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Abstract

Prompt tuning, or “soft prompting,” replaces text
prompts to generative models with learned embed-
dings (i.e. vectors) and is used as an alternative
to parameter-efficient fine-tuning. Prior work sug-
gests analyzing soft prompts by interpreting them
as natural language prompts. However, we find
that soft prompts occupy regions in the embed-
ding space that are distinct from those contain-
ing natural language, meaning that direct compar-
isons may be misleading. We argue that because
soft prompts are currently uninterpretable, they
could potentially be a source of vulnerability of
LLMs to malicious manipulations during deploy-
ment.

1. Introduction
Prompt tuning is a method for automatically generating ef-
fective prompts for improving the few-shot performance of
large language models (LLMs) and other text-prompted gen-
erative models on a range of downstream tasks (Li & Liang,
2021; Lester et al., 2021; 2022). A small number of param-
eters that correspond to a fixed number of latent “tokens” is
prepended to the input embedding of a frozen model. These
parameters are then trained on task-specific data. The re-
sulting “soft” prompts typically achieve better performance
on the corresponding task than the best hand-engineered
prompts and perform similarly to other more computation-
ally expensive fine-tuning techniques. For these reasons,
and because soft prompts are more portable than fine-tuned
weights, they are growing in popularity in many areas. They
have shown to be effective for common NLP tasks such as
those present in the GLUE benchmark (Wang et al., 2018;
Lester et al., 2021) and other domains ranging from genomic
sequence modeling to image feature extraction and genera-
tion (Gal et al., 2022; Nguyen et al., 2023; Li et al., 2023a;
Su et al., 2023).
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Despite their effectiveness, little is understood about how
soft prompts improve model performance. In Lester et al.
(2021), it is suggested that soft prompt tokens may corre-
spond to natural language tokens in the model’s embedding
space and may thus function similarly to hand-engineered
prompts. Were this to be true, it should be possible to
“decode” soft prompts back into natural sequences with sim-
ilar properties, providing 1) a method for human decision-
makers to audit soft prompts and 2) insights for prompt
design in settings where soft prompting is not feasible (e.g.
when only black-box model access is available).

Unfortunately, in this work we provide evidence that soft
prompts do not correspond to natural language prompts in
general. Our work shows that interpretation of soft prompts
via naive mappings to natural language prompts can be
highly misleading, as the resulting natural language prompts
do not capture any of the effectiveness of the original soft
prompts. Our findings can be summarized as follows:

(1) After decoding soft prompts to natural language prompts
(Lester et al., 2021), we find that these decodings do not
preserve the effectiveness of the original soft prompts.

(2) We find that the geometry of soft prompt embeddings is
significantly different from natural language prompt embed-
dings, in terms of the magnitude and relative direction of
the embedding vectors.

(3) We show that soft prompt embeddings are fairly robust
to perturbations of magnitude, but are sensitive to changes
in direction. This helps explain why mapping soft prompts
to nearest natural language prompts results in a loss of
performance. In contrast to this, we find natural tokens in the
same examples are much more robust to these perturbations.

It is surprising that model inputs from parts of the embed-
ding space that are so dissimilar to any natural tokens (and
thus dissimiliar to the tokens the model was trained on)
are able to elicit changes in model behaviour akin to full
fine-tuning. We warn that, as prompt tuning becomes more
widespread across domains, this difficult-to-interpret model
pathology could potentially be exploited by malicious actors
to create attacks that are subtler and more powerful than
traditional adversarial examples composed of natural tokens
alone.
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2. Related work
Inspired by popular methods for specializing LLMs such as
“zero-” and “few-shot” manual prompting (Wei et al., 2022;
Lampinen et al., 2022), continuous prompt tuning was first
introduced as an efficient alternative to “lightweight” fine-
tuning (Houlsby et al., 2019). The method involves directly
training blocks of task-specific parameters prepended to a
frozen model’s input after the embedding layer exactly as if
they were natural token embeddings. In early work, a small
number of additional parameters were similarly prepended
to embeddings in each transformer layer (Li & Liang, 2021).
Later, these were shown to be unnecessary (Lester et al.,
2021; 2022). Prompt tuning can be very effective, achieving
comparable performance to fine-tuning methods that train
up to five orders of magnitude more parameters. Lester et al.
(2021) briefly explore the interpretability of soft prompts
by mapping soft tokens to the nearest natural tokens in the
model’s embedding space. They find that these nearest
neighbors lie in clusters of task-relevant words and hypothe-
size that soft prompts may be priming the model to interpret
the inputs in a task-specific domain, suggesting that soft
prompts may be learning “word-like” representations. In
this work, we provide evidence against this hypothesis.

