
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE IMPACT OF ELEMENT ORDERING ON LM AGENT
PERFORMANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

There has been a surge of interest in language model agents that can navigate
virtual environments such as the web or desktop. To navigate such environments,
agents benefit from information on the various elements (e.g., buttons, text, or
images) present. However, it remains unclear which element attributes have the
greatest impact on agent performance, especially in environments that only provide
a graphical representation (i.e., pixels). Here we find that the ordering in which ele-
ments are presented to the language model is surprisingly impactful—randomizing
element ordering in webpages compromises average agent performance to a degree
comparable to removing all visible text from webpages. While web agents benefit
from the semantic hierarchical ordering of elements available via the browser,
agents that parse elements directly from pixels do not have access to any such order-
ing. Here we endeavor to derive effective orderings and investigate the impact of
various element ordering methods in web and desktop environments. We find that
dimensionality reduction provides a viable ordering for pixel-only environments.
We train a UI element detection model to derive elements from pixels and apply our
findings to an agent benchmark—OmniACT—where we only have access to pixels.
Our method completes more than two times as many tasks on average relative to
the previous state-of-the-art.

1 INTRODUCTION

There has been growing interest in using language model (LM) agents to autonomously navigate
virtual environments. Autonomous web agents (Zhou et al., 2023; Kim et al., 2023; Zheng et al.,
2024; Gur et al., 2024; He et al., 2024) have become a particularly popular area of research. Typically,
a web agent takes as input a task prompt from a user, observes a text and visual representation of the
environment, and then outputs one or more actions to execute the task in the environment. Recently,
research interest has expanded to include agents that can navigate mobile (Rawles et al., 2023; Yan
et al., 2023) and desktop (Xie et al., 2024; Kapoor et al., 2024; Bonatti et al., 2024) environments as
well.

At a high level, a virtual environment consists of numerous elements—some are interactive (e.g.
buttons or widgets), while others are not (e.g. plain text). To allow for human navigation, these
elements are usually represented in the pixel space via a Graphical User Interface (GUI). In contrast,
agents often rely on distinct state representations to navigate virtual environments. The exact format
of a state representation varies between environments and approaches. In web environments, common
text representations include the HTML or accessibility tree (Zhou et al., 2023; Koh et al., 2024). For
visual representations, a popular approach is to label UI elements with bounding boxes and numeric
identifiers (Koh et al., 2024; He et al., 2024), known as Set-of-Mark (Yang et al., 2023). In either case,
the state representation is derived from the underlying Document Object Model (DOM) (Zhou et al.,
2023; Koh et al., 2024; He et al., 2024). However, many environments lack a descriptive DOM and
only provide pixel information, which we show is insufficient for existing agents (see Section 4.2).
To construct an effective state representation from only pixels, it is important to answer the following
basic questions about these representations: What aspects of a state representation are most important
to an agent? How can we derive these important aspects with only pixels?

In almost all implementations of the agent’s state representation, there exists a list of interactable or
non-interactable elements which the agent uses to determine the next action (Koh et al., 2024; Zhou

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: We are motivated by the goal of enabling agents to act on environments where an underlying
DOM does not exist. Instead, the agent must determine its next action using only the environment’s
graphical representations. In Step 1, we first detect a list of unordered UI elements using an object
detection model and identify them with bounding boxes. In Step 2, we convert these UI elements to
their text representation. In Step 3, we order the elements via 2D-to-1D dimensionality reduction.
Due to the sequential nature of a language model, elements are always presented in a specific order
to the LM Agent. Finding an effective ordering is non-trivial, yet can significantly affect agent
performance. Elements that are visually close together are often functionally associated with each
other. t-SNE’s ability to retain local structure allows it to generate an effective ordering.

et al., 2023; He et al., 2024; Dupont, 2024; Yan et al., 2023; Ishan0102, 2024; Kapoor et al., 2024;
Xie et al., 2024). Elements are characterized by various attributes such as visual appearance, text
descriptions, or type labels. Because the state representation is the input to an LM, this list of elements
is always presented in a specific ordering. For example, the default method to derive elements from a
webpage performs a pre-order traversal of the DOM tree (World Wide Web Consortium, 2013). We
analyze various attributes of a popular state representation for agents and find element ordering to
be the single most impactful attribute to agent performance. We find that the ordering of elements
can dramatically affect the performance of an agent, resulting in differences of up to 49% relative
performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Many software applications lack informative accessibility trees or DOMs. The accessibility
tree for a popular game development engine (Godot, left) contains only the exit, minimize, and full
screen buttons. For a presentation slide (Google Slides, right), no interactive elements (e.g. title
and subtitle boxes) are present in the DOM. Language model agents rely on this information to
navigate applications, and agent performance can accordingly be compromised in scenarios where it
is incomplete.

This can prove problematic as many environments lack obvious methods to both derive and order
elements. For example, many mobile and desktop applications (see Figure 2) do not properly expose
interactable elements (Chen et al., 2020; Ross et al., 2020; Zhang et al., 2021). In such environments,
pixels may be the only source of information available. Previous approaches to deriving interactable
elements from pixels either leverage off-the-shelf segmentation models (Yan et al., 2023; Kapoor
et al., 2024) or build custom models that target accessibility features (Wu et al., 2023). In our
approach, we leverage common crawl (Common Crawl, 2023) to train an object detection model (Ren
et al., 2016) that detects interactable UI elements specifically for agents. To the best of our knowledge,
the elements detected through these approaches are ordered arbitrarily (e.g. based on confidence
scores); visually, the ordering is effectively random. Our experiments indicate that a random ordering
consistently results in the lowest performance across multiple scenarios.

