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Abstract

Biomedical entity linking (BioEL) is the pro-001
cess of connecting entities referenced in doc-002
uments to entries in biomedical databases003
such as the Unified Medical Language System004
(UMLS) or Medical Subject Headings (MeSH).005
The study objective was to comprehensively006
evaluate nine recent state-of-the-art biomedical007
entity linking models under a unified frame-008
work. We compare these models along axes of009
(1) accuracy, (2) speed, (3) ease of use, (4) gen-010
eralization, and (5) adaptability to new ontolo-011
gies and datasets. We additionally quantify the012
impact of various preprocessing choices such as013
abbreviation detection. Systematic evaluation014
reveals several notable gaps in current meth-015
ods. In particular, current methods struggle016
to correctly link genes and proteins and often017
have difficulty effectively incorporating context018
into linking decisions. To expedite future de-019
velopment and baseline testing, we release our020
unified evaluation framework and all included021
models in our linked github repo (added upon022
publication).023

1 Introduction024

Biomedical entity linking (BioEL) is the process025

of identifying biomedical concepts (e.g. diseases,026

chemicals, cell types, etc.) in text and connecting027

them to a unique identifier in a knowledge base028

(KB). Entity linking (EL) is critical in text min-029

ing, as it allows concepts to be connected across030

disparate literature. This "harmonization" enables031

quick access to connected information in the knowl-032

edge base and allows for unified reasoning regard-033

ing diverse surface forms and mentions.034

While entity linking is a critical task for text035

mining, BioEL remains an unsolved problem with036

diverse challenges. First, biomedical literature037

has complex, specialized jargon that may differ038

between biomedical subspecialties. This leads to039

large, varied sets of synonyms that can be used to040

reference the same entity. For example, the entity041

ncbigene:37970 can be referred to by the aliases 042

“ORC”, “ORC4”, “origin recognition complex sub- 043

unit 4”, “CG2917”, “rDmORC”, “dmOrc4”, etc. 044

Moreover, the entity referenced by a particular sur- 045

face form is context-dependent and may require 046

specialized domain expertise to disambiguate. For 047

instance, within the Unified Medical Language Sys- 048

tem (UMLS), “AD” could refer to Alzheimer’s Dis- 049

ease, Atopic Dermatitis, Actinomycin D, or Admit- 050

ting Diagnosis. 051

Second, annotating a biomedical corpus is a time- 052

consuming task that requires specialized domain 053

expertise, which have limited availability to label 054

data. Concretely, the largest labeled BioEL dataset, 055

MedMentions (Mohan and Li, 2019), covers ap- 056

proximately 1% of the candidate entities in its ref- 057

erence ontology while annotating 0.17% of the ab- 058

stracts in PubMed. 059

Third, though dozens of ontologies and termi- 060

nologies have been curated in recent years, con- 061

cepts are often not cross-referenced, leading to a 062

lack of interoperability. Furthermore, even care- 063

fully unified collections such as UMLS lack syn- 064

onyms and definitions for the vast majority of con- 065

cepts. 066

Most biomedical concepts are not labeled in any 067

gold-standard EL corpus. Thus, robust zero-shot 068

performance is critical for effectively performing 069

EL at scale. However, lack of labelled data by spe- 070

cialized domain experts simultaneously makes it 071

difficult to accurately assess the capacity of current 072

models to generalize to unseen data. 073

While some BioEL surveys have been published 074

(French and McInnes, 2022), they do not evaluate 075

models in a consistent way or on a uniform collec- 076

tion of datasets. Rather than a traditional survey, we 077

contend a systematic evaluation of current BioEL 078

models is needed to: 1) accurately compare current 079

models; 2) identify strengths and weaknesses; 3) 080

prioritize directions for future research; 4) provide 081

a framework to expedite future BioEL development. 082
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Figure 1: Overview of BioEL evaluation framework.

Symbol Definition
D Corpus of documents
di Individual document in corpus
mij An entity mention in document i
c
−(+)
ij Left (right) context of entity mention mij

M Collection of all entities in context
E Database of entities
ek Individual entity

