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ABSTRACT

A major open problem in mechanistic interpretability is disentangling internal
model activations into meaningful features, with recent work focusing on sparse
autoencoders (SAEs) as a potential solution. However, verifying that an SAE
has found the ‘right’ features in realistic settings has been difficult, as we don’t
know the (hypothetical) ground-truth features to begin with. In the absence of
such ground truth, current evaluation metrics are indirect and rely on proxies, toy
models, or other non-trivial assumptions.
To overcome this, we propose a new framework to evaluate SAEs: studying how
pre-trained language models perform specific tasks, where model activations can
be (supervisedly) disentangled in a principled way that allows precise control and
interpretability. We develop a task-specific comparison of learned SAEs to our
supervised feature decompositions that is agnostic to whether the SAE learned the
same exact set of features as our supervised method. We instantiate this framework
in the indirect object identification (IOI) task on GPT-2 Small, and report on both
successes and failures of SAEs in this setting.

1 INTRODUCTION

Recently, language models (LLMs) have demonstrated impressive performance in increasingly gen-
eral domains (Vaswani et al., 2017; Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020;
OpenAI, 2023). However, a precise and scalable understanding of how their inner computations
function and can be controlled – which is the goal of mechanistic interpretability (MI) – is still
largely missing (Olah, 2023; Farquhar et al., 2023; Nanda et al., 2023b; Olah et al., 2024). A central
hypothesis in MI is the linear representation hypothesis (Mikolov et al., 2013): the features LLMs
represent and use are well-modeled by linear subspaces of component activations (Grand et al.,
2018; Li et al., 2021; Abdou et al., 2021; Nanda et al., 2023a). Moreover, recent work suggests that
n-dimensional activations may represent m � n features in superposition (Elhage et al., 2022a;
Gurnee et al., 2023). Motivated by these ideas, a series of works (Cunningham et al., 2023; Bricken
et al., 2023) have recently proposed the sparse autoencoder (SAE) framework (Faruqui et al., 2015;
Arora et al., 2018; Yun et al., 2021) to disentangle these superposed linear subspaces.

However, evaluating the success of SAEs has been a major challenge in the absence of ‘ground-
truth’ features, with current methods relying on ad-hoc proxies, toy models, or indirect measures
with extra assumptions (Elhage et al., 2022b; Bricken et al., 2023; Sharkey et al., 2023)1. As a
step towards more principled and objective SAE evaluations, we propose to (1) find a high-quality
feature decomposition using supervision in a task-specific setting, and (2) compare the learned SAE
features against it for the purposes of reconstructing, controlling and interpreting the model in the
task’s context. Crucially, we observe that model activations may admit many different sparse feature
decompositions, which may or may not allow for the same (or similar) degree of control and inter-
pretability as our supervised decompositions. Thus, it is crucial that we evaluate the SAE’s feature
decomposition in a way that is agnostic to whether the SAE learned the same exact set of features
as our supervised method.

Our contributions can be summarized as follows: (1) we propose principled methods to additively
decompose activations into features in task-specific settings, using labels derived from input proper-

1We refer the reader to Appendix F for a more detailed discussion of these issues and other related work.
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ties important to the model’s computation on the task; (2) we implement and validate this framework
on the indirect object identification (IOI) task on GPT-2 Small (Wang et al., 2023), where we show
that our features allow us to precisely control and interpret the model’s computation; (3) we evaluate
how well SAEs (trained both on the IOI distribution and GPT2-Small’s full pre-training distribution)
allow us to control/interpret the model on the IOI task relative to the features we construct, and to
what degree their features match our constructed features; (4) we report some interesting phenom-
ena in SAE training, such as feature occlusion, where one salient feature is learned at the expense
of others, and feature oversplitting, where a single feature is broken into multiple features.
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Figure 1: Edit accuracy at cross-sections of the IOI circuit, using our supervised feature decom-
position (blue), a ground-truth baseline intervention (orange), and three methods for editing using
task-specific SAEs (green, red and purple)

2 PRELIMINARIES

Sparse autoencoders. Following the setup of Bricken et al. (2023), a sparse autoencoder (SAE)
is an unsupervised model which learns to reconstruct activations a ∈ Rn as a weighted sum of
m� n learned features with non-negative weights. Specifically, the autoencoder computes a hidden
representation f = relu (Wenc (a− bdec) + benc) ∈ Rm, and a reconstruction â = Wdecf+bdec =∑m

j=1 fj(Wdec):,j + bdec where Wenc ∈ Rm×n, Wdec ∈ Rn×m,bdec ∈ Rn,benc ∈ Rm are
learned parameters. The training objective is a sum of the MSE between reconstructions and original
activations, with an `1 regularization term on the hidden representation f , which encourages only a
few features to be active for each given input.

The IOI task. Input prompts in the IOI task are sentences of the form ‘When Mary and John went
to the store, John gave a book to’, where we refer to the repeated name (John) as S (the subject)
and the non-repeated name (Mary) as IO (the indirect object); the correct completion is the IO
name. The work of Wang et al. (2023) thoroughly analyzed how GPT2-Small performs this task,
and identified a set of 26 attention heads in six classes that together form a circuit to solve the task
(see Appendix Figure 3 and Appendix A.2). The main metric used to discover the IOI circuit was the
logit difference: the difference in log-probabilities assigned by the model to the IO and S names.
This metric surfaces contributions that are consistent and significant, but non-pivotal to the task, and
we use it throughout this work to evaluate the causal effect of (fine-grained) model interventions.