Here we propose and evaluate strategies for deriving effective element orderings in scenarios where
a hierarchical ordering based on the GUI design is not explicitly provided by the environment.
Across multiple agent benchmarks, we find that ordering elements via a 2D-to-1D dimensionality
reduction (Van der Maaten and Hinton, 2008) reliably yields improvements to agent performance
relative to other baselines. We experiment on the VisualWebArena (Koh et al., 2024) and OmniACT
(Kapoor et al., 2024) benchmarks and achieve new state-of-the-art performance on OmniACT.

Out contributions are as follows.

• We conduct a thorough ablation of VisualWebArena’s state representation for agents by
including or removing each element attribute individually. Despite advancements in vision
language models, we find that a text representation is still necessary for web and desktop
agents. We find that element ordering is, perhaps surprisingly, more impactful than any
other attribute in the text representation.

• We demonstrate that ordering via dimensionality reduction consistently provides perfor-
mance improvements over random ordering. Additionally, we find that ordering via dimen-
sionality reduction performs better than a simple position-based ordering in most scenarios.

• We achieve a new state-of-the-art result on OmniACT, an agent benchmark that considers
the scenario of operating on pixels. Our approach more than doubles the expected average
task success rate compared to the previous state-of-the-art.

2 RELATED WORK

Agent Benchmarks. World-of-bits provided the first environment for evaluating web GUI nav-
igation using an agent (Shi et al., 2017). Over time, more realistic web (Zhou et al., 2023; Koh
et al., 2024; Yao et al., 2023), desktop (Kapoor et al., 2024; Xie et al., 2024), and mobile (Rawles

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

et al., 2023) agent benchmarks have been created. Kim et al. (2023) provided one of the first LM
agent approaches, successfully navigating World-of-bits. However, existing agents are still unable to
properly navigate more realistic benchmarks, completing only 15% of web tasks (Zhou et al., 2023)
and 12% of desktop tasks.

Agents With Direct Access to Elements. Despite work on multimodal agents (Koh et al., 2024),
existing techniques in navigating web and desktop environments still rely heavily on ground-truth
text representations. Zhou et al. (2023); Koh et al. (2024) both utilize the accessibility tree and its
elements as their state representation. Koh et al. (2024); He et al. (2024) consider approaches where
interactable elements are also represented in an image via Set-of-Mark (Yang et al., 2023) bounding
boxes and labels. Xie et al. (2024) provides an agent that navigates desktop applications by observing
a filtered down version of the accessibility tree. All of these approaches require access to either a
webpage’s underlying DOM or an accessibility tree to derive elements; however, our focus is on
environments that only give access to their graphical representations which is significantly more
challenging.

Agents With Access to Only a Graphical Representation. There have been several approaches—
primarily focused on desktop and mobile environments—to directly navigating a GUI via its pixels.
Kapoor et al. (2024) and Yan et al. (2023) focus on navigating desktop and mobile applications
respectively. Both leverage an off-the-shelf-segmentation model—Segment Anything (Kirillov et al.,
2023)—to find icons in the image. These icons are then either represented in text (Kapoor et al., 2024)
or labeled with Set-of-Mark (Yang et al., 2023) bounding boxes and labels in the image (Yan et al.,
2023). We instead train an object detection model that detects interactable UI elements directly. While
previous UI element detection models are trained to detect accessibility features (Wu et al., 2023),
our model is trained specifically to detect interactable elements that would be useful to an agent. All
three of our approaches use Optical Character Recognition (OCR) modules such as EasyOCR (AI,
2020) to extract text from pixel information.

Agent Input Ablations. While most agent studies include some ablations, few focus on detailed
analysis of an agent’s input. To our knowledge, Huq et al. (2023) is the only other study that directly
studies this. Their study focuses on broader components to an input prompt such as the selection of
few-shot examples used, while we focus on specific element attributes such as element ordering.

3 PROBLEM DEFINITION

We define the environment state E as a set of elements E = {e1, e2, . . . , en}, where each element ej
is a tuple ⟨ij , Cj , Aj , Sj⟩ defined by the following parameters:

• ij ∈ {0, 1} denotes the interactability of element ej . An element with ij = 1 is interactable,
while an element with ij = 0 is not.

• Cj = {⟨x1, y1⟩, ⟨x2, y2⟩} is the set of pixel coordinates that form the bounding box around
ej . ⟨x1, y1⟩ is the top left coordinate and ⟨x2, y2⟩ is the bottom right coordinate.

• Aj = {a1, a2, . . . , am} is the set of potential actions that can be taken on that element. For
example, the potential actions for a search bar might be {click,type}; a non-interactive
text element has the action set ∅.

• Sj represents the set of other environment-specific attributes for element ej . These at-
tributes can include image captions, type labels (e.g., Button, Text Field), or accessibility
information.

While certain environments may provide full access to this environment state, here we are focus on
environments where only the pixel information, P , is available. We then must predict elements from
the pixel information to construct a state representation for the agent. In other words, we must find a
function g : P → E
Elements can be represented in both visual and text modalities. For images, the most common
approach is to overlay bounding boxes with numeric identifiers around each interactable element
(Koh et al., 2024; He et al., 2024; Yan et al., 2023) in a manner inspired by Set-of-Mark Prompting

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(Yang et al., 2023). In text, a common approach is to represent each element as a string containing its
index, coordinates, and other attributes, such as "[1] [x,y] [Description]". Because LMs operate on
sequential data, elements must be given an ordering; in most approaches, this is implicitly defined by
the method used to identify the elements.

Ordering. The ordering is defined as a permutation σ of the indices {1, 2, . . . , n} where
{eσ(1), eσ(2), . . . , eσ(n)} represents a specific sequence of elements. An ordering function is a
function f : E → σ that takes the environment as an input and yields a specific ordering σ.