Table 1: Notation used throughout paper

To address these needs, this paper contributes the083

following:084

• We release a synthesized collection of cur-085

rent BioEL models, which can be uniformly086

evaluated on a large collection of biomedical087

datasets.088

• We present a systematic framework to evalu-089

ate entity linking models along axes of scala-090

bility, adaptability, and zero-shot robustness091

(Section 5).092

• We conduct, to our knowledge, the largest and093

most comprehensive comparative evaluation094

of BioEL models to date.095

• We highlight strengths and pitfalls of current096

BioEL modeling techniques and suggest di-097

rections for future improvement (Section 7).098

• We provide our unified framework as open099

source repo to expedite future BioEL method100

development and baseline testing.101

2 Problem Definition102

We assume that we are given a corpus D = {di}Ni=1103

of text, where each di is a document in the cor-104

pus (e.g. a clinical note, biomedical research ab- 105

stract, etc.). Each document is annotated with 106

mentions spans mij ∈ di, where every mention 107

span mij = t
(1)
ij , . . . , t

(ℓ)
ij is a sequence of tokens 108

corresponding to a single entity. Every mention 109

is given with surrounding contextual information 110

c−ij and c+ij , which correspond to token spans be- 111

fore and after the entity mention mij . Define the 112

collection of contextual mentions for a document 113

Mi = {c−ijmijc
+
ij}

nj

j=1. Subsequently, we discuss 114

mentions within the context of a single document 115

and thus drop the document subscript i from men- 116

tion and context annotations. 117

We assume that a database of entities is pro- 118

vided E = {ek}Kk=1. Each entity is identified by 119

a unique identifier and may also contain informa- 120

tional metadata such as entity type(s), definition, 121

aliases, etc. Most entity-linkers assume access to 122

ground truth entity mention spans. However, these 123

can be determined programmatically via a named 124

entity recognition algorithm. 125

The task of entity linking is to learn a function 126

f : M → E that maps each mention mj to the 127

correct entity ej ∈ E . 128

Most entity linkers use a two-stage approach to 129

find the correct entity link for a given mention span. 130

The first stage is Candidate Generation (CG), 131

which defines a function fCG : M → En that 132

filters E down to a set of n high-quality candidate 133

entities. Once a set of entity candidates have been 134

generated, they are passed into a Named Entity 135

Disambiguation (NED) module fNED : En × 136

M → E , which chooses the best candidate for a 137

final entity link. In practice, fCG is chosen to be a 138

computationally inexpensive algorithm with high 139

recall, while fNED is more costly and precise. The 140

final entity linker is defined as f = fNED ◦ fCG. 141
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Dataset Num Docs Mentions Unique Ents Ent Types Doc Type Ontology

MedMentions Full 4,392 352,496 34,724 127 PubMed Abstracts UMLS
MedMentions ST21PV 4,392 203,282 25,419 21 PubMed Abstracts UMLS
BC5CDR 1,500 29,044 2,348 2 PubMed Abstracts MeSH
GNormPlus 533 6,252 1,353 2 PubMed Abstracts Entrez
NCBI Disease 792 6,881 789 4 PubMed Abstracts MEDIC
NLM Chem 150 37,999 1,787 1 PMC Full-Text MeSH
NLM Gene 550 15,553 3,348 5 PMC Full-Text Entrez

Table 2: Summary of datasets used for evaluation.

3 Datasets142

We evaluate included BioEL methods on a vari-143

ety of biomedical datasets. A summary of these144

datasets can be found in Table 2. A more detailed145

description of included datasets can be found in146

Appendix A. All datasets used were taken from147

BigBio (Fries et al., 2022). Additionally, Table148

10 in the appendix. describes the extent to which149

entities and mentions overlap between the training150

and testing data. Entity overlap is defined as the151

proportion of entities in the testing data that are in152

the training data. Mention overlap represents the153

proportion of mentions in the testing data whose154

entity is present in the training data (e.g. if an entity155

is mentioned more than once in the test set).156

3.1 Data Preprocessing157

In order to simplify data processing, we pulled158

all included datasets from the BigBio, a recent ef-159

fort to unify format of biomedical text datasets160

for improved consistency and ease of use. We161

additionally downloaded the KBs to which each162

database is linked, namely UMLS (Bodenreider,163

2004), MeSH (Lipscomb, 2000), Entrez Gene (Ma-164

glott et al., 2005), and the the MEDIC dictionary165

(Davis et al., 2019), which contains disease enti-166

ties from MeSH and OMIM (Hamosh et al., 2005).167

The KBs used for each dataset are listed in Table 2.168

We removed any entity mentions whose CUIs were169

no longer available in corresponding ontology, or170

remapped them to the updated CUIs when possible.171

For Entrez gene, we additionally dropped ”tRNA”172

and ”hypothetical protein” gene types that were173

not used for entity linking. We used Ab3P (Sohn174

et al., 2008) to identify and (optionally) resolve175

abbreviations at train/inference time.176

3.2 Excluded Datasets177

This evaluation focuses on entity linking in biomed-178

ical scientific research articles (BioEL). Therefore,179

this systematic evaluation excludes EL in non- 180

scientific texts. Additionally, text extracted from 181

electronic health records (EHR), such as notes or 182

discharge summaries, are also excluded. EL for 183

EHR is distinct from BioEL in its scope, purpose, 184

and accessibility. Previous EHR EL efforts for 185

informal, patient generated text include CADEC 186

(Karimi et al., 2015), AskAPatient (Limsopatham 187

and Collier, 2016), and PsyTAR (Zolnoori et al., 188

2019). These EHR EL platforms link diseases, 189

symptoms, and adverse drug reaction mentions to a 190

variety of relevant ontologies. Similarly, COMETA 191

(Basaldella et al., 2020) links a diverse arrays of 192

entities in reddit posts to SNOMED-CT. 193

4 Models 194

A wide variety of methods have been used for 195

BioEL. Here we describe families of models used 196

for BioEL and list included models from each cate- 197

gory. More detailed descriptions of each individual 198

model are found in Appendix B. We summarize the 199

different models evaluated in Table 3. 200

4.1 Alias Matching EL 201

Alias based entity linking seeks to link entities by 202

matching an entity mention with a correct entity 203

alias in a KB. The simplest form of this is exact 204

string matching, but can be extended using any 205

model that produces similarity scores between a 206

mention and a set of candidate aliases. Evaluated 207

alias matching methods include MetaMap (Aron- 208

son and Lang, 2010), SciSpacy (Neumann et al., 209

2019), BioSyn (Sung et al., 2020), and SapBERT 210

(Liu et al., 2021). Note that BioSyn is included via 211

SapBERT since the latter is a higher performing 212

edition of BioSyn. 213

Contextualized EL Much of the work in 214

transformer-based EL has built upon seminal works 215

in zero-shot EL using semantic similarity between 216

contextualized mentions and entity descriptions 217
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Model Characteristics Data Requirements Reproducibility Code Usability

Model Supervised Type Names Definitions Aliases Preprocessing Model Source Pretrained Model Documentation New Dataset

MedLinker Yes Contextualized Yes Yes Yes No Yes No Fair No
SciSpacy Yes Alias Match Yes Optional Yes N/A Yes Yes Excellent Yes
ClusterEL Yes Contextualized Yes Optional Optional Yes Yes No Good No
ArboEL Yes Contextualized Yes Optional Optional Yes Yes No Good No
KRISSBERT Distant Contextualized Yes Optional Optional No Partial Yes Good No
BioSyn Distant Alias Match Yes No Yes Yes Yes Yes Good No
SapBERT Distant Alias Match Yes No Yes Yes Yes Yes Good Partial
BioBART Yes Autoregressive Yes No Yes No Yes Yes Poor No
BioGenEL Yes Autoregressive Yes No Yes No Yes No Fair No

