF) || 157.6 | 36.08 | [21.68,5048] | 9.1x107
CKA (linear) 161,06 | 3143 | 1821, #465] [ 32x107

unbiased CKA (linear) || 156.8 | 38.85 | [23.57,54.13] | 6.2x10~
TruthfulQA CKA (RBF) 159.8 | 32.59 | [19.07,46.12] | 2.3x10~°
unbiased CKA (RBF) || 161.5 | 30.82 | [17.83,43.81] | 3.3x106
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Table 8: Divide-a-dollar game. We fit a mixed-effects regression between game outcome and represen-
tational similarity. Here, the summary similarity score is calculated using the average of maximum-aligned
scores. [ indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept | [ 95% CI D

CKA (linear) 1.52 0.29 | [0.11,0.48] | 0.00170

WikiText unbiased CKA (linear) 1.46 0.38 | [0.13,0.62] | 0.0025
CKA (RBF) 1.53 0.29 | [0.11,0.47] | 0.0015

unbiased CKA (RBF) 1.53 0.28 | [0.11,0.46] | 0.0015

CKA (linear) 1.67 0.14 | [0.03,0.24] | 0.0089

GSM8K unbiased CKA (linear) 1.67 0.14 | [0.03,0.26] | 0.0161
CKA (RBF) 1.66 0.15 | [0.04,0.25] | 0.0079

unbiased CKA (RBF) 1.67 0.14 | [0.04,0.25] | 0.0078

CKA (linear) 1.64 0.16 | [0.03,0.29] | 0.0132

MATH unbiased CKA (linear) 1.63 0.17 | [0.03,0.32] | 0.0204
CKA (RBF) 1.63 0.18 | [0.04,0.31] | 0.0107

unbiased CKA (RBF) 1.63 0.17 | [0.04,0.30] | 0.0105

CKA (linear) 1.64 0.16 | [0.04,0.29] | 0.0082

unbiased CKA (linear) 1.63 0.18 | [0.03,0.32] | 0.0187

TruthfulQA CKA (RBF) 163 | 0.18 | [0.06,031] | 0.0045
unbiased CKA (RBF) 1.64 0.17 | [0.05,0.29] | 0.0050

Table 9: KBC game. We fit a mixed-effects regression between game outcome and representational
similarity. Here, the summary similarity score is calculated using the average of maximum-aligned scores.

B indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept B 95% CI P
CKA (linear) 41325 | 22.15 | [9.64, 34.65] | 0.00052
WikiTexg | Unbiased CKA (linear) || 4112 | 25.12 | [9.80,40.44] | 0.00131
CKA (RBF) 414.1 | 2143 | [9.13,33.72] | 0.00064
unbiased CKA (RBF) || 4145 | 21.01 | [8.96,33.07] | 0.00063
CKA (linear) 42286 | 1371 | [6.19, 21.24] | 0.00036
GsMgk | unbiased CKA (linear) || 4224 | 14.82 | [646,23.18] | 0.00051
CKA (RBF) 4228 | 1344 | [5.70,21.17] | 0.00066
unbiased CKA (RBF) || 4230 | 1335 | [5.81,20.89] | 0.00052
CKA (linear) 42055 | 1544 | [6.50, 24.39] | 0.00072
MATH | Unbiased CKA (linear) || 419.6 | 17.18 | [6.99,27.37] | 0.00095
CKA (RBF) 419.8 | 15.88 | [6.29,25.47] | 0.00117
unbiased CKA (RBF) || 420.1 | 15.75 | [6.38,25.12] | 0.00098
CKA (linear) 12148 | 13.88 | [5.30, 22.46] | 0.00152
unbiased CKA (linear) || 420.9 | 14.97 | [5.02,24.91] | 0.00318
TruthfulQA CKA (RBF) 214 | 13.67 | [4.88,22.46] | 0.00230
unbiased CKA (RBF) || 421.8 | 1349 | [5.05,21.92] | 0.00172
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D.2 MIXED-EFFECTS REGRESSION RESULTS FOR UNIQUENESS

Tables|10) consistently show negative trends across all datasets, CKA variants, and games.

D.2.1

WHEN USING THE GLOBAL AVERAGE

Table 10: Story writing task. We fit a mixed-effects regression between response uniqueness and
representational similarity. Here, the summary similarity score is calculated using a global average. (8
indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 5.

Dataset Metric Intercept B8 95% CI P
CKA (linear) 412 -0.31 | [-1.56,0.95] | 0.633
WikiText unbiased CKA (linear) 4.12 -0.30 | [-1.55,0.94] | 0.630
CKA (RBF) 4.14 -0.34 | [-1.63,0.96] | 0.610
unbiased CKA (RBF) 4.14 -0.33 | [-1.60,0.93] | 0.608
CKA (linear) 4.03 -0.27 | [-1.42,0.88] | 0.643
GSMSK unbiased CKA (linear) 4.02 -0.26 | [-1.40,0.88] | 0.659
CKA (RBF) 4.04 -0.29 | [-1.44,0.86] | 0.626
unbiased CKA (RBF) 4.03 -0.26 | [-1.39,0.87] | 0.655
CKA (linear) 4.10 -0.36 | [-1.48,0.77] | 0.536
MATH unbiased CKA (linear) 4.09 -0.34 | [-1.45,0.77] | 0.548
CKA (RBF) 412 -0.37 | [-1.54,0.79] | 0.532
unbiased CKA (RBF) 4.10 -0.35 | [-1.49,0.80] | 0.553
CKA (linear) 4.15 -049 | [-1.65,0.66] | 0.403
unbiased CKA (linear) 4.13 -0.46 | [-1.61,0.68] | 0.428
TruthfulQA CKA (RBF) 414 | 045 | [-161,0.72] | 0.453
unbiased CKA (RBF) 4.11 -0.40 | [-1.54,0.74] | 0.490

Table 11: Fictional biography generation task. We fit a mixed-effects regression between response
uniqueness and representational similarity. Here, the summary similarity score is calculated using a global
average. (3 indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 5.

Dataset Metric Intercept B 95% CI D
CKA (linear) 8.14 -1.28 | [-2.47,-0.10] 0.034
WikiText unbiased CKA (linear) 8.13 -1.28 | [-2.45,-0.11] 0.0327
CKA (RBF) 8.21 -1.42 | [-2.59,-0.24] 0.0181
unbiased CKA (RBF) 8.19 -1.40 | [-2.55,-0.25] 0.0169
CKA (linear) 7.94 -1.75 | [-2.63,-0.87] | 9.3x107°
GSMSK unbiased CKA (linear) 792 -1.76 | [-2.63,-090] | 6.7x107°
CKA (RBF) 7.95 -1.67 | [-2.55,-0.79] | 1.89x 104
unbiased CKA (RBF) 7.92 -1.69 | [-2.55,-0.83] | 1.16x10~4
CKA (linear) 8.07 -1.60 | [-2.52,-0.69] | 5.7x10~*
MATH unbiased CKA (linear) 8.05 -1.61 | [-251,-0.71] | 4.60x10~*
CKA (RBF) 8.12 -1.61 | [-2.56,-0.65] | 9.47x 1074
unbiased CKA (RBF) 8.10 -1.61 | [-2.54,-0.68] | 7.17x10~4
CKA (linear) 7.92 -1.29 | [-2.24,-0.35] 0.0073
unbiased CKA (linear) 7.91 -1.33 | [-2.27,-0.40] 0.00506
TruthfulQA CKA (RBF) 791 -1.21 | [-2.17,-0.25] 0.0134
unbiased CKA (RBF) 7.90 -1.26 | [-2.19,-0.32] 0.00824
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Table 12: Haiku composition task. We fit a mixed-effects regression between response uniqueness and
representational similarity. Here, the summary similarity score is calculated using a global average.
indicates the coefficient of similarity, and the 95% CI represents the confidence interval of (3.