4 WHICH ASPECTS OF AGENT STATE REPRESENTATIONS ARE MOST
IMPACTFUL?

Here we describe a series of ablation experiments designed to examine which aspects of an LM state
representation are most impactful to the performance of LM agents. In particular, we experiment
on the VisualWebArena (VWA) (Koh et al., 2024) benchmark and ablate attributes of the state
representation of the state-of-the-art agent (proposed in the same paper). We pick this representation
in particular due to both its strong performance on VWA, as well as its similarity to common practices
seen in other agent research (He et al., 2024) and open source projects (Ishan0102, 2024; Dupont,
2024). Our experiments in turn ablate the impact of (1) multimodal (image and text) aspects of the
state representation, and (2) individual element attributes within the text component alone.

4.1 VISUALWEBARENA

VisualWebArena focuses on multimodal tasks in the web and provides a self-hostable environment
for language agents to navigate (Koh et al., 2024). Agents operating on VisualWebArena have full
access to the DOM. The current best approach (Koh et al., 2024) utilizes a multimodal representation
where elements are parsed in a pre-order traversal of the DOM tree (World Wide Web Consortium,
2013). Each element j has attributes Sj = {id, tag, text} where id is a unique numeric identifier for
interactable elements and ∅ otherwise, tag is the HTML tag (e.g. BTN or IMG), and text is the alt
text and captions for images and the HTML text otherwise. In the text representation, an example of
an element would be “[1] [IMG] [alt text, caption]”. In the image representation, each element is
labeled with bounding boxes and numeric labels.

The original agent in (Koh et al., 2024) only achieves 15% success rate across all tasks. Since our
goal is not to improve agent performance on VisualWebArena but rather to understand the importance
of attributes in the state representation, we examine a subset of tasks to reduce costs.0 Specifically,
we explore tasks marked as “easy” within tasks that the original agent completed successfully. Due to
variance associated with stochastic LM outputs, our reproduction of these originally-successful tasks
yields a success rate around 74.07%± 5.56%. The exact list of tasks can be found in Appendix A.8.
We reuse the action space from the original agent which consists of executing high-level actions
(e.g., click, hover) on individual elements—see Appendix A.6 for more details.

4.2 ABLATION SETUP AND FINDINGS

The agent state representation we explore is multimodal and consists of image and text information.
The image consists of a screenshot of the webpage along with Set-of-Mark annotations, while the text
consists of a DOM-ordered list of elements with the attributes outlined above. Our ablation protocol
consists of removing individual attributes from the image or text representation and measuring task
success rate—we say an attribute has high “impact” if its removal leads to substantial reduction in task
success rate. To provide evidence that these findings may be robust across different LM backbones,
we explore both GPT-4V as used in the original agent, and Gemini 1.5 Pro. Some experiments were
not run on GPT-4V due to high associated costs, though we found ordering to be consistent between
these two LM backbones on all ablations where we ran both.

In Table 1, we report results ablating aspects of the multimodal representation. In Table 2, we report
the impact of ablating various attributes in the text representation specifically. Across all experiments,
we consider the pre-order traversal of the DOM tree as the ground truth element ordering, and define

0A full run of the state-of-the-art agent on VisualWebArena can cost up to $800 with GPT-4V.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Ablating the multimodal aspects of state representation in VisualWebArena. ✓ indicates
ground truth obtained from the HTML. x indicates removal of the attribute. We find that removing
the text representation can dramatically harm agent performance.

Observations Success Rate (↑)

Screenshot Set-of-Mark Text Representation Gemini 1.5 GPT-4V

✓ ✓ ✓ 64.20% 74.07%
x x ✓ 46.30% 38.89%
✓ x ✓ 50.00% -
✓ ✓ x 3.70% 38.89%

the “removal” of ordering information as substituting an ordering σrand picked uniformly at random
from all possible permutations. We summarize a few key findings from both sets of ablations below.

Text Representation is Still Necessary. While adding a visual representation clearly improves
performance, we find that it alone is insufficient even with Set-of-Mark labels. This contradicts
previous findings on agents for mobile applications which found that a screenshot with Set-of-Mark
labels achieves similar performance with or without text (Yan et al., 2023). We speculate that this
is due to the substantial difference in viewport sizes between mobile and desktop environments.
Specifically, the average mobile device has a viewport size of 360x800 while the average desktop
has a viewport size of 1920x1080 (Statcounter Global Stats, 2024). Additionally, larger viewport
sizes have been shown to improve agent performance in desktop environments (Xie et al., 2024). We
speculate that this may be because current agents almost never understand when to change the screen
view (e.g. by scrolling).

Removing Ordering Information Harms Performance More Than Removing Any Other At-
tribute. Although most element attributes are important, we find that ordering is the single most
important attribute for agent performance. Random ordering results in a similar performance drop to
removing all HTML text descriptions.

Captions Impact Performance More Than Alt Text. Removing captions causes a greater decrease
to performance than removing alt text. From our experience, captions almost always provide more
information than alt text. In fact, captions frequently include the alt text directly in its description.

Table 2: Ablating attributes of the text component of the VisualWebArena state representation. All
results include the screenshot with Set-of-Mark bounding boxes and labels. TAG is the HTML
tag. CAPTIONS are image captions generated using BLIP-2-T5XL(Li et al., 2023). TEXTAlt,
TEXTInteract, and TEXTStatic are the alt text, text for interactable elements, and text for non-
interactable elements respectively. ORDER is element ordering. ✓ indicates ground truth obtained
from the HTML. x indicates removal of the attribute. x Element Ordering indicates a random shuffling
of the elements. - denotes experiments that were not run due to cost.

Element Attributes Success Rate (↑)

TAG CAPTIONS TEXTAlt TEXTInteract TEXTStatic ORDER Gemini 1.5 GPT4-V

✓ ✓ ✓ ✓ ✓ ✓ 64.03% 74.07%
x ✓ ✓ ✓ ✓ ✓ 61.11% 61.11%
✓ x ✓ ✓ ✓ ✓ 46.30% -
✓ ✓ x ✓ ✓ ✓ 68.15% 66.67%
✓ ✓ ✓ x ✓ ✓ 53.70% -
✓ ✓ ✓ ✓ x ✓ 57.40% -
✓ ✓ ✓ x x ✓ 35.18% -
✓ ✓ ✓ ✓ ✓ x 37.04% 44.44%

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTAL SETUP

For the remainder of this paper, we leverage the insights gained from our state representation ablations
on VisualWebArena to tackle a more challenging task: enabling LM agents to act in environments
that only expose pixel information.