Table 3: Comparison of model characteristics, reproducibility, and usability

(Logeswaran et al., 2019; Wu et al., 2020). These218

methods use entity description metadata to gener-219

ate and disambiguate entity candidates without the220

use of alias tables or large-scale supervised men-221

tions, making it easier to generalize EL beyond the222

scope of training data. Wu et al. (2020) in particular223

uses a pretrained BERT bi-encoder (Devlin et al.,224

2019) model to generate candidates by encoding225

similarity between mentions and descriptions. It226

then uses a more expensive cross-encoder model227

to disambiguate candidates for the final entity link.228

Our evaluation includes MedLinker (Loureiro and229

Jorge, 2020), ClusterEL (Angell et al., 2021), Ar-230

boEL (Agarwal et al., 2022), and KRISSBERT231

(Zhang et al., 2021). We also note that Bootleg232

(Varma et al., 2021; Orr et al., 2021) has been used233

for biomedical entity linking but do not include it234

due to lack of code for configuring/running their235

published BioEL models.236

4.2 Autoregressive EL237

First proposed by (Cao et al., 2021), autoregres-238

sive EL uses a generative language model to map239

the text of each mention to its canonical entity240

name, rather than identifying the index of the cor-241

rect database entity. It claims the potential to better242

accommodate additions to a database because an243

existing model can easily normalize to new entity244

names without needing to re-train a final output245

layer. Autoregressive EL can also preform alias246

matching by training on an alias table potentially247

reducing the need for hand-labeled training data.248

Our survey includes BioGenEL (Yuan et al., 2022b)249

and BioBART (Yuan et al., 2022a).250

5 Evaluation Strategy251

As noted in (Zhang et al., 2021), evaluation strate-252

gies between different entity linking papers are253

inconsistent, leading to wide disparities in reported254

results. Differences primarily revolve around how255

to score predictions where multiple normalizations256

are given for a named entity, e.g. because all pre- 257

dicted entities share the same alias. We identified 258

three main strategies for this in literature. 259

1. Basic resolves ties by randomly ordering all 260

equally ranked entities. 261

2. Relaxed counts an entity link as correct if any 262

of the predicted normalizations match any of 263

the ground-truth normalizations for a given 264

entity. 265

3. Strict counts a normalization as correct only 266

if all predicted normalizations match ground- 267

truth normalizations for a given entity. Same 268

as basic if no equally ranked normalizations. 269

For each dataset, we generate ranked entity can- 270

didates from each model in Sec. 4. For models 271

that only natively link to UMLS, links to other KBs 272

are computed by predicting entities in UMLS (Bo- 273

denreider, 2004) and mapping these predictions 274

to other KBs using cross references provided by 275

UMLS and OBOFoundary (Smith et al., 2007) . 276

Predictions are ranked and evaluated using recall 277

@ k for k ∈ {1, 2, . . . , 10} (note that recall@1 is 278

equivalent to accuracy). All evaluations are per- 279

formed using the basic evaluation strategy unless 280

otherwise specified. 281

5.1 Error Analysis 282

For errors in the dataset, we analyze the following: 283

Stage of EL failure: For incorrectly linked men- 284

tions, did the failure occur in CG or NED phase? 285

For failures that occur in candidate generation 286

phase, what proportion of generated candidates 287

have the correct semantic type/semantic group? 288

Failure subgroups: When a model fails, can we 289

identify slices with high/low chances of failure? In- 290

spired by Orr et al. (2021), we investigate possible 291

failure modes could including: 292
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Figure 2: Recall@K for all models using strict evaluation.

• Entity type. Are entities of particular types293

frequently linked incorrectly? Are generated294

candidates in the correct semantic type/group?295

• Level of supervision. How often are incor-296

rectly linked entities present in the training297

data?298

• Available metadata. Do incorrectly linked sur-299

face forms match aliases in the KB? Are KB300

entities with few aliases and/or no definition301

more likely to be incorrectly linked?302

Common Misunderstandings: There are some303

cases where all models in our comparison find the304

incorrect entity link in our data. We manually ex-305

amined cases where all BioEL models provided an306

incorrect entity link. Correspondingly, we describe307

the common mistakes made by current BioEL mod-308

els.309

6 Results310

Our main result in Table 4 shows the recall@1311

(accuracy) and recall@5 of each model across all312

of the datasets. This estimates how well models313

perform both on candidate ranking and overall can- 314

didate generation. Here ArboEL outperforms most 315

models across the majority of datasets. An addi- 316

tional visualization of how recall@k changes for 317

for k = 1, . . . , 10 is shown in Figure 2. 318

6.1 Performance on specific entity types 319

While most of the datasets evaluated contain only 320

1-2 entity types, MedMentions contains 127 dis- 321

tinct entity types split into 10 semantic groups. 322

Similarly, both NLM-Gene and GNormPlus link 323

gene mentions from many different species. We 324

compared whether models perform better on spe- 325

cific semantic groups (MedMentions) or on genes 326

from specific species (NLM-Gene). The results are 327

shown in Tables 5 and 12 (Appendix) respectively. 328

6.2 Performance on entities with limited 329

metadata 330

We analyzed the models’ performance on differ- 331

ent data slices, as described in section 5. Linked 332

entities are biased towards more commonly seen 333

entities, which enables more robust extrapolation 334

of model zero-shot performance and performance 335

on entities with limited metadata (e.g. aliases, def- 336
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BC5CDR MM-Full MM-ST21PV GNormPlus NLM-Chem NLM-Gene NCBI-Disease
1 5 1 5 1 5 1 5 1 5 1 5 1 5