Dataset Metric Intercept B 95% CI D
CKA (linear) 5.95 342 | [-4.80,-205] | 1.1x10°©
WikiText | Unbiased CKA (lincar) 593 | -342 | [4.77,207] | 6.71x1077
CKA (RBF) 5.74 3.13 | [456,-1.70] | 1.71x10~®
unbiased CKA (RBF) 5.70 -3.10 | [4.49,-1.70] | 1.39x10®
CKA (linear) 4.67 243 [ [-3.70,-1.16] | 1.7x10~%
GSM8K unbiased CKA (linear) 4.64 242 | [-3.68, -1.17] 0.000158
CKA (RBF) 4.65 -2.22 | [-3.49,-096] | 0.000589
unbiased CKA (RBF) 4.61 -222 | [-3.46,-0.97] | 0.000477
CKA (linear) 5.24 312 | [-4.36,-1.89] | 7.2x10°"
MATH unbiased CKA (linear) 5.22 313 | [435,-1.92] | 4.48x10°7
CKA (RBF) 5.39 -3.19 | [-4.45,-1.93] | 6.88x10~ 7
unbiased CKA (RBF) 5.33 -3.17 | [4.40,-1.94] | 4.60x10°7
CKA (linear) 498 | 258 | [-3.84,-133] | 52x10°
unbiased CKA (linear) 4.94 -2.58 | [-3.83,-1.34] | 4.75x107°
TruthfulQA CKA (RBF) 484 | 212 | [1343.-081] | 0.00149
unbiased CKA (RBF) 4.95 -2.19 | [-3.83,-0.91] 0.000794

Table 13: Vacation brainstorming task. We fit a mixed-effects regression between response uniqueness
and representational similarity. Here, the summary similarity score is calculated using a global average.
B indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept B8 95% CI P

CKA (linear) 1.66 -1.01 | [-1.58,-0.45] | 0.00045
WikiText unbiased CKA (linear) 1.65 -1.00 | [-1.56,-0.44] | 0.000480
CKA (RBF) 1.61 -0.94 | [-1.55,-0.32] | 0.00287
unbiased CKA (RBF) 1.59 -091 | [-1.51,-0.31] | 0.00308

CKA (linear) 1.26 -0.65 | [-1.32,0.01] 0.053

GSMSK unbiased CKA (linear) 1.25 -0.64 | [-1.29,0.02] 0.0584

CKA (RBF) 1.26 -0.60 | [-1.26,0.05] 0.0721

unbiased CKA (RBF) 1.24 -0.57 | [-1.22,0.07] 0.0824

CKA (linear) 1.45 -091 | [-1.50,-0.31] | 0.0028
MATH unbiased CKA (linear) 1.43 -0.89 | [-1.48,-0.30] | 0.00298
CKA (RBF) 1.45 -0.87 | [-1.47,-0.27] | 0.00468
unbiased CKA (RBF) 1.45 -0.87 | [-1.47,-0.27] | 0.00468

CKA (linear) 1.35 -0.71 | [-1.34,-0.08] | 0.0273

unbiased CKA (linear) 1.34 -0.69 | [-1.31,-0.07] 0.0304

TruthfulQA CKA (RBF) 1.34 -0.65 | [-1.27,-0.02] | 0.0438

unbiased CKA (RBF) 1.32 -0.62 | [-1.24,-0.01] | 0.0480
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D.2.2 'WHEN USING THE AVERAGE OF MAXIMUM-ALIGNED SCORES

Table 14: Story writing task. We fit a mixed-effects regression between response uniqueness and represen-
tational similarity. Here, the summary similarity score is calculated using the average of maximum-aligned
scores. [ indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept B8 95% CI D
CKA (linear) 431 | 049 | [1.69.0.71] | 0422
WikiTex( | umbiased CKA (inear) || 431 | 050 | [-168,0.60] | 0412
CKA (RBF) 431 | -051 | [-1.66.065] | 0.391
unbiased CKA (RBF) || 431 | -0.50 | [-1.68.0.67] | 0402
CKA (linear) 402 [ 0.16 | [:0.88.056] | 0.656
Gsvsk | tmbiased CKA (linear) || 402 | 0,16 | [087.055] | 0.662
CKA (RBF) 403 | -017 | [:0.89.055] | 0.641
unbiased CKA (RBF) || 404 | -0.18 | [-0.92.0.56] | 0.632
CKA (linear) 41T [ 029 | [1.14.057] [ 0512
MATH | unbiased CKA dinear) || 411 | 028 | [113,056] | 0514
CKA (RBF) 413 | 2031 | [1.20.0.59] | 0.502
unbiased CKA (RBF) || 4.14 | 032 | [-1.23.0.60] | 0.500
CKA (linear) 406 | 019 | [1.01.063] | 0.644
unbiased CKA (linear) || 405 | -0.19 | [-099.061] | 0.641
Truthful QA CKA (RBF) 405 | <019 | [-1.00.0.62] | 0.646
unbiased CKA (RBF) || 406 | -0.19 | [-1.03.065] | 0.654

Table 15: Fictional biography generation task. We fit a mixed-effects regression between response
uniqueness and representational similarity. Here, the summary similarity score is calculated using the
average of maximum-aligned scores. 3 indicates the coefficient of similarity, and the 95% CI represents

the confidence interval of (3.

Dataset Metric Intercept I6] 95% CI D
CKA (linear) 8.53 -1.55 | [-247,-0.63] | 0.00094
WikiText unbiased CKA (linear) 8.52 -1.54 | [-2.45,-0.63] 0.001
CKA (RBF) 8.50 -1.55 | [-2.43,-0.68] 0.001
unbiased CKA (RBF) 8.53 -1.58 | [-2.47,-0.68] 0.001
CKA (linear) 7.96 -1.15 | [1.67,-0.62] | 1.8x107°
GSMSK unbiased CKA (linear) 7.95 -1.14 | [-1.66,-0.63] | 1.0x107®
CKA (RBF) 7.96 -1.15 | [-1.67,-0.62] | 2.0x107°
unbiased CKA (RBF) 7.98 -1.16 | [-1.70,-0.62] | 3.0x10~®
CKA (linear) 8.17 -131 | [-1.94,-0.69] | 4.3x10~°
MATH unbiased CKA (linear) 8.15 -1.31 | [-1.93,-0.69] | 4.0x107°
CKA (RBF) 8.23 -1.37 | [2.03,-0.71] | 5.0x107®
unbiased CKA (RBF) 8.25 -1.39 | [-2.07,-0.71] | 6.0x107°
CKA (linear) 8.08 -1.18 | [-1.79, -0.56] 0.000164
unbiased CKA (linear) 8.06 -1.16 | [-1.76,-0.56] | 1.0x10~
TruthfulQA CKA (RBF) 8.04 -1.12 | [-1.72,-0.51] | 3.0x10~*
unbiased CKA (RBF) 8.08 -1.14 | [1.78,-0.51] | 4.0x1074
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Table 16: Haiku composition task. We fit a mixed-effects regression between response uniqueness
and representational similarity. Here, the summary similarity score is calculated using the average
of maximum-aligned scores. [ indicates the coefficient of similarity, and the 95% CI represents the
confidence interval of 3.

Dataset Metric Intercept B 95% CI P
CKA (linear) 5.86 264 | [-395,-1.32] | 89x107°
WikiText unbiased CKA (linear) 5.84 261 | [13.92,-1.31] | 8.75%x107°
CKA (RBF) 5.62 237 | [-3.63,-1.11] | 2.33x1074
unbiased CKA (RBF) 5.65 239 | [-3.68,-1.11] | 2.67x1074
CKA (linear) 4.62 -1.44 | [-2.22,-0.66] 0.00028
GSMSK unbiased CKA (linear) 4.60 -143 | [-2.19,-0.66] | 2.57x104
CKA (RBF) 4.59 -1.38 | [-2.16,-0.60] | 5.19%x10~4
unbiased CKA (RBF) 4.62 -1.40 | [-2.20,-0.60] | 6.01x10~4
CKA (linear) 5.04 -1.92 | [2.84,-1.00] | 4.9x107°
MATH unbiased CKA (linear) 5.03 -1.91 | [-2.83,-1.00] | 4.09x 10*‘:’
CKA (RBF) 5.11 -1.97 | [-2.94,-1.00] | 6.83x10~°
unbiased CKA (RBF) 5.14 -1.98 | [-2.98,-099] | 9.19x10®
CKA (linear) 4.88 -1.65 | [-2.54,-0.76] 0.00030 ,
unbiased CKA (linear) 4.86 -1.64 | [-2.51,-0.76] | 2.43x10~
TruthfulQA CKA (RBF) 478 | -149 | [-237,-0.61] | 8.84x10~*
unbiased CKA (RBF) 4.82 -1.51 | [-2.42,-0.59] 0.0013

Table 17: Vacation brainstorming task. We fit a mixed-effects regression between response uniqueness
and representational similarity. Here, the summary similarity score is calculated using the average
of maximum-aligned scores. [ indicates the coefficient of similarity, and the 95% CI represents the
confidence interval of 5.

