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ABSTRACT

The signed distance function (SDF) represented by an MLP network is commonly
used for multi-view neural surface reconstruction. We build on the successful re-
cent method NeuS to extend it by three new components. The first component is
to borrow the Tri-plane representation from EG3D and represent signed distance
fields as a mixture of tri-planes and MLPs instead of representing it with MLPs
only. Discretizing the scene space with Tri-planes leads to a more expressive data
structure but involving tri-planes will introduce noise due to discrete discontinu-
ities. The second component is to use a new type of positional encoding with
learnable weights to combat noise in the reconstruction process. We divide the
features in the tri-plane into multiple frequency bands and modulate them with sin
and cos functions of different frequency. The third component is to use learnable
convolution operations on the tri-plane features using self-attention convolution to
produce features with different frequency. The experiments show that PET-NeuS
achieves high-fidelity surface reconstruction on standard datasets. Following pre-
vious work and using the Chamfer metric as the most important way to measure
surface reconstruction quality, we are able to improve upon the NeuS baseline
by 25% on Nerf-synthetic (0.84 compared to 1.12) and by 14% on DTU (0.75
compared to 0.87). The qualitative evaluation reveals how our method can better
control the interference of high-frequency noise.

1 INTRODUCTION

Implicit neural functions, or neural fields, have received a lot of attention in recent research. The
seminal paper NeRF (Mildenhall et al., 2020) combines implicit neural functions with volume ren-
dering, enabling high-quality novel view synthesis. Inspired by NeRF, NeuS (Wang et al., 2021) and
VolSDF (Yariv et al., 2021) introduce a signed distance function into the volume rendering formula
and regularize the signed distance function, so that smooth surface models can be reconstructed.
However, these methods use pure MLP networks to encode signed distance functions. Although
these two methods can reconstruct smooth surfaces, they both leave room for improvement when it
comes to reconstructing surface details.

One research direction (Yu et al. (2021); Reiser et al. (2021); Müller et al. (2022); Chen et al.
(2022); Chan et al. (2022)) explores explore data structures such as tri-planes or voxel grids that are
suitable to improve the NeRF framework, in terms of speed or reconstruction quality. However, data
structures that are successful for novel view synthesis may not be bring immediate success when
employed for surface reconstruction as shown in Fig. 1. While a greater expressiveness to encode
local details is useful to better fit the input data, due to the discontinuities caused by discretization,
these data structures may generate a large amount of unavoidable noise interference. These noise
disturbances can seriously affect the fidelity of the reconstructed surface.

In our work, we explore how to increase expressiveness to encode local features while at the same
time reducing the impact of noise interference. We choose to build on the tri-plane data structure
since it has fewer discretization discontinuities than a voxel grid. In addition, the tri-planes can be
easier scaled to higher resolutions.

In our work, we build on EG3D and NeuS to propose a novel framework, called PET-NeuS. First,
we propose a method to integrate the tri-plane data structure into a surface reconstruction frame-
work in order to be able to model an SDF with more local details. Second, since the source of noise
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Figure 1: The challenge of using the tri-plane representation directly. First column: reference image.
Second to the fifth column: NeuS, Learning SDF using tri-planes, OURS without self-attention
convolution, and OURS.

are discretization discontinuities, that is, the features between tri-plane pixels do not share learn-
able parameters, we use positional encoding to modulate the tri-plane features, thereby enhancing
the continuity of the learnable features. Third, the positional encoding involves functions of dif-
ferent frequencies. In order to better match different frequencies, we propose to use multi-scale
self-attention convolution kernels with different window sizes to perform convolution in the spatial
domain to generate features of different frequency bands. This further increases the fidelity of the
surface reconstruction while suppressing noise.

We experiment on two datasets to verify the effectiveness of our method, the DTU dataset and the
NeRF-Synthetic dataset. Since the DTU dataset contains non-Lambertian surfaces, the ability of the
network to resist noise interference can be verified. The NeRF-Synthetic dataset has many sharp
features, which can verify that our framework can effectively utilize its improved local expressive-
ness to better reconstruct local details. We show superior performance compared to state-of-the-art
methods on both datasets.

In summary, our contributions are as follows:

• We propose to train neural implicit surfaces with a tri-plane architecture to enable the re-
constructed surfaces to better preserve fine-grained local features.

• We derive a novel positional encoding strategy to be used in conjunction with tri-plane
features in order to reduce the noise interference caused by discretization discontinuities.

• We utilize self-attention convolution to produce tri-plane features with different frequency
bands to match the positional encoding of different frequencies, further improving the fi-
delity of surface reconstruction.