SapBERT 0.883 0.934 0.611 0.786 0.637 0.788 0.234 0.614 0.812 0.889 0.075 0.348 0.753 0.896
MetaMap 0.828 0.856 0.588 0.731 0.568 0.699 0.624 0.633 0.680 0.707 0.261 0.263 0.669 0.712
KRISSBERT 0.735 0.766 0.591 0.755 0.559 0.701 0.079 0.087 0.560 0.596 0.279 0.482 0.752 0.803
SciSpacy 0.780 0.830 0.582 0.759 0.572 0.741 0.471 0.772 0.467 0.503 0.163 0.349 0.680 0.780
MedLinker 0.720 0.767 0.568 0.662 0.521 0.627 0.178 0.469 0.514 0.542 0.084 0.255 0.545 0.768
ClusterEL 0.876 0.938 0.696 0.851 0.692 0.849 0.302 0.448 0.758 0.868 0.490 0.676 0.748 0.801
ArboEL 0.921 0.958 N/A N/A 0.747 0.890 0.441 0.524 0.828 0.882 0.543 0.734 0.774 0.832
BioBART 0.572 0.733 0.548 0.764 0.496 0.700 0.175 0.499 0.512 0.650 0.051 0.229 0.423 0.608
BioGenEL 0.909 0.953 0.567 0.763 0.520 0.691 0.081 0.281 0.786 0.879 0.043 0.233 0.518 0.692

Table 4: Recall@1 (accuracy) and recall @ 5 of all models.

Semantic Group SapBERT MetaMap KRISSBERT SciSpacy ClusterEL ArboEL BioBART BioGenEL Prevalence

Disorders 0.083*** 0.065*** 0.026*** 0.071*** 0.038*** 0.033*** 0.051*** 0.073*** 0.202
Chemicals & Drugs -0.027*** -0.011 -0.103*** 0.007 -0.045*** -0.034*** -0.101*** 0.0 0.185
Procedures -0.097*** -0.133*** 0.018* -0.127*** -0.019** -0.009 -0.039*** -0.076*** 0.165
Living Beings 0.063*** 0.031*** 0.045*** 0.043*** 0.043*** 0.047*** 0.1*** 0.053*** 0.099
Physiology -0.004 -0.06*** 0.046*** -0.001 0.04*** 0.016 0.068*** 0.024* 0.095
Concepts & Ideas -0.011 0.049*** 0.06*** -0.019 -0.014 -0.029*** 0.038*** -0.018 0.092
Anatomy 0.058*** 0.125*** 0.047*** 0.073*** 0.035*** 0.031*** 0.014 0.059*** 0.082
Genes & Molecular Sequences -0.144*** -0.098*** -0.192*** -0.14*** -0.152*** -0.129*** -0.153*** -0.249*** 0.028
Other -0.03* 0.027 -0.039** 0.008 -0.039*** -0.032** -0.04** -0.112*** 0.055

Table 5: Performance on different semantic groups within MedMentions. *p<0.05; **p<0.01; ***p<0.001 after
Bonferroni correction.

initions, etc). Results for MedMentions ST21PV337

are shown in Table 6.338

6.3 Failure Stage339

Most entity linking models consist of two stages,340

CG and NED. Therefore, it is useful to see at which341

stage each model failed. If a model is not choosing342

a set of candidates with the correct entity in the CG343

stage, the NED stage will never be able to choose344

the correct one. Table 7 shows how errors are split345

between candidate generation and reranking for346

each model.347

7 Discussion348

Of the models evaluated, there was no model that349

clearly performed "best" for all datasets or eval-350

uation metrics. However, ArboEL showed con-351

sistent high performance and was always among352

the highest performing models on each dataset.353

SapBERT was arguably the best performing alias354

matching method, sometimes surpassing ArboEL355

in recall@5 for various datasets.356

One noteworthy result is the relatively poor per-357

formance of all models in Table 4 on gene recogni-358

tion. For alias matching models we see significant359

increases in recall@k as k increases on both NLM-360

Gene and GNormPlus than we do for any other361

datasets. We hypothesize this is due to gene aliases362

being poorly differentiated between species. This363

is supported by the steeply increasing recall@k 364

performance of autoregressive and alias matching 365

models, which cannot differentiate between multi- 366

ple entities containing the same alias. Comparison 367

to the recall@k curves under a relaxed evaluation 368

(Figure 11, Appendix) reveals that these models 369

are excellent at finding the correct alias but lack the 370

capacity to choose the correct entity from among 371

them. 372

For datasets focusing on chemicals and diseases 373

(BC5CDR, NCBI-Disease, NLM-Chem), curves 374

comparing recall from 1 - 10 flatten out quickly; 375

this result indicates that when the correct candidate 376

is retrieved, it is generally ranked highly. 377

7.1 Failure Stage 378

Failure stage varies widely by dataset and model. 379

MetaMap, KRISSBERT, tend to struggle most with 380

candidate generation BioBART and BioGenEL 381

make most of their errors in entity disambigua- 382

tion. Other models tend to more evenly distributed, 383

with failure stage being highly dataset dependent. 384

Overall, these results indicate that substantial gains 385

can be made to EL through work on both CG and 386

NED. 387

7.2 Impact of Abbreviation Resolution 388

Abbreviation resolution (AR) is commonly used as 389

a means to potentially improve the performance of 390
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Slice SapBERT MetaMap KRISSBERT SciSpacy ClusterEL ArboEL BioBART BioGenEL Prevalence