Most applications are built on top of an underlying hierarchical representation. For example, a
webpage is modeled by the DOM which is hierarchical. When exposed, this hierarchy can be used
to determine a strong element ordering. However, the availability and quality of an underlying
hierarchical representation can vary greatly between environments. For example, Chen et al. (2020)
found that 77% of mobile applications had missing labels and Ross et al. (2020) found that 53%
of image buttons had missing labels and were incorrectly sized. Additionally, Ross et al. (2020)
found that 8% of applications lacked interactable element information altogether. In such scenarios,
we may only have access to the application’s pixel information. We continue to experiment with
VisualWebArena and also experiment with the OmniACT benchmark as a scenario where we only
have access to pixel information. Details on the LM agent backbones used in our experiments can be
found in Appendix A.7.

5.1 OMNIACT

OmniACT provides both web and desktop environments for agents to benchmark on. OmniACT
contains 177 application screenshots overall and 2021 tasks in the test set. Agents are tasked with
generating pyautogui code that can navigate the application screenshot. We consider OmniACT as a
setting where only a pixel information is available.

To detect UI elements {e1, e2, . . . , en} when given only pixel information P we train an object
detection model (Ren et al., 2016) to detect interactable UI elements in the screenshot and use
EasyOCR (AI, 2020) to extract visible text. In other words, the function g : P → E is defined by the
trained object detection model. We add visible text and captions to each interactable UI element. We
gather a dataset by finding 674,416 interactable elements over 1468 Common Crawl webpages. We
selected our webpages based on top websites from Similarweb (2024). Despite the domain shift from
webpages to desktop applications, we found that our object detection model worked reasonably well
on the OmniACT benchmark in the end-to-end agent setting. We publicly release this model along
with our paper. Training details can be found in the Appendix A.1.

OmniACT provides partial human annotations for each screenshot; multiple, but not all, interactable
UI elements are annotated with bounding boxes. The original intent of these bounding boxes is for
evaluation only. As a result, there are significantly less UI elements annotated compared to possible
UI elements in the application. We experiment with elements derived from these human annotated
bounding boxes to understand a) impacts to ordering performance in an easier setting and b) the
potential performance that can be gained by improving UI element detection.

5.2 METRICS

Our primary metric is task success rate which is the standard for agent evaluations (Koh et al., 2024;
Zhou et al., 2023; He et al., 2024). VisualWebArena provides an evaluation framework for task
success. Task success criteria include achieving an expected final webpage state or receiving a desired
response from the language agent. OmniACT does not provide task success rate directly, instead
introducing the sequence score and action score metrics. Sequence score evaluates if the output
contains the correct high level action (e.g. click or type), but does not check if the action element
or parameter (e.g. click [1] or type [parameter]) are correct. Action score evaluates if
the output contains both the correct high level action and the correct element or parameter. Thus, for
OmniACT we focus our evaluations on the action score as it is more similar to task success rate.

5.3 ORDERING METHODS

In addition to random ordering, we experiment with two different ordering methods.

Random. We pick the ordering σrand uniformly at random from all possible permutations. This
provides a baseline performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Raster. Elements {e1, e2, . . . , en} are ordered in a left-to-right raster scan. We define a raster scan
as an ordering σraster where i < j iff ⌊yi

8 ⌋ < ⌊yj

8 ⌋ and xi < xj . We chose to discretize the scan to
prevent jumps in ordering from minor pixel variations. This method mimics the natural way English
speakers read text and images from left-to-right and top-to-bottom.

t-SNE. We apply dimensionality reduction techniques to better capture the spatial relationships.
Using t-SNE (Van der Maaten and Hinton, 2008), we reduce the dimensionality with the function
g : ⟨x, y⟩ → z. The set of values Z = {z1, z2, . . . , zm} is used to determine the ordering σtsne. We
use the scikit-learn (Pedregosa et al., 2011) implementation of t-SNE and keep the default parameters.

Our intuition for choosing t-SNE stems from visually and qualitatively inspecting our agent trajecto-
ries. We observed that agents often use adjacently ordered elements as context clues to determine the
correct action. Furthermore, agents have difficulty reasoning about functionally associated elements
that are separated from each other in the ordering. t-SNE generates an effective ordering as elements
that are visually close together (i.e. nearby in 2D pixel space) are often functionally associated with
each other as well. When reducing dimensions, t-SNE retains local structure which increases the
odds that functionally associated elements are adjacent in the induced 1D ordering.

5.4 ACTION SPACE

We use the same high-level action space as
described in OmniACT. Unlike OmniACT,
we do not have the model directly output
pyautogui code. Instead, we use high
level actions that map to pyautogui code.
For example, for element e1 defined by
⟨1, {⟨50, 50⟩, ⟨100, 100⟩}, {click},∅⟩
the model would output click
[1] which would be converted to
pyautogui.click(75, 75). This
prevents the model from having to reason
about pixel coordinates directly. Each
element’s unique identifier reflects the
position of the element in the ordering.
The full action space is in Table 3.

Table 3: The set of possible actions in OmniACT.

Action Description

Click Perform a single click on an element.
Double Click Perform a double click on an element.
Right Click Perform a right click on an element.
Move/Hover Move the cursor over an element.
Drag Click and drag an element to a new position.
Scroll Scroll up or down the page.
Horizontal Scroll Scroll left or right on the page.
Press Press a key on the keyboard.
Keyboard Hotkey Use a keyboard shortcut or hotkey.
Write Type text using the keyboard.