Dataset Metric Intercept B 95% CI P

CKA (linear) 179 | 097 | L1.65.-030] | 0.0046

WikiTox( | Unbiased CKA (inear) || 178 | 097 | [-163,-030] | 0.005
CKA (RBF) 169 | -087 | [-1.52.-021] | 0.009

unbiased CKA (RBF) || 170 | -0.88 | [-1.55.-0.22] | 0.009

CKA (Tinear) 125 | -038 | [-0.80,0.05] | 0.081

Govsk | umbiased CKA (inear) || 124 | 037 | [-080,005] | 0.083
CKA (RBF) 125 | -037 | [-0.80.0.05] | 0.083

unbiased CKA (RBF) || 126 | -0.39 | [-0.82,0.05] | 0.080

CKA (linear) 144 | 064 | [-1.14.-0.14] | 0.012

MATH | unbiased CKA (linear) | 144 | 064 | [L13.-0.14] | 0011
CKA (RBF) 148 | -068 | [-120.-0.16] | 0011

unbiased CKA (RBF) || 149 | -0.69 | [-122.-0.16] | 0011

CKA (linear) 136 | 2050 | [0.98.-0.03] | 0.039

unbiased CKA (linear) || 135 | -0.50 | [-0.96.-0.03] | 0.036

Truthful QA CKA (RBF) 136 | -051 | [-097.-0.04] | 0.032
unbiased CKA (RBF) || 137 | -0.52 | [-1.00.-0.03] | 0.036
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D.3 MIXED-EFFECTS REGRESSION
RESULTS FOR MUTUAL INFORMATION CALCULATED WITH LrLaAMA-3.1-8B—INSTRUCT

Tables [T8~25]show significant positive trends across all datasets, CKA variants, and games.

D.3.1 WHEN USING THE GLOBAL AVERAGE

Table 18: Story writing task. We fit a mixed-effects regression between mutual information and
representational similarity. Here, the summary similarity score is calculated using a global average. (3
indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 5.

Dataset Metric Intercept B 95% CI P
CKA (linear) 0.303 | 0.053 | [0.020,0.087] | 0.00194
WikiText unbiased CKA (linear) 0.304 | 0.053 | [0.019,0.086] | 0.00193
CKA (RBF) 0.306 | 0.050 | [0.016,0.084] | 0.00379
unbiased CKA (RBF) 0.307 | 0.049 | [0.016,0.082] | 0.00372
CKA (linear) 0317 | 0.057 | [0.027,0.087] | 0.00021
GSMSK unbiased CKA (linear) 0.318 | 0.057 | [0.027,0.086] | 0.00020
CKA (RBF) 0.316 | 0.055 | [0.025,0.085] | 0.00035
unbiased CKA (RBF) 0318 | 0.054 | [0.025,0.084] | 0.00032
CKA (linear) 0.313 | 0.052 | [0.022,0.082] | 0.00058
MATH unbiased CKA (linear) 0313 | 0.052 | [0.022,0.081] | 0.00055
CKA (RBF) 0.310 | 0.054 | [0.024,0.085] | 0.00051
unbiased CKA (RBF) 0.311 0.053 | [0.023,0.083] | 0.00047
CKA (linear) 0.312 | 0.056 | [0.026,0.086] | 0.00026
TruthfulQA unbiased CKA (linear) 0.312 | 0.057 | [0.027,0.086] | 0.00019
CKA (RBF) 0.312 | 0.053 | [0.023,0.083] | 0.00062
unbiased CKA (RBF) 0.313 | 0.053 | [0.024,0.083] | 0.00040

Table 19: Fictional biography generation task. We fit a mixed-effects regression between mutual
information and representational similarity. Here, the summary similarity score is calculated using a global
average. [ indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept B8 95% CI P

CKA (linear) 0.083 | 0.121 | [0.091,0.150] | 5.07x 1016
WikiText unbiased CKA (linear) 0.084 0.120 | [0.091,0.149] | 4.71x 10716
CKA (RBF) 0.084 | 0.119 | [0.090,0.149] | 2.31x10~'°
unbiased CKA (RBF) 0.087 0.117 | [0.088,0.146] | 1.96x10~*?
CKA (linear) 0.123 0.099 | [0.076,0.122] | 2.17x10~17
GsMsK | unbiased CKA (linear) 0.124 | 0.098 | [0.075,0.121] | 2.08 x10~17
CKA (RBF) 0.121 0.098 | [0.075,0.121] | 6.39x10~17
unbiased CKA (RBF) 0.124 | 0.096 | [0.074,0.119] | 5.27x10~17
CKA (linear) 0.109 | 0.107 | [0.084,0.131] | 1.39x 10"
MATH unbiased CKA (linear) 0.110 0.106 | [0.083,0.129] | 1.13x10~*°
CKA (RBF) 0.103 | 0.111 | [0.086,0.135] | 5.17x 1019
unbiased CKA (RBF) 0.106 0.108 | [0.085,0.132] | 3.86x10~*°
CKA (linear) 0.117 | 0.091 | [0.067,0.115] | 2.38x 10_12

unbiased CKA (linear) 0.118 0.091 | [0.067,0.115] | 1.03x 10~
TruthfulQA CKA (RBF) 0.115 | 0.088 | [0.064,0.113] | 2.44x10~12
unbiased CKA (RBF) 0.118 0.088 | [0.064,0.112] | 6.81x10713
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Table 20: Haiku composition task. We fit a mixed-effects regression between mutual information and
representational similarity. Here, the summary similarity score is calculated using a global average.
indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 5.

Dataset Metric Intercept B8 95% CI P
CKA (linear) 0594 | 1310 | [1.03,1.59] | 1.26x10~2°
WikiText unbiased CKA (linear) 0.603 1.302 | [1.029, 1.575] | 9.20x 102!
CKA (RBF) 0.672 1.194 | [0.919, 1.470] | 2.03x10~17
unbiased CKA (RBF) 0.693 1.177 | [0.907, 1.447] | 1.28x10~ 17
CKA (linear) 1.161 0.688 | [0.48,0.89] | 6.18x10~ "
GSMSK unbiased CKA (linear) 1.171 0.679 | [0.475,0.882] | 6.20x 1011
CKA (RBF) 1.152 0.670 | [0.463,0.877] | 2.15x 1010
unbiased CKA (RBF) 1.168 0.656 | [0.454,0.858] | 1.88x 10710
CKA (linear) 1017 | 0.845 | [0.63,1.06] | 8.56x10" 1
MATH unbiased CKA (linear) 1.025 0.842 | [0.632,1.053] | 4.48x10715
CKA (RBF) 0970 | 0.878 | [0.654, 1.101] | 1.33x 1014
unbiased CKA (RBF) 0.986 | 0.871 | [0.653,1.089] | 4.73x10~1°
CKA (linear) 1046 | 0794 | [0.57, 1.02] | 2.62x 10~ 12
unbiased CKA (linear) 1.054 0.804 | [0.585, 1.024] | 6.80x 1013
TruthfulQA CKA (RBF) 1039 | 0766 | [0.539,0992] | 3.51x10~ !
unbiased CKA (RBF) 1.053 0.777 | [0.557,0.997] | 4.51x 1012

Table 21: Vacation brainstorming task. We fit a mixed-effects regression between mutual information
and representational similarity. Here, the summary similarity score is calculated using a global average.