is_abbrev 0.037*** 0.08*** -0.062*** 0.076*** -0.023* 0.003 -0.038*** 0.023* 0.091
has_alias_match 0.28*** 0.289*** 0.114*** 0.298*** 0.205*** 0.194*** 0.064*** 0.161*** 0.157
no_alias_match -0.052*** -0.054*** -0.021*** -0.055*** -0.038*** -0.036*** -0.012*** -0.03*** 0.843
wrong_alias_match -0.259*** -0.213*** -0.129*** -0.175*** -0.156*** -0.15*** -0.156*** -0.213*** 0.081
train_text_match 0.094*** 0.082*** 0.23*** 0.077*** 0.124*** 0.099*** 0.094*** 0.077*** 0.556
train_entity_match 0.015*** 0.023*** 0.163*** 0.011*** 0.058*** 0.046*** 0.037*** 0.017*** 0.774
single_alias -0.075*** -0.117*** -0.041*** -0.148*** 0.005 -0.031*** -0.116*** -0.133*** 0.096
five_alias_or_less -0.074*** -0.085*** -0.055*** -0.085*** -0.04*** -0.051*** -0.056*** -0.079*** 0.448
no_definition -0.101*** -0.157*** -0.262*** -0.126*** -0.158*** -0.144*** -0.152*** -0.113*** 0.196
zero_shot -0.051*** -0.08*** -0.559*** -0.038*** -0.2*** -0.157*** -0.128*** -0.059*** 0.226

Table 6: Performance differential of models on various slices of data, micro-averaged over all datasets. *p<0.05;
**p<0.01; ***p<0.001 after Bonferroni correction.

Model BC5CDR MM-Full MM-ST21PV GNormPlus NLM-Chem NLM-Gene NCBI-Disease
CG NED CG NED CG NED CG NED CG NED CG NED CG NED

SapBERT 0.552 0.448 0.462 0.538 0.546 0.454 0.058 0.942 0.511 0.489 0.141 0.853 0.257 0.743
MetaMap 0.836 0.164 0.640 0.360 0.682 0.318 0.976 0.024 0.914 0.086 0.996 0.004 0.868 0.132
KRISSBERT 0.860 0.140 0.541 0.459 0.628 0.372 0.991 0.009 0.894 0.106 0.668 0.332 0.744 0.256
SciSpacy 0.613 0.383 0.430 0.566 0.441 0.555 0.331 0.669 0.819 0.181 0.729 0.267 0.590 0.407
MedLinker 0.783 0.217 0.689 0.311 0.689 0.311 0.323 0.677 0.919 0.081 0.499 0.501 0.410 0.590
ClusterEL 0.310 0.688 0.297 0.698 0.292 0.703 0.669 0.324 0.399 0.599 0.475 0.519 0.620 0.380
ArboEL 0.403 0.597 NaN NaN 0.275 0.722 0.780 0.219 0.536 0.464 0.477 0.521 0.677 0.323
BioBART 0.291 0.709 0.306 0.691 0.325 0.672 0.202 0.795 0.320 0.680 0.375 0.619 0.242 0.747
BioGenEL 0.308 0.692 0.353 0.644 0.417 0.582 0.510 0.481 0.324 0.676 0.358 0.639 0.449 0.544

Table 7: Stage of model (CG or NED) at which entity linking failed.

EL models. We investigated to what extent this is391

true by running each of the models with and with-392

out AR. The results, shown in Table 8, indicate that393

AR has a positive, statistically significant effect394

overall on EL performance. In fact, it improved395

performance by up to 69.5% on abbreviated enti-396

ties in some datasets. However, this was not the397

case for gene normalization where AR showed neg-398

ative or insignificant effect. We hypothesize this is399

because genes are more commonly referred to by400

their abbreviations than by their longer full names,401

which limits the usefulness of AR.402

7.3 Robustness on Slices + Zero Shot403

In addition to AR, we evaluated how models per-404

formed on different subsets of the data. Some com-405

mon entity characteristics, along with their perfor-406

mance, are shown in Table 6. A plot of performance407

in low-data slices (no/wrong alias match in training408

data; few aliases in KB; zero-shot performance)409

for MedMentions are shown in Figure 3. Unsur-410

prisingly, we see that the models have significantly411

improved performance on entities that match an412

alias in the target ontology; are in the training set;413

or have definitions. The models performed worse414

when the mention matches the alias of a different415

entity; when ground-truth entity does not have a416

definition; and when only few aliases are present417

Figure 3: Performance on zero-shot, few alias, and
unmatched/mismatched test set instances, evaluated on
MedMentions ST21PV.

for an entity in the ontology. We also see that per- 418

formance degrades zero-shot, but this degradation 419

proportion seems lowest in alias matching mod- 420

els. Overall zero-shot performance is highest on 421

ArboEL, followed by SapBERT. 422

Taken as a whole, these results indicates that 423

"in the wild" entity linking performance will suffer 424

for entities outside of the training distribution, but 425

these effects can be mitigated model choice. 426
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Dataset SapBERT MetaMap KrissBERT SciSpacy ClusterEL ArboEL

BC5CDR 0.598*** 0.588*** 0.136*** 0.695*** 0.329*** 0.263***
MM-Full 0.426*** 0.472*** 0.142*** 0.408*** 0.181*** N\A
MM-ST21PV 0.398*** 0.454*** 0.131*** 0.403*** 0.187*** 0.198***
GNormPlus 0.039 0.004 0.019 -0.169*** -0.039 0.004
NLM-Chem 0.644*** 0.602*** 0.058*** 0.548*** 0.33*** 0.375***
NLM-Gene 0.058 0.018 -0.003 0.003 -0.063 -0.087
NCBI-Dis 0.139** 0.468*** 0.035 0.381*** 0.221*** 0.091
Overall 0.447*** 0.464*** 0.095*** 0.426*** 0.22*** 0.227***

Table 8: Effects of abbreviation resolution on performance for abbreviated entities. *p<0.05; **p<0.01; ***p<0.001
after Bonferroni correction.