Wang et al. (2023) present evidence that the model uses the algorithm ‘Find the two names in
the sentence, detect the repeated name, and predict the non-repeated name’ to solve the task. In
particular, they discover that the computation of the circuit is determined by the IO and S name
tokens, as well as whether the S name comes first or second in the sentence, a binary attribute we
refer to as Pos (short for ‘position’). Of particular interest to us are several computational cross-
sections of the circuit, where editing the IO, S and Pos features allows us to control the model’s
computation; we refer to Appendix A.3 for a detailed description.
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3 SUPERVISED FEATURE DECOMPOSITIONS USING TASK-SPECIFIC LABELS

Setup. Suppose we have a (task-specific) distributionD over prompts p ∈ P , such that each prompt
can be described by attributes, which we model as functions ai : P → Si taking values in finite
sets Si. Motivated by the linear representation hypothesis and the SAE framework, we can try to
use these attributes to decompose a model activation a ∈ Rn for a prompt p with ai(p) = vi as a
sum of feature vectors a ≈

∑NA

i=1 uivi
:= â, where uiv ∈ Rn is a vector representing the attribute

ai having value v ∈ Si
2. Given a set {a(k)}Nk=1 of activations of some model component on the

prompts {p(k)}Nk=1, with a the average activation, we consider two ways to compute the vectors uiv:

MEAN CODES. We compute uiv as the average of the centered activations a(k) − a for the prompts
where ai(p(k)) = v.

MSE CODES. We compute uiv by minimizing the `2 reconstruction error
1
N

∑N
k=1

∥∥∥a(k) −∑NA

i=1 uiv
(k)
i

∥∥∥2
2

over the dataset, where ai(p(k)) = v
(k)
i .

Both methods enjoy some desirable properties, as we discuss in Appendix B; in particular, no non-
trivial logistic regression linear probe exists for an attribute ai if and only if the mean codes for ai
are all zero, if and only if the MSE codes for ai are constant across values in Si (the last under the
assumption that the values of ai are probabilistically independent of the values of all other attributes).
This suggests that both methods are robust to the inclusion of irrelevant or non-linearly represented
attributes, which is convenient in practice, where we may not know the exact set of attributes that
are relevant to a given model activation.

Implementation and evaluation in IOI. Not every set of attributes will result in a good approxi-
mation of the model’s internal activations; in fact, we find that the choice of attributes is a crucial
modeling decision. In particular, the attributes should collectively give a complete description of the
prompt’s task-relevant properties and align with the model’s internal ‘ontology’ of the computation
(Geiger et al., 2023). We thus chose to use the indirect object (IO), subject (S) and position (Pos)
as attributes; a discussion of alternative parametrizations we considered and their pros and cons is
in Appendix C.1.

To validate the feature decomposition, we use several increasingly strict tests: (1) faithfulness:
we intervene by replacing activations with their reconstructions, and check whether the model is
still able to solve the IOI task; (2) feature editing: we intervene by adding/subtracting vectors
corresponding to the IO, S and/or Pos attributes so as to change their values, and check if the
model’s behavior changes accordingly; (3) subspace-level interpretability: we investigate how the
features compose to form the model’s internal computation, such as attention scores and composition
between attention heads in different layers. We refer the reader to Appendix C.2 for details on the
methodology.

Results. We find that our feature decomposition results in a good approximation of the model’s com-
putation, both at the keys/values/queries/outputs of attention heads in the IOI circuit, and in terms
of the logit difference when replacing activations of circuit cross-sections with their reconstructions
(Appendix Figure 5). More interestingly, we find that our features allow us to precisely control the
model’s computation: we can edit any subset of the IO, S and Pos attributes via feature arithmetic,
and the change in logit difference matches a ground-truth baseline (Figure 1; see Appendix C.3 for
details). Finally, we use our features to gain mechanistic understanding of the model’s computation.
We find subspace-level expressions of the IOI circuit algorithm, such as the destructive interference
between S features in the queries and keys of the name mover heads (Appendix Figure 6), and the
communication of Pos and S information from the S-Inhibition heads to the name mover heads (Ap-
pendix Figure 7). We also observe and confirm new phenomena in the IOI circuit, such as a causally
relevant IO feature in the queries of the L10H0 name mover head (Appendix D).

2Note that this decomposition is more restrictive than the one provided by a SAE, as the coefficients of
the feature vectors are independent of the input example; this is a reasonable assumption in settings like the
IOI task, where we expect the relevant features to behave as binary, on/off switches as oppposed to having
continuous degrees of activation.
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4 TRAINING AND EVALUATING SPARSE AUTOENCODERS IN THE IOI TASK
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Figure 2: Measuring the success of editing using SAEs: number of total features edited in cross
sections of the circuit compared to total active features (left); contribution of the edited features to
the reconstruction, normalized by the same contribution using the supervised decomposition (right)

We trained SAEs on the IOI distribution (Appendix A.1), in all keys/queries/values/outputs of heads
in the IOI circuit, using the same set of hyperparameters (details in Appendix E.2). We also trained
SAEs on the pre-training distribution of GPT2-Small using the OpenWebText dataset (Gokaslan &
Cohen, 2019) (details in Appendix E.4).

Evaluation methodology. Model activations may admit multiple sparse feature decompositions;
in particular, even in a task as simple as IOI, there may exist many decompositions that allow for
(approximately) the same level of control and interpretability as our supervised feature decomposi-
tion. Moreover, these decompositions may fail various tests that explicitly ‘look for’ our supervised
features (see Appendix E.3 for illustrative examples).

Accordingly, we evaluate SAEs in a way that is agnostic to whether the SAE learned the same exact
set of features as our supervised method. Given a reconstruction â =

∑
j vj + b where b is a bias

term, let r = â − b =
∑

j vj . We define feature weights wj = v>j r/ ‖r‖
2
2 which measure the

contributions of each feature to the reconstruction, with
∑

j wj = 1. Then, we use our SAEs to
edit the IO, S and Pos attributes as follows. If we wish to edit the activation a of prompt p, let p′
be the counterfactual prompt which differs from p only in the attributes we wish to edit, and a′ its
activation. Then we form the edited activation aedited by subtracting the features in a where wj > t
in p but not in p′, and adding the features where wj > t in p′ but not in p (for a threshold t, e.g.
t = 0.1). We report the same metrics for this editing methodology as for our supervised feature
decomposition. Moreover, we report the number of total active features, the number of features we
change, and the total weight of the changed features normalized by the same weight when editing
using the supervised decomposition. These metrics are necessary, because an edit which always
changes all features, or more of the weight than necessary, suggests that the SAE has not learned a
good disentanglement of the features.