5 indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept B 95% CI P
CKA (linear) 0.587 0.132 | [0.071,0.194] | 2.40x10~°
WikiText unbiased CKA (linear) 0.589 0.131 | [0.070,0.192] | 2.43x107°
CKA (RBF) 0.592 0.127 | [0.061, 0.192] 0.00015
unbiased CKA (RBF) 0.594 0.125 | [0.060, 0.189] 0.00014
CKA (linear) 0.621 0.141 | [0.078,0.203] | 9.48x10~°
GSMSK unbiased CKA (linear) 0.623 0.140 | [0.079,0.202] | 8.27x 10_?
CKA (RBF) 0.619 0.140 | [0.077,0.202] | 1.09x 107
unbiased CKA (RBF) 0.621 0.139 | [0.078,0.200] | 8.45x10~°
CKA (linear) 0.602 0.149 | [0.090,0.208] | 7.62x 1077
MATH unbiased CKA (linear) 0.604 0.148 | [0.090,0.206] | 6.08x10~7
CKA (RBF) 0.594 0.154 | [0.093,0.215] | 7.74x 1077
unbiased CKA (RBF) 0.597 0.153 | [0.093,0.212] | 5.49x10~7
CKA (linear) 0.619 0.113 | [0.051,0.175] 0.00034
TruthfulQA unbiased CKA (linear) 0.621 0.112 | [0.051,0.174] 0.00032
CKA (RBF) 0.618 0.108 | [0.046,0.170] 0.00068
unbiased CKA (RBF) 0.622 0.107 | [0.046,0.167] 0.00060
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D.3.2 'WHEN USING THE AVERAGE OF MAXIMUM-ALIGNED SCORES

Table 22: Story writing task. We fit a mixed-effects regression between mutual information and represen-
tational similarity. Here, the summary similarity score is calculated using the average of maximum-aligned
scores. [ indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept B 95% CI P

CKA (linear) 0.272 0.085 | [0.053,0.117] | 2.64x10~"
WikiText unbiased CKA (linear) 0272 | 0.084 | [0.052,0.116] | 2.62x10"
CKA (RBF) 0.276 0.081 | [0.049,0.112] | 5.54x 10"
unbiased CKA (RBF) 0.277 0.079 | [0.048,0.110] | 5.23x 10"
CKA (linear) 0312 | 0.045 | [0.026,0.065] | 4.39x10°
GSMSK unbiased CKA (linear) 0.313 0.045 | [0.026,0.064] | 4.35x1076
CKA (RBF) 0.311 0.046 | [0.026,0.066] | 5.92x1076
unbiased CKA (RBF) 0.312 0.045 | [0.025,0.064] | 5.76x1076
CKA (linear) 0.301 0.057 | [0.034,0.080] | 9.67x10~"
MATH unbiased CKA (linear) 0.302 | 0.056 | [0.034,0.079] | 9.72x 10"
CKA (RBF) 0.297 0.061 | [0.036,0.085] | 1.09x10~©
unbiased CKA (RBF) 0.298 0.059 | [0.036,0.083] | 1.09x 106
CKA (linear) 0302 | 0.056 | [0.034,0.078] | 5.79x 10_:

unbiased CKA (linear) 0.303 0.055 | [0.033,0.076] | 4.89x10~
TruthfulQA CKA (RBF) 0301 | 0.055 | [0.033,0.078] | 1.35%10~6
unbiased CKA (RBF) 0.303 0.054 | [0.032,0.075] | 9.85x10~7

Table 23: Fictional biography generation task. We fit a mixed-effects regression between mutual
information and representational similarity. Here, the summary similarity score is calculated using the
average of maximum-aligned scores. /3 indicates the coefficient of similarity, and the 95% CI represents
the confidence interval of 3.

Dataset Metric Intercept 153 95% CI P
CKA (linear) 0.089 | 0.088 | [0.064,0.112] | 6.16x 10 3
WikiTex¢ | Unbiased CKA (linear) | 0.090 | 0.087 | [0.063,0.111] | 7.49x 1073
CKA (RBF) 0.091 | 0.088 | [0.064,0.111] | 1.86x 10713
unbiased CKA (RBF) 0.093 | 0.086 | [0.063,0.109] | 2.40x10~13
CKA (linear) 0.124 | 0.061 | [0.047,0.075] | 2.48x10 ®
GsMgK | unbiased CKA (linear) 0.125 | 0.060 | [0.047,0.074] | 3.41x10~'8
CKA (RBF) 0.121 | 0.064 | [0.050,0.078] | 1.05x10~18
unbiased CKA (RBF) 0.123 | 0.062 | [0.048,0.075] | 1.70x 1018
CKA (linear) 0.112 | 0.071 | [0.055,0.088] | 2.68x10 17
MATH | unbiased CKA (linear) || 0.113 | 0.070 | [0.054,0.086] | 4.29x 1077
CKA (RBF) 0.107 | 0.077 | [0.059,0.094] | 2.40x 10717
unbiased CKA (RBF) 0.109 | 0.074 | [0.057,0.091] | 5.19%x 107
CKA (linear) 0.116 | 0.065 | [0.049,0.081] | 2.18x10
unbiased CKA (linear) || 0.118 | 0.063 | [0.047,0.078] | 2.94x 1015
TruthfulQA CKA (RBF) 0.114 | 0.065 | [0.049,0.082] | 6.08x10~15
unbiased CKA (RBF) 0.118 | 0.063 | [0.047,0.078] | 7.99x10~1°
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Table 24: Haiku composition task. We fit a mixed-effects regression between mutual information
and representational similarity. Here, the summary similarity score is calculated using the average
of maximum-aligned scores. [ indicates the coefficient of similarity, and the 95% CI represents the
confidence interval of 5.

Dataset Metric Intercept B8 95% CI P

CKA (linear) 0.652 | 0973 | [0.760, 1.187] | 4.43x10~™°
WikiText | UWnbiased CKA (linear) || 0.659 | 0.966 | [0.754, 1.178] | 3.84x 10
CKA (RBF) 0.714 | 0907 | [0.699, 1.115] | 1.29%x 107
unbiased CKA (RBF) 0.729 | 0.893 | [0.689,1.097] | 9.53x 10718
CKA (linear) 1.123 | 0507 | [0.385,0.629] | 3.05x10 1°
GsMsk | unbiased CKA (linear) 1.131 | 0501 | [0.381,0.620] | 2.77x 1016
CKA (RBF) 1111 | 0513 | [0.387,0.638] | 1.05x107 1"
unbiased CKA (RBF) 1.125 | 0500 | [0.378,0.622] | 9.96x 1016
CKA (linear) 0.999 | 0.635 | [0.489,0.781] | 1.83x10 17
MATH | unbiased CKA (linear) || 1.006 | 0.629 | [0485,0.774] | 1.35x 1077
CKA (RBF) 0.956 | 0.674 | [0.517,0.832] | 4.69x10~17
unbiased CKA (RBF) 0970 | 0.662 | [0.508,0.816] | 3.13x10~%7
CKA (linear) 1.012 | 0.612 | [0.470,0.754] | 2.98x 10—1:

unbiased CKA (linear) || 1.023 | 0.604 | [0.466,0.743] | 1.34x 101
TruthfulQA CKA (RBF) 1.005 | 0.606 | [0.460,0.753] | 4.83x10~16
unbiased CKA (RBF) 1.026 | 0.592 | [0.452,0.732] | 1.37x 10716

Table 25: Vacation brainstorming task. We fit a mixed-effects regression between mutual information
and representational similarity. Here, the summary similarity score is calculated using the average
of maximum-aligned scores. [ indicates the coefficient of similarity, and the 95% CI represents the
confidence interval of 3.