2 RELATED WORK

2.1 IMPLICIT NEURAL REPRESENTATION

Learning continuous implicit representations with neural networks to represent 3D scenes has re-
cently gained a lot of attention. IM-Net (Chen & Zhang, 2019) and occupancy networks (Mescheder
et al., 2019) propose to learn an occupancy function representing shapes using MLPs. Unlike
them, DeepSDF (Park et al., 2019) utilizes MLP networks to construct signed distance functions
for shapes. In order to improve the representation ability of the models, Peng et al. (2020); Chibane
et al. (2020a) use 3D convolution on the local voxels to learn local shape features and construct the
occupancy function and signed distance function of the shapes respectively. Due to locality, implicit
neural function representations can model fine-grained scenes. Subsequently, some works (Atzmon
& Lipman, 2020; Chibane et al., 2020b) focus on solving the problem of learning implicit functions
on shapes with boundary, while others (Martel et al., 2021; Takikawa et al., 2021; Williams et al.,
2021) further exploit voxel representations to improve the quality of modeling. Then the seminal
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Figure 2: Our PET-NeuS framework consists of a tri-plane architecture, two types of positional
encoding, self-attention convolution (SAC), and MLP mapping blocks.

work, NeRF (Mildenhall et al., 2020), incorporates the implicit neural function into the volume
rendering formula, thus achieving high-fidelity rendering results. Due to the implicit neural func-
tion representing the scene, the method produces excellent results for novel view synthesis. Some
follow-up works (Sitzmann et al., 2020; Barron et al., 2021; Verbin et al., 2021) use multiscale
techniques to learn fine-grained details. Recently, many works (Yu et al., 2021; Reiser et al., 2021;
Müller et al., 2022; Chen et al., 2022; Chan et al., 2022) use voxel grids or a factored representation
(e.g. tri-planes) to further improve training speed or rendering quality.

2.2 NEURAL SURFACE RECONSTRUCTION FROM MULTI-VIEW IMAGES

Surface reconstruction from multiple views is a popular topic in 3D vision. Traditional algorithms
for multi-view surface reconstruction usually use discrete voxel-based representations (De Bonet
& Viola, 1999; Seitz & Dyer, 1999; Kutulakos & Seitz, 2000; Broadhurst et al., 2001; Izadi et al.,
2011; Nießner et al., 2013) or reconstruct point clouds (Barnes et al., 2009; Furukawa & Ponce,
2009; Schönberger et al., 2016; Schonberger & Frahm, 2016; Galliani et al., 2016). Discrete voxel
representations suffer from resolution and memory overhead, while point-based methods require ad-
ditional consideration of missing point clouds and additional surface reconstruction steps. Recently,
some methods based on neural implicit surfaces have emerged to reconstruct shapes using continu-
ous neural implicit function from multi-view images. Surface rendering and volume rendering are
two key techniques. DVR (Niemeyer et al., 2020) and IDR (Yariv et al., 2020) adopt surface render-
ing to model the occupancy functions or signed distance functions for 3D shapes respectively. The
methods based on surface rendering need to compute precise location of the surface to render images
and gradient decent is applied only on the surface. NeRF-based methods like UNISURF (Oechsle
et al., 2021), VolSDF (Yariv et al., 2021), and NeuS (Wang et al., 2021) incorporate occupancy
functions or the signed distance functions into the volume rendering equation. Since the implicit
function can be regularized by the Eikonal loss, the reconstructed surface can maintain smoothness.
The NeuralPatch method by Darmon et al. (2022) is a post-processing step to VolSDF. It binds the
colors in the volume to nearby patches with a homography transformation. Since the computation of
patch warping relies on accurate surface normals, we consider the algorithm as a post-process that
can be applied to any method. HF-NeuS Wang et al. (2022) introduces an additional MLP for mod-
eling a displacement field to learn high-frequency details and further improve the surface fidelity.
We choose VolSDF, NeuS, and HF-NeuS as our state-of-the-art competitors.

3 METHOD

Given N images including pose information, our goal is to reconstruct the geometry of the scene
represented by a signed distance function. We build on the NeuS framework (Wang et al., 2021)
and first introduce how to use tri-planes and MLPs to learn a neural implicit function of a surface
and propose a simple approach to initialize the tri-plane features. Second, we show a theoretical
derivation to explain how to embed positional encoding in the tri-plane. Finally, we introduce how
to learn multi-frequency tri-plane features. The framework is shown in Fig. 2
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3.1 SDF-BASED TRI-PLANES WITH GEOMETRIC INITIALIZATION

Here we describe how to integrate the tri-plane data structure proposed in EG3D (Chan et al., 2022)
into the NeuS framework (Wang et al. (2021), Wang et al. (2022)). Signed distance field functions
(SDFs) are the most common way of representing surfaces with implicit functions. The input of
such a function is a triple of three-dimensional coordinates (x, y, z), and the output is the signed
distance ds to the surface.