Optimizing task-specific prompts directly in discrete token
space is an active parallel area of research. Jiang et al.
(2020) augments human-written prompts with heuristics
and filters candidates based on downstream metrics. Auto-
Prompt does so with guidance from model gradients (Shin
et al., 2020). More recently, Deng et al. (2022) uses rein-
forcement learning to directly optimize discrete prompts
with only black-box access to the LLM being queried. The
resulting prompts, while not necessarily interpretable, are
still limited to the model’s vocabulary and can not exhibit
the unusual properties of soft prompts we highlight here.

There is existing work on improving and explaining the
effectiveness of handcrafted prompting techniques like in-
context learning (Brown et al., 2020) and chain-of-thought
reasoning (Wei et al., 2022; 2023; Madaan & Yazdanbakhsh,
2022; Wang et al., 2022a). We find that soft prompts and
natural language prompts lie in distinct regions in the embed-
ding space, suggesting that soft prompting differs mechani-
cally from existing natural-language prompting techniques
and thus that these papers do not directly apply.

3. An empirical comparison of soft and
natural-language prompts

We study soft prompts as described in Lester et al. (2021).
Specifically, given a training set for a task and a frozen
language model, we train a “prompt” of k new token embed-
dings prepended to the embeddings of each input, where k
is a tunable hyperparameter. Thus, for a transformer model

f with embedding dimension d and vocabulary V , a soft
prompts s of k tokens is a k × d embedding matrix.

3.1. Natural-language decoding of soft prompts

We use the model embedding layer to create a bank of em-
beddings of all tokens in the model vocabulary (natural
tokens). We then decode soft prompts to their nearest neigh-
bor from this embedding bank. We consider two different
nearest-neighbor-based decoding strategies: (1) decoding
each soft token in s to its nearest natural-token neighbor by
cosine similarity (NNCS) and (2) doing the same using L2
distance (NNL2). To evaluate the effectiveness of decoded
prompts, after decoding a soft prompt s to a list of discrete
tokens t in the model’s vocabulary, we calculate the model
performance with t prepended to every example in the test-
ing set (replacing s). If prompts decoded in this fashion
perform better than the baseline model with no task-specific
prompting, then we can say that t “explains” at least some
aspects of the effectiveness of s.

Formally, we denote the unprompted model by f , the
model with trained soft prompts s by fs, and the same
model prompted with t by ft. Given a test set Dtest and
some performance metric L, we compare L(ft,Dtest) and
L(fs,Dtest).

3.2. Geometric analysis of soft prompts

We also compare soft prompts and natural language prompts
directly in the model’s embedding space.

First, we compute simple properties of natural tokens and
soft prompts, comparing magnitudes and proximities to
natural-token nearest neighbors.

Next, we study the sensitivity of soft prompts to perturba-
tions in magnitude. We consider transformations that reduce
the L2 norm of all “token” embeddings in the soft prompt
s by some factor k. Note that we only study reductions
in magnitude because we find that the magnitudes of soft
prompts already far exceed those of natural token embed-
dings. We then calculate the effect of the same perturbations
on natural language tokens input to the prompt-tuned model.