Dataset Metric Intercept B 95% CI D
CKA (linear) 0.575 | 0.122 | [0.056, 0.188] 0.00031
WikiText unbiased CKA (linear) 0.577 | 0.121 | [0.055,0.186] 0.00031
CKA (RBF) 0.586 | 0.110 | [0.045,0.175] 0.00090
unbiased CKA (RBF) 0.588 | 0.108 | [0.044,0.171] 0.00097
CKA (linear) 0.626 | 0.079 | [0.039,0.119] | 9.26x10~°
GSMSK unbiased CKA (linear) 0.628 | 0.077 | [0.038,0.116] 0.00011 )
CKA (RBF) 0.623 0.082 | [0.042,0.123] | 7.27x107°
unbiased CKA (RBF) 0.626 | 0.079 | [0.040,0.119] | 8.69x10~°
CKA (linear) 0.604 | 0.105 | [0.057,0.152] | 1.38x10~°
MATH unbiased CKA (linear) 0.605 0.103 | [0.057,0.150] | 1.37x1073
CKA (RBF) 0.597 | 0.111 | [0.061,0.161] | 1.60x10~°
unbiased CKA (RBF) 0.599 | 0.109 | [0.060,0.158] | 1.45x1075
CKA (linear) 0.613 0.089 | [0.043,0.134] 0.00012
TruthfulQA unbiased CKA (linear) 0.616 | 0.086 | [0.042,0.130] 0.00014
CKA (RBF) 0.612 | 0.089 | [0.042,0.135] 0.00017
unbiased CKA (RBF) 0.616 | 0.085 | [0.040, 0.129] 0.00018
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D.4 MIXED-EFFECTS
REGRESSION RESULTS FOR MUTUAL INFORMATION CALCULATED WITH LiaMa-3.1-8B

Tables 26~33] show significant positive trends across all datasets, CKA variants, and games.

D.4.1

Table 26: Story writing task. We fit a mixed-effects regression between mutual information and
representational similarity. Here, the summary similarity score is calculated using a global average. (3

WHEN USING THE GLOBAL AVERAGE

indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 5.

Dataset Metric Intercept B 95% CI P
CKA (linear) 0.363 0.088 | [0.037,0.139] 0.00075
WikiText unbiased CKA (linear) 0.363 0.087 | [0.037,0.138] 0.00074
CKA (RBF) 0372 | 0.072 | [0.026,0.119] 0.00238
unbiased CKA (RBF) 0.374 | 0.071 | [0.026,0.117] 0.00227
CKA (linear) 0.389 [ 0.081 | [0.045,0.118] | 1.39x10~°
GSMSK unbiased CKA (linear) 0.390 | 0.081 | [0.045,0.117] | 1.20% 10_5:
CKA (RBF) 0389 | 0.077 | [0.040,0.113] | 3.60x107°
unbiased CKA (RBF) 0.390 | 0.077 | [0.041,0.113] | 2.76x107°
CKA (linear) 0.381 0.078 | [0.041,0.116] | 4.25x107°
MATH unbiased CKA (linear) 0.382 | 0.078 | [0.041,0.115] | 3.90x 1073
CKA (RBF) 0.378 | 0.079 | [0.040,0.118] | 6.24x107°
unbiased CKA (RBF) 0.380 | 0.078 | [0.040,0.116] | 5.45x105
CKA (linear) 0.382 [ 0.079 | [0.040,0.118] | 6.21x10~°
Truthful QA unbiased CKA (linear) 0.383 0.080 | [0.042,0.119] | 4.33x107°
CKA (RBF) 0.383 0.071 | [0.033,0.110] 0.00030
unbiased CKA (RBF) 0.385 0.072 | [0.035,0.110] 0.00018

Table 27: Fictional biography generation task. We fit a mixed-effects regression between mutual
information and representational similarity. Here, the summary similarity score is calculated using a global
average. [ indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept I} 95% C1 D
CKA (linear) 0.135 [ 0.130 | [0.098,0.162] | 1.88x10~1®
WikiText | tnbiased CKA (linear) || 0.136 | 0.129 | [0.097,0.161] | 1.70x 10710
CKA (RBF) 0.136 | 0.130 | [0.0981,0.163] | 2.96x 10715
unbiased CKA (RBF) 0.138 | 0.128 | [0.097,0.160] | 2.12x10~15
CKA (linear) 0.175 | 0.119 | [0.094,0.144] | 5.79x 10~ 2"
GsMgK | unbiased CKA (linear) || 0.177 | 0.118 | [0.093,0.142] | 5.51x 1072
CKA (RBF) 0.173 | 0.118 | [0.093,0.143] | 1.74x10~2°
unbiased CKA (RBF) 0.176 | 0.116 | [0.091,0.140] | 1.37x10~%0
CKA (linear) 0.162 | 0.118 | [0.093,0.144] | 7.24x10~ %
MATH unbiased CKA (linear) || 0.164 | 0.117 | [0.092,0.142] | 6.08x10~%°
CKA (RBF) 0.155 | 0.123 | [0.097,0.150] | 9.91x10~20
unbiased CKA (RBF) 0.158 | 0.121 | [0.095,0.147] | 7.60x10~20
CKA (linear) 0.169 | 0.106 | [0.079,0.132] | 5.53x10~1°
unbiased CKA (linear) || 0.170 | 0.106 | [0.080,0.132] | 2.24x10~ 15
TruthfulQA CKA (RBF) 0.166 | 0.105 | [0.078,0.132] | 3.05x10~14
unbiased CKA (RBF) 0.169 | 0.104 | [0.078,0.130] | 7.51x10~15
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Table 28: Haiku composition task. We fit a mixed-effects regression between mutual information and
representational similarity. Here, the summary similarity score is calculated using a global average. (3
indicates the coefficient of similarity, and the 95% CI represents the confidence interval of (3.

Dataset Metric Intercept B 95% CI p
CKA (linear) 0.628 | 1.335 | [1.033,1.638] | 5.17x 10~ T8
WikiText | Unbiased CKA (linear) || 0.637 | 1329 | [1.029, 1.629] | 3.54x 1018
CKA (RBF) 0.700 | 1.230 | [0.928,1.533] | 1.71x1071°
unbiased CKA (RBF) 0.720 | 1.215 | [0.918,1.511] | 1.02x10~'®
CKA (linear) 1209 | 0.693 | [0.466,0.920] | 2.27x 1077
GsMgk | unbiased CKA (linear) 1218 | 0.684 | [0.460,0.909] | 2.23x107°
CKA (RBF) 1200 | 0.675 | [0.447,0.903] | 6.47x107°
unbiased CKA (RBF) 1216 | 0.662 | [0.439,0.884] | 5.65x107°
CKA (linear) 1.058 | 0.863 | [0.628,1.098] | 6.30x 10~
MATH unbiased CKA (linear) 1.066 | 0.861 | [0.629,1.093] | 3.39x10~'3
CKA (RBF) 1.011 | 0.897 | [0.651,1.143] | 8.97x 10713
unbiased CKA (RBF) 1.026 | 0.891 | [0.651,1.131] | 3.44x10~ 13
CKA (linear) 1.098 | 0.791 | [0.545,1.036] | 2.65x10~ 10
unbiased CKA (linear) 1.103 | 0.804 | [0.562, 1.046] | 7.32x10~'!
TruthfulQA CKA (RBF) 1.090 | 0.762 | [0.512,1.012] | 2.22x107°
unbiased CKA (RBF) 1.103 | 0.777 | [0.535,1.020] | 3.34x 10710

Table 29: Vacation brainstorming task. We fit a mixed-effects regression between mutual information
and representational similarity. Here, the summary similarity score is calculated using a global average.

[ indicates the coefficient of similarity, and the 95% CI represents the confidence interval of (.