(x, y, z) 7→ ds = sdf (x, y, z) , x, y, z, ds ∈ R (1)

To model the SDF, we use a discrete representation of three 2D feature maps, called tri-planes (Chan
et al., 2022). A tri-plane T is composed of three learnable feature maps Txy, Tyz, Txz , and the size
of each feature map is R × R × nf . R is the resolution of the feature map and nf is the number of
channels of the feature map. These three planes are orthogonal to each other, and they are positioned
such that the three planes jointly intersect at the origin (0, 0, 0) in the scene space and have a length
of L. Given a 3D coordinate (x, y, z), we can project the 3D coordinate onto the three planes and
interpolate three feature vectors T (x, y, z) = (vxy,vyz,vxz). Then a small MLP is used to predict
the distance value ds = MLP (vxy,vyz,vxz) taking these feature vectors as input. A second MLP
is used to predict a view-dependent color value.

Subsequently, we need to incorporate the sdf into the volume rendering equation. There are multiple
ways to do this. We chose the modeling approach of HF-NeuS for a fair comparison, which models
transparency as the transformed SDF and obtains the density value σ as follows.

σ(x, y, z) = s (Ψs (sdf (x, y, z))− 1)∇sdf (x, y, z) · d (2)

where Ψs is the sigmoid function with scale parameter s and d is the viewing direction. The volume
rendering integral is then approximated using α-composition αi = 1− exp (−σiδi), where δi is the
distance in scene space between adjacent samples. We can use the volume rendering equation in
NeRF (Mildenhall et al., 2020) to render the color value of a pixel corresponding to a ray.

While an SDF can be obtained by training using an L1 loss that minimizes the difference of volume
rendering color and ground truth color, how to get a reasonable neural implicit function highly
depends on the initialization of the tri-plane features.

Since the tri-plane is a 2D projection representation, directly initializing the tri-plane features as
a circle with the remaining MLP networks initialized by the geometric initialization (Atzmon &
Lipman, 2020) cannot guarantee that the initialized SDF is a sphere. We therefore propose a simple
approach to leverage the MLP initialization method (Atzmon & Lipman, 2020) to initialize the
tri-plane features. We build a five-layer MLP whose input feature dimension is 3 (for inputing
coordinates) and the output feature dimension is the tri-plane channel dimension nf . The MLP is
initialized using the geometric initialization (Atzmon & Lipman, 2020). For each pixel on the plane,
there is a scene coordinate corresponding to the pixel. We select R × R grid points on each plane
and input the resulting coordinates of the points into the MLP. The features output by the MLP
are used as the initial tri-plane features. In this way, the SDF corresponding to the initialized tri-
plane features represents a sphere. In addition, since the MLP is used during initialization and not
optimized during training, this

3.2 INCORPORATING POSITIONAL ENCODING INTO TRI-PLANES

Positional encoding is very important in neural rendering. A popular method uses sin and cos func-
tions to map coordinate information to multiple different frequencies, so that the network can better
capture the characteristics of different frequency bands. However, the tri-plane is an interpolation-
based representation indexed by 3D spatial coordinates, so it is difficult to intuitively utilize the posi-
tional encoding information. We first propose a modeling approach. The proposed method expresses
the implicit function as a weighted sum of the positional encoding by mathematical derivation. We
then propose how to introduce positional encoding into the tri-plane representation.

The goal of learning neural implicit functions is to learn the mapping of coordinates to the function
values. For a continuous unary function with compact support, it can be expanded as a Fourier series
as follows. We could use an MLP network to encode the coefficients of this series (in this case even
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a single linear layer without activation function).

f (x) = a0 +

M∑
m=1

am cos (mx)+

M∑
m=1

a(−m) sin (mx) (3)

= MLP ({cos(mx), sin(mx)}m) (4)

where the coefficients can be computed as follows.

a0 =
1

2π

∫
2π

f (x) dx (5)

am =
1

π

∫
2π

f (x) cos(mx)dx (6)

a(−m) =
1

π

∫
2π

f (x) sin(mx)dx (7)

We can simplify the above equation as follows.

f (x) =

M∑
m=−M

amΘx
m (8)

(9)

where

Θv
t =

{
cos (tv) t > 0

1 t = 0
sin (tv) t < 0

(10)

Similarly, in the three-dimensional coordinate space, the function can be expanded. We can make
the following derivation.

f (x, y, z) =

K∑
k=−K

ck (x, y)Θ
z
k (11)

=

(
c0(x, y) +

K∑
k=1

ck(x, y) cos (kz)+

K∑
k=1

c−k(x, y) sin (kz)

)
(12)