Figure 4: Comparison of training time vs. top-1 entity
linking accuracy for BioEL models. All experiments
performed on a single NVIDIA A40 GPU.

7.4 Scalability427

Scalability is critical for deploying models in prac-428

tice. To measure the scalability of the models, we429

compared training and evaluation time on Med-430

Mentions. We compared training time in Figure 4431

and evaluation time in Figure 5 (Appendix). When432

a model came pretrained, we list the loading and/or433

dictionary embedding time as its training time. We434

generally found that simpler alias matching models435

tended to be faster than autoregressive and contex-436

tualized models.437

7.5 Usability, Adaptability, Reproducibility438

We compared the usability and reproducibility of439

models in Table 3. At the time of our evaluation,440

most available research models for EL lacked some441

or all important elements of reproducibility. For442

example, a surprising number of models lacked443

instructions on how to test their method on a dif-444

ferent dataset and many models had poor/outdated445

usage documentation. Some were missing critical446

details needed to reproduce reported experiments447

or to simply to run the baseline model. At the time448

of our evaluation, SciSpacy had the best documen-449

tation and use instructions. MedLinker, BioGenEL, 450

and ArboEL were the most difficult to adapt and 451

reproduce. 452

8 Limitations and Future Work 453

8.1 Limitations 454

One limitation of our paper is a lack of extensive 455

hyperparameter tuning due to compute constraints. 456

While we did perform early stopping on multiple 457

methods to find the optimal amount of model train- 458

ing, we did not perform an exhaustive hyperparam- 459

eter search for the models listed. For most models, 460

we followed the parameter choices listed by the 461

authors in their respective papers. 462

8.2 Future Directions 463

Large language models (LLMs), such as GPT 3.5 464

(Ouyang et al., 2022), PaLM (Chowdhery et al., 465

2022), and BLOOM (Scao et al., 2022) have shown 466

powerful few and zero-shot performance at a vari- 467

ety of tasks. However, these models are known to 468

hallucinate and produce factually incorrect informa- 469

tion. To our knowledge, little work has been done 470

to analyze how well these models can correctly link 471

entities, especially biomedical entities that may not 472

be well represented within their training distribu- 473

tions. An evaluation of LLM-based EL stands to 474

both improve the performance of BioEL models 475

while also improving the quality and accuracy of 476

LLM-generated text. 477

9 Conclusion 478

Entity linking is an essential task for knowledge- 479

intensive natural language processing and is par- 480

ticular in scientific and biomedical domains. This 481

paper presents a systematic evaluation of BioEL 482

models along axes of performance, scalability, us- 483

ability, and robustness, enabling more principled, 484

rigorous development and evaluation of future en- 485

tity linking work. 486
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A Datasets720

A.1 Additional Dataset Statistics721

Table 9 presents key statistcs about our datasets,722

particularly about the variety of mentions and ab-723

breviations seen in the datasets724

A.2 Dataset Descriptions725

Detailed descriptions of datasets included in our726

paper are as follows. Table 10 describes overlap727

of entities and mentions between the train and test728

sets.729

MedMentions (MM) (Mohan and Li, 2019) is730

a collection of 4,392 randomly selected PubMed731

abstracts linked to the Unified Medical Language732

System (UMLS). Each abstract is comprehensively733

annotated with all terms from UMLS, making Med-734

Mentions the largest and most comprehensive EL735

dataset containing span-level annotations. Due to736

the diversity of UMLS entity types, some cate-737

gories are not particularly relevant to the majority738

of biomedical research (e.g. “Professional Group”).739

Accordingly, MM is most commonly evaluated on740

the ST21PV subset, which filters candidate entities741

to come from 18 high-quality ontologies and to fall742

under 21 semantic type groups.743

Biocreative V CDR (BC5CDR) (Li et al., 2016)744

is a subset of 1,500 abstracts with chemical and dis-745

ease annotations from the Comparative Toxicoge-746

nomics Database. Tagged diseases and chemicals747

are linked to the MeSH ontology.748

GNormPlus (Wei et al., 2015) is a benchmark749

of 694 PubMed abstracts annotated with gene men-750

tions linked to the Entrez ontology of genes. It con-751

tains the BioCreative II gene mention (BC2BM)752

task as a subset and an additional set of 151 anno-753

tated abstracts.754

NLM Chem Corpus (Islamaj et al., 2021a) rep-755

resents the most diverse gold-standard chemical756

entity linking corpus. Chemical mentions in 150757

PMC full-text articles are normalized to MeSH.758

NLM Gene Corpus (Islamaj et al., 2021b) is 759

a corpus of over 500 full-text articles with gene 760

mentions linked to Entrez gene. 761

NCBI Disease Corpus (Doğan et al., 2014) 762

links disease mentions in PubMed abstracts to the 763

NCBI disease ontology. 764

B Additional details on included models 765

Here we provide additional details about the al- 766

gorithms used by included models to supplement 767

4. 768

A wide variety of methods have been used for 769

BioEL. Here we describe families of models used 770

for BioEL and list included models from each cate- 771

gory. More detailed descriptions of each individual 772

model are found in Appendix B We summarize the 773

different models evaluated in Table 3. 774

B.1 Alias Matching EL 775

SciSpacy (Neumann et al., 2019) SciSpacy is 776

a widely used, off-the-shelf library which offers a 777

diversity of pipelines and models for identifying 778

and linking entities in biomedical documents. SciS- 779

pacy jointly performs named entity recognition and 780

abbreviation detection for end-to-end EL. EL is 781

performed using TF-IDF matching on character 782

3-grams of entity mentions. 783

MetaMap (Aronson and Lang, 2010) MetaMap 784

is a tool developed by the National Library of 785

Medicine (NLM), first used in 1994. It uses nat- 786

ural language processing to map biomedical enti- 787

ties to concepts in the Unified Medical Language 788

System (UMLS) Metathesaurus. Input undergoes 789

syntactic/lexical analysis, where candidate con- 790

cepts and mappings are generated from phrases 791

found. MetaMap’s usage is highly configurable, 792

both in processing and display options. Output can 793

be shown excluding or restricting semantic types, 794

specific vocabularies, concept unique identifiers 795

(CUIs), etc. Its generation of word variants is thor- 796

ough, and it is domain independent. On the other 797

hand, MetaMap is limited to the English language. 798

Computational speed is relatively slow, especially 799

in the case where complex phrases are present. 800

BioSyn (Sung et al., 2020) BioSyn performs EL 801

by normalizing each mention surface form to the 802

best alias seen at training time. It does this via 803

a combination of character-level sparse mention 804

features and learned dense vector representations 805
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Dataset Total Men-
tions