Results. Results for feature editing for thresholds t = 0.03, 0.1, 0.3 are shown in Figure 1 (see
Appendix Figure 8 for full-distribution-trained SAEs); we see that, overall, our task-specific SAEs
are mostly able to edit the IO and S attributes, but struggle with the Pos attribute. Furthermore, we
show the average number of total active features and edited features, as well as the (normalized)
weight of edited features in 2. We observe that t = 0.1 provides a good balance between editing a
few features and having reasonable editing accuracy.
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Figure 3: A reproduction of Figure 2 from Wang et al. (2023), showing the internal structure of
the IOI circuit. Original caption: The input tokens on the left are passed into the residual stream.
Attention heads move information between residual streams: the query and output arrows show
which residual streams they write to, and the key/value arrows show which residual streams they
read from.

A IOI TASK AND DATASET DETAILS

A.1 DATASET, MODEL AND EVALUATION DETAILS FOR THE IOI TASK

We use GPT2-Small for the IOI task, with a dataset that spans 216 single-token names, 144 single-
token objects and 75 single-token places, which are split 1 : 1 across a training and test set. Every
example in the data distribution includes (i) an initial clause introducing the indirect object (IO, here
‘Mary’) and the subject (S, here ‘John’), and (ii) a main clause that refers to the subject a second
time. Beyond that, the dataset varies in the two names, the initial clause content, and the main clause
content. Specifically, use three templates as shown below:

Then, [ ] and [ ] had a long and really crazy argument. Afterwards, [ ] said to
Then, [ ] and [ ] had lots of fun at the [place]. Afterwards, [ ] gave a [object] to

Then, [ ] and [ ] were working at the [place]. [ ] decided to give a [object] to

and we use the first two in training and the last in the test set. Thus, the test set relies on unseen
templates, names, objects and places. We used fewer templates than the IOI paper Wang et al.
(2023) in order to simplify tokenization (so that the token positions of our names always align), but
our results also hold with shifted templates like in the IOI paper.

On the test partition of this dataset, GPT2-Small achieves an accuracy of ≈ 91%. The average
difference of logits between the correct and incorrect name is ≈ 3.3, and the logit of the correct
name is greater than that of the incorrect name in ≈ 99% of examples. Note that, while the logit
difference is closely related to the model’s correctness, it being > 0 does not imply that the model
makes the correct prediction, because there could be a third token with a greater logit than both
names.

A.2 CIRCUIT STRUCTURE

Wang et al. (2023) suggest the model uses the algorithm ‘Find the two names in the sentence, detect
the repeated name, and predict the non-repeated name’ to do this task. Specifically, they discover
several classes of heads in the model, each of which performs a specific subtask of this overall
algorithm. A simplified version of the circuit involves the following three classes of heads and
proceeds as follows:

• Duplicate token heads: these heads detect the repeated name in the sentence (the S name)
and output information about both its position and identity to the residual stream3

3We follow the conventions of Elhage et al. (2021) when describing internals of transformer models. The
residual stream at layer k is the sum of the output of all layers up to k − 1, and is the input into layer k.
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• S-Inhibition heads: these heads read the identity and position of the S name from the
residual stream, and output a signal to the effect of ‘do not attend to this position / this
token identity’ to the residual stream

• Name Mover heads: these are heads that attend to names in the sentence, and as the signal
from the S-Inhibition heads effectively removes the S name from the attention of these
heads, they read the identity of the IO name from the input prompt, and copy it to the last
token position in the residual stream.

In reality, the circuit is more nuanced, with several other classes of heads participating: previous
token heads, induction heads (Olsson et al., 2022), backup name mover heads, and negative name
mover heads. In particular, the circuit exhibits backup behavior (McGrath et al., 2023) which poses
challenges for interpretability methods that intervene only on single model components at a time.
We refer the reader to Figure 3 for a schematic of the full circuit, and to Wang et al. (2023) for a
more complete discussion.

A.3 COMPUTATIONAL CROSS-SECTIONS OF THE IOI CIRCUIT

Based on the understanding of the IOI circuit from Wang et al. (2023), we identify several cross-
sections of the computational graph of the IOI circuit where feature editing is expected to have
effects meaningful for the task:

• outputs of (backup) name mover heads at END ((B)NM out): these activations encode the
IO name and write it to the END token of the residual stream. We expect that editing the
IO name in these activations will directly affect the model’s prediction, while editing other
attributes will not have a significant effect.

• queries+keys of (backup) name movers at END ((B)NM qk): the queries represent the S
name and Pos information, but they are mainly used as inhibitory signals for the model,
decreasing the attention to the S token4. The keys represent information about the IO and
S names, and the position Pos of the S name: in particular, the S and Pos information
combines with the query to inhibit attention to the S1 token.
We expect that editing the S and Pos attributes in both the keys and queries will not signif-
icantly hurt model performance, because as a result attention to the S token will again be
inhibited. By contrast, it is unclear what editing the IO name is expected to do, since its
role in the attention computation is not fully described in Wang et al. (2023).

• outputs of S-Inhibition heads at END (S-I out), values of S-Inhibition heads at S2 (S-I v),
and outputs of duplicate token and induction heads at S2 (Ind+DT out): these activations
transmit the inhibitory signal to the name mover heads through the residual stream. We
expect that editing S and Pos in these activations will lower the model’s logit difference by
disrupting the inhibitory signal, while editing IO will have no effect.

B MEAN CODES AND MSE CODES

B.1 OVERVIEW

We always include a ‘bias’ attribute a1(p) = ⊥ for each prompt, with S1 = {⊥}, to capture the
mean activation of the component; this is analogous to the decoder bias in a SAE (Section 2).

Mean codes. Let Piv = {k | ai(p(k)) = v} be the set of prompts where the i-th attribute has value
v ∈ Si. We let the vector encoding ai(p) = v to simply be the average of the centered activations
for the prompts in Piv:

uiv :=
1

|Piv|
∑

k∈Piv

(
a(k) − a

)
, (1)

where a = 1
N

∑N
k=1 a

(k) is the empirical mean activation. We also set u1⊥ = a. Mean codes enjoy
several convenient properties:

4In addition, we later find that the queries of the L10H0 name mover head also represent the IO attribute,
and serve an inhibitory role for it as well, decreasing the attention to the IO token.
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• The vectors uiv for an attribute ai do not depend on which other attributes al 6= ai we have
chosen to describe the prompt p with.