Dataset Metric Intercept B 95% CI1 P
CKA (linear) 0.696 | 0.158 | [0.094,0.222] | 1.40x 10~ °
WikiTex | tnbiased CKA (linear) | 0.698 | 0.155 | [0.094,0215] | 6.16x10~7
CKA (RBF) 0.698 | 0.156 | [0.087,0.224] | 8.20x10~°
unbiased CKA (RBF) || 0701 | 0.153 | [0.086,0.220] | 7.34x 10~
CKA (linear) 0.733 | 0.177 | [0.112,0.243] | 1.20x 107
GSMgK | tnbiased CKA (linear) || 0735 | 0.177 | [0.112,0242] | 9.84x 10"
CKA (RBF) 0.730 | 0.175 | [0.110,0.241] | 1.83x10~7
unbiased CKA (RBF) || 0734 | 0.175 | [0.110,0.239] | 1.25x10~7
CKA (linear) 0713 | 0.179 | [0.117,0.241] | 1.39x 10~ %
MATH | tnbiased CKA (linear) || 0715 | 0.179 | [0.118,0240] | 1.01x10~%
CKA (RBF) 0703 | 0.186 | [0.121,0251] | 1.84x10~%
unbiased CKA (RBF) || 0707 | 0.184 | [0.121,0.247] | 1.13x10~8
CKA (linear) 0.731 | 0.142 | [0.078,0.206] | 1.33x10°
unbiased CKA (linear) || 0.733 | 0.142 | [0.079,0.206] | 1.08x10~°
TruthfulQA CKA (RBF) 0729 | 0.138 | [0.073,0.203] | 3.04x10~°
unbiased CKA (RBF) || 0733 | 0.137 | [0.074,0.200] | 2.09%x10~°
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D.4.2 WHEN USING THE AVERAGE OF MAXIMUM-ALIGNED SCORES

Table 30: Story writing task. We fit a mixed-effects regression between mutual information and represen-
tational similarity. Here, the summary similarity score is calculated using the average of maximum-aligned
scores. [ indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept B8 95% CI P
CKA (linear) 0317 | 0.131 | [0.090,0.171] | 2.92x10- 1
WikiTex | tmbiased CKA (linear) || 0318 | 0.129 | [0.089,0.169] | 3.11x10~!°
CKA (RBF) 0327 | 0.120 | [0.081,0.159] | 2.00x10~?
unbiased CKA (RBF) || 0329 | 0.118 | [0.079,0.156] | 1.96x10~°
CKA (linear) 0380 | 0.069 | [0.046,0.092] | 2.98x10°7
GsMgk | tmbiased CKA (linear) | 0381 | 0.068 | [0.046,0.091] | 2.99x 10~
CKA (RBF) 0378 | 0.070 | [0.046,0.093] | 6.20x10~°
unbiased CKA (RBF) || 0380 | 0.068 | [0.045,0.091] | 5.88x10~°
CKA (linear) 0362 | 0.088 | [0.060,0.115] | 4.06x10~ ™
MATH | unbiased CKA (inear) || 0364 | 0.086 | [0.059,0.113] | 4.40x 10~
CKA (RBF) 0357 | 0.092 | [0.063,0.121] | 8.61x10~10
unbiased CKA (RBF) || 0359 | 0.090 | [0.061,0.118] | 9.81x 1010
CKA (linear) 0363 | 0.086 | [0.059,0.113] | 2371010
unbiased CKA (linear) | 0365 | 0.084 | [0.058,0.110] | 2.25x10~10
TruthfulQA CKA (RBF) 0363 | 0.085 | [0.057,0.112] | 1.46x10~°
unbiased CKA (RBF) || 0366 | 0.082 | [0.055,0.108] | 1.16x10~°

Table 31: Fictional biography generation task. We fit a mixed-effects regression between mutual
information and representational similarity. Here, the summary similarity score is calculated using the
average of maximum-aligned scores. /3 indicates the coefficient of similarity, and the 95% CI represents
the confidence interval of 3.

Dataset Metric Intercept 153 95% CI P

CKA (linear) 0.143 | 0.094 | [0.068,0.120] | 1.60x 102
WikiTex¢ | Unbiased CKA (linear) || 0.144 | 0.093 | [0.067,0.119] | 1.83x 107
CKA (RBF) 0.144 | 0.095 | [0.069,0.120] | 2.72x 10713
unbiased CKA (RBF) 0.146 | 0.092 | [0.068,0.117] | 3.19x10713
CKA (linear) 0.178 | 0.069 | [0.054,0.084] | 5.27x10 20
GsMsKk | unbiased CKA (linear) || 0.179 | 0.068 | [0.054,0.083] | 6.93x 102
CKA (RBF) 0.175 | 0.072 | [0.057,0.088] | 1.65x10~2°
unbiased CKA (RBF) 0.177 | 0.070 | [0.055,0.085] | 2.42x10~20
CKA (linear) 0.167 | 0.077 | [0.059, 0.095] | 3.49x10 17
MATH | tnbiased CKA (linear) | 0.168 | 0.075 | [0.058,0.093] | 5.06x 107
CKA (RBF) 0.161 | 0.083 | [0.064,0.103] | 1.85x10~17
unbiased CKA (RBF) 0.163 | 0.081 | [0.062,0.100] | 3.36x10~%7
CKA (linear) 0.170 | 0.071 | [0.054, 0.089] | 6.60x 10—1§

unbiased CKA (linear) || 0.172 | 0.070 | [0.053,0.086] | 7.44x 10!
TruthfulQA CKA (RBF) 0.168 | 0.072 | [0.054,0.090] | 1.93x 101
unbiased CKA (RBF) 0.172 | 0.069 | [0.052,0.086] | 1.85x10~1°
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Table 32: Haiku composition task. We fit a mixed-effects regression between mutual information
and representational similarity. Here, the summary similarity score is calculated using the average
of maximum-aligned scores. [ indicates the coefficient of similarity, and the 95% CI represents the
confidence interval of (.

Dataset Metric Intercept B8 95% CI P

CKA (linear) 0.664 | 1.023 | [0.788,1.259] | 1.73x 10~ 17
WikiText | Unbiased CKA (linear) || 0672 | 1.015 | [0.782,1.249] | 1.55x 10717
CKA (RBF) 0.726 | 0.957 | [0.728,1.187] | 2.83x 10716
unbiased CKA (RBF) 0.743 | 0.942 | [0.717,1.167] | 2.20x 10716
CKA (linear) 1.161 | 0.530 | [0.395,0.664] | 9.96x 10~
GsMgK | unbiased CKA (linear) 1.169 | 0.523 | [0.391,0.655] | 8.96x10~1°
CKA (RBF) 1.149 | 0.535 | [0.397,0.673] | 3.24x10~'4
unbiased CKA (RBF) 1.164 | 0.522 | [0.387,0.656] | 3.02x10~*
CKA (linear) 1.031 | 0.664 | [0.503,0.826] | 7.19x 10~ 16
MATH | unbiased CKA (linear) 1.039 | 0.658 | [0.499,0.817] | 5.55x 10716
CKA (RBF) 0.985 | 0.706 | [0.532,0.879] | 1.57x10~15
unbiased CKA (RBF) 1.000 | 0.693 | [0.523,0.862] | 1.14x1071°
CKA (linear) 1.049 | 0.632 | [0.475,0.788] | 2.49x 10-1?

unbiased CKA (linear) 1.061 | 0.624 | [0.471,0.777] | 1.22x10~
TruthfulQA CKA (RBF) 1.042 | 0.628 | [0.466,0.789] | 2.55x 104
unbiased CKA (RBF) 1.063 | 0.613 | [0.458,0.768] | 8.33x10~1°

Table 33: Vacation brainstorming task. We fit a mixed-effects regression between mutual information
and representational similarity. Here, the summary similarity score is calculated using the average
of maximum-aligned scores. [ indicates the coefficient of similarity, and the 95% CI represents the
confidence interval of 3.

Dataset Metric Intercept B 95% CI p
CKA (linear) 0.654 0.182 | [0.114,0.249] | 1.36x10~"
WikiText unbiased CKA (linear) 0.656 0.180 | [0.113,0.247] | 1.40x 1077
CKA (RBF) 0.666 0.169 | [0.102,0.236] | 7.80x 1077
unbiased CKA (RBF) 0.670 0.165 | [0.099,0.231] | 8.44x10~7
CKA (linear) 0.731 0.117 | [0.076,0.159] | 3.98x10~%
GSMSK unbiased CKA (linear) 0.733 0.115 | [0.074,0.157] | 4.77x10~8
CKA (RBF) 0.726 0.121 | [0.078,0.165] | 3.29x 1078
unbiased CKA (RBF) 0.730 0.118 | [0.075,0.160] | 4.21x10~8
CKA (linear) 0.701 0.148 | [0.098,0.197] | 4.32x107°
MATH unbiased CKA (linear) 0.703 0.146 | [0.097,0.195] | 4.16x10~°
CKA (RBF) 0.691 0.158 | [0.105,0.211] | 4.75x10~°
unbiased CKA (RBF) 0.694 0.155 | [0.103,0.207] | 4.03x107°
CKA (linear) 0.712 0.131 | [0.083,0.178] | 5.71x10~8
unbiased CKA (linear) 0.715 0.127 | [0.081,0.173] | 6.40x 1078
TruthfulQA CKA (RBF) 0.709 0.132 | [0.083,0.180] | 8.78x 1078
unbiased CKA (RBF) 0.715 0.126 | [0.080,0.173] | 8.95x10~8
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D.5 MIXED-EFFECTS
REGRESSION RESULTS FOR MUTUAL INFORMATION, EXCLUDING THE LLAMA FAMILY

Tables 34~ 1] show significant positive trends across all datasets, CKA variants, and games.