=

K∑
k=−K

N∑
n=−N

bnk (x)Θ
y
nΘ

z
k (13)

=

K∑
k=−K

(
b0k (x) +

N∑
n=1

bnk (x) cos (ny)+

N∑
n=1

b(−n)k (x) sin (ny)

)
Θz

k (14)

=

K∑
k=−K

N∑
n=−N

M∑
m=−M

amnkΘ
x
mΘy

nΘ
z
k (15)

=

K∑
k=−K

N∑
n=−N

(
a0nk +

M∑
m=1

amnk cos (mx)+

M∑
m=1

a(−m)nk sin (mx)

)
Θy

nΘ
z
k (16)

where m, n, and k are the different frequencies for x, y, z with maximum number of scales
M,N,K 7→ ∞.

We observe that the above function can be replaced with an MLP network with different input as
follows.

f (x, y, z) = MLP




cos (mx) cos (ny) cos (kz)
sin (mx) sin (ny) sin (kz)

gm (y, z) cos (mx) hn (x, z) cos (ny) wk (x, y) cos (kz)
g′m (y, z) sin (mx) h′

n (x, z) sin (ny) w′
k (x, y) sin (kz)


flatten

mnk


(17)
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Figure 3: Comparing Gaussian kernels with our self-attention kernels. For each method, the left
shows the reconstructed image and the right the reconstructed surface.

To represent the surface as SDF, the function f can be regarded as sdf . In pure MLP networks,
sdf(x, y, z) = MLP (PE(x, y, z)). Since g, h, and w are all highly nonlinear functions, the number
of MLP layers needs to be large. A simple idea of using positional encoding with a tri-plane is to
directly concatenate tri-plane features and positional encoding and input the features into an MLP ,
i.e. sdf(x, y, z) = MLP ([PE(x, y, z), T (x, y, z)]). Then the tri-plane feature T (x, y, z) is used to
encode these highly nonlinear functions, for example, one of the terms gm (y, z) cos (mx), which
then only requires fewer layers of the MLP on top of the tri-plane features. However, since the tri-
planes do not know any positional encoding information, they cannot effectively fit base signals of
different frequencies, such as the above example term. Due to discrete discontinuities of the tri-plane
representation and the absence of frequency constraints, the tri-plane features will introduce high-
frequency noise. From Eq. 17, we observe that the coefficients g, h, and w of positional encoding
is consistent with the tri-plane features since these coefficients are all binary functions of the two-
dimensional coordinates. We propose to regard g, h, and w function as the tri-plane features and
modulate/multiply them with sin and cos functions of different frequency. In this way, the output
features of tri-planes contain a frequency bound and the base function can be fitted more easily. To
be specific, our definition is as follows.

sdf(x, y, z) = MLP ([PE(x, y, z), Txy(x, y)⊙ PE(z), Tyz(y, z)⊙ PE(x), Txz(x, z)⊙ PE(y)])
(18)

where ⊙, e.g. Txy(x, y) ⊙ PE(z), is the component-wise multiplication. Using our modeling
method, not only can the output features of the tri-planes contain frequency information to suppress
high-frequency noise, but also reduced nonlinearity and learning complexity of triplane features.

3.3 LEARNING SELF-ATTENTION FEATURES WITH DIFFERENT FREQUENCY ON TRI-PLANES

We could directly set the number of channels of the tri-plane features according to the dimension
of the positional encoding. However, in order to better learn features of different frequencies, we
propose to generate tri-plane features with different frequency bands.

The product in the frequency domain is equal to the convolution in the time domain. One simple way
to generate multi-frequency tri-plane features is to smooth the tri-plane features with a set of fixed
Gaussian smoothing kernels. When experimenting with this simple method for generating features
with different frequency bands as shown in Fig. 3, we noticed that this method smooths features
across depth discontinuities, e.g. foreground to background. Since the plane is an orthogonal pro-
jection of the 3D space, the e.g. foreground features will be affected by the background features due
to convolution on the plane, resulting in the wrong structure of the generated surface although the
synthesized image is reasonable. Therefore, we looked for alternative dynamic convolution opera-
tions that could be performed. Inspired by window self-attention convolution (Ramachandran et al.,
2019) and the Swin Transformer architecture (Liu et al., 2021), we propose to use self-attention
convolution with different window sizes to generate features in different frequency bands. We found
that using either a sliding window or a shifted window exponentially increases the computational
cost of training. To reduce the computational cost, we use a single-layer self-attention convolution
and directly divide the tri-plane into non-overlapping patches regularly with different window sizes
(4, 8, 16 in praxis). Since the subsequent MLP will combine features of different scales, the features
across-windows will also interact. We selected features generated by convolution with three window
sizes and concatenate them with the