We also consider gradual rotations of soft token embeddings
in the directions of their discrete nearest neighbors in the
model’s vocabulary. Formally, for the ith soft token in s, si,
and its nearest natural token embedding by cosine similarity
ei, we rotate si towards ei by some angle θ. This rotation is
done in the plane spanned by ei and si. In the case where
θ would lead to rotating some si beyond ei, we simply
rotate si to ei and stop. Note that this case corresponds to
simply replacing the soft token with its nearest natural token
neighbor, as in the previous section. Again, we separately
repeat these experiments on the natural language tokens in
each example inputted to the prompt-tuned model.
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4. Experimental results
We use soft prompts of length 100 trained in the encoder
embedding space of the T5-lm-adapt-base model, a
T5 checkpoint fine-tuned for language modeling and open-
sourced by Lester et al. (2021). Prompts were trained on
the SST-2 (sentiment analysis), RTE (paraphrasing), and
MRPC (natural language inference) binary classification
tasks (Wang et al., 2018), each reformulated as text-to-text
tasks by replacing class labels of 0 and 1 with text labels
such as “positive” and “negative.” As in Raffel et al. (2020),
if a model output does not correspond to one of the prede-
fined class labels, the output is called a category error and is
considered incorrect. Note that the unprompted base model
consistently outputs category errors. Thus, one of the key
features of the soft prompt is to guide the model’s output to
text that corresponds to class labels.

4.1. Nearest-neighbor decoding

Using the method outlined in Section 3.1, we evaluate the
performance of discretized prompts created using NNCS

and NNL2 decoding. We find that in every case, while the
model using the full soft prompt is performant (achieving
94.8%, 89.5%, and 81.9% accuracy in the SST-2, MRPC,
and RTE tasks respectively), using the original model with-
out soft prompting and with the NNCS and NNL2 decoded
prompts always lead to 0% accuracy and 100% category er-
rors. Full results and the text decodings of the soft prompts
are shown in Tables 2 and 1 of the appendix respectively.
As noted by Lester et al. (2021), we see that soft prompts
may lie comparatively closer to words relevant to the target
tasks, evidenced by the target-labels of each tasks appearing
in some of the decodings. Despite this, these decodings fail
to preserve the efficacy of the original soft prompts. In fact,
these neighbors often fail to produce valid responses, some-
thing trivially achieved by soft prompting and fine-tuning
techniques. This suggests that the similarity between soft
prompts and these nearest neighbor tokens may be superfi-
cial.

4.2. Geometry of soft prompts

To better understand why nearest-neighbor decoding of soft
prompts fails, we compare soft prompt and natural language
prompt embeddings in terms of magnitude and relative di-
rection. The top panel of Figure 1 compares the distribution
of the magnitude of natural token embeddings (from the
T5-lm-adapt-base model) and soft token embeddings.
We see that for all three tasks, soft tokens have magnitudes
far exceeding those of natural token embeddings. The bot-
tom panel of Figure 1 compares the distribution of cosine
similarity (CS) to natural token nearest neighbors by CS for
natural tokens and soft tokens. The two distributions are
visibly different, as soft tokens have considerably smaller

cosine similarities to their CS nearest neighbors than their
natural counterparts. Together, these results indicate that
the geometry of soft prompt embeddings are qualitatively
distinct from that of natural prompt embeddings. They pro-
vide additional insight on why, in general, interpreting soft
prompts in natural language may be challenging.

4.3. Robustness of soft prompts

Finally, we examined the robustness of soft prompts to per-
turbation in magnitude and direction (defined in Section 3).
The results are shown in Figure 2. From the left panel, we
see that, across all tasks, soft prompts are robust to reduc-
tions in magnitude. We note that reasoning about changes in
magnitude in high-dimensional embedding space is difficult.
To qualitatively ground our reductions in magnitude, we
compare them to the L2 distances between natural token
embeddings. On average across soft prompts, a reduction in
magnitude of 3x reduces soft token magnitude by 700 units.
We found the maximum L2 distance between a natural token
embedding and its L2 nearest neighbor was 590 (see Figure
3 in the appendix), and the maximum L2 distance between
any two natural token embeddings was 760. Thus, we can
consistently perturb the magnitude of soft prompts by an
average amount that exceeds the L2 distance between all
natural tokens and their L2 nearest neighbors (and perturb
by an average amount that approaches the largest distance
between any two natural token embeddings) before seeing
a significant performance drop. Conversely, decreasing the
magnitude of each example’s natural tokens, leaving the soft
prompt untouched, has a much less dramatic effect, even
improving performance on two of three tasks; on MRPC,
a magnitude reduction factor of 6 gives an accuracy im-
provement of 8 percentage points. Full results are shown in
Figure 4 in the appendix.