6 RESULTS

Our main findings on the impact of ordering are in Table 4. We utilize our various findings to improve
upon OmniACT; our experiments against their baseline are in Table 5.

6.1 IMPACT OF ORDERING

Ordering Consistently Impacts Performance. Ordering has a significant impact to performance
across all of our experiments. Random ordering decreases performance in VisualWebArena by 50%
and 42% relative performance for GPT-4v and Gemini-1.5 respectively. In all experiments, random
ordering decreases performance over a proper ordering method.

t-SNE Best For Larger Models And More Challenging Tasks. Navigating by using detected
elements is a harder task than navigating by using human annotated bounding boxes; not only are
there more elements—on average double the amount—there is the possibility that the correct element
is missing from the detected elements. We see that when elements are derived from the DOM and
our UI detection model, t-SNE ordering generally outperforms raster ordering. Additionally, more
powerful models see an increased benefit from t-SNE ordering with Gemini-1.5 and GPT-4v seeing
larger improvements than LLama3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Performance of different ordering methods across various models and information scenarios.
The baseline approach for VisualWebArena is the same as their paper. Human annotations are
from OmniACT’s annotation files. The Faster-RCNN model is trained to detect interactable UI
elements from CommonCrawl webpages. VisualWebArena is evaluated on success rate. OmniACT
is evaluated on unweighted action score (i.e. each task is weighted equally). We use Llama3-70B
for VisualWebArena and Llama3-8B for OmniACT due to its large size2. GPT-4v is evaluated on
a 100 random tasks for OmniACT; the exact list is in Appendix A.8. Gemini-1.5 and GPT-4v are
multimodal while Llama3 is text only.

Experimental Settings Success Rate

Element Source Benchmark Ordering Method Gemini-1.5 (↑) GPT-4v (↑) Llama3 (↑)

Ground Truth (DOM) VWA Pre-order 64.03% 74.07% 27.79%
Random 37.04% 37.04% 20.37%
Raster 38.88% 53.70% 29.63%
t-SNE 44.44% 61.11% 24.07%

Human OmniACT Random 57.29% 61.52%∗ 28.67%
Annotations Raster 61.04% 65.88%∗ 33.65%

t-SNE 59.17% 62.11%∗ 31.99%

Detected OmniACT Random 39.59% 44.63%∗ 18.88%
(Faster-RCNN) Raster 45.21% 47.38%∗ 21.58%

t-SNE 47.16% 49.18%∗ 24.61%

Raster Ordering Performs Best With Human Annotations. Raster ordering performs the best
with human annotated elements. Unfortunately, these annotations are fewer and partially guaranteed
to contain important information. Additionally, high quality human annotations are difficult to scale
across applications.

6.2 STATE-OF-THE-ART PERFORMANCE ON OMNIACT

We achieve a new state-of-the-art performance on OmniACT. Due to cost, we look to our previous
experiments to pick the best combination of features for our approach. We observe that multimodal
representations are still helpful. We find that t-SNE ordering improves performance the best in
OmniACT when elements are detected by our model. Koh et al. (2024) states that high level actions
are easier for an LM to reason with.

We analyze the differences between our best approach and OmniACT’s baseline. These are as follows.

• Element Source: OmniACT obtains elements by searching for icons with Segment Anything
(Kirillov et al., 2023) and text with EasyOCR. Unfortunately, there are no shared artifacts
for their icon detection system. We obtain UI elements through an object detection model
and text with EasyOCR (AI, 2020).

• Ordering: It is unclear how elements are ordered in OmniACT. Considering how most
approaches don’t pay specific attention to ordering, we assume the ordering in OmniACT is
effectively random. We order our elements using our t-SNE ordering.

• Action Space: OmniACT directly outputs pyautogui code as their actions. We consider a
higher level action space that maps to pyautogui code.

• Intractability OmniACT lists out each element, but does not indicate which element is
interactable. We specify whether elements are interactable or not.

• Multimodal Representation: OmniACT evaluates their full test set using a text only
representation3. We experiment with a multimodal representation.

We apply our findings and achieve more than one-fold increase over the existing best action score.
Our results can be found in Table 5.

2We use the Groq API for our Llama3 models.
3OmniACT evaluates the impact of adding a visual representation on smaller subset; however, this subset is

not shared and varies empirically from the full test set.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: ✓ and x indicates whether the feature is available when building a representation for the
model. Ours indicates a high level actions such as click [1]. Code indicates that pyautogui code
is directly generated. bold is best and italics are second best. While sequence score only checks for
the correct high level action (e.g. click), action score checks for both the correct action and the
correct element or parameter (e.g. click [1]). Thus, action score is the most equivalent to task
success rate. * is as reported in Kapoor et al. (2024)

Model State Actions Screenshot Action Score (↑) Sequence Score (↑)

GPT-4 OmniACT Code x 11.60* 32.75*
Gemini 1.5 Ours Code x 16.53 21.67
Gemini 1.5 Ours High Level x 22.29 29.42
Gemini 1.5 Ours High Level ✓ 22.86 28.91
Llama8b Ours High Level x 18.64 26.22
GPT-4v Ours High Level ✓ 23.34 30.47

7 FUTURE WORK

Further Improvements to Ordering We provided two simple methods to apply ordering when
a default ordering is not given. However, both approaches still fall short when compared to the
hierarchical ordering derived from the DOM. We hope that future research can introduce more
sophisticated methods to find ordering with only pixel information.

Image Only Ordering We focused on the impact of element ordering in a text representation
(although element labels re-ordered accordingly in the visual representation as well). The impact
of element ordering may or may not generalize to an image only representation. Unfortunately, our
results indicated that a visual representation alone was insufficient for web and desktop environments
which prevents us from conducting this experiment. However, Yan et al. (2023) found that a visual
representation in mobile environments was able to achieve comparable performance with and without
a text representation. In the future, we hope to experiment with various ordering methods on an
image only representation.

