Generative Caching for Structurally Similar Prompts
and Responses

Sarthak Chakraborty!* Suman Nath? Xuchao Zhang? Chetan Bansal?
Indranil Gupta'
University of Illinois at Urbana-Champaign, 2Microsoft Research
{sc134,indy}@illinois.edu, {sumann,xuchaozhang,chetanb}@microsoft.com

Abstract

Large Language Models (LLMs) are increasingly being used to plan, reason, and
execute tasks across diverse scenarios. In use cases like repeatable workflows
and agentic settings, prompts are often reused with minor variations while having
a similar structure for recurring tasks. This opens up opportunities for caching.
However, exact prompt matching fails on such structurally similar prompts, while
semantic caching may produce incorrect responses by ignoring critical differences.
To address this, we introduce GenCache, a generative cache that produces variation-
aware responses for structurally similar prompts. GenCache identifies reusable
response patterns across similar prompt structures and synthesizes customized
outputs for new requests. We show that GenCache achieves 83% cache hit rate,
while having minimal incorrect hits on datasets without prompt repetition. In
agentic workflows, it improves cache hit rate by ~20% and reduces end-to-end
execution latency by ~34% compared to standard prompt matching.

1 Introduction

Al applications, often composed of Al agents, augment Large Language Models (LLMs) with external
tools [28, 40, 33], enabling them to interact with their environment and solve complex, multi-step
tasks [45, 50, 41, 2, 31, 32, 59]. Many such applications repeatedly address similar task patterns,
naturally leading to the construction of structurally similar prompts [21]. For instance, structured
repetitive workflows like data entry or customer service agents encounter repetitive queries with
minor variations, or cloud operations agents frequently diagnose recurring system faults [47, 38, 58].
Furthermore, prompt engineering techniques often format prompts with reusable templates (called
system messages for Al agents), leading to similar prompts. Prior work has shown that caching and
reusing prompts and their associated responses can substantially reduce latency and dollar cost in
such repetitive workflows since the number of LLM calls is reduced [14, 63, 64, 43, 22, 21, 20, 57].

Existing client-side LLM caches are typically designed as key-value stores [7, 11, 12]. Traditional
exact request (or prompt) matching returns a cached value if the new prompt exactly matches a
stored prompt key [27, 39], while semantic caches return a cached response based on the semantic
similarity of the new request with a stored prompt key [14, 20, 21]. Semantic similarity is computed
using vector embeddings, where two keys are considered similar if their cosine distance surpasses a
predefined threshold.

However, existing caching techniques fail in applications where prompt-response pairs exhibit three
key properties: (a) Structured Regularity: prompts are not exact or semantically similar, but instead
structurally similar, i.e. follow a consistent format (defined in §2), (b) Controlled Variability:
prompts show minimal yet important controlled variations, and (c) Predictable Response Pattern:
the responses also follow a predictable format, but differ across prompts, remaining correlated with
the prompt variations. Consider a web-shopping agent [31, 59, 24] that queries an LLM to decide its
next action from the page content and user instructions. Two example user instructions that satisfy

*Work done during internship at Microsoft Research.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

ExactCache GPTCache " GenCache
Instruction 1 Instruction 1
1.9 to Amazon.com p,v 15 AAA| 1.go to Amazon.com buy 12 AAA

2 Searc‘h(""lz AAR batteries from 2 Eearcb("}Z ARA batteries from
batteries") Amazon atteries")
3.Press Enter 3.Press Enter

Instruction 1
buy 12 AAA
batteries from
Amazon

1.go to Amazon.com

2.Search("12 AAA
batteries")

3.Press Enter

Amazon

Similarity
No Match >0.9 x /
Instruction 2 v 1.go to Amazon.com Instruction 2 1.go to Amazon.com Instruction 2 1.go to Amazon.com
purchase a % 2.Search("USB-C purchase a Cached 2.Search("12 AAA purchase a 2.Search("USB-C
USB-C cable [F3S) cable") USB-C cable Response| batteries") USB-C cable Cable")

from Amazon 3.Press Enter from Amazon 3.Press Enter from Amazon 3.Press Enter

Figure 1: Comparison of GenCache with existing caching techniques. treats both instructions as distinct and
results in cache misses, hence uses LLM to generate responses for both. GPTCache encounters cache hit for
Instruction 2, but incorrectly returns the already saved response for a similar prompt. GenCache on the other
hand, executes the cached program locally on cache hit to generate the correct response tailored to the input

these properties are: (1) buy 12 AAA batteries from Amazon, and (2) buy a USB-C cable from Amazon.
Exact prompt matching (ExactCache in short) treats the two prompts as distinct, resulting in cache
misses for both. Thus, it ensures correctness but reduces efficiency, since the prompts need to be
identical for cache reuse. In contrast, a semantic caching method such as GPTCache [14] considers
them semantically similar, producing a cache hit for instruction 2 but incorrectly reuses the same
response from instruction 1, as shown in Figure 1. Thus, semantic caching improves cache reuse at
the risk of erroneous results, which is potentially dangerous if agents perform non-reversible actions.

In this work, we propose Generative Cache (GenCache in short), a new client-side caching technique
that balances the performance-correctness trade-off. Unlike traditional caches that return stored LLM
responses verbatim on a cache hit, GenCache generates custom responses tailored to the prompt,
achieving higher cache hit rates without compromising accuracy. This requires prompt-response pairs
to satisfy the three key properties described above, common in Al agents and repetitive workflows.
In the earlier example, the two instructions share a similar structure (verb-item-phrase) with minor
variations, in verb synonyms (buy and purchase) and the item name. GenCache automatically
discovers such structural similarity and generates a cache hit. On cache hit for instruction 2, GenCache
synthesizes a custom response (similar in structure to the previous response) with the important
variation in the item name. Figure 1 depicts this workflow.

GenCache clusters structurally similar prompt-response pairs based on their embedding similarity
and generates a program that takes the prompts as input and synthesizes the correctly formatted
responses as output. This program captures a common pattern of how the prompt maps to the response
across all the prompt-response pairs in the cluster, and saves it as a cache. A new prompt request
is matched with an existing cluster based on its embedding similarity, and the stored program is
executed locally via a runtime like Python interpreter to generate a response. Unlike existing caches
that store prompts and their LLM responses, GenCache stores prompts and the program that can
generate these responses. Our evaluations on the Webshop dataset [53] demonstrate over 83% cache
hit rate and at least 35% cost savings. On a synthetic dataset with higher structural similarity, cache
hit rate is above 98%. When integrated with existing Al agents, it reduces the end-to-end execution
latency and achieves 20% higher hit rate. In summary our contributions are:

* We propose a new caching technique, GenCache, for structurally similar prompts that can generate
novel variation-aware responses for new prompts.

* GenCache identifies common patterns of generating response from structurally similar prompts
within a cluster, and encodes the pattern in the form a program. GenCache then validates the
program for correctness and stores it as cache.

* We compare our method with synthetic and benchmark datasets, and report our results by
integrating it with two agent frameworks that perform repetitive tasks.

2 Problem Definition

Repetitive tasks or tasks following a similar template [62] are ideal for GenCache to extract the
common pattern between multiple prompt-response pairs. Some common use cases are as follows.

Key Use Cases: Apart from the example in §1, other use cases are: (1) SRE agents [47, 38, 58],
which execute documented remediation steps based on system alerts that follow some standardized
templates. For example, alerts such as "NSM to RNM connection is lost in useast!" and "NSM
to RNM connection is lost in uswestl" differ only by region, yet map to the same troubleshooting
documentation, requiring identical actions by modifying the affected region. (2) Web agents managing

Google Maps often encounter recurring queries with slight variations, e.g., "How long does it take to
walk from Univ of Pittsburgh to starbucks on Craig Street?" and "... from Carnegie Mellon University
to Univ of Pittsburgh?”. These require generating similar API calls with different parameters.
However, GenCache is less suitable for free-form chatbot interactions, which exhibit high prompt
diversity, where semantic caching remains more effective.

GenCache is particularly effective for ReAct-style prompting [54] when the expected response is
a structured action. In this work, we target use cases involving reversible actions, common across
many applications like system fault identification (only read queries are issued to databases), adding
items to a cart in an e-commerce website (can be removed if incorrect), checking distances between
two endpoints in a map (endpoints can be rectified), etc. GenCache operates only on the final prompt
constructed by an agent, which includes all contextual and user-specific personalization logic.

Formal definition of Prompt Characteristics: Let 2 be an individual request (or, user instruction)
from a set of repetitive requests 7. Let o(z) be the constructed prompt passed to the LLM by a client
or an agent, and () be the corresponding response. Different characteristics of «/(.) and 5(.) for
two requests x1, zo € T provide distinct caching opportunities.

1. (Identical Prompts) If a(z1) = a(x2) and S(z1) = B(x2), it implies identical input prompts
generate the same LLM responses, ideal for exact prompt matching.

2. (Semantically Similar Prompts) If a(x1) ~ a(z2), but 5(z1) = S(x2) implies Semantic Caching
techniques like GPTCache [14], InstCache [64] and others [20, 21] are ideal.

3. (Structurally Similar Prompts) If a(x) = a1.2.a2 and 8(z) = by.f(z).bas where a1, ag, by, ba
are prompt phrases (e.g., phrases like "buy” and "from Amazon" in the prompt "buy item X from
Amazon") and f(x) is a transformation on x (e.g., extracting keywords like "item X" from the
entire prompt using a regular expression) which are common over multiple requests, GenCache
can automatically identify aq, as, by, by and f(.) (may incorporate branching logic) from multiple
examples using regex matching over «(z) and 8(x). This allows it to locally generate 3(x) for
any new request x. Unlike ExactCache and semantic caching, GenCache does not require that
B(x1) = B(x2). Furthermore, since short prompts by nature exhibit only a handful of deviations
in their way to write, GenCache can also capture such minor deviations (typically synonyms) in
a1, as (for example, "buy" and "purchase"), by using an "OR" operator in the regex pattern.

4. (Structurally Dissimillar Prompts) When neither o(z), nor S(x) show commonalities in their
structure or phrasing, GenCache does not generalize well

3 GenCache Design

3.1 Overview and Runtime Workflow

The overall workflow of GenCache (Figure 2) follows the general caching paradigm, i.e., for each
incoming input prompt P, the system first identifies the relevant cache and attempts to reuse it. On
a cache hit, the response is directly generated by the cached program; otherwise, the prompt is
processed by the LLLM as usual. Before returning the LLM-generated response, both the prompt and
its output are stored in a database so that a cache generation attempt can be made. Cache generation
involves—(I) cluster structurally similar prompts such that there is a consistent pattern in the way an
LLM generates its responses, (II) infer the consistent pattern (we leverage an LLM) for each cluster
and convert it to a program, and (IIT) validate the generated program before caching it for further use.
For step II, we use in-context learning [15, 34] to help the LLM learn the mapping between prompts
and responses within each cluster and generate a generalized program reflecting that relationship.

Along with the cached program, we store a regular expression that characterizes the structural pattern
of prompts within its cluster, which aids in cache selection at runtime. For a new prompt P, at runtime,
the system first identifies the closest cluster based on cosine similarity between its embeddings to
the cluster center. The stored regex then verifies whether P conforms to the structural pattern of that
cluster. If validated and a cached program exists, GenCache executes it using a runtime like Python
interpreter and returns the generated response after sanity checks. Cached programs include sufficient
exception-handling blocks to capture cases where the program does not apply to P.

3.2 Prompt Clustering

When a cache miss occurs, the LLM generates a response R for an input prompt P. Similar sets
of (P, R) pairs are clustered based on embedding similarity. Since prompts in LLM systems often

CodeGenLLM —
Caches @ CodeGenLLM Prompt Program

- m Prompt: You are an expert who can analyze a few| import re
Clustl Clos2 Chusta — [\EI) example inputs and their outputs and find the import sys
Valid? A common pattern that can generate the output from
Cache) @ H the inputs. def func(prompt):
s —mmed i Cluster Example Inputs and their Corresponding Outputs try:
tore Database 1. Input Prompt. user_instr = re.search(...)
- Response: {..}
‘ @ .
H The goal is to find a pattern and generate a > print(F"The tenant name is
P R Python code. The code should be able to take an {tenant_name}"’)
R -
arbitrary input (all following the same template) and| 6 & V0 except:
IS generate the output print(*None: Invalid prompt")
CodeGenLLM
Guidelines to Follow: if _name__=="__main__"
e iflen(sys.arg) 1= 2
There should be no output apart from the code. print("None: Invalid args")
R The format of the output should maich exactly as else
prompt = sys.argv[1]
the example outputs. tenant_name = func(prompt)
Program
(a) Runtime Workflow (b) Generated Program and its prompt

Figure 2: GenCache workflow (solid lines: cache reuse, dotted lines: cache generation). Figure 2a illustrates
the runtime workflow—For a new prompt P, the system finds the nearest cluster based on a similarity threshold
and checks for an available cache for reuse @. If a suitable cache is found, it generates response R after passing
sanity checks @. If not, an LLM generates R €. In this case, we store (P, R) in the cluster database (1). Once
enough example pairs accumulate in a cluster, CodeGenLLM attempts to generate a program (2) and store it in the
cache store (3) after validation. Figure 2b shows the prompt for CodeGenLLM and the generated program.

share large common templates (system messages), which can dominate the embeddings, making
semantically unrelated prompts appear similar, considering both prompt and response similarities
ensures more accurate clustering. GenCache performs online clustering without limiting the number
of clusters. Each cluster is maintained as a key-value store, where the key is the cluster ID and the
value contains the prompts, their LLM-generated responses, and corresponding embeddings.

Embedding Generation. Each prompt P is converted into an n-dimensional embedding e,, using
SentenceTransformer [37]. However, responses R are typically JSON-structured rather than
plaintext in agentic settings, containing multiple key-value pairs that encode details about the "action"
to be performed. To better capture this structure, we create an embedding array [e,] by computing
n-dimensional embeddings for each value of the key-value pair of R. If no existing clusters are
found, a new cluster Cy is initialized with (P, R).

Similarity Computation. We compute two similarity scores between a new prompt P and each
cluster C;, one from prompt embeddings and another from response embeddings. The prompt
similarity s” is the cosine similarity between e, and the cluster prompt centroid ¢! (the mean of all
e, embeddings in C;). The response similarity s” is the average cosine similarity between [e,]; and
the corresponding cluster response centroid [c]]; across all indices j. We also ensure that the number
of key-value pairs in R matches that of the cluster response centroid.

Cluster Assignment. To assign the input prompt P to a cluster C, both similarity scores s” and s”
must exceed their respective thresholds. Let CP denote clusters with s > TP, and C" denote clusters
with s > T". Their intersection, C'™* = CP N C", represents clusters that meet both conditions.
Among these, the final cluster C is selected as the one maximizing the combined similarity, i.e.,
C = argmaxgin: (sP + s").

3.3 Program Generation for Cache

For each cluster C, we use an LLM (CodeGenLLM) to generate a Python program to be stored as
cache. Similar ideas have been explored in prior work [16, 19], though primarily for mathemat-
ical reasoning. The generated program takes a prompt P as input and produces a response R
in the expected key-value format. To generate the program, we provide CodeGenLLM with suf-
ficient prompt-response pairs from C as in-context exemplars [49] (or, exemplars) and instruct
it to infer the underlying pattern that maps these prompts to responses. The underlying pattern
must identify the variations, which are often keywords from the prompts themselves (e.g., in Fig-
ure 1), in the structurally similar prompts and use these to generate the response. Since struc-
turally similar prompts have a specific sentence structure, a regular expression can typically be
used to extract those keywords. Thus, when a consistent pattern is detected, CodeGenLLM gen-
erates a program that extracts relevant keywords using a regex search and constructs the final
response accordingly. Returning to our running example Figure 1, CodeGenLLM encodes the con-
sistent pattern with a regex r ‘buy | purchase|get (item_name) from Amazon’, constructs the
response template as actions: (1) go to Amazon.com, (2) Search("match.groups(0)"),

Cluster Database Cache Store

Ground-Truth)
. _Response_ | ValidLLM |
@ Prompt
@
fre

|
@i In-context A

! examples i@ Valid.LLM
(N H
».| CodeGenLLM @ _ V® S
Prompt e o {"valid":[0,1, ..., 1] | if atleast
o6 &%o "reason": } ¥ valid
CodeGenLLM Program no!

Retry with Reflection
Figure 3: Program validation process before storing it as cache. Step numbering remains consistent with
Figure 2a, and we only show from (2) onwards here. After program generation (3), ValidLLM validates that the
program-generated responses match expected outputs by using in-context examples in the prompt (4). It produces
a boolean-array for each example (5). If less than v responses match, the system retries cache generation using a
reflection-based prompt (6). Otherwise, it stores the validated program as cache (7).

and (3) press enter’, and writes these in a program which is eventually stored as cache. Given
user instructions like "buy {item} from Amazon", the program constructs the response by replacing
the item name in match. groups (0).

CodeGenLLM’s prompt (Figure 2b) includes both the system messages and the user instruction for
each in-context example. Including the system message allows the LLM to infer how responses
were derived from input prompts. Multiple examples guide CodeGenLLM to identify a consistent
pattern, synthesize a program with appropriate regex searches, and capture the necessary variations.
The prompt also contains guidelines so that the synthesized program for appropriate error handling,
output formatting, and a default {null} response when regex matching fails. This ensure reliable and
well-formed outputs, preventing potential disruptions during agent execution. The full prompt used
for CodeGenLLM is included in Appendix. GenCache does not impose strict limits on P or R length.
While short P and R often exhibit the two properties discussed in §1, GenCache applies equally well
to longer P and R generated by automated systems (e.g., SRE agents), as our evaluation shows.

A minimum number of exemplars, v, is required before invoking CodeGenLLM. If clusters contain
more than v exemplars, all are used in the CodeGenLLM’s prompt. However, each cluster is limited
to at most 3v exemplars (§3.5), and hence the prompt does not grow indefinitely. Larger v enables
CodeGenLLM to easily identify the patterns, but may introduce more noise from outliers in the cluster.
We evaluated varying v to study this trade-off. Once a cluster contains at least v exemplars, program
generation is invoked in the background without delaying the client response.

3.4 Program Validation

Before storing a generated program as cache, it is validated for correctness, specifically, whether it
can process the input prompt, extract relevant keywords, and generate a response with appropriate
variations in the required format. This validation step ensures that only reliable programs or those
with proper exception handling are cached.

We use a separate LLM, ValidLLM, to validate each generated program. Using the same exemplars
employed during program generation (§3.3), the program is executed locally via a Python interpreter
to produce program-generated responses. ValidLLM assesses whether each response matches its
corresponding exemplar response, both in content and format. For textual components, it checks
semantic equivalence and the presence of key information instead of strict matching (e.g., "The user
wants to purchase Item X" matches with "user wants to buy item X"). ValidLLM returns a boolean (0
or 1) indicating correctness for each exemplar, along with a justification. This process verifies that
the cached program produces correct program-generated responses for the exemplars.

If fewer than a threshold v of the program-generated responses match their exemplars, we retry
program generation using reflection, incorporating ValidLLM’s justification feedback into the
CodeGenLLM prompt. If at least v responses match, the program is accepted and stored as a cache.
Figure 3 illustrates this workflow. GenCache limits the number of cache generation retries for each
cluster to p to control the cost. The complete prompt for ValidLLM is included in the appendix.

The generated program may overfit to specific exemplars (e.g., contain hardcoded keywords). To
address this, we (i) prompt CodeGenLLM to include appropriate error handling blocks (§3.3), (ii)
verify that the input prompt conforms to the general prompt structure within the cluster using a stored
regex before retrieving the cache (§3.1). On failure, GenCache defaults to using LLM for response.

3.5 Cache Management

Each cached program is typically under ~5KB, so the total cache footprint is capped at a few tens of
MBs. When the cache is full, the eviction policy discards the least-recently used cache entry while
retaining its associated cluster. Clusters are stored in a database allocated a few hundred MBs, though
usage remained below 20 MB in all experiments. To prevent unbounded cluster growth, GenCache
limits each cluster to 3 prompt-response pairs. Once full, no new entries are added. We also avoid
storing the prompts on cache hit, further reducing database size as hit rates improve. A cached
program may still fail for a new request. In such cases, GenCache may regenerate the program for
the corresponding cluster, but the total regeneration retries are capped at p.

4 Experiments

Setup: We implement GenCache as a library exposing an API interface through which clients issue
input prompts. It returns either a cache-generated response or, on a cache miss, invokes an LLM
to generate the response. We evaluate GenCache in two scenarios: (1) standalone user prompts
(§4.1, §4.2) using synthetic data, and (2) integrate with two Al agents (§4.3). While GenCache is
compatible with agents from any framework, we evaluate with simple prompt-based agents and
leave the incorporation with a more performant agent for future work. The first agent is an open-
source web navigation agent Laser [31, 8], built on the OpenAl Chat Completion [1] framework. It
plans and executes webpage actions like "Search" and "Buy" to fulfil user instructions. The second
agent, FLASH [58], is a cloud-operations agent built using LangChain [6] that diagnose recurring
system faults. Given an incident description, it retrieves relevant troubleshooting documents via
RAG [28] and follows diagnostic steps until the root cause is identified (mitigation is disabled).
Both agents use ReAct-style prompting [54]. We use GPT-40 for CodeGenLLM and ValidLLM, with
default parameters p = 30, v = 50%, T? = 0.8, and T" = 0.75, unless stated otherwise. Task-
specific adjustments are made to CodeGenLLM and ValidLLM prompts as needed. On cache misses,
GenCache use GPT-4 to generate responses for FLASH, and GPT-4o for all other experiments. We
run our experiments on cloud servers with 8-core Intel Xeon CPU and 64 GB memory.

Datasets: For experiments with Laser [8], we use the WebShop dataset [53], a simulated e-commerce
environment featuring 12000+ crowd-sourced user instructions. Experiments with FLASH use incident
diagnosis data from Microsoft, collected over 2 months, comprising 298 incidents across five
troubleshooting scenarios. The top-1 troubleshooting scenario accounts for 69% of incidents, and
the top-2 for 93%, indicating high recurring tasks that make caching particularly effective instead
of repeated LLM calls. For standalone prompt evaluations, since GenCache targets repetitive tasks
with structurally similar prompts, general language understanding benchmarks [44, 51, 60, 56] that
evaluate an agent’s comprehensiveness on diverse tasks are not suitable. Instead, we reuse WebShop
instructions, augmenting each with a maximum price, resulting in a consistent structure: a purchase
verb (e.g., “I want to buy”), followed by an item description with attributes and a price limit. While
item details and prices vary across prompts, the overall structure remains stable with only minor
phrasing differences, making this dataset well-suited for evaluating GenCache. To evaluate scenario
(1), we use WebShop’s user instructions as seed data and prompt GPT-40 to generate two synthetic
prompt sets with the below characteristics. These prompts are then issued to GenCache’s API
interface with the expected response of receiving just the (item name, price limit) tuple.

1. Param-Only-only the parameters vary while phrasing remains identical. We use GPT-40 to extract
the item description (LLM is allowed to rephrase this) and price. We then reformat the instruction
using the template "I want to buy {item}, under the price range of {price}

2. Param-w-Synonym—both parameters and the verb phrasing vary but the verb-item-price
semantics is maintained. We use GPT-40 to rephrase the instruction by adding some optional
words (like "please") at the beginning for a few prompts or splitting the sentence into two. This
alters the structure slightly without chaning the semantics.

Baselines: We compare GenCache to ExactCache and GPTCache [14, 4], a widely popular repre-
sentative among semantic caching techniques. For ExactCache, we leverage hash-based indexing of
prompts. GPTCache, however, uses embeddings similarity for prompt matching. We use the Sentence
Bert embedding al1-MinilLM-L6-v2 [37] for computing prompt embeddings and the FAISS [25]
indexing strategy for similarity search with a similarity threshold of 0.95. We do not compare with
prompt-prefix matching techniques [13, 22] as they focus on low-level decoding operations and are
orthogonal to GenCache. Our baseline choices are well-detailed in the supplementary material.

Param-Only Param-w-Synonym

Method Hit % +ve Hit -ve Hit Hit % +ve Hit -ve Hit
ExactCache 0 (£ 0.0) N/A N/A 0(£0.0) N/A N/A
GPTCache [14] 90.92 (+ 0.02) 0 (£ 0.0) 100 (£ 0.0) 88.71 (+0.01) 0 (4 0.0) 100 (4 0.0)
GenCache 97.81 (£ 0.96) 98.03 (+0.05) 1.97 (£0.05) 83.66 (- 6.37) 92.16 (£ 0.12) 7.84 (+0.12)

GenCache-feedback 82.35 (£ 1.57) 99.63 (£ 0.02) 0.37 (£ 0.02) 68.32(4+4.85) 95.58(+£0.08) 4.4 (£ 0.08)
Table 1: Baseline comparison of Hit Rate and its correctness with different prompt datasets

We evaluate GenCache in the following categories:

1. What is the cache hit rate, and how many times does the hit result in an incorrect response?

2. What is the overall cost in terms of the number of LLM calls and the token sizes to create a
reusable cache? Does our cache generation cost exceed the savings we get?

3. How well does GenCache perform within repeatable agentic workflows?
4.1 Hit-Rate Measurements

We measure the cache hit rate of each method over 10,000 synthetic input prompts, and report the
results in Table 1. Each experiment starts with an empty Cache Store and Cluster Database. The
first v input prompts (default v = 4) are therefore used to populate the clusters before caching
becomes possible. In addition to cache hit rate, we evaluated the response correctness generated by
GenCache using GPT-4.1 with 5% responses validated through human feedback. GPT-4. 1 checks
whether the cached item’s name and price semantically match the ground truth and whether the item
remains searchable in an e-commerce context. This indirectly measures the reliability of ValidLLM’s
semantic comparison. Each cache hit is classified as either a +ve Hit (semantically correct item
name, attributes, and price) or a -ve Hit (incorrect or unsearchable entry). We also extend GenCache
to reduce negative hits by incorporating feedback from GPT-4.1 that acts as an oracle semantic
correctness verifier. We name this method GenCache-feedback. When a cache-generated response
is identified as a negative hit, GenCache deletes the corresponding cached program, but retains the
associated cluster so that it can retry generating a new program.

We observe that GenCache achieves over 97% cache hit rate with ~2% negative hits for Param-Only
dataset. Since only the parameters (i.e. item name and price) vary, CodeGenLLM effectively learns
reusable patterns that can be cached as programs. The few negative hits arise mainly from long or
complex item descriptions that lead to suboptimal e-Commerce search results, as flagged by GPT-4.1
and human feedback. For Param-w-Synonym where verbs phrases may deviate, the cache hit rate
drops to 84%, with a higher false positive rate. Beyond long item descriptions, false positives also
arise due to cases where the entire user instruction is broken into multiple sentences. For example, a
cached pattern like r ‘buy |need | purchase|get (item name)’, misfires on the user instruction
"want a wireless headphone. need it in black”, returning "it in black" as the item. Incorporating
feedback in GenCache-feedback slightly reduces the overall hit rate due to cache deletions but also
decreases negative hits. This shows that if a client (or an agent) can provide a feedback that the
response from cache use resulted in an error, GenCache can adapt and modify the cache.

ExactCache exhibits no cache hits, while all GPTCache’s cache hits are negative. Since there are no
prompt repetitions, no responses should be repeated as well. However, GPTCache returns a cached
response corresponding to a prompt that shows high similarity to the new request (example in §1).

4.2 Cache Generation Cost vs Savings

GenCache incurs an initial cost for using CodeGenLLM and ValidLLM to generate and validate
programs before caching. For caching to be effective, this cost must remain lower than the savings
from subsequent cache hits. To evaluate this trade-off, we compute the ratio of LLM calls used
for cache creation (cost) to the number of cache hits (savings, i.e., avoided LLM calls). We run
GenCache with the default v = 4 on 5,000 input prompts for each dataset type and plot this ratio
over time in Figure 4. Initially, the ratio exceeds 1 as GenCache incurs setup costs to build caches.
Once the number of prompts surpasses v, cached programs are reused, sharply increasing cache hits
and reducing the ratio. The Param-Only dataset achieves a lower ratio due to higher cache reuse,
while Param-w-Synonym shows a higher ratio due to more variable phrasing.

While Figure 4 shows cost for a fixed v, varying v changes the number of in-context exemplars for
CodeGenLLM, affecting the LLM calls needed to generate reliable, reusable caches. As shown in
Table 2 for Param-w-Synonym prompts across five runs, increasing v consistently reduces LLM calls.

ETZ Baseline Cost [Cache Generation Cost M Cache Miss Cost

o
3
3

— P ynonym
-- Param-Only

40

LLM calls

324
29.6
21.2
17.2
18.8

0 1000 2000 3000 4000 5000 Without Y
User Instructions over Time Cache GenCache

35%

®

20

73%

Close-Up

00

o

80

60 “
. [S
20 ‘

=2 v=4 v=6 v=10 v=1

IS
- N e s

o

LLM Token Usage per User Request

— —
== NI RN

(# LLM Calls to Cache) / (Cache Hit)

o
o

Figure 4: Ratio of no. of LLM calls Table 2: Total no. Figure 5: LLM token usage for caching com-
used for creating cache to number of of LLM calls to cre- pared against the baseline of *Without Cache’.
cache hits plotted against incoming ate reusable caches ~ With no prompt repetitions, ExactCache incurs

prompts in time same cost as the baseline
Cache Hit Workflow Time (s)
Cache lookup (includes identifying similar cluster) 0.112
Cache retrieval & local program execution (reusing the cache) 0.064
Cache Miss Workflow Time (s)
Cache lookup (to detect miss) 0.056
LLM call (to generate a new response) 3.520
Database insertion (to store the prompt-response pair) 0.075

Table 3: Cache Miss and Hit Workflow Times

More exemplars help CodeGenLLM detect recurring patterns and produce reusable programs. Contrary
to expectations of diminishing returns, the structural similarity and consistency of prompts reduce
noise, so additional exemplars continue to improve pattern reliability. This trend likely generalizes
across domains, though longer prompts slightly increase program generation cost.

In addition to reducing the number of LLM calls, GenCache must also minimize token usage, as
LLM pricing typically depends on input and output tokens [9]. To evaluate token usage cost, we vary
v and compute the average tokens (input + output) used per user request during cache creation across
five runs (each with 2,000 prompts), comparing it against the cost from cache misses (Figure 5).
As a baseline, we plot the token usage without caching. Across all v, caching yields at least 35%
token savings per request, reaching up to 73% for v = 2. As v increases, cache construction cost
rises due to longer in-context prompts for CodeGenLLM, but plateaus quickly as cache hits become
more frequent than cache creations. The cost dip at v = 10 is because a highly reused cache was
stored with very few retries. Figure 5 also shows large standard deviations in cache construction and
cache miss cost, mainly due to GPT-40’s variability across runs, which caused multiple retries in
some cases. Improved prompt engineering like optimized prompting, ewer repeated guardrails, etc.
or using a stronger model like GPT-4 can further reduce cache construction cost.

Breakdown of Computational Overheads: A call to GenCache’s API interface follows different
steps depending on whether a cache hit or a miss occurs. Each call begins with a cache lookup to
identify whether a cache is present or not. The lookup consists of:

1. Embedding generation: converting the user prompt into an n-dimensional vector (~ 0.042s)

2. Cluster similarity search: matching the embedding to the nearest cluster (~ 0.009s)

3. Regex Validation: regex-based prompt validation before using the cache, and bookkeeping
During a cache hit, all the above three steps for cache lookup are executed, followed by retrieving the
cache and running the program locally. The total latency is ~0.176s (detailed breakdown in Table 3).
Embedding generation accounts for 22.16% of the cache hit workflow, while cluster similarity search
adds 4.5%. In a cache miss, regex validation is skipped during cache lookup because no cached entry
is found. However, the lookup overhead (0.056s) and database insertion of the prompt-response pair
(~0.075s) add only ~2.1% overhead, while an LLM call issued on a cache miss takes ~3.5s on
average. Overall, clustering and cache reuse incur negligible overhead while providing significant
savings over using an LLM call to respond to a user request.

4.3 Impact on Agentic Workflows

We evaluate end-to-end performance impact of GenCache on two agentic workflows. Since such
workflows already leverage ExactCache by default, we deploy GenCache alongside it to measure

Agent Performance Metrics GenCache+ExactCache ExactCache

No. of API calls 4725 4960
FLASH No. of LLM calls for Cache Creat@on) 536 N/A
% Cache Hits (ExactCache contribution) 54.7% (31.1%) 34.4%
Execution Time 39.91s 53.45s
No. of API calls 1315 1308
Laser No. of LLM calls for Cache Creat?on) 100 N/A
% Cache Hits (ExactCache contribution) 37.2% (12.8%) 5.7%
Execution Time 5.02s 5.16s

Table 4: Evaluating the benefits of using GenCache in regular agentic workflows

600

—— Avoided LLM Calls
—-— LLM Calls for Cache Gen.

—— Avoided LLM Calls

1000
4+ 5001 —-— LLM Calls for Cache Gen.

800
600

4001 LT Z 200

Cumulative Count

E
200 Siof
0 0
50 100 150 200 250 300 0 25 50 75 100 125 150 175 200
Incidents User Prompts
(a) Cloud Operations Agent (b) Web Navigation Agent

Figure 6: Comparison of LLM calls avoided due to cache hit (savings) with the LLM calls incurred for cache
creation (cost). As more inputs are processed, the gap between savings and cost widens.

additional benefits. Table 4 summarizes improvements in cache hit rate and execution time, while
Figure 6a compares the associated cost and savings.

Cloud-Operations Agent: To diagnose an incident, FLASH [58] took 16 LLM calls on average,
including identifying the correct documents, generating a coarse and fine-grained plan, and conducting
the diagnosis. GenCache improved cache hit rate by 23% achieving 54% overall, compared to ~34%
with ExactCache alone. Using GenCache also reduced the average diagnosis time of the agents by
~25%. Figure 6a illustrates that as more and more incidents are handled by FLASH, the number of
LLM calls avoided due to cache hits outweighs the LLM calls incurred to create cache which plateaus.
The growing gap demonstrates GenCache’s long-term benefits. Out of 536 LLM calls made for
cache creation, only 10.4% (56/536) resulted in reusable caches within the workflow; the remaining
attempts were flagged as invalid by ValidLLM. There were also failure cases; across 298 incidents,
FLASH failed in only 3 cases (1%) due to mapping to an incorrect troubleshooting document as a
result of cache hit, but it was non-detrimental since we focused only on reversible workflows.

Web-Navigation Agent: We run Laser [31] on 200 requests from the WebShop dataset [53], which
iteratively queries the LLM, first for a rationale, then for the corresponding action type. The workflow
is typically to search for an item, compare item descriptions to user requirements, and ultimately
add it to the cart. Since rationales involve prompt-specific reasoning and are structurally diverse,
we disable GenCache for those steps. Instead, we enable GenCache only when the LLM selects
an action type and its parameters. On average, Laser required 12 LLM calls per request, of which
~50% (1315 total) used GenCache’s API interface. Using GenCache, we observed 37.2% cache
hits (489/1315), with 12.8% of them (63/489) due to exact prompt matching. Similar to FLASH, we
see that the savings due to cache hit grow with more prompts while LLM calls for cache generation
plateaus in Figure 6b. GenCache incurred an additional 100 LLM calls for cache creation. Out of
these 100 LLM calls, 34% resulted in creation of reusable caches, while 66% failed (number of retries
capped at p = 30) since the exemplars that were clustered together were too different. Failure cases
were: (1) 5.5% of prompts failed due to the cached program repeatedly returning the wrong item
from the catalog, and (ii) 11% failed due to formatting errors in cached response—issues that can be
addressed through improved prompting, output guardrails, or providing feedback to GenCache. Long
and complex item descriptions, which were flagged as negative hits in Table 1, did not lead to failures
here, since the multi-step workflow included intermediate LLM calls for generating rationales, which
mitigates the impact of complex item descriptions.

4.4 Sensitivity Analysis

Similarity Threshold for Clustering: To analyze the effect of cluster similarity thresholds on

cache hit rate, we varied 77 and 7" (see §3.2). Experiments were con- e " Hit%
ducted on the Param-w-Synonym dataset with v = 4 and v = 50%.
We observe in Table 5 that increasing 7% and 7" reduced the cache hit ~ 0.75 0.7 79.72
rate, as fewer prompts were clustered together, resulting in many small ~ 0.75 0.75 84.48
clusters with insufficient exemplars to generate reliable programs. Ei- 0.8 0.75 83.66
ther new prompts were often assigned to clusters that did not have any ~ 0.85 0.85 60.02
associated cached programs, or in cases where the clusters had existing
caches, they exhibited overfitting. In contrast, a low threshold grouped ~Table 5: Hit Rate vs
diverse prompts into a single cluster, making it harder for CodeGenLLM similarity threshold
to learn consistent patterns, again reducing cache hits. Overall, the cache hit rate remains high
within a moderate range of similarity thresholds as shown in the table.

Sensitivity to v: We vary -, the threshold for the proportion of exem- - -
plars that must match the program-generated response, and evaluate v Hit% +veHit
on Param-w-Synonym dataset using the same setup as in Table 1. We 40% 80.53 91.74
observe in Table 6 that increasing v improves cache hit rate, indicat- 50% 83.66 92.16
ing that at a lower ~, the generated program was not general enough 70% 89.8 92.47
to cater to all the minor variations in the prompt. As -y increased, 920% 94.8 94.74
CodeGenLLM created reliable programs by considering more patterns
in the regex. At 50% threshold, the generated program may have re- Table 6: Hit Rate vs ~
sulted in more cache misses than at 70% or 90%, but we observed (threshold for matching re-
that the positive hit rate remains similar. Thus, even though the recall sponses during validation)
is lower, the precision remains high. However, with higher v, more

LLM calls are required early in the run, when the database contains only a few prompts, to create
reliable caches. Once sufficient prompts are clustered and cached programs are generated, cache
misses become rare.

5 Related Works

Semantic Caching: While GPTCache [14] is a popular semantic caching approach, few works
have focused on implementing a caching architecture to make semantic caching usable in real-world
settings [17, 29, 35, 63]. SCALM [29] identifies requests frequently visited by users and selectively
caches those requests, while [63] improves LLM inference by introducing model multiplexing along
with semantic caching. However, [63] relies on the existence of some semantic caching oracle that
can group prompts without false positives. LangCache [20] innovates on the embedding layer by
domain-adaptive fine-tuning of the embedding models. MeanCache [21] introduces a user-centric
semantic caching system that preserves user privacy, and hence employs federated learning to build
different embedding models locally at each user device. InstCache [64] introduces predictive caching
for short user prompts by predicting user instructions using LLLMs and pre-populating the cache.

Prompt Caching: Reusing attention states using Key-Value (KV) Cache is a popular LLM inference
optimization for a single prompt during autoregressive token generation [36]. Prompt caching [22, 52,
13, 61, 55, 30] extends this idea to multiple prompts, where KV caches across multiple prompts are
reused based on prompt prefix matching. Prompt Cache [22] designs an explicit structure for writing
prompts to enable seamless detection of prompt prefixes. SGLang [61] and ChunkAttention [55]
build efficient data structures for KV cache reuse, while works like Cache-Craft [13] and Cache-
Blend [52] implement prompt caching for RAG systems by efficiently reusing and recomputing only
the necessary cached chunks. Prompt caching is also used in popular LLM services [10, 3] to reduce
costs. However, these works are orthogonal to GenCache, and they can be used in parallel to reduce
costs when GenCache incurs a cache miss.

6 Summary and Discussion

We proposed GenCache, a novel caching technique for structurally similar prompts that uses LLM to
identify a common pattern to generate responses from similar prompts, and caches the patterns as
programs after validation. On a cache hit, a stored program is executed to generate variation-aware
responses. Future works include supporting structurally diverse prompts and non-reversible agent
workflows, a limitation of the current work. Furthermore, modifying Al agents to identify negative
hits and relaying back the feedback to the caching layer can help improve cache accuracy over time.
Designing structured human-LLM interaction schemas, like in [22] will enable better caching.

10

7 Acknowledgements

This work was supported in part by the Illinois Distinguished Fellowship from UIUC. We further
appreciate the anonymous reviewers for their valuable and constructive feedback that greatly improved
the manuscript.

References

[1] Chat completions. https://platform.openai.com/docs/guides/chat-completions,
2025.

[2] Computer-using agents. https://openai.com/index/computer-using-agent/, 2025.

[3] Effectively use prompt caching on amazon bedrock. https://aws.amazon.com/blogs/
machine-learning/effectively-use-prompt-caching-on-amazon-bedrock/,
2025.

[4] Gptcache : A library for creating semantic cache for llm queries. https://gptcache.
readthedocs.io/en/latest/, 2025.

[5] Gptcache : A library for creating semantic cache for llm queries. https://github.com/
zilliztech/gptcache, 2025.

[6] Langchain. https://www.langchain.com/, 2025.

[7] Langchain model caches. https://python.langchain.com/docs/integrations/11lm_
caching/, 2025.

[8] Laser: LIm agent with state-space exploration for web navigation. https://github.com/
Mayer123/LASER, 2025.

[9] Openai api pricing. https://openai.com/api/pricing/, 2025.

[10] Prompt caching with openai, anthropic, and google models. https://www.prompthub.us/
blog/prompt-caching-with-openai-anthropic-and-google-models, 2025.

[11] Redis caching. https://redis.io/solutions/caching/, 2025.
[12] Sqlite caching. https://sqlite.org/, 2025.

[13] Shubham Agarwal, Sai Sundaresan, Subrata Mitra, Debabrata Mahapatra, Archit Gupta, Rounak
Sharma, Nirmal Joshua Kapu, Tong Yu, and Shiv Saini. Cache-craft: Managing chunk-caches
for efficient retrieval-augmented generation. arXiv preprint arXiv:2502.15734, 2025.

[14] Fu Bang. GPTCache: An open-source semantic cache for LLM applications enabling faster
answers and cost savings. In Liling Tan, Dmitrijs Milajevs, Geeticka Chauhan, Jeremy Gwin-
nup, and Elijah Rippeth, editors, Proceedings of the 3rd Workshop for Natural Language
Processing Open Source Software (NLP-OSS 2023), pages 212-218, Singapore, December
2023. Association for Computational Linguistics.

[15] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877-1901. Curran Associates, Inc., 2020.

[16] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-

ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions on
Machine Learning Research, 2023.

11

https://platform.openai.com/docs/guides/chat-completions
https://openai.com/index/computer-using-agent/
https://aws.amazon.com/blogs/machine-learning/effectively-use-prompt-caching-on-amazon-bedrock/
https://aws.amazon.com/blogs/machine-learning/effectively-use-prompt-caching-on-amazon-bedrock/
https://gptcache.readthedocs.io/en/latest/
https://gptcache.readthedocs.io/en/latest/
https://github.com/zilliztech/gptcache
https://github.com/zilliztech/gptcache
https://www.langchain.com/
https://python.langchain.com/docs/integrations/llm_caching/
https://python.langchain.com/docs/integrations/llm_caching/
https://github.com/Mayer123/LASER
https://github.com/Mayer123/LASER
https://openai.com/api/pricing/
https://www.prompthub.us/blog/prompt-caching-with-openai-anthropic-and-google-models
https://www.prompthub.us/blog/prompt-caching-with-openai-anthropic-and-google-models
https://redis.io/solutions/caching/
https://sqlite.org/

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Soumik Dasgupta, Anurag Wagh, Lalitdutt Parsai, Binay Gupta, Geet Vudata, Shally Sangal,
Sohom Majumdar, Hema Rajesh, Kunal Banerjee, and Anirban Chatterjee. wallmartcache: A
distributed, multi-tenant and enhanced semantic caching system for llms. In Pattern Recognition:
27th International Conference, ICPR 2024, Kolkata, India, December 1-5, 2024, Proceedings,
Part VII, page 232-248, Berlin, Heidelberg, 2024. Springer-Verlag.

Yuan Feng, Hyeran Jeon, Filip Blagojevic, Cyril Guyot, Qing Li, and Dong Li. Attmemo :
Accelerating transformers with memoization on big memory systems, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: Program-aided language models. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings
of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 10764—-10799. PMLR, 23-29 Jul 2023.

Waris Gill, Justin Cechmanek, Tyler Hutcherson, Srijith Rajamohan, Jen Agarwal, Muham-
mad Ali Gulzar, Manvinder Singh, and Benoit Dion. Advancing semantic caching for llms with
domain-specific embeddings and synthetic data, 2025.

Waris Gill, Mohamed Elidrisi, Pallavi Kalapatapu, Ammar Ahmed, Ali Anwar, and Muham-
mad Ali Gulzar. Meancache: User-centric semantic cache for large language model based web
services. arXiv preprint arXiv:2403.02694, 2024.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong.
Prompt cache: Modular attention reuse for low-latency inference. In P. Gibbons, G. Pekhimenko,
and C. De Sa, editors, Proceedings of Machine Learning and Systems, volume 6, pages 325-338,
2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu
Chen. CRITIC: Large language models can self-correct with tool-interactive critiquing. In The
Twelfth International Conference on Learning Representations, 2024.

Izzeddin Gur, Hiroki Furuta, Austin V Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck,
and Aleksandra Faust. A real-world webagent with planning, long context understanding, and
program synthesis. In The Twelfth International Conference on Learning Representations, 2024.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. /IEEE
Transactions on Big Data, 7(3):535-547, 2021.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, SOSP *23, page 611-626, New York, NY, USA, 2023. Association for Computing
Machinery.

Ronny Lempel and Shlomo Moran. Predictive caching and prefetching of query results in search
engines. In Proceedings of the 12th International Conference on World Wide Web, WWW ’03,
page 19-28, New York, NY, USA, 2003. Association for Computing Machinery.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, Sebastian Riedel, and
Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In Proceed-
ings of the 34th International Conference on Neural Information Processing Systems, NIPS °20,
Red Hook, NY, USA, 2020. Curran Associates Inc.

Jiaxing Li, Chi Xu, Feng Wang, Isaac M von Riedemann, Cong Zhang, and Jiangchuan Liu.
Scalm: Towards semantic caching for automated chat services with large language models. In
2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS), pages 1-10,
2024.

Yuhan Liu, Yuyang Huang, Jiayi Yao, Zhuohan Gu, Kuntai Du, Hanchen Li, Yihua Cheng,
Junchen Jiang, Shan Lu, Madan Musuvathi, and Esha Choukse. Droidspeak: Kv cache sharing
for cross-1lm communication and multi-llm serving, 2024.

12

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Kaixin Ma, Hongming Zhang, Hongwei Wang, Xiaoman Pan, Wenhao Yu, and Dong Yu. Laser:
Llm agent with state-space exploration for web navigation. arXiv preprint arXiv:2309.08172,
2023.

Sami Marreed, Alon Oved, Avi Yaeli, Segev Shlomov, Ido Levy, Aviad Sela, Asaf Adi, and
Nir Mashkif. Towards enterprise-ready computer using generalist agent. arXiv preprint
arXiv:2503.01861, 2025.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru,
Roberta Raileanu, Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al.
Augmented language models: a survey. arXiv preprint arXiv:2302.07842, 2023.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning
work? In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pages 11048-11064, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.

Ramaswami Mohandoss. Context-based semantic caching for llm applications. In 2024 IEEE
Conference on Artificial Intelligence (CAI), pages 371-376, 2024.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
In D. Song, M. Carbin, and T. Chen, editors, Proceedings of Machine Learning and Systems,
volume 5, pages 606—-624. Curan, 2023.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China, November 2019. Association for Computational Linguistics.

Devjeet Roy, Xuchao Zhang, Rashi Bhave, Chetan Bansal, Pedro Las-Casas, Rodrigo Fonseca,
and Saravan Rajmohan. Exploring llm-based agents for root cause analysis. In Companion
Proceedings of the 32nd ACM International Conference on the Foundations of Software En-
gineering, FSE 2024, page 208-219, New York, NY, USA, 2024. Association for Computing
Machinery.

Patricia Correia Saraiva, Edleno Silva de Moura, Nivio Ziviani, Wagner Meira, Rodrigo Fonseca,
and Berthier Ribeiro-Neto. Rank-preserving two-level caching for scalable search engines.
In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR *01, page 51-58, New York, NY, USA, 2001.
Association for Computing Machinery.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: language models can
teach themselves to use tools. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS *23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Manish Shetty, Yinfang Chen, Gagan Somashekar, Minghua Ma, Yogesh Simmhan, Xuchao
Zhang, Jonathan Mace, Dax Vandevoorde, Pedro Las-Casas, Shachee Mishra Gupta, Suman
Nath, Chetan Bansal, and Saravan Rajmohan. Building ai agents for autonomous clouds:
Challenges and design principles. In Proceedings of the 2024 ACM Symposium on Cloud
Computing, SoCC ’24, page 99—-110, New York, NY, USA, 2024. Association for Computing
Machinery.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: language agents with verbal reinforcement learning. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing
Systems, volume 36, pages 8634—8652. Curran Associates, Inc., 2023.

13

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Simranjit Singh, Michael Fore, Andreas Karatzas, Chachong Lee, Yanan Jian, Longfei Shang-
guan, Fuxun Yu, Iraklis Anagnostopoulos, and Dimitrios Stamoulis. Llm-dcache: Improving
tool-augmented 1lms with gpt-driven localized data caching. In 2024 31st IEEE International
Conference on Electronics, Circuits and Systems (ICECS), pages 1-4, 2024.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R. Bowman. SuperGLUE: a stickier benchmark for general-purpose
language understanding systems. Curran Associates Inc., Red Hook, NY, USA, 2019.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous
agents. Frontiers of Computer Science, 18(6):186345, 2024.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng
Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large
language models. arXiv preprint arXiv:2305.04091, 2023.

Zefan Wang, Zichuan Liu, Yingying Zhang, Aoxiao Zhong, Jihong Wang, Fengbin Yin, Lunting
Fan, Lingfei Wu, and Qingsong Wen. Rcagent: Cloud root cause analysis by autonomous agents
with tool-augmented large language models. In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Management, CIKM ’24, page 4966—4974, New
York, NY, USA, 2024. Association for Computing Machinery.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language

models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS *22, Red Hook, NY, USA, 2022. Curran Associates Inc.

Shiguang Wu, Yaqing Wang, and Quanming Yao. Why in-context learning models are good
few-shot learners? In The Thirteenth International Conference on Learning Representations,

2025.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software
engineering. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
50528-50652. Curran Associates, Inc., 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors,
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 2369-2380, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du,
Shan Lu, and Junchen Jiang. Cacheblend: Fast large language model serving for rag with
cached knowledge fusion. In Proceedings of the Twentieth European Conference on Computer
Systems, EuroSys 25, page 94—109, New York, NY, USA, 2025. Association for Computing
Machinery.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing
Systems, volume 35, pages 20744-20757. Curran Associates, Inc., 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

Lu Ye, Ze Tao, Yong Huang, and Yang Li. ChunkAttention: Efficient self-attention with
prefix-aware KV cache and two-phase partition. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for Computational

14

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Linguistics (Volume 1: Long Papers), pages 11608—11620, Bangkok, Thailand, August 2024.
Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3911-3921,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics.

Yifan Yu, Yu Gan, Nikhil Sarda, Lillian Tsai, Jiaming Shen, Yanqi Zhou, Arvind Krishnamurthy,
Fan Lai, Hank Levy, and David Culler. Ic-cache: Efficient large language model serving via
in-context caching. In Proceedings of the ACM SIGOPS 31st Symposium on Operating Systems
Principles, SOSP °25, page 375-398, New York, NY, USA, 2025. Association for Computing
Machinery.

Xuchao Zhang, Tanish Mittal, Chetan Bansal, Rujia Wang, Minghua Ma, Zhixin Ren, Hao
Huang, and Saravan Rajmohan. Flash: A workflow automation agent for diagnosing recurring
incidents. October 2024.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile
and autonomous multi-agent system for web task execution with strategic exploration. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages 23378-23386,
2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zhuohan Li, Zi Lin, Eric Xing, Joseph E. Gonzalez, Ion Stoica, and Hao
Zhang. LMSYS-chat-1m: A large-scale real-world LLM conversation dataset. In The Tielfth
International Conference on Learning Representations, 2024.

Lianmin Zheng, Liangsheng Yin, Zhiqgiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu,
Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying
Sheng. Sglang: Efficient execution of structured language model programs. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in
Neural Information Processing Systems, volume 37, pages 62557-62583. Curran Associates,
Inc., 2024.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. In The Twelfth International Conference on
Learning Representations, 2024.

Banghua Zhu, Ying Sheng, Lianmin Zheng, Clark Barrett, Michael Jordan, and Jiantao Jiao.
Towards optimal caching and model selection for large model inference. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information
Processing Systems, volume 36, pages 59062-59094. Curran Associates, Inc., 2023.

Longwei Zou, Tingfeng Liu, Kai Chen, Jiangang Kong, and Yangdong Deng. Instcache: A
predictive cache for 1lm serving. arXiv preprint arXiv:2411.13820, 2024.

15

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Have listed the contributions and the claims in the abstract and introduction, along
with experimental numbers. These are reflected in the evaluation section.

Guidelines:

» The answer NA means that the abstract and introduction do not include the claims made in the
paper.

» The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are discussed in the conclusion section, while the scope limitations
are mentioned in the Problem Formulation Section 2. We also discuss it in the Supplementary
material.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]
Justification: There are no theoretical results in the paper
Guidelines:

16

» The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

» All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions of
the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Have tried our best to provide all implementation details in the experiments section.
We will include prompts that we use for the LLMs in our design in the Supplementary material.
We also include code along with the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to

make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For

example, if the contribution is a novel architecture, describing the architecture fully might

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the

results, access to a hosted model (e.g., in the case of a large language model), releasing of a

model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions to

provide some reasonable avenue for reproducibility, which may depend on the nature of the

contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

L]

Answer: [Yes]

Justification: We will include the code in the supplementary material. The data is open source
and we specify how to generate synthetic data in the paper.

Guidelines:
* The answer NA means that paper does not include experiments requiring code.

17

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have written a ’Setup’ subsection at the start of the Experiments section to
specify the setting. Other details are presented in the Supplementary material.

Guidelines:
* The answer NA means that the paper does not include experiments.
» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, we have reported standard deviation in our main results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

 If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

9.

10.

11.

Answer: [Yes]
Justification: Yes, we have reported the server configuration on which we run our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms to the Code of Ethics

Guidelines:
* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: The paper does not have any perceivable negative societal impact. The paper
motivates the problem with the help of an application, hence its positive impact will help the
applications that fall into the scope of the paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

19

https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

Answer: [NA]
Justification: The paper poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We cite the original paper and the libraries that we use. Libraries with specific
versions will be included in the requirements file along with the code.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.
If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.
For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.
If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We share the code in the Supplementary material.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

20

paperswithcode.com/datasets

15.

16.

¢ Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA|
Justification: The paper does not involve any crowdsourcing nor research with any human subjects

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

e For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We have used LLM as a component in our design and we describe the methodology.
The prompts used for these LLMs are included in the appendix section of the supplementary
material

Guidelines:
* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.
¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Appendix

Here, we provide detail about the following topics:
Code Link

Choice of Baselines

Limitations of GenCache

Prompts for the LLMs used

Data for FLASH

Structural Modification to the Data

LLM token usage pattern over time

Code Link

Code link for GenCache is available at https://github.com/sarthak-chakraborty/
GenCache

NNk L=

Choice of Baselines

GenCache stores the input prompt along with the generated program in its cache store. The program
can then be executed locally via a runtime like Python interpreter to generate the correct response
for the input prompt. Thus, the obvious candidate for a baseline is the exact prompt matching
(ExactCache), which returns the same response verbatim when the input prompt is identical.

Semantic caching is a widely used technique for LLMs where input prompts are matched to stored
prompts based on embedding similarity, and a cache hit returns the exact response associated with
the matched prompt. There are multiple semantic caching techniques in the literature. We chose
GPTCache [14] as the representative approach due to its wide popularity and well-maintained library
(over 7500 stars on Github [5]). Other approaches, such as Mean Cache and the method proposed by
Gill et al.[20], improve semantic caching by customizing the embedding model via fine-tuning on
domain- and user-specific data. However, these methods are not open-sourced and, like GPTCache,
suffer from a key limitation that in datasets without prompt repetition, any cache hit results in a
negative hit. InstCache [64] is a recent predictive caching technique that predicts tokens likely to
appear in an input prompt and precomputes responses for different token combinations using an
LLM. Since InstCache does not have an available open-source code, reproducing its functionality is
infeasible without knowledge of the exact prompting strategy used.

Zhu et.al. [63] introduce caching with model multiplexing to improve LLM inference. However, their
caching technique is primitive, they check whether the request id is present in the cache or not. If
S0, it uses the same response verbatim, otherwise, it uses LLM to generate the response and chooses
to add the request to the cache based on a novel cache replacement policy. Since GenCache’s main
technique is generating an appropriate reusable cache, rather than a cache replacement policy, [63] is
not an ideal baseline.

Prompt prefix matching is a common caching technique where, if a new prompt shares a prefix
with a stored prompt, the key-value (KV) caches of the stored prompt are reused to accelerate
inference. Many works leverage this idea [22, 10, 26, 18, 55]. Other works like Cache Blend [52]
and CacheCraft [13] extend this idea to adapt within the RAG framework, while also selectively
recomputing attention states when prompt prefixes differ slightly. However, these techniques op-
erate at the level of KV cache reuse and represent low-level decoding optimizations, making them
orthogonal to our approach. While such methods reduce inference latency, GenCache focuses on
reducing the frequency of LLM calls altogether. That said, prompt prefix matching can be integrated
into GenCache as an optimization during cache misses, when LLM invocations are required anyway.

Limitations

We scope GenCache’s applicability to Al agents that employ structurally similar prompts for repetitive
tasks, such as fault diagnosis, web navigation, and computer-using agents. We find that GenCache
is particularly effective for agents following ReAct-style prompting [54], especially when LLM
responses correspond to actions rather than rationales, as these exhibit consistent structural patterns
across invocations. GenCache also performs well when variable user instructions are generated
automatically (e.g., by alert monitors in SRE agents), since such prompts naturally maintain high
structural similarity.

22

https://github.com/sarthak-chakraborty/GenCache
https://github.com/sarthak-chakraborty/GenCache

Since GenCache relies on LLMs to identify consistent patterns and store them as reusable caches,
GenCache may identify an incorrect cache for a few prompts and consequently generate erroneous
responses. Therefore, we recommend using GenCache with strict guardrails and mechanisms to
detect such errors. When an agent detects an incorrect cache-generated response through downstream
validation, it can provide feedback to GenCache, which then deletes the corresponding cache entry
(GenCache-feedback). Hence, agent reliability and the ability to identify or roll back incorrect
executions are critical for ensuring GenCache’s robustness in practice.

Although CodeGenLLM can identify branching patterns and generate programs with if-else clauses
when provided with sufficient exemplars, GenCache may fail when the number of branches is large,
as too few exemplars exist to capture decisions for all branches. Hence, an adaptive strategy is needed
to modify the cached program dynamically whenever a new branch is detected, either through agent
feedback upon failure or when a cache remains unused.

Future works include expanding GenCache to more general prompting structure and agent designs.
Prompting strategy for CodeGenLLM and ValidLLM could be improved to reduce the number of LLM
token usage for generating cache. Some common strategies that can be used to improve the prompting
is Reflexion [42], Chain-of-Thought [48], Plan-and-Solve [46], self-critic [23], etc.

Prompts for the LLMs used

Note that the prompts are not optimized, and there will be multiple repetitions in the instructions
provided. A more optimized prompt conveying the same message will improve the LLM token usage
for CodeGenLLM and ValidLLM.

CodeGenLLM Prompt (for Web-Navigation Agent and with WebShop dataset; clients use

OpenAl Chat Completion API to interact with the LLM)

You are an expert who can analyze a few example prompts and their corresponding responses and
find a common intent from which the responses were generated by the prompts. Once you find the
common intent, your task is to generate a Python program for it.

The example prompts will have a ‘system’ role, a ‘user’ role and might have a ‘“function’ descrip-
tion. Your task is to analyze the ‘text’ part within the ‘content’ subfield of the ‘user’ role to find
a common pattern across the examples. The part that is to be analyzed will contain some static
phrases and some variable phrases. You need to understand how these parts relate to the response.
If the responses across all examples are similar (e.g., searching a product), the common pattern
must be able to identify how to structure the response based on the static and the variable parts of
the phrase.

Your job is to:
1. Identify a consistent pattern across examples
2. Generate a Python program that extracts key variables (e.g., item name, attributes, price) using
regex and constructs the response accordingly.

3. Ensure the program works for arbitrary prompts that follow the same overall structure, even
with minor variations or synonyms.

Here are some guidelines for pattern extraction:

1. Write a regular expression that can extract the variable parts of the phrase from the user
instruction

2. Find reusable structures in the prompts, e.g., "buy {item} from Amazon". Identify and divide
the human prompt into verb, item and price phrases.

3. For each part of the phrase, write regex containing synonyms using the examples provided
(e.g., if the prompt says "find me", synonyms are "i want to buy" or "i am looking for"). Use
up to a MAXIMUM of 5 synonyms per phrase (no more), or the code may raise EOL errors.

4. Use the synonyms to write a regex to identify the item along with its attributes, and the price
of the item

5. Generate regex that captures most prompts and is general enough to apply to new prompts,
not just the seen ones (e.g. for keyword extraction, identify where the keyword appears in
the sentence and extract them from the similar part of the sentence for any arbitrary user

23

instruction, but following the same prompt template). Please go through all the examples
provided before coming up with the regex pattern.

6. Use re .DOTALL if needed (e.g., multi-line string matching).

Example Input Prompts and their Corresponding Responses

Guidelines for the code output format and other generic guidelines:
1. Analyze only the ‘text’ portion in the ‘content’ subfield of the ‘user’ role.

2. The code must produce an output in the exact format shown in the example responses. For
responses in the format of a dictionary, there should be no additional key-value pairs, otherwise,
there will be errors in the downstream task that uses this output.

3. Put escape characters for single and double quotes wherever necessary to avoid syntax errors.

4. Replace \\n with \n in the final code to handle newline characters correctly from the command
line input of the prompt.

5. Put ample try/except blocks to catch errors. The code should not crash for any input prompt.
If any error occurs, print ‘None’ and the error.

6. Every if/elif must be followed by an else to handle unmatched conditions. If no conditions
are satisfied, the else block should print ‘None’ along with the reason.

7. The code should be complete with no EOL or syntax errors.

Guidelines for Code Execution Format:
1. The code generated will be saved as ‘runnable_code.py’.
2. It will be run as ‘python3 runnable_code.py <input-prompt>’

3. The code must execute without any manual intervention and take the entire prompt (save it in
the variable name ‘prompt’) as command-line input <input-prompt> which includes both
the fixed and the variable parts

Final Instructions (strict):

1. Output only the complete Python code.

2. Do not print any explanation, description, or English text apart from the code
3. The output format should exactly match the format of the example responses.

Now Begin!!

CodeGenLLM Prompt (for Cloud-Operations Agent; clients use Langchain API to interact

with the LLM)

You are an expert who can analyze a few example prompts and their corresponding responses and
find a common intent from which the responses were generated by the prompts. Once you find the
common intent, your task is to generate a Python program for it.

The example input prompts provided below will have a prompt template, describing what the
LLM was asked to do. This is the static part. It will also contain a dictionary of inputs where each
key-value pair can be represented as ‘{abc:def}’. To reconstruct the actual prompt that was
used to query the LLM, replace each key (‘abc?) in the template with its corresponding value
(“def”’). The ‘def’ part in the full prompt is the variable part. Your goal is to analyze how this
transformed prompt maps to the given output and find a generalizable pattern that applies across
all examples. If the responses across all examples are similar (e.g., calling the same API with
some parameters), the common pattern must be able to identify how to structure the response
based on the static and the variable parts.

Your job is to:
1. Identify a consistent pattern across examples

2. Generate a Python program that extracts key variables using regex and constructs the response
accordingly.

24

3. Ensure the program works for arbitrary prompts that follow the same overall structure.

Here are some guidelines for pattern extraction:

1. The common pattern can be a code to perform a task (extracting a substring from a string) or
even a text sentence if all the example responses are sentences with minor changes that do not
alter the semantics.

2. For extracting a substring from a string, strip leading/trailing whitespace from the string before
matching.

3. Generate regex that captures most prompts and is general enough to apply to new prompts,
not just the seen ones (e.g. for keyword extraction, identify where the keyword appears in
the sentence and extract them from the similar part of the sentence for any arbitrary user
instruction, but following the same prompt template). Please go through all the examples
provided before coming up with the regex pattern.

4. Use re.DOTALL if needed (e.g., multi-line string matching).

In the examples below, the input dictionary is written in the form:
KEY -> ABC
VALUE -> def

Example Input Prompts and their Corresponding Responses

Guidelines for the code output format and other generic guidelines:

1. The code must produce an output in the exact format shown in the example responses without
‘Thought’. For responses in the format of a dictionary, there should be no additional key-value
pairs, otherwise, there will be errors in the downstream task that uses this output.

2. Do NOT include ‘Thought’ in the code-generated output, even if it appears in the examples.

3. Put ample try/except blocks to catch errors. The code should not crash for any input prompt.
If any error occurs, print ‘None’ and the error.

4. Every if/elif must be followed by an else to handle unmatched conditions. If no conditions
are satisfied, the else block should print ‘None’ along with the reason.

5. The code should be complete with no EOL or syntax errors.

Guidelines for Code Execution Format:
1. The code generated will be saved as ‘runnable_code.py’.
2. It will be run as ‘python3 runnable_code.py <input-dict>’

3. The code must execute without any manual intervention and take the input dictionary in the
form ‘{abc:def} passed as a string as command-line input <input-dict>.

Final Instructions (strict):

1. Output only the complete Python code.

2. Do not print any explanation, description, or English text apart from the code
3. The output format should exactly match the format of the example responses.
Now Begin!!

25

ValidLLM Prompt

You are an expert evaluator tasked with comparing multiple LLM-generated outputs to their corre-
sponding ground-truth answers. Each answer may be a JSON object, a string, or a code snippet.
You should validate only the JSON or code portions; ignore any general English descriptions.

Some of the comparisons may be about an API call searching for a product description that users
want to buy. In those cases, consider a match valid if the key attributes are preserved, even if
phrased differently (e.g., "a blue headphone with active noise cancellation" and "blue headphone,
active noise cancellation"). Often, the LLM-generated answer will be more verbose (former in the
example) than the ground-truth answer (latter in the example).

Some important validation rules are:

1. If the ground truth response is in the JSON format, all keys must be present in the LLM-
generated response as well. Extra keys in the JSON mean the result is invalid.

2. If some values within the JSON contain English sentences, check semantic equivalence
between the ground truth and the LLM-generated response, not exact wording (e.g. "The
product is available in the store" and "The store has the product available" are semantically
equivalent).

3. For verbose (in LLM-generated response) vs. concise (in ground-truth response) sentences
when comparing for certain keys in the JSON, ensure keywords from the concise form appear
in the verbose one.

4. For short phrases or code blocks in the response (e.g., "Buy Item", "Search"), check for exact
matches.

5. If the LLM-generated response contains 'null’ for some keys in the response, while the
ground-truth response contains *None’, treat them as equivalent.

6. Ignore punctuation or numeric formatting (e.g., 10 and 10.00 are equal) when comparing.
7. Ignore quote style (single vs. double quotes) (e.g., "content" and ‘content’ are valid).

Expected Output Format:

{
"valid": [0 or 1],
"reason": "The output is correct/incorrect because ...

"valid" is a list of Os and 1s (Iength of the list = number of comparisons done), where 1 at i’th
position means a correct match for comparison ‘i’, and 0 means a mismatch.

"reason" should give a single combined explanation for why any outputs were incorrect (e.g., extra
keys, wrong structure, mismatched values). Do not provide individual explanations per comparison,
nor include the comparison number. If an LLM-generated response for any comparison includes
an error/exception (e.g., "None: <error>"), include that reason. The objective of the reason field is
to easily identify mistakes and rectify, hence be concise.

Do not output anything except the specified JSON.

Strictly follow the format and rules above. Now validate the given examples.

26

GPT-4.1 Prompt (used to measure negative hitsin§)

You are an expert at checking the correctness of two phrases. You will be given an instruction, and
two phrases extracted from that instruction. One of the phrases is the ground truth answer, while
the other is an answer from our algorithm. The instruction is a user request to buy an item within
a price limit. Both phrases will contain (item name, price limit) tuples.

Your task is to verify whether the extracted phrase from our algorithm matches the item description
in the instruction. If the description contains some important attributes that will be required if it
needs to be searched in an e-commerce website, but those attributes are missing in the extracted
phrase, then it is not a match.

The ground truth may have a different phrasing of the item description, which is fine, but the
phrase from our algorithm should contain all the necessary information about the item.

You will be given the information in the following format:
Instruction: {{instruction}}

Ground Truth Phrase: {{ground_truth}}

Algorithm Phrase: {{algorithm}}

Your task is to answer with "yes" if the algorithm’s response is correct and "no" otherwise. Do not
include any other text.

Data for FLASH

For our experiments with the Cloud-Operations Agent FLASH, we show the distribution of the
incidents that map to each troubleshooting scenario in Figure 7a. We see that the first troubleshooting
scenario (TS-1) covers 69% of the incidents. Hence most incidents’ diagnosis strategy remains
the same since they map to the same troubleshooting strategy document. We plot the number of
repetitions for each incident in Figure 7b. Of the 298 incidents, 253 were unique. We see that 229
incidents never re-occurred, 15 unique incidents recurred twice, while one incident re-occurred 7
times. This shows that using ExactCache cannot produce a high cache hit rate.

HEE TS-1(69.46%)
N TS-2 (24.5%)
BN TS-3 (5.03%)
HE TS-4 (0.67%) 200
N TS-5(0.34%) 2
he
g 150
(]
3
g
S 100
£
=
Z 50
15
0 4 1 2 1 1
2 3 4 5 6 7
Incident Repetition Count
(@ (b)

Figure 7: (a) Percentage of incidents that map to each troubleshooting scenario, (b) Number of repetitions for
each incident

Structural Modification to the Data

To complete our experiments in §4.1, we also evaluated on a third dataset with prompt characteristics
different from Param-Only and Param-w-Synonym. We call this variation in the prompt set structural,
where we expressed each user instruction in 10 different ways with structural variations but semanti-
cally identical. For example, "I want to buy Bluetooth headphones, under the price of 150 dollars" is
expressed as "For under 150 dollars, I want a Bluetooth headphone".

As shown in Table 7, GenCache experiences a drop in both cache hit rate and precision when there
are structural changes in the user instructions, compared to the results in Table 1. The reason for this
is that most cached regular expressions fail to generalize when the user instruction structure differs.

27

Structural

Method Hit % +ve Hit -ve Hit
ExactCache 0 (£ 0.0) N/A N/A
GPTCache [14] 96.28 (£ 0.01) 20.72 (£ 0.01) 79.28 (£ 0.01)
GenCache 423 (£0.21) 72.4 (£ 0.12) 27.6 (£ 0.12)

Table 7: Baseline comparison of Hit Rate and its correctness when Prompts had Structural changes

ExactCache has 0% hit rate since no prompts were repeated. Thus, we argue that in domains with
structurally diverse prompts, GenCache is less effective (which it is not designed for), and reverting
to ExactCache is preferable (hoping that prompts repeat). While GPTCache’s negative hit rate
continues to be high, it is not 100%, as it occasionally returns correct responses for semantically
similar prompts with structural variations. We observe that when GPTCache shows a positive cache
hit for one user instruction, it tends to return positive hits for all structural variants of that instruction.
However, as the number of user instructions increases, its reliance on approximate nearest neighbor
search for semantic similarity often yields incorrect matches, leading to inaccurate cache hits. Since
GenCache already experiences a high negative hits, we do not experiment GenCache-feedback on
Structural prompt set.

LLM token usage pattern over Time

400K

300K

Input Token Count
8
(=}
x

5]
8
X

0K

—— LLM call for Cache Generation
LLM call avoided with Cache Hit

= P n N @
=) o =} a =}
X = X FS ~

Output Token Count

o
=

=)
X

—— LLM call for Cache Generation
LLM call avoided with Cache Hit

1000 1500 2000 2500

User Instructions over Time

0 500

(a) Input Tokens

1000 1500 2000 2500

User Instructions over Time

0 500

(b) Output Tokens

Figure 8: LLM tokens used for cache creation vs LLM tokens avoided due to cache hit for v = 4

300K

Input Token Count
8
(=]
X

1<)
38
=

0K

—— LLM call for Cache Generation
LLM call avoided with Cache Hit

:

40K

W
=]
X

N
=]
X

10K

Output Token Count

0K

ﬂ_

—— LLM call for Cache Generation
LLM call avoided with Cache Hit

0 250 500 750 1000 1250 1500 1750

User Instructions over Time

500 750 1000 1250 1750

User Instructions over Time

0 250 1500

(a) Input Tokens (b) Output Tokens
Figure 9: LLM tokens used for cache creation vs LLM tokens avoided due to cache hit for v = 15

In Figure 5, we showed at least 35% token savings per request on using GenCache. We now show
how the LLM token usage varies over time. Figure 8 and Figure 9 plots how the number of input and
output tokens varies for v = 4 and v = 15 respectively. For all the plots, the ‘blue’ line plots the
token usage (input or output) when LLM was called for cache generation, while the ‘orange’ line
plots the tokens (input or output) that were saved as a result of avoiding LLM call due to cache hit.
We observe that the LLM token usage during cache generation plateaus after initially being high,
while the token savings continue to increase as cache hits become more frequent than cache creations
over time. While the benefits due to cache hit in input token usage surpass that of cache generation
for both v, the output tokens used for creating the cache with v = 15 are still higher than the savings
due to cache hit after around 1800 user instructions (even though there is an upward trend).

28

	Introduction
	Problem Definition
	GenCache Design
	Overview and Runtime Workflow
	Prompt Clustering
	Program Generation for Cache
	Program Validation
	Cache Management

	Experiments
	Hit-Rate Measurements
	Cache Generation Cost vs Savings
	Impact on Agentic Workflows
	Sensitivity Analysis

	Related Works
	Summary and Discussion
	Acknowledgements