Figure 2 (right) shows our results for perturbations in soft
prompt direction. We see a consistent drop-off in model per-
formance when soft prompts are rotated beyond 30 degrees
towards their CS nearest-neighbor. The cosine similiar-
ity of two vectors that differ in direction by 30 degrees is
cos(30◦) = 0.866. This value is shown as a black dotted
line in Figure 1. We found only 0.66% of natural tokens
have a cosine similarity to their nearest neighbor of at least
0.866. Thus, we see a significant drop-off in performance
even after perturbing the directions of soft prompts by a
small angle: an angle that separates only 0.66% of natural
tokens from their CS nearest neighbors. In contrast, these
prompts are robust to a magnitude-perturbation larger than
the distance between all natural tokens and their L2 nearest
neighbors. From this, we conclude that soft prompts are
far more robust to changes in magnitude than direction. In
Figure 4 we perform the same perturbations on natural lan-
guage tokens in model inputs. Unsurprisingly, we do not
observe a comparable loss in accuracy.
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Figure 1. Soft prompts are far from discrete tokens in both magnitude and direction. Top: Histograms of the L2 norm of natural token
embeddings (blue) and soft prompts (red) for T5-lm-adapt-base. Bottom: Histograms of the largest cosine similarity between
natural tokens (blue)/soft prompt tokens (red) and any natural token embedding in the vocabulary. The vertical line indicates a cosine
similarity of 0.866 = cos(30◦). Note the y-axis scale is different for each embedding type.

We note that no soft token differs from its natural token
CS nearest neighbor by less than 30 degrees. It stands to
reason that NNCS and NNL2 decoding both fail to produce
performant discrete prompts; across all three tasks, soft
prompts are not robust to the changes in direction effectively
induced by such a decoding.

5. Discussion
Our findings raise several important questions about the
interpretability and safety of soft prompts in LLMs. They
also shed light on some intriguing characteristics of LLMs
and provide directions for future research.

Our results point to a potentially undesirable feature of
LLMs: that the behavior of these models on out-of-
distribution inputs like soft prompts cannot be extrapo-
lated from their performance on training data. The sur-
prising, and often undesirable, generalization of complex
models to OOD data has been studied in other deep models
(Chakraborty et al., 2018; Kirichenko et al., 2020).

The difficulty of interpreting soft prompts also raises con-
cerns about their usage in deployment. Specifically, it opens
a potential avenue for adversarial attacks on LLMs that
are difficult to detect and mitigate—the model can be mali-
ciously manipulated to behave in undesirable ways through
the clever usage of soft prompts that are difficult for humans
to detect. We stress that, because soft prompts differ so

dramatically from natural-language prompts, it is likely that
they allow for unique attacks unlike those already possible
with natural-language prompts alone (Wallace et al., 2021;
Rao et al., 2023).

An obvious way to avoid soft prompt attacks would be to
simply not allow users to input soft prompts into deployed
models. In some scenarios, however, this may not be pos-
sible. We are seeing an increasing trend of incorporating
multimodal inputs to LLMs by simply using a shared em-
bedding space across inputs attached to a pretrained LLM
(Su et al., 2023). Vision Language Models (VLMs) are a
typical example, with models such as LLaVA (Liu et al.,
2023), Mini GPT-4 (Gong et al., 2023), and BLIP-2 (Li
et al., 2023a) simply taking images in the input, encod-
ing them with a vision model, and projecting them to a
sequence of soft tokens in the embedding space of an LLM
such as FLAN-T5 (Chung et al., 2022) or LLaMA (Touvron
et al., 2023). Such multimodal inputs could provide an entry
point to out-of-distribution regions of the LLM’s embedding
space just like soft prompts, essentially allowing a user to
conceal an adversarial soft prompt within an unassuming
multimodal input. Rudimentary forms of this attack have
already been shown by Carlini et al. (2023), who created
adversarial images that, when inputted to VLMs such as
Mini GPT-4 and LLaVA, caused the model to produce toxic
outputs. In fact, their attacks were more effective when
exploiting image inputs of multimodal models rather than
attacking LLMs with natural language tokens.
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Figure 2. Left: Effect of reducing magnitude of soft prompts on model performance. Magnitude reduction is applied to all tokens in the
soft prompt. Right: Effect on model performance of incrementally rotating soft prompt token vectors in the directions of their nearest
neighbors by cosine similarity in the model’s vocabulary.