Expanded Scenarios and Benchmarks In this paper, we explored two benchmarks—
VisualWebArena and OmniACT—as web and desktop scenarios. In the future, we hope to explore
other benchmarks and settings with our approach. For example, Xie et al. (2024) uses the OS level
accessibility tree for desktop agent navigation. We hope to compare our approach against theirs and
believe that combining both approaches may lead to further improvements. Additionally, mobile
environments often have only pixel-level information (Chen et al., 2020; Ross et al., 2020); we hope
to apply our approach to a mobile benchmark such as Rawles et al. (2023).

8 CONCLUSION

We conducted thorough ablations to show that element ordering has a significant impact on the
performance of agents. We provided a method of ordering elements through dimensionality reduction
and showed that it performed best in realistic environments. We trained a UI element detection model
on Common Crawl data and publicly share the model. We demonstrated an end-to-end method which
allows a LM agent to act on environments that provide only pixel information. Using this method, we
were able to achieve a new state-of-the-art performance on OmniACT.

REFERENCES

J. AI. Easyocr: A simple and robust ocr library. https://github.com/JaidedAI/EasyOCR,
2020. Accessed: 2024-05-07.

R. Bonatti, D. Zhao, F. Bonacci, D. Dupont, S. Abdali, Y. Li, Y. Lu, J. Wagle, K. Koishida, A. Bucker,
L. Jang, and Z. Hui. Windows agent arena: Evaluating multi-modal os agents at scale, 2024. URL
https://arxiv.org/abs/2409.08264.

10

https://github.com/JaidedAI/EasyOCR
https://arxiv.org/abs/2409.08264

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

J. Chen, C. Chen, Z. Xing, X. Xu, L. Zhu, G. Li, and J. Wang. Unblind your apps: predicting natural-
language labels for mobile gui components by deep learning. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ICSE ’20. ACM, June 2020. doi:
10.1145/3377811.3380327. URL http://dx.doi.org/10.1145/3377811.3380327.

Common Crawl. Common crawl. https://commoncrawl.org, 2023. Accessed: 2023-05-19.

D. Dupont. Gpt-4v-act. https://github.com/ddupont808/GPT-4V-Act, 2024. Ac-
cessed: 2024-05-19.

I. Gur, H. Furuta, A. Huang, M. Safdari, Y. Matsuo, D. Eck, and A. Faust. A real-world webagent
with planning, long context understanding, and program synthesis, 2024.

H. He, W. Yao, K. Ma, W. Yu, Y. Dai, H. Zhang, Z. Lan, and D. Yu. Webvoyager: Building an
end-to-end web agent with large multimodal models, 2024.

F. Huq, J. P. Bigham, and N. Martelaro. What’s important here?: Opportunities and challenges
of LLM in retrieving information from web interface. In R0-FoMo:Robustness of Few-shot and
Zero-shot Learning in Large Foundation Models, 2023. URL https://openreview.net/
forum?id=Jd8mD3SU8j.

Ishan0102. vimgpt. https://github.com/ishan0102/vimGPT, 2024. Accessed: 2024-05-
19.

R. Kapoor, Y. P. Butala, M. Russak, J. Y. Koh, K. Kamble, W. Alshikh, and R. Salakhutdinov.
Omniact: A dataset and benchmark for enabling multimodal generalist autonomous agents for
desktop and web, 2024.

G. Kim, P. Baldi, and S. McAleer. Language models can solve computer tasks, 2023.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything, 2023.

J. Y. Koh, R. Lo, L. Jang, V. Duvvur, M. C. Lim, P.-Y. Huang, G. Neubig, S. Zhou, R. Salakhutdinov,
and D. Fried. Visualwebarena: Evaluating multimodal agents on realistic visual web tasks, 2024.

J. Li, D. Li, S. Savarese, and S. Hoi. Blip-2: Bootstrapping language-image pre-training with frozen
image encoders and large language models, 2023.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In European conference on computer vision, pages
740–755. Springer, 2014.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

C. Rawles, A. Li, D. Rodriguez, O. Riva, and T. Lillicrap. Android in the wild: A large-scale dataset
for android device control, 2023.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region
proposal networks, 2016.

A. S. Ross, X. Zhang, J. Fogarty, and J. O. Wobbrock. An epidemiology-inspired large-scale analysis
of android app accessibility. ACM Trans. Access. Comput., 13(1), apr 2020. ISSN 1936-7228. doi:
10.1145/3348797. URL https://doi.org/10.1145/3348797.

T. Shi, A. Karpathy, L. Fan, J. Hernandez, and P. Liang. World of bits: An open-domain platform
for web-based agents. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
3135–3144. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/
shi17a.html.

11

http://dx.doi.org/10.1145/3377811.3380327
https://commoncrawl.org
https://github.com/ddupont808/GPT-4V-Act
https://openreview.net/forum?id=Jd8mD3SU8j
https://openreview.net/forum?id=Jd8mD3SU8j
https://github.com/ishan0102/vimGPT
https://doi.org/10.1145/3348797
https://proceedings.mlr.press/v70/shi17a.html
https://proceedings.mlr.press/v70/shi17a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Similarweb. Top websites ranking, 2024. URL https://www.similarweb.com/
top-websites/. Accessed: 2024-05-21.

Statcounter Global Stats. Mobile screen resolution stats worldwide, 2024. URL https://gs.
statcounter.com/screen-resolution-stats/mobile/worldwide. Accessed:
2024-05-21.

L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning research,
9(11), 2008.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou. Chain-of-
thought prompting elicits reasoning in large language models, 2023.

World Wide Web Consortium. Selectors api level 1. W3C Recommendation, Feb 2013. Available
online: https://www.w3.org/TR/selectors-api/#findelements.

J. Wu, S. Wang, S. Shen, Y.-H. Peng, J. Nichols, and J. P. Bigham. Webui: A dataset for enhancing
visual ui understanding with web semantics, 2023.

Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2. https://github.com/
facebookresearch/detectron2, 2019.

T. Xie, D. Zhang, J. Chen, X. Li, S. Zhao, R. Cao, T. J. Hua, Z. Cheng, D. Shin, F. Lei, Y. Liu, Y. Xu,
S. Zhou, S. Savarese, C. Xiong, V. Zhong, and T. Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024.

A. Yan, Z. Yang, W. Zhu, K. Lin, L. Li, J. Wang, J. Yang, Y. Zhong, J. McAuley, J. Gao, Z. Liu,
and L. Wang. Gpt-4v in wonderland: Large multimodal models for zero-shot smartphone gui
navigation, 2023.

J. Yang, H. Zhang, F. Li, X. Zou, C. Li, and J. Gao. Set-of-mark prompting unleashes extraordinary
visual grounding in gpt-4v, 2023.

S. Yao, H. Chen, J. Yang, and K. Narasimhan. Webshop: Towards scalable real-world web interaction
with grounded language agents, 2023.

X. Zhang, L. de Greef, A. Swearngin, S. White, K. Murray, L. Yu, Q. Shan, J. Nichols, J. Wu,
C. Fleizach, A. Everitt, and J. P. Bigham. Screen recognition: Creating accessibility metadata for
mobile applications from pixels, 2021.

B. Zheng, B. Gou, J. Kil, H. Sun, and Y. Su. Gpt-4v(ision) is a generalist web agent, if grounded,
2024.

S. Zhou, F. F. Xu, H. Zhu, X. Zhou, R. Lo, A. Sridhar, X. Cheng, T. Ou, Y. Bisk, D. Fried, U. Alon,
and G. Neubig. Webarena: A realistic web environment for building autonomous agents, 2023.

12

https://www.similarweb.com/top-websites/
https://www.similarweb.com/top-websites/
https://gs.statcounter.com/screen-resolution-stats/mobile/worldwide
https://gs.statcounter.com/screen-resolution-stats/mobile/worldwide
https://www.w3.org/TR/selectors-api/#findelements
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 FASTER-RCNN TRAINING DETAILS

We trained our model using the detectron2 Wu et al. (2019) implementation of faster-rcnn. We did not
change much from the default implementation and recognize that there are significant improvements
that could be made to the model.

Table 6: Key hyperparameters for the Faster-RCNN model.
Hyperparameter Value
Base Learning Rate 0.00025
Number of Classes 1
Iterations 200000
Optimizer SGD
Backbone Resnet-50 (ImageNet Pretrained)
ResNet Depth 50
Images per Batch 16
Objects per Image 128
Devices 8

We share the remaining hyperparmeters in a config file. We also share the model artifacts and dataset
in our github.

A.2 FASTER-RCNN EVALUATION

We evaluated our detection results using the standard COCO evaluation metrics Lin et al. (2014),
which include mean Average Precision (mAP) across IoU thresholds from 0.50 to 0.95, as well as
performance breakdowns across different object scales.

Table 7: Object detection performance metrics across different dataset splits using out Faster R-CNN
Ren et al. (2016) model. AP represents Average Precision, with subscripts denoting IoU thresholds.
APS , APM , and APL represent performance on small (< 322 pixels), medium (322 to 962 pixels),
and large (> 962 pixels) objects respectively. All values are percentages (%).

Split AP50:95 AP50 AP75 APS APM APL AR100

Train 68.94 77.53 73.08 63.61 73.95 62.55 73.40
Validation 69.40 77.51 73.18 62.94 75.04 62.16 73.80
Test 66.87 75.47 70.96 64.77 70.16 62.10 71.30

A.3 DATASET DETAILS

We built our dataset by automatically annotating Common Crawl webpages. We split the dataset into
a randomized 70/20/10 (train/dev/test) split.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 8: Dataset statistics for our object detection task. Areas are measured in pixels squared.
Metric Value

Number of Images 12,965
Total Annotations 674,416
Average Annotations (i.e. Boxes) per Image 52.02
Max Annotations (i.e. Boxes) in One Image 288

Small Objects (< 322 px) 18.4%
Medium Objects (322-962 px) 62.2%
Large Objects (> 962 px) 19.4%

Figure 3: Distribution of bounding box areas in our dataset on a logarithmic scale. The x-axis shows
the log10 of the area in pixels squared, while the y-axis shows the frequency.

Figure 4: Distribution of bounding box aspect ratios (width/height) in our dataset. The x-axis is
limited to ratios between 0 and 4 to focus on the most common aspect ratios.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 5: Distribution of the number of bounding boxes per image. This histogram shows the density
of annotations across our dataset.

A.4 EFFECTS OF ELEMENT COUNT ON ORDERING

We notice that the relative impact of element ordering becomes more significant as interfaces grow in
complexity (Table 9). This affects both raster and t-SNE orderings similarly.

Table 9: Difference in task success rate compared to random baseline for Raster and t-SNE across
different ranges of elements in the interface. The split is set to the median number of elements
observed across VisualWebArena and OmniACT datasets.

Element Count Raster t-SNE

0-25 +2.8% +3.2%
25+ +6.3% +6.5%

A.5 T-SNE HYPERPARAMETERS

We evaluated t-SNE across various perplexity values. In Table 10 we can see that varying perplexity
values has a neglible effect to overall performance.

Table 10: Action scores achieved by the model across different t-SNE perplexity values.

Perplexity 10 20 30 40 50

Action Score 18.25 17.67 17.95 18.37 18.47

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.6 VISUALWEBARENA AGENT ACTION SPACE

We use the same action space as VisualWebArena for all VisualWebArena experiments.

We use the same action space as described
in VisualWebArena. VisualWebArena uses
high level actions that act directly on el-
ements rather than pixel coordinates. In-
teractable elements possess a unique id
identifier while non-interactable elements
do not. The id identifier reflects the po-
sition of the element in the ordering. The
full action space is in Table 11.