• If an attribute is not linearly represented, or not represented at all, in the activations, we
expect the mean code to be ≈ 0 (see Belrose et al. (2023) and Appendix B.2).

This suggests that mean codes are somewhat robust to the inclusion of irrelevant or non-linearly-
represented attributes, which is a desirable property in real settings where we may not know the
ground-truth attributes for each activation. However, mean codes are not robust to the inclusion of
redundant attributes, as the lack of interaction between the attributes means that redundant attributes
cannot ‘coordinate’ to reduce the reconstruction error ‖a− â‖22.

MSE codes. Here, we instead find uiv by directly minimizing the `2 reconstruction error over the
dataset:

min
u

1

N

N∑
k=1

∥∥∥∥∥a(k) −
NA∑
i=1

u
iv

(k)
i

∥∥∥∥∥
2

2

(2)

where v(k)i = ai(p
(k)) is the value of the i-th attribute for the k-th prompt. This objective is convex,

and is equivalent to a least-squares regression problem; in fact, the optimal solutions take a form
very similar to the mean codes from Equation 1 (see Appendix B.3 for details). Furthermore, this
objective closely mimics the SAE objective: here, the sparsity is hard-coded, leaving only the `2
objective.

Finally, as a counterpart to the theoretical results for mean codes, if the values of an attribute ai are
independent of the values of all other attributes, we can prove that the mean codes for ai will all be
zero if and only if the MSE codes for ai are constant (though not necessarily zero); see Appendix
Lemma B.1.

B.2 MEAN CODES CAPTURE LINEARLY-REPRESENTED ATTRIBUTES

Suppose we have a random vector x for a k-way classification task with one-hot labels z ∈ Z =
{z ∈ {0, 1}k s.t. ‖z‖1 = 1}. In Section 3 of Belrose et al. (2023), it is shown that the following are
equivalent:

• the expected cross-entropy loss of a linear predictor ẑ = w>x + b for z is minimized at
a constant linear predictor. In other words, the optimal logistic regression classifier (in the
limit of infinite data) is no better than the optimal constant predictor (which, at best, always
predicts the majority class).

• the class-conditional mean vectors E [x|z = ei] are all equal to the overall mean E [x] of
the data.

If we translate this to the context of mean codes, we have that logistic regression for the value of
an attribute ai will degenerate to the majority class predictor if and only if the mean codes for all
values of this attribute are zero. In the finite data regime, this gives us some theoretical grounds to
expect that the mean codes will be nonzero if and only if the attribute’s values can be non-trivially
recovered by a (logistic) linear probe. As a special case, if an attribute is not represented in the data
at all, we expect the mean codes for this attribute to be zero.

B.3 PROPERTIES OF MSE CODES

MSE codes as a multivariate least-squares regression problem. Let S =
∑NA

i=1 |Si| be the total
number of possible values for all attributes. For each attribute i, consider the characteristic matrix
Ci ∈ RN×Si of the dataset for this attribute, where

Ckj =

{
1 if ai(p(k)) = vj
0 otherwise

for some ordering (v1, . . . , v|Si|) of the values in Si, and let C = [C1 C2 · · · CNA ] ∈ RN×S

be the concatenation of all characteristic matrices. Also, let A ∈ RN×d be the matrix of activations
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with rows a(k). Then the objective function for the MSE codes can be written as the multivariate
least-squares regression problem

min
U∈RS×d

1

N
‖A− CU‖2F

where the rows of U are the vectors uiv across all i and v ∈ Si, with the optimal solution given by

U∗ =
(
C>C

)+
C>A (3)

MSE codes as averaging over examples. Using the special structure of the objective, we can also
derive some information about the optimal solutions u∗iv . Namely, at optimality we should not be
able to decrease the value of the objective by changing a given u∗iv away from its optimal value. The
terms containing u∗iv in the objective are

1

N

∑
k∈Piv

∥∥∥∥∥∥a(k) −
∑
l 6=i

u∗
lv

(k)
l

− u∗iv

∥∥∥∥∥∥
2

2

=
1

N

∑
k∈Piv

∥∥∥∥∥∥
a(k) −

∑
l 6=i

u∗
lv

(k)
l

− u∗iv

∥∥∥∥∥∥
2

2

=
1

N

∑
k∈Piv

∥∥∥a(k) − u∗iv

∥∥∥2
2

where recall that Piv = {k | ai(p(k)) = v}, and a(k) is the residual of a(k) after subtracting the
reconstruction using all other attributes l 6= i. Since this value cannot be decreased by changing u∗iv ,
we have that it equals the minimizer of this term (holding a(k) fixed). In other words, if we define

f (u) =
1

N

∑
k∈Piv

∥∥∥a(k) − u
∥∥∥2
2

we have that u∗iv = arg minu f (u). Since f is a sum of convex functions, it is itself convex, and so
the first-order optimality condition is also sufficient for optimality. We have

∇f (u) ∝
∑

k∈Piv

(
a(k) − u

)
∝ 1

|Piv|
∑

k∈Piv

a(k) − u

and so
u∗iv =

1

|Piv|
∑

k∈Piv

a(k) (4)

Note that this is very similar to Equation 1, but also importantly different, because the optimal u∗iv
depends on the optimal values of the codes for the other attributes.

MSE codes with independent attributes. Finally, we can prove that, under certain conditions,
attributes for which E [a|ai(p) = vi] = E [a], i.e. the conditional mean of activations over values of
the attribute is the same as the overall mean (assuming both means exist), will have (approximately)
constant MSE codes uiv = ui∀v. This is a counterpart to the result from Appendix B.2 for MSE
codes:
Lemma B.1. Suppose that all conditional means E [a|ai(p) = v] exist for all i, v ∈ Si. Let ai be
an attribute such its values appear independently from the values of all other attributes, i.e.

Pp∼D [ai(p) = vi, al(p) = vl] = Pp∼D [ai(p) = vi]Pp∼D [al(p) = vl] ∀vi ∈ Si, vl ∈ Sl,

Then, in the limit of infinite training data, the conditional means E [a|ai(p) = v] are all equal to
the overall mean E [a] if and only if the optimal MSE codes u∗iv for this attribute are constant with
respect to the value v of the attribute, i.e. u∗iv = ui for all v ∈ Si.