Separately, “textual inversion,” a technique analogous to
prompt tuning, has become a popular tool for personaliz-
ing large text-to-image models, allowing users to train soft
tokens corresponding to new concepts, objects, or styles
(Gal et al., 2022). These tokens can be used in prompts
just like real tokens, and unlike fully fine-tuned models, 1)
can easily be combined with other soft tokens and 2) are
lightweight enough to be easily distributed to other users.
Indeed, there already exists at least one large community
database of soft tokens trained for the Stable Diffusion, a
popular text-to-image model (Rombach et al., 2022).1 With-
out better tools for either understanding the effects of these
soft tokens or transforming them into more interpretable
counterparts, they too could potentially be used as attack
vectors.

Under this light, our findings underscore the importance
of more sophisticated investigations of how and why soft
prompts work, in relation both to how they can be improved
and also to the model pathologies they unveil. One potential
approach is to utilize mechanistic interpretability techniques
(Olah, 2022; Wang et al., 2022b; Nanda et al., 2023; Conmy
et al., 2023) to determine what parts of the model are uti-
lizing the soft prompt and how they contribute to the final
output. Understanding the mechanisms by which models
use soft prompts to specialize to target tasks can help us
to understand how soft prompting may be maliciously ex-
ploited and how we may defend against such attacks. For
example, we may find that soft prompts adversarially gen-
erated to cause a model to output toxic text consistently
activate certain regions of the model. Removing or editing
these regions may cause the model to be more robust to
such attacks. Here the adversarial soft prompt is being used
as a probe into the network to try and identify the circuits
involved in unwanted model behavior. Previous work has
used model interventions to change factual associations in
LLMs (Meng et al., 2022) and reduce the toxicity of LLMs

1The “Stable Diffusion concepts library” can be accessed here.

(Li et al., 2023b), but identified such interventions using
different methods.

An important limitation of our work is that we only study
prompts for a language model that performs relatively
poorly in zero- and few-shot evaluations. In the future,
we hope to repeat our experiments using larger and more
capable models.

6. Conclusion
This work analyzes simple methods for interpreting soft
prompts that are proposed in the literature. Our experi-
ments reveal that soft prompts differ from natural language
prompts in a number of key ways and that naive “decoding”
techniques are unable to produce natural-language interpre-
tations of soft prompts that can explain any of the latter’s
effectiveness. Together, the evidence suggests that soft
prompts operate according to different underlying mecha-
nisms than regular prompts. Neat analogies between the
two are therefore misleading, or worse; the unique proper-
ties of soft prompts could potentially expose models to new
types of malicious and difficult-to-detect manipulations in
deployment. In short, we caution that soft prompts may be
bugs rather than features of LLMs.
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Soft prompting might be a bug, not a feature

A. Prompt Properties
We show the full results for decoding soft prompts using NNCS and NNL2 and using resulting decoded tokens as prompts
in Table 2. We see that when using no prompt and either of the decoded prompt inputs, model performance falls to 0 as the
model starts exclusively outputting category errors. Narrowing the model output to the set of valid textual class labels is
one of the important model behaviours that the soft prompt elicits, yet we see that the decoded prompts fail to recreate this
behaviour on any of the input datapoints tested across all three tasks.