Action Description

click [id] Click on element id.
hover [id] Hover on element id.
type [id] [text] Type text on element id.
press [key_comb] Press a key combination.
new_tab Open a new tab.
tab_focus [index] Focus on the i-th tab.
tab_close Close current tab.
goto [url] Open url.
go_back Click the back button.
go_forward Click the forward button.
scroll [up|down] Scroll up or down the page.
stop [answer] End the task with an optional output.

Table 11: The set of possible actions in VisualWe-
bArena.

A.7 LM AGENT HYPERPARAMETERS AND SETTINGS

We set our temperature, top-p, and input
token limits based on existing works Zhou
et al. (2023); Koh et al. (2024); Kapoor et al.
(2024). Prompts for all three backbones
contain few-shot examples and use chain-
of-thought prompting Wei et al. (2023) as
described in Koh et al. (2024). In GPT-
4v and Llama3 each example is a different
message; Gemini-1.5’s context length al-
lowed us to input all examples as a single
prompt. We detail our LM Agent hyperpa-
rameters in Table 12

Setting Language Model Backbone

GPT-4v Gemini-1.5 Llama3

Input Token Limit 3840 900000 3840
Temperature 1.0 1.0 1.0
Top-p 0.9 0.9 0.9

Table 12: Settings for different LM agent backbones.

A.8 VISUALWEBARENA AND OMNIACT SUBSET

We experimented with subsets of VisualWebArena and OmniACT to save on costs. We list them here
for reproducibility.

For all VisualWebArena experiments we used the following:

[13, 15, 50, 129, 164, 167, 0, 77, 86, 89, 98, 99, 100, 101, 105,
130, 131, 142, 143, 146, 150, 189, 16, 29, 37, 38, 39, 47, 49, 52,
53, 56, 60, 61, 62, 69, 73, 76, 77, 81, 148, 173, 193, 196, 201,
212, 216, 231, 273, 314, 315, 322, 445]

For GPT-4v ordering ablations on OmniACT we used the following:

[4, 58, 115, 147, 156, 162, 165, 178, 179, 194, 204, 218, 235,
240, 248, 297, 353, 374, 391, 392, 395, 404, 409, 419, 434, 462,
487, 492, 517, 533, 556, 573, 598, 658, 667, 673, 678, 719, 795,
827, 896, 910, 944, 961, 975, 1018, 1025, 1038, 1084, 1093, 1101,
1103, 1128, 1130, 1138, 1142, 1147, 1181, 1192, 1219, 1252, 1284,
1291, 1353, 1427, 1442, 1448, 1514, 1521, 1538, 1580, 1590, 1594,
1600, 1606, 1622, 1636, 1641, 1665, 1684, 1694, 1696, 1710, 1711,
1719, 1726, 1731, 1740, 1743, 1845, 1877, 1883, 1918, 1924, 1951,
1960, 1993, 1994, 1997, 2011]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.9 PROMPT

Listing 1: Language Model Prompt
You are an autonomous intelligent agent tasked with navigating desktop

and web applications. You will be given tasks that can be
accomplished by various actions that will be mapped to pyautogui code
.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current desktop screenshot: This is a screenshot of the desktop or

webpage, with each interactable element assigned a unique numerical
id. Each bounding box and its respective id shares the same color.

The observation, which lists the IDs of all interactable elements on the
current screenshot with their text content if any, in the format [id]
[tagType] [text content]. tagType is the type of the element. text

content is the text content of the element. For example, [1234] [
BUTTON] [’Add to Cart’] means that there is a button with id 1234 and
text content ’Add to Cart’ on the current web page. [] [StaticText]

[text] means that the element is of some text that is not
interactable.

The actions you can perform fall into two categories:

Mouse Actions:
click [id]: This action clicks on an element with a specific id.
double_click [id]: This action double clicks on an element with a

specific id.
right_click [id]: This action right clicks on an element with a specific

id.
hover [id]: Hover over an element with id.

Keyboard Actions:
type [content]: Use this to type content. Be sure to use other commands

to click before or press enter after if necessary.
press [key_comb]: Simulates the pressing of a key combination on the

keyboard (e.g., enter).
hotkey [key1] [key2]: Simulates the pressing of a multiple key

combinations on the keyboard. For example, hotkey [Ctrl] [Alt] [
Delete] will press Ctrl+Alt+Delete.

To be successful, it is very important to follow the following rules:
1. You should only issue actions that are valid given the current

observation. Everything is possible. You MUST issue actions.
2. You can issue a sequence of actions separated by newlines.
3. You should follow the examples from past messages to reason step by

step and then issue the next actions.
4. You should start every answer with "Let’s think step-by-step"
5. Generate the actions in the correct format. Start with a "In summary,

the next actions I will perform are" phrase, followed by the actions
inside ‘‘‘. Each action should be split by a newline. There should be
no text inside ‘‘ except for the actions. For example, "In summary,

the actions I will perform are ‘‘‘click [1234] type [sample text]
press [enter]‘‘‘".

Here are a few examples:
Example 1:

{Example 1}

Example 2:

{Example 2}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Example 3:

{Example 3}

Those were the examples. Now make a prediction given the observation.

OBSERVATION:

{Observation}

18

	Introduction
	Related Work
	Problem Definition
	Which Aspects Of Agent State Representations Are Most Impactful?
	VisualWebArena
	Ablation Setup and Findings

	Experimental Setup
	OmniACT
	Metrics
	Ordering Methods
	Action Space

	Results
	Impact of Ordering
	State-of-the-Art Performance on OmniACT

	Future Work
	Conclusion
	Appendix
	Faster-RCNN Training Details
	Faster-RCNN Evaluation
	Dataset Details
	Effects of Element Count on Ordering
	T-SNE Hyperparameters
	VisualWebArena Agent Action Space
	LM Agent Hyperparameters and Settings
	VisualWebArena and OmniACT Subset
	Prompt