Unique
Mentions

Total Abbrevi-
ations

Unique Abbre-
viations

BC5CDR 29,018 5,915 2,811 388
GNormPlus 6,252 2,180 991 196
MM-Full 352,312 90,842 22,399 3,906
MM-ST21PV 203,185 65,947 18,701 3,398
NCBI Disease 6,881 2,136 1,611 143
NLM Gene 15,553 5,298 2,356 462
NLM Chem 37,999 4,706 8,684 372

Table 9: Metadata for each dataset

Dataset Ent. Overlap Ment. Overlap

MedMentions Full 0.6199 0.8221
MedMentions ST21PV 0.5755 0.7741
BC5CDR 0.5300 0.7733
GNormPlus 0.0789 0.0838
NCBI Disease 0.6700 0.8156
NLM Chem 0.4747 0.6229
NLM Gene 0.4819 0.5408

Table 10: Overlap between entities train and test sets.
Mention overlap refers to the proportion of mentions in
the test set whose entities are in training set mentions.

of each mention and entity, which are trained via806

an alias table such as the UMLS metathesaurus.807

SapBERT (Liu et al., 2021) SapBERT (for808

“self-alignment pretraining BERT”) fine-tunes a809

BioBERT () model to treat each alias of an en-810

tity equivalently and to map entity mentions to an811

alias contained in UMLS. Zhang et al. (2021) point812

out that SapBERT is unable to distinguish between813

aliases shared by multiple entities and returns all814

entities with an alias matching the normalized sur-815

face form.816

Contextualized EL817

MedLinker (Loureiro and Jorge, 2020)818

MedLinker was one of the first EL works evaluated819

on MedMentions. It combines a BiLSTM model820

pre-trained on biomedical literature with approx-821

imate string matching from UMLS to conduct822

zero-shot EL (Mohan and Li, 2019).823

ClusterEL (Angell et al., 2021) ClusterEL takes824

a unique approach to EL by treating linking as a825

supervised clustering problem. ClusterEL begins826

by creating an similarity graph of mentions within827

each document, which is then refined via edge re-828

moval until each cluster contains a maximum of829

one entity. This strategy has the dual benefit of 830

jointly modeling EL with co-reference, enabling 831

the NED model to compensate for failures that 832

may occur in the candidate generation phase of EL. 833

Since original implementation of ClusterEL has 834

been merged into ArboEL, we evaluate ClusterEL 835

as the graph-based reranking of the candidates re- 836

trieved by ArboEL’s candidate retrieval biencoder 837

(described below). 838

ArboEL (Agarwal et al., 2022) ArboEL extends 839

the work in ClusterEL by improving the scalability 840

and training regimen of ClusterEL. While ArboEL 841

uses a bi-encoder similar to (Wu et al., 2020), it also 842

incorporates a training scheme based on a mention- 843

mention similarity graph to identify hard negatives, 844

which ultimately lead to better model precision. 845

KRISSBERT (Zhang et al., 2021) KRISSBERT 846

presents a self-supervised framework for EL using 847

contrastive learning on distantly supervised entity 848

mentions. After distantly labeling a large number 849

of potential entity links with the UMLS metathe- 850

saurus, KRISSBERT learns a set of “prototypes” 851

for each entity by training the model to separate 852

mentions of different entities. They show that this 853

can be extended to a supervised setting without 854

additional fine-tuning by simply swapping noisy 855

prototypes for supervised ones, which achieves per- 856

formance on-par with the best supervised EL mod- 857

els. 858

B.2 Autoregressive EL 859

BioGenEL and BioBART (Yuan et al., 2022b,a) 860

BioGenEL adapts BART (Lewis et al., 2020) to 861

perform entity linking via sequence-to-sequence 862

modeling. It is trained to generate the correct sur- 863

face form for an entity mention. BioBART uses 864

the same procedure to generate text but addition- 865

ally provides a BART model with a biomedical 866
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vocabulary and pre-trained on biomedical text.867