Proof. From Equation 4, we have

u∗iv =
1

|Piv|
∑

k∈Piv

a(k) =
1

|Piv|
∑

k∈Piv

a(k) −
∑
l 6=i

u∗
lv

(k)
l


=

1

|Piv|
∑

k∈Piv

a(k) − 1

|Piv|
∑

k∈Piv

∑
l 6=i

u∗
lv

(k)
l
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The first term converges to E [a|ai(p) = v]. The second term is a sum of terms of the form

1

|Piv|
∑

k∈Piv

u∗
lv

(k)
l

=
1

|Piv|
∑
vl∈Sl

u∗lvl |{k s.t. ai(pk) = v, al(pk) = vl}| (5)

for l 6= i. Since we are assuming ai is uncorrelated with al, in the limit of the size N of
the dataset a(1),a(2), . . . ,a(N) going to infinity, |{k s.t. ai(pk) = v, al(pk) = vl}| will approach
|Piv|Ep∼D

[
1al(p)=vl

]
. Moreover, note that in the closed-form solution U∗ =

(
C>C

)+
C>A =(

C>C
N

)+
C>

N A from Equation 3, the matrix 1
NC

TC converges to some limit Σ ∈ RS×S as

N → ∞, and the matrix 1
NC

>A similarly converges to some limit M ∈ RS×d by the assump-
tion that all conditional means for all attributes exist. Thus, the optimal codes u∗iv will also converge
as N →∞. So we see that the sum in Equation 5 will converge to a value that is independent of the
value v for the attribute ai.

Thus, if the conditional means E [a|ai(p) = v] are all equal to the overall mean E [a], we get that
u∗iv is independent of v; conversely, if u∗iv is independent of v, we get that the conditional means are
all equal to the overall mean. This completes the proof.

C IMPLEMENTING SUPERVISED FEATURE DECOMPOSITIONS IN THE IOI
TASK

C.1 ALTERNATIVE PARAMETRIZATIONS

How we choose to parametrize the inputs to the model is a crucial assumption, as it will influence
the way we interpret the model’s internal computations, and the results of SAE training later on.

Recall that each IOI prompt p is described by three properties influencing how p is processed in
the IOI circuit: the subject (S) and indirect object (IO) names, and their relative position (Pos).
In addition, there is some random variation in the other words in the prompt that we expect only
introduces noise in the IOI circuit (Appendix A.1). Motivated by this, we consider two possible
parametrizations of prompts via attributes (we also add a bias attribute to both parametrizations, as
explained earlier):

• independent parametrization: we use the three independently varying attributes – S, IO
and Pos – to describe each prompt.

• coupled parametrization: we couple position with name, and use the two attributes (S,
Pos) and (IO, Pos) to describe each prompt. This parametrization is more expressive than
the independent one, as it allows for different codes for the same name depending on
whether it comes first or second in the sentence. At the same time, the coupled parametriza-
tion can express the independent one as a special case (Appendix ??).

What about alternative parametrizations? A priori, there are as many possible parametrizations as
there are ways (up to isomorphism) to pick (surjective) functions ai : P → Si, i = 1, . . . , k from the
set of all possible prompts into finite sets Si, such that the important properties of the prompt (IO,
S and Pos) can be recovered from the values (a1(p), . . . , aNA

(p)). Therefore any specific choice of
parametrization is ad-hoc. Still, we believe that our parametrizations can be justified in two ways:
first, they correspond to the intermediate states of the IOI circuit identified in Wang et al. (2023);
second, we show through extensive tests that they both approximate the model’s internal activations
well, and can be used to steer the model in a predictable way.

We now further discuss some alternative parametrizations that we considered. First, note that a
parametrization that groups S and IO together would be much less interesting. It would require a
much larger dataset for learning the codes, because every possible combination of S and IO would
need to be represented. Also, modulo random variation in the other words in the prompt, we would
have a feature per every two examples in the distribution, which would make the resulting codes
closer to being a clustering of similar examples than an interesting decomposition of the model’s
internal computation. Next, another reasonable parametrization would be to use an attribute for
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each of the three names in the sentence in the order they appear, Name1, Name2 and Name3. We
refer to this parametrization as the ‘names’ parametrization. However, with this parametrization,
we observe very poor reconstruction quality, as noted in Subsection ?? (also see Appendix Figure
4). Moreover, it can be shown that this parametrization is in a certain sense incompatible with
both the independent and coupled parametrizations, as they cannot express the same set of prompt
reconstructions (Appendix ??). Other reasonable parametrizations would be to only group e.g. S
and Pos and leave IO separate, or vice-versa. However, both of these are less expressive than the
coupled parametrization (Appendix ??).

Finally, it is possible that a different parametrization is best at different locations in the circuit;
however, we do not explore this possibility in this work. We find that the simplest (independent)
parametrization works well throughout the circuit, and we use it as our default parametrization in
the main body of the paper.

C.2 METHODOLOGY FOR FEATURE EDITING AND MECHANISTIC ANALYSIS

How can we make sure that a given set of sparse feature dictionaries captures the ‘ground truth’
features used by the model? Even in a setting as simple as the IOI task, this is a nuanced and
multi-faceted question. We thus propose a strategy based on several tests of model control and
interpretability:

• Faithfulness: when we intervene on the model by replacing internal activations a with
their reconstructions â using the learned feature dictionaries, is model behavior preserved?

• Counterfactual effect of editing individual features: when we intervene on the model by
editing given features, do we observe the expected changes in model behavior?

• Subspace-level mechanistic analysis: can we decompose the model’s internal operations
in terms of elementary interactions between the learned code vectors? Do these interactions
align with the known circuit structure?

The first two tests are subspace-level refinements of the corresponding tests from Wang et al. (2023).
We next describe in more detail the methodology for feature editing and mechanistic analysis in the
context of our framework.

Editing internal model representations. A central goal of interpretability and control is the abil-
ity to do targeted, precise edits of internal model computations to steer the model in a certain way
without otherwise degrading or affecting performance. Given a prompt p where ai(p) = vi, a hid-
den representation a for p, and some other value v′i 6= vi for the i-th attribute, a straightforward way
to change vi to v′i is to subtract the code vector for vi and add the one for v′i, obtaining the edited
representation

aedit = a− uivi + uiv′i
.