D.5.1 WHEN USING THE GLOBAL AVERAGE

Table 34: Story writing task. We fit a mixed-effects regression between mutual information and
representational similarity. Here, the summary similarity score is calculated using a global average. (3
indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 5.

Dataset Metric Intercept B 95% CI P
CKA (linear) 0.307 | 0.058 | [0.020,0.095] | 0.00246
WikiText unbiased CKA (linear) 0.308 | 0.058 | [0.021,0.095] | 0.00232
CKA (RBF) 0.311 0.052 | [0.015,0.090] | 0.00633
unbiased CKA (RBF) 0.312 | 0.052 | [0.015,0.089] | 0.00584
CKA (linear) 0.323 | 0.058 | [0.024,0.092] | 0.00083
GSMSK unbiased CKA (linear) 0.324 | 0.058 | [0.024,0.092] | 0.00076
CKA (RBF) 0.323 | 0.056 | [0.022,0.090] | 0.00130
unbiased CKA (RBF) 0324 | 0.056 | [0.022,0.089] | 0.00113
CKA (linear) 0.320 | 0.051 | [0.018,0.083] | 0.00212
MATH unbiased CKA (linear) 0320 | 0.051 | [0.019,0.083] | 0.00192
CKA (RBF) 0.317 | 0.053 | [0.019,0.086] | 0.00193
unbiased CKA (RBF) 0.318 | 0.053 | [0.020,0.085] | 0.00165
CKA (linear) 0.318 | 0.056 | [0.023,0.090] | 0.00097
TruthfulQA unbiased CKA (linear) 0.319 | 0.057 | [0.024,0.090] | 0.00067
CKA (RBF) 0319 | 0.053 | [0.020,0.087] | 0.00186
unbiased CKA (RBF) 0.319 | 0.054 | [0.022,0.087] | 0.00116

Table 35: Fictional biography generation task. We fit a mixed-effects regression between mutual
information and representational similarity. Here, the summary similarity score is calculated using a global
average. [ indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept B 95% CI P

CKA (lincar) 0.078 | 0.138 | [0.105,0.171] | 5.0x10"©
WikiToxt | tmbiased CKA (linear) || 0.080 | 0.136 | [0.103,0.169] | 4.8x 10716
CKA (RBF) 0081 | 0.135 | [0.102,0.169] | 2.2x 1015
unbiased CKA (RBF) || 0084 | 0.133 | [0.100,0.166] | 1.9%x 1015
CKA (lincar) 0.121 | 0.121 | [0.095,0.148] | 6.0x10" ™
Gsmgk | umbiased CKA (linear) || 0123 | 0.120 | [0.094,0.147] | 5.0x 1071
CKA (RBF) 0.119 | 0.120 | [0.093,0.147] | 1.7x 1018
unbiased CKA (RBF) 0.122 | 0.118 | [0.092,0.145] | 1.1x1018
CKA (lincar) 0.108 | 0.120 | [0.094,0.146] | 32x10 ™
MATH | umbiased CKA (linear) || 0109 | 0.119 | [0.093,0.145] | 2.5x 1079
CKA (RBF) 0.102 | 0.124 | [0.097,0.152] | 1.0x 1018
unbiased CKA (RBF) || 0.104 | 0.122 | [0.095, 0.149] | 6.8x10~19
CKA (lincar) 0.116 | 0.107 | [0.079,0.135] | 4.3x 10—11

unbiased CKA (linear) || 0.117 | 0.107 | [0.079,0.134] | 2.3x 10~
TruthfulQA CKA (RBF) 0.115 | 0.103 | [0.075,0.132] | 6.4x10~13
unbiased CKA (RBF) || 0.118 | 0.103 | [0.075,0.130] | 2.2x 1013
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Table 36: Haiku composition task. We fit a mixed-effects regression between mutual information and
representational similarity. Here, the summary similarity score is calculated using a global average. (3
indicates the coefficient of similarity, and the 95% CI represents the confidence interval of (3.

Dataset Metric Intercept B 95% CI p
CKA (linear) 0497 | 1.536 | [1.242,1.831] | 1.7x10
WikiText | tnbiased CKA (linear) 0.510 | 1.522 | [1.231,1.814] | 1.4x10~**
CKA (RBF) 0.590 | 1.404 | [1.108,1.700] | 1.5x1020
unbiased CKA (RBF) 0.615 | 1.381 | [1.092,1.670] | 7.1x10~2!
CKA (linear) 1.106 | 0.958 | [0.729, 1.188] | 2.6 x10~1®
GsMsk | unbiased CKA (linear) 1.117 | 0951 | [0.724,1.178] | 2.2x 10716
CKA (RBF) 1.092 | 0941 | [0.712,1.171] | 9.8x 10716
unbiased CKA (RBF) 1111 | 0.929 | [0.704, 1.154] | 6.4x 1016
CKA (linear) 0978 | 1.001 | [0.772,1.230] | 1.0x10~ 17
MATH unbiased CKA (linear) 0.987 | 0.996 | [0.770,1.222] | 5.8x 10718
CKA (RBF) 0913 | 1061 | [0.820,1.302] | 5.5%x1018
unbiased CKA (RBF) 0932 | 1.048 | [0.813,1.283] | 2.2x 1018
CKA (linear) 0991 | 1.014 | [0.772,1.256] | 2.1x 10~ 1©
unbiased CKA (linear) 1.003 | 1.018 | [0.780,1.257] | 5.8x 107
TruthfulQA CKA (RBF) 0987 | 0972 | [0.727,1217] | 7.6x10~1°
unbiased CKA (RBF) 1.008 | 0975 | [0.737,1.213] | 9.7x 1076

Table 37: Vacation brainstorming task. We fit a mixed-effects regression between mutual information
and representational similarity. Here, the summary similarity score is calculated using a global average.

[ indicates the coefficient of similarity, and the 95% CI represents the confidence interval of (.

Dataset Metric Intercept Ié] 95% CI D
CKA (linear) 0592 | 0.185 | [0.119,0250] | 32x10°°
WikiTex¢ | tmbiased CKA (linear) || 0593 | 0.183 | [0.118,0248] | 3.2x 10~
CKA (RBF) 0597 | 0.179 | [0.107,0251] | 1.1x106
unbiased CKA (RBF) || 0.600 | 0.176 | [0.105,0.246] | 1.0x10~6
CKA (linear) 0.644 | 0.180 | [0.108,0251] | 7.8x10~7
GsMgk | tmbiased CKA (linear) || 0646 | 0.179 | [0.108,0250] | 7.3x 10~
CKA (RBF) 0642 | 0.176 | [0.105,0247] | 1.2x106
unbiased CKA (RBF) || 0.645 | 0.175 | [0.105,0.246] | 9.7x10~7
CKA (linear) 0623 | 0.182 | [0.117,0247] | 43x10°°
MATH | unbiased CKA (inear) || 0624 | 0.181 | [0.117,0245] | 3.3x10°
CKA (RBF) 0613 | 0.188 | [0.120,0255] | 4.5x108
unbiased CKA (RBF) || 0.616 | 0.186 | [0.120,0.252] | 2.8x10~8
CKA (linear) 0.638 | 0.154 | [0.083,0224] | 1.OX107
unbiased CKA (linear) || 0.640 | 0.153 | [0.084,0.223] | 1.7x10°5
TruthfulQA CKA (RBF) 0.638 | 0.146 | [0.075,0216] | 5.6x10~5
unbiased CKA (RBF) || 0.642 | 0.145 | [0.076,0214] | 4.1x 1075
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D.5.2 WHEN USING THE AVERAGE OF MAXIMUM-ALIGNED SCORES

Table 38: Story writing task. We fit a mixed-effects regression between mutual information and represen-
tational similarity. Here, the summary similarity score is calculated using the average of maximum-aligned
scores. [ indicates the coefficient of similarity, and the 95% CI represents the confidence interval of 3.