C Model Evaluation Details868

C.1 MetaMap869

A single-line delimited input text file was generated870

with the unique text mentions from each dataset.871

The metadata are shown in Table 6. MetaMap’s872

highly customizable nature means that many pa-873

rameters can be altered to see the impact on model874

performance. Six parameters were adjusted for875

each dataset: model year, semantic types, vocab-876

ularies, strict or relaxed model, and term process-877

ing (Demner-Fushman et al., 2017). Term process-878

ing was added with relaxed model runs, as there879

was no significant difference between strict and re-880

laxed model performance otherwise. For each run,881

the NLM data version was used, which includes882

the full UMLS other than a select number of vo-883

cabularies (Demner-Fushman et al., 2017). The884

2022AA version was used for all datasets except885

for MedMentions, as those were originally anno-886

tated with the 2017AA UMLS. MetaMap does not887

handle non-ASCII characters, so we pre-processed888

input through a Java file that replaces/removes non-889

ASCII characters. A mapping was generated that890

keeps track of the terms that are altered, so evalua-891

tion can be done correctly.892

C.2 Evaluation Strategy for MetaMap893

We performed a grid search over multiple different894

MetaMap settings, including strict vs relaxed895

model, term processing, and with/without WSD.896

WSD did not provide significant improvements897

in model performance and is not included in898

the repository; adding the flag to the MetaMap899

command would suffice to compare the results.900

For all datasets, using the relaxed model produced901

the best results. Four methods of evaluation were902

tested from toggling two options: 1) ranking903

mappings first, and/or 2) resolving abbreviations.904

In addition to candidate concepts, MetaMap905

generates mappings, which are groups of the most906

promising candidates. A key point of interest when907

evaluating MetaMap was seeing whether ranking908

mappings first would improve evaluation metrics909

over ranking candidates first. Another salient point910

was examining the impact of expanding abbre-911

viations. For example, the abbreviation for the912

chemical OCT can be expanded to 22-oxacalcitriol,913

which may improve MetaMap performance. The914

abbreviations within the datasets are expanded915

from mappings for each PMID, and the expanded 916

forms are added to the original text in each dataset. 917

For each method, we selected the configuration 918

of parameters that maximized recall at 1, which 919

varied between ranking mappings first but almost 920

always resolved abbreviations. 921

922

D Additional Results, Discussion, and 923

Analysis 924

D.1 Runtime Comparison 925

In addition to training time, we also measured the 926

evaluation time of each included model. The results 927

comparing eval time and accuracy are pictured in 928

Figure 5. 929

Figure 5: Comparison of evaluation time vs. top-1 entity
linking accuracy for

D.2 Relaxed Evaluation 930

We provide full results for the models evaluated 931

under a relaxed evaluation strategy. A table of 932

results is given in Table 11 with a corresponding 933

plot of recall @ k in Figure 6 934

D.3 Slice-specific Model Performance 935

Here we include additional data on the performance 936

of models on various data slices and entity types. 937

Table 12 presents data on performance differentials 938

for different species included in NLM-Gene. 939

D.4 Prediction Correlation 940

It is useful to know to what extent models make 941

similar predictions to know how well they could 942

be ensembled to improve overall results. We ac- 943

cordingly plot the correlation of whether the top-1 944

predictions match for each model. The results, pic- 945

tured in Figure 7, indicate that models are generally 946
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BC5CDR MM-Full MM-ST21PV GNormPlus NLM-Chem NLM-Gene NCBI-Disease
1 5 1 5 1 5 1 5 1 5 1 5 1 5

sapbert 0.883 0.934 0.725 0.814 0.695 0.794 0.795 0.944 0.812 0.889 0.716 0.867 0.833 0.929
metamap 0.828 0.856 0.588 0.731 0.568 0.699 0.624 0.633 0.680 0.707 0.261 0.263 0.669 0.712
krissbert 0.736 0.766 0.591 0.755 0.559 0.701 0.081 0.087 0.562 0.596 0.286 0.494 0.754 0.803
scispacy 0.772 0.797 0.799 0.807 0.778 0.789 0.836 0.854 0.426 0.484 0.396 0.399 0.752 0.752
medlinker 0.720 0.767 0.568 0.662 0.521 0.627 0.178 0.469 0.514 0.542 0.084 0.255 0.545 0.768
arboel_biencoder 0.876 0.938 0.696 0.851 0.692 0.849 0.302 0.448 0.758 0.868 0.490 0.676 0.748 0.823
arboel_crossencoder 0.921 0.958 0.000 0.000 0.747 0.890 0.441 0.524 0.828 0.882 0.543 0.734 0.774 0.832
biobart 0.572 0.733 0.662 0.800 0.544 0.711 0.696 0.847 0.512 0.650 0.521 0.714 0.457 0.689
biogenel 0.909 0.953 0.686 0.793 0.562 0.698 0.350 0.527 0.786 0.879 0.504 0.698 0.582 0.733

Table 11: Top-1 and top-5 accuracy of all models using relaxed evaluation.

Figure 6: Recall@K for all models using relaxed evaluation.

Taxonomy SapBERT MetaMap KRISSBERT SciSpacy ClusterEL ArboEL BioBART BioGenEL Prevalence

Homo sapiens -0.021 0.307*** 0.064*** 0.201*** 0.125*** 0.107*** -0.029*** -0.014 0.447
Mus musculus -0.048*** -0.246*** 0.029 -0.162*** -0.01 0.016 -0.04*** -0.031*** 0.351
Rattus norvegicus -0.075*** -0.244*** -0.16*** -0.163*** -0.249*** -0.368*** -0.046** -0.043** 0.090
Saccharomyces cerevisiae 0.046 -0.261*** -0.204*** -0.163*** -0.256*** -0.216*** 0.071** 0.069** 0.039
Danio rerio 0.49*** -0.261*** -0.279*** -0.163** -0.316*** -0.225** 0.573*** 0.551*** 0.025
Arabidopsis thaliana 0.601*** -0.261** -0.279** -0.163 -0.196 -0.161 0.361*** 0.045 0.012
Ovis aries -0.038 -0.261* -0.279** -0.163 -0.045 0.086 -0.014 -0.006 0.010
Caenorhabditis elegans 0.675*** -0.261 0.021 -0.163 -0.19 0.157 0.549*** 0.507*** 0.007
other 0.365*** -0.261*** -0.179* -0.163* -0.41*** -0.323*** 0.309*** 0.017 0.018

Table 12: Performance on genes of different species within NLM-Gene. *p<0.05; **p<0.01; ***p<0.001 after
Bonferroni correction.
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somewhat closely correlated, but differ sustantially947

on gene datasets.948
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Figure 7: Correlation of top-1 accuracy across datasets. Low and negative correlation indicate that models are able
to correctly link distinct subsets of data.
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