This operation is simple, and the final result of multiple edits is independent of the order in which
they are performed. We additionally explored two other ways to perform the part of the edit that re-
moves the current attribute value vi. Instead of subtracting uivi , we can subtract a multiple αuivi so
that (a− αuivi)

>
uivi is 0 (zero ablation) or the mean of a>uivi over the dataset (mean ablation).

Subspace-level mechanistic analysis. Since each activation is approximated as the sum of several
vectors from a finite set, it becomes possible to decompose the model’s internal operations in terms
of elementary interactions between the learned vectors themselves. In the current paper, we are
particularly interested in attention heads, as they are the building blocks of the IOI circuit.

ATTENTION SCORES. The attention mechanism is considered to be a crucial reason for the success
of LLMs (Vaswani et al., 2017), but a subspace-level understanding of it is mostly lacking (but see
Lieberum et al. (2023)).

Given reconstructions for the keys and queries of an attention head at certain positions

k ≈
Nkeys

A∑
i=1

uiki , q ≈
Nqueries

A∑
i=1

viqi
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we can decompose the attention scores as a sum of pairwise dot products between the dictionary
features

qTk ≈
Nqueries

A∑
i=1

Nkeys
A∑
j=1

v>iqiujkj

This allows us to examine which feature combinations are most important for the head’s behavior
according to the learned dictionaries. Variants of this decomposition can be applied to e.g. the
difference in attention scores at two different token positions.

HEAD COMPOSITION. If we are to understand a circuit on the subspace level, we need to develop
a subspace-level account of how the outputs of one attention head compose with the queries, keys
and values of a downstream head in the circuit.

Following the terminology and results from Elhage et al. (2021), the residual stream rl,t of a trans-
former at a given layer l and token position t is the sum of the input embedding and the outputs of
all earlier MLP and attention layers at this position. The residual stream is in turn the input to the
next attention layer; so, for example, we can write the query vector for the h-th head at layer l and
token t as

ql,t,h = WQ
l,h LN (rl,t) = WQ

l,h LN
(
rl,t +WO

l′,h′zl′,t,h′
)

where zl′,t,h′ is the attention-weighted sum of values of the h′-th head at layer l′ < l and token
t, rl,t is the remainder of the residual stream after removing the contribution of this head, and LN
is the model’s layer normalization operation (Ba et al., 2016) before the attention block in layer l.
By treating the layer normalization as an approximately linear operation (taking the scale from an
average over the dataset5), we can derive an approximation of the (counterfactual) direct effect of
the output of the h′-th head at layer l′ and token t on the query vector of the h-th head at layer l and
token t:

ql,t,h ≈WQ
l,h

(
γl �

rl,t − µl,t√
σ̂2
l + ε

+ βl

)
where γl, βl are the learned scale and shift parameters of the LN operation, µl,t is the average of
the vector rl,t over its coordinates, and σ̂l is an average over the dataset of the standard deviation
of the residual stream at this position. Alternatively, we can use the exact layernorm scale from the
forward pass over a large sample to compute the statistics of the exact direct effect over observed
data.

For either way to treat the layer normalization, we can use the learned feature dictionaries for the
outputs, keys, queries and values of attention heads in a number of ways to decompose the direct
effect further:

• feature attribution: fixing the head (l, h), we can vary the head (l′, h′) and break down
the direct effects (projected on the query vector) by feature.

• feature composition: we can expand the direct effect’s projection on the query vector as
a sum of pairwise dot products between the dictionary features, similar to the attention
decomposition.

C.3 METHODOLOGY FOR FEATURE EDITING ON THE IOI TASK

A key question is whether the learned codes are causally relevant to the model’s computation. To
test this, we intervene on activations using the codes and check if we observe the expected effect on
the model’s predictions.

Methodology. We consider edits of the IO, S and Pos properties, as well as subsets of them.

5This is justified by the empirical observation that the layer normalization scales across the dataset are well
concentrated around their mean.
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Implementation. To edit multiple locations at once when running the model on a prompt p, we
pre-compute the edited representation of model activations (using the activations when the model is
ran on p without any edits), and then plug all of them simultaneously into a new run of the model
on p using activation patching (Vig et al., 2020). In particular, this means that we never observe the
effects of an edit in a given location on the edits performed in its downstream locations. Roughly
speaking, we are instead only witnessing the effects of editing computational cross-sections of the
circuit. We also experimented with applying the edits dynamically as the model is run, but found
that this led to worse performance in some cases, especially due to the interaction between the name
mover heads in layers 9 and 10.

Baseline and evaluation. To evaluate the quality of the edits, we use activation patching from
ground-truth activations that capture the same information that our edits are intended to introduce.
Specifically, we use activations from counterfactual prompts: prompts which differ from the original
prompt only in the value(s) of the attribute(s) being edited. When performing an edit to multiple
model locations, we compare the resulting computation with activation-patching the same locations
from a run of the model on the counterfactual prompt.

D ADDITIONAL FIGURES FOR SUPERVISED FEATURE DECOMPOSITIONS
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Figure 4: Fraction of recovered logit difference for all methods to compute codes, across cross-
sections of the circuit.

E ADDITIONAL DETAILS FOR SAE TRAINING AND EVALUATION

E.1 FEATURE EDITING WITH SAES

We define a feature-agnostic way to evaluate how well SAEs can edit the S, IO and Pos attributes.
Given an SAE reconstruction r := â−bdec =

∑
j fjdj , we can assign a weight wj = fjd

>
j r/ ‖r‖

2
2

to each feature representing its contribution to the reconstruction, with
∑

j wj = 1. Given a pair of
prompts p, p′ with activations a,a′ such that p′ differs from p only in the values of the attributes we
want to edit, to edit the activation a of p, we subtract the terms for features with weight > t in a but
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Figure 5: Measuring the approximation quality of the mean codes using the independent
parametrization: fraction of (average) logit difference recovered when using the codes to recon-
struct cross-sections of the circuit (left), and variance explained in each activation location, grouped
by head class and attention component (right).
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Figure 6: Decomposing the attention scores of the name mover head L10H0 from END to the S1
(left) and IO (right) positions.

not in a′, and add the terms for features with weight > t in a′ but not in a, where t is a threshold we
can vary. We choose t = 0.1 for our experiments.