Table 1 shows the discrete decodings of the soft prompts produce by our two different nearest-neighbor decoding algorithms.
We see, as reported by Lester et al. (2021), that the text target labels for each task seem to appear in some of the decodings
(marked in red).

Task NNCS decoded soft prompt NNL2 decoded soft prompt
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Table 1. Result of decoding soft prompts nearest neighbors by cosine similarity (NNCS) and L2 distance (NNL2). We highlight in
red appearances of target text labels (either in full or fragments) in the decodings. The labels are “positive” and “negative” for SST-2,
“equivalent” and “not equivalent” for MRPC, and “entailment” and “not entailment” for RTE.
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Prompt Type SST-2 MRPC RTE
Soft Prompt 0.9484 0.8946 0.8195
No prompt 0 0 0

L2 Norm nearest-neighbors 0 0 0
Cosine Similarity nearest-neighbors 0 0 0

Table 2. Accuracy of T5-lm-adapt-base model on testing set using different prompting schemes

On top of the various properties of soft prompts presented in the main text, we also investigated the distribution of L2
distances to natural token L2 nearest neighbors for soft prompts and natural tokens. The results are shown in Figure 3. Here
we see that just like for CS nearest neighbors (shown in Figure 1), soft prompts have far larger L2 distances to nearest
neighbors than natural tokens. Soft prompts are located in unique neighborhoods of the embedding space.

Figure 3. Histograms showing smallest L2 distance of discrete token embeddings (blue) and soft prompts (red) to discrete token
embeddings. For discrete tokens, the largest difference between nearest neighbors is 756.83.

In Figure 4 (left), we provide the results of perturbing the magnitude of the embeddings of natural tokens in the prompt-tuned
model without perturbing the soft prompt tokens. Compared to the soft-prompt perturbations in Figure 2, the effects of
even extreme reductions in magnitude are either modestly negative or, surprisingly, even positive. We speculate that natural
tokens somehow interfere with the inference-time action or optimization of the soft prompt. Accordingly, reducing them
in magnitude may allow the soft prompt to have an even greater effect, more than compensating for the noise effectively
being added to model embeddings. Clearly, the soft prompt has a powerful ability to distort the inner workings of the
model, sometimes permitting downright unintuitive behavior. Rotating natural tokens towards their nearest neighbors in
the vocabulary by cosine similarity (excluding the tokens themselves) has a slighter footprint on the prompt-tuned model’s
accuracy; results are shown in the right panel of Figure 4. Together, Figure 2 and Figure 4 demonstrate that soft prompts are
quite brittle, apparently functioning differently from natural language tokens in model inputs.

B. Prompt Robustness
Figure 2 shows the effect of changing soft prompt magnitude and direction on task accuracy. Figure 5 also shows, at
each magnitude reduction factor and degree rotation, the proportion of inputs that resulted in category errors and the
non-category-error accuracy (that is the accuracy of the model when only considering valid outputs that correspond to
textual class labels). Interestingly, in almost all of the plots, we see that the overall accuracy reduction before the drop-off
comes from reductions in non-category-error accuracy, and the large breakdowns in accuracy are caused by increased
category errors. Additionally, during the drop-off in model accuracy caused by an increasing number of category errors, the
non-category-error accuracy often increases. This may be being caused by the model simply outputting category errors
on inputs on which it is more uncertain, outputting class labels on inputs it finds easier to classify, or there is some more
complex underlying model behavior at work.
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Figure 4. Left: Perturbing the magnitude of natural tokens in inputs to the prompt-tuned model has a much less destructive effect than
perturbing the soft prompt in the same way. On two tasks, performance even improves. Concretely, compared to the baseline, a magnitude
reduction factor of 6 raises MRPC accuracy by 7.6% and RTE accuracy by 9.0%, down from a peak of 11%. RTE accuracy declines by
17%. Right: Rotating natural tokens towards their nearest neighbors in the model’s vocabulary by cosine similarity has comparatively
modest effects on task accuracy.

Figure 5. Effect of reducing soft prompt magnitude on model performance. Non-category-error accuracy shows the accuracy of the model
when only considering valid outputs that correspond to textual class labels.
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