Dataset Metric Intercept B 95% CI P
CKA (linear) 0.275 0.090 | [0.054,0.125] | 5.87x10~"
WikiText unbiased CKA (linear) 0275 | 0.089 | [0.054,0.124] | 5.71x10~"
CKA (RBF) 0.281 0.083 | [0.049,0.118] | 1.94x10°©
unbiased CKA (RBF) 0282 | 0.082 | [0.048,0.116] | 1.81x1076
CKA (linear) 0.318 | 0.047 | [0.026,0.068] | 1.40x10—°
GSMSK unbiased CKA (linear) 0.318 0.047 | [0.026,0.068] | 1.36x10~°
CKA (RBF) 0.317 | 0.048 | [0.026,0.069] | 1.99x 1075
unbiased CKA (RBF) 0.318 0.047 | [0.025,0.068] | 1.89x10~°
CKA (linear) 0.306 0.059 | [0.034,0.084] | 3.48x107°
MATH unbiased CKA (linear) 0.307 | 0.059 | [0.034,0.083] | 3.46x106
CKA (RBF) 0.302 0.063 | [0.036,0.090] | 4.00x10~©
unbiased CKA (RBF) 0.303 0.062 | [0.035,0.088] | 3.92x106
CKA (linear) 0.307 | 0.058 | [0.034,0.082] | 1.75x10~°
unbiased CKA (linear) 0.308 0.058 | [0.034,0.081] | 1.43x1076
TruthfulQA CKA (RBF) 0306 | 0.058 | [0.033,0.082] | 3.66x10~6
unbiased CKA (RBF) 0.308 | 0.056 | [0.033,0.080] | 2.63x106

Table 39: Fictional biography generation task. We fit a mixed-effects regression between mutual
information and representational similarity. Here, the summary similarity score is calculated using the
average of maximum-aligned scores. /3 indicates the coefficient of similarity, and the 95% CI represents
the confidence interval of 3.

Dataset Metric Intercept B8 95% CI P

CKA (linear) 0.086 | 0.099 | [0.072,0.126] | 3.39x 10~
WikiTex¢ | Unbiased CKA (linear) || 0.087 | 0.098 | [0.072,0.124] | 3.67x 107 '
CKA (RBF) 0.089 | 0.097 | [0.071,0.123] | 1.93x 10713
unbiased CKA (RBF) 0.091 | 0.095 | [0.070,0.121] | 2.12x 10713
CKA (linear) 0.124 | 0.070 | [0.055, 0.086] | 4.29x 10~
GsMsK | unbiased CKA (linear) 0.125 | 0.069 | [0.054,0.085] | 5.20x 1019
CKA (RBF) 0.121 | 0.073 | [0.057,0.089] | 1.94x10~1?
unbiased CKA (RBF) 0.123 | 0.071 | [0.056,0.087] | 2.50x 101
CKA (linear) 0.112 | 0.080 | [0.062,0.098] | 1.85x10 17
MATH unbiased CKA (linear) | 0.113 | 0.079 | [0.061,0.097] | 2.34x 1017
CKA (RBF) 0.106 | 0.086 | [0.066,0.106] | 2.03x10~17
unbiased CKA (RBF) 0.108 | 0.084 | [0.064,0.103] | 3.01x10~'7
CKA (linear) 0.116 | 0.073 | [0.055,0.091] | 9.57x 10—12

unbiased CKA (linear) || 0.118 | 0.071 | [0.054,0.089] | 9.84x 10!
TruthfulQA CKA (RBF) 0.115 | 0.073 | [0.055,0.091] | 4.75x 101
unbiased CKA (RBF) 0.118 | 0.070 | [0.053,0.088] | 4.28 x10~1°
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Table 40: Haiku composition task. We fit a mixed-effects regression between mutual information
and representational similarity. Here, the summary similarity score is calculated using the average
of maximum-aligned scores. [ indicates the coefficient of similarity, and the 95% CI represents the
confidence interval of (.

Dataset Metric Intercept B8 95% CI P

CKA (linear) 0.628 1.048 | [0.823,1.274] | 8.91x10=%0
WikiText unbiased CKA (linear) 0.637 1.040 | [0.816,1.264] | 8.54x 10720
CKA (RBF) 0.702 | 0.970 | [0.750,1.189] | 4.29x10~'8
unbiased CKA (RBF) 0.719 0.953 | [0.738,1.168] | 3.67x 108
CKA (linear) 1.104 0.602 | [0.472,0.733] | 1.22x 10~
GsMmsk | unbiased CKA (linear) 1.112 | 0.595 | [0.466,0.723] | 1.24x 10~ 1
CKA (RBF) 1.088 0.613 | [0.479,0.747] | 3.39x10~*°
unbiased CKA (RBF) 1.103 | 0.599 | [0.468,0.730] | 3.27x10~1°
CKA (linear) 0984 | 0.710 | [0.554,0.865] | 3.73x 10~
MATH unbiased CKA (linear) 0.992 | 0.701 | [0.547,0.855] | 3.93x101?
CKA (RBF) 0934 | 0756 | [0.589,0.923] | 8.06x10~1°
unbiased CKA (RBF) 0.951 0.739 | [0.575,0.903] | 9.36x 101
CKA (linear) 0990 | 0.701 | [0.551,0.852] | 6.29 % 10_22

unbiased CKA (linear) 1.006 0.686 | [0.539,0.833] | 6.31x10~
TruthfulQA CKA (RBF) 0.986 | 0.693 | [0.538,0.847] | 1.48x10'8
unbiased CKA (RBF) 1.013 0.669 | [0.521,0.817] | 9.74x 10719

Table 41: Vacation brainstorming task. We fit a mixed-effects regression between mutual information
and representational similarity. Here, the summary similarity score is calculated using the average
of maximum-aligned scores. [ indicates the coefficient of similarity, and the 95% CI represents the
confidence interval of 3.

Dataset Metric Intercept B 95% CI p
CKA (linear) 0.582 0.161 | [0.086,0.235] | 2.21x10~°
WikiText unbiased CKA (linear) 0.583 0.159 | [0.086,0.233] | 2.22x107°
CKA (RBF) 0.596 0.144 | [0.072,0.216] | 9.66x107°
unbiased CKA (RBF) 0.599 0.141 | [0.070,0.212] | 9.68x 105
CKA (linear) 0.651 0.099 | [0.055,0.142] | 9.04x107°
GSMSK unbiased CKA (linear) 0.653 0.097 | [0.054,0.140] | 1.01x10~®
CKA (RBF) 0.648 0.102 | [0.057,0.147] | 8.23x107°
unbiased CKA (RBF) 0.650 0.099 | [0.055,0.143] | 9.33x106
CKA (linear) 0.624 0.129 | [0.077,0.181] | 1.13x107©
MATH unbiased CKA (linear) 0.625 0.128 | [0.077,0.180] | 9.97x 1077
CKA (RBF) 0.615 0.137 | [0.081,0.193] | 1.34x 106
unbiased CKA (RBF) 0.617 0.136 | [0.081,0.190] | 9.86x 1077
CKA (linear) 0.633 0.114 | [0.064,0.164] | 7.39x10~°
unbiased CKA (linear) 0.635 0.112 | [0.063,0.161] | 7.23x106
TruthfulQA CKA (RBF) 0.632 0.113 | [0.062,0.163] | 1.43x107°
unbiased CKA (RBF) 0.637 0.109 | [0.060,0.158] | 1.25x107°
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