E.2 TASK-SPECIFIC SAE TRAINING AND HYPERPARAMETERS

We followed the methodology of Bricken et al. (2023), with the exception that our neuron re-
initialization method is not as sophisticated as theirs: we simply re-initialize the encoder bias, en-
coder weights and decoder weights for the dead neurons every 500 training epochs.

We use a training set of 20,000 examples and an evaluation set of 8,000 examples (for the purposes
of autointerpretability, we need a large enough evaluation sample so that each property in the dis-
tribution appears a significant number of times). Since our training regime is significantly distinct
from that of Bricken et al. (2023) (we use a much smaller dataset), we first experimented extensively
with different hyperparameters, focusing on training SAEs on the queries of the name mover heads.
We observed that the most important hyperparameters are the dictionary size and the effective `1
regularization coefficient. We found that the batch size did not influence the eventual quality of the
learned features, only the speed of convergence, and that a learning rate of 10−3 (as in Bricken et al.
(2023)) was a good choice throughout. A dictionary size of 512 (an 8× increase over the dimen-
sionality of attention head activations in GPT-2 Small), an effective `1 regularization of 1.0, and a
batch size of 256 were good default choices. We keep the batch size deliberately small throughout
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Figure 7: Decomposing the direct effect of the features in the output of s-inhibition heads, and name
mover heads in layer 9, on the queries of the L10H0 name mover head at the end token (using mean
codes with the independent parametrization).

hyperparameter searches to ensure data diversity in each batch, which may be important for good
training (Bricken et al., 2023).

E.3 EXAMPLES OF POSSIBLE FEATURE DECOMPOSITIONS AND THEIR PROPERTIES

The (default) supervised decomposition. It’s worth first describing the properties of the supervised
feature decomposition we constructed in Section 3, which uses the IO, S and Pos attributes to
describe the prompts; it serves as an idealized example against which to compare other possible
decompositions. In this decomposition, we can approximate an activation a for a prompt p where
the IO name is a and the S name is b, with the IO name appearing first, as follows:

a ≈ ioa + sb + posABB

where the vector ioa is the feature for the IO name a, the vector sb is the feature for the S name
b, and the vector posABB is the feature for the Pos attribute when the IO name appears first in the
sentence.

This decomposition has several desirable properties, in increasing order of usefulness for control
and interpretability:

• As we have seen, the reconstructions are fairly faithful to the original activations and model
computation;

• It can (unsurprisingly) express edits to the IO, S and Pos attributes very efficiently, as we
only need to change a single feature vector to change the corresponding attribute’s value.

• It is fairly interpretable: we can understand the meaning of each feature in terms of the
attribute it represents.

• Moreover, using metrics such as sensitivity and specificity (following the evaluation
methodology of Bricken et al. (2023)) will readily surface the features that are most impor-
tant for each attribute.

Using per-gender vectors to describe names. Another possible decomposition would be

a ≈ ioa + io genderg(a) + sb + s genderg(b) + posABB
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where g : Names → {M,F} is some labeling function that roughly classifies names according
to how they are typically gendered6. Here, we hypothesize that the model may have features of
high norm that sort names into genders (which may be useful to the model for various reasons),
and then add a small per-name correction to obtain a name-specific representation. In particular we
imagine that ioa + iogenderg(a) in this representation would correspond to ioa in the supervised
decomposition, and similarly for the S name.

• This decomposition is also fairly sparse and interpretable, and it can express edits almost
as parsimoniously as the supervised decomposition (we only need to change two feature
vectors to edit a name, and one to edit Pos).

• Moreover, metrics such as sensitivity and specificity will pick up on the per-name features

• However, if we use the cosine similarity to the supervised features ioa, sb as a metric, we
may be misled, because if the per-gender features have sufficiently higher norm than the
per-name corrections, the cosine similarity will be low.

Using features for small subsets of names. Going further, we can imagine a decomposition where
we have features that correspond to pairs of names, such that each name is in exactly two pairs (this
can be achieved by partitioning all names into pairs along a cycle). We can express a name as a
sum of the features for the two pairs it is in, with some superposition (note that more sophisticated
constructions with more features per name are possible by e.g. picking subsets at random or using
expander graphs, and they may ‘spread out’ the superposition more evenly).

• This decomposition is somewhat sparse and interpretable, and can likely be used for feature
editing in a reasonable way, as long as the sets of features associated with each name are
not too large. Even though we would need to change several feature vectors to edit a name,
there should also be a fair amount of disentanglement so that we don’t also need to change
the features for other attributes.

• However, comparing our supervised decomposition against this one using cosine similarity
may be misleading, because while a sum of a few feature vectors associated with the same
name may point in the same direction as our supervised feature, any individual feature may
not.

• Furthermore, it also has significantly reduced specificity for the features, because each of
the few features associated with a name will also activate for several other names. This
can make directly looking for features whose activation patterns resemble the ones in our
supervised decomposition misleading.

Our experiments suggest that task-specific SAEs trained on the IOI circuit activations learn a de-
composition resembling this abstract construction.

Memorizing decompositions. Finally, a worst-case decomposition would be to have a single feature
for each possible set of values of the S, IO and Pos attributes.

• This decomposition is not interpretable, and it is not editable in any non-trivial way: to
change a single attribute, the entire decomposition must be replaced;

• Features of this form will have very low sensitivity for the attributes;

E.4 FULL-DISTRIBUTION SAE TRAINING AND HYPERPARAMETERS

We implemented the training of individual SAEs on all key components involved in the IOI task,
including queries, keys, values, and head outputs. This process followed the methodology presented
by Bricken et al. (2023), also incorporating their approach to resampling. As an additional pre-
processing step, we sampled 10 million activations and computed their mean and norm. We subse-
quently standardized all activations with these metrics. This allowed us to compute the L1 and Mean
Squared Error (MSE) losses using the standardized activations. Importantly, this preprocessing step
does not modify the SAE function; rather, it decouples the L1 coefficient from the activation norm

6We experimented with this decomposition in our supervised framework, but did not find it to confer addi-
tional benefits for the purposes of feature editing.
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(which widely varies between layers), facilitating consistent training across different layers with a
unified L1 coefficient.

For training the SAEs, we extracted activations from the gpt2-small model, specifically selected
from the OpenWebText dataset (Gokaslan & Cohen, 2019), which serves as a proxy for GPT-2’s
original training dataset. We sampled 10 million activations at a time from random contexts with a
maximum sequence length of 512 and shuffled them before creating batches to ensure independence
of activations within a batch. We then sampled batches of 2048 activations each for the training of
the SAEs.

SAEs were trained for 250 million activations each, using an L1 coefficient of 0.006. To address
non-responsive neurons — those that remained inactive over 5000 steps — we applied a resampling
technique after the first 100 million activations as described by Bricken et al. (2023). The Adam
optimizer was used, configured with a learning rate of 1e-3 and complemented by a linear learning
rate warm-up over the first 3000 steps.
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Figure 8: Edit accuracy at cross-sections of the IOI circuit, using our supervised feature decom-
position (blue), a ground-truth baseline intervention (orange), and four methods for editing using
full-distribution SAEs (green, red, purple, and brown)

F RELATED WORK

F.1 LEARNING AND EVALUATING SAE FEATURES

The SAE paradigm predates the recent surge of interest in LLMs. Early work focused on the analysis
of word embeddings (Mikolov et al., 2013), with works such as Faruqui et al. (2015); Subramanian
et al. (2017); Arora et al. (2018) finding sparse linear structure. Elhage et al. (2022a) proposed
the use of sparse autoencoders to disentangle features in LLMs. Sharkey et al. (2023) used SAEs
to learn an over-complete dictionary in a toy model and in a one-layer transformer, and follow-up
work by Cunningham et al. (2023) applied this technique to residual stream activations7 of a 6-layer
transformer from the Pythia family (Biderman et al., 2023). Bricken et al. (2023) trained SAEs on the
hidden MLP activations of a 1-layer language model, and performed several thorough evaluations of
the resulting features. Similarly to us, Gould et al. (2023) trained SAEs on a narrow data distribution
instead of internet-scale data. Tamkin et al. (2023) incorporated sparse feature dictionaries (without

7We adopt the terminology of (Elhage et al., 2021) when discussing internal activations of transformer-based
language models.
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per-example weights for the features) into the model architecture itself, and fine-tuned the model on
its pre-training distribution to learn the dictionaries. More recently, Kissane et al. (2024) used SAEs
on attention layer outputs of GPT-2 Small and found learned features that are consistent with the IOI
circuit from Wang et al. (2023).

Throughout this line of work, the evaluation of learned SAE features has been a major challenge.
The metrics used so far can be broadly categorized as follows:

• indirect geometric measures: Sharkey et al. (2023) proposed use of the mean maximum
cosine similarity (MMCS) between two different SAEs’ learned features to evaluate their
quality. However, this metric relies on the assumption that convergence to the same set of
features is equivalent to interpretability and having found the ‘true’ features.

• auto-interpretability: Bricken et al. (2023); Bills et al. (2023); Cunningham et al. (2023)
used a frontier LLM to obtain natural-language descriptions of SAE features based on
highly activating examples, and use the LLM to predict feature activations on unseen text;
the prediction quality is then used as a measure of interpretability. However, the use of
maximum (or even stratified by activation value) activating examples has been criticized
as potentially giving an illusory and subjective sense of interpretability (Bolukbasi et al.,
2021).

• manually crafted proxies for ground truth: Bricken et al. (2023) manually formed hy-
potheses about a handful of SAE features and defined computational proxies for the ground
truth features based on these hypotheses. This method may be less prone to blind spots than
auto-interpretability, but still relies on the correctness of the computational proxy.

• toy models: Sharkey et al. (2023) used a toy model where ground-truth features are explic-
itly defined; however, it is unclear whether toy models miss crucial aspects of real LLMs.
Similar objections apply to manually injecting ground-truth features into a real model.

• direct logit attribution: Bricken et al. (2023) additionally considered the direct effect of
a feature on the next-token distribution of the model; this method is valuable because it
tells us about the causal role of a feature, but it cannot detect its indirect effects via other
features.

Beyond the evaluation challenges, there is debate about whether SAEs find computationally non-
trivial, compositional features, or merely clusters of similar examples in the data Olah et al. (2024).

F.2 MECHANISTIC INTERPRETABILITY AND CIRCUIT ANALYSIS

Mechanistic interpretability (MI) aims to reverse-engineer the internal workings of neural networks
(Olah et al., 2020; Elhage et al., 2021). In particular, MI frames model computations as a collection
of circuits: narrow, task-specific algorithms (Olah et al., 2020). So far, circuit analyses of LLMs have
focused on the component level, mapping circuits to collections of components such as attention
heads and MLP layers (Wang et al., 2023; Heimersheim & Janiak).

However, the linear representation hypothesis suggests that component activations can be broken
down further into (sparse) linear combinations of meaningful feature vectors; thus, the eventual goal
of MI is to give a precise, subspace-level understanding of the model’s circuits. Initial steps in this
direction have been taken using methods distinct from SAEs. Geiger et al. (2023) propose finding
meaningful subspaces using an optimization-based method; Nanda et al. (2023a) discover linear
subspaces in emergent world-models on a toy task; Tigges et al. (2023) discover linear subspaces
corresponding to sentiment in a LLM. However, while these works focus on finding individual
subspaces representing specific concepts, the SAE paradigm is more ambitious, as it aims to fully
decompose activations as a sum over meaningful features. This is a stronger property than identi-
fying individual meaningful subspaces, and would accordingly provide a more exhaustive form of
interpretability.

More broadly, MI has found applications in several downstream tasks: removing toxic behaviors
from a model (Li et al., 2023b), changing factual knowledge encoded by models (Meng et al., 2022),
improving the truthfulness of LLMs at inference time (Li et al., 2023a), studying the mechanics of
gender bias in language models (Vig et al., 2020), and reducing spurious correlations by intervening
on model internals (Gandelsman et al., 2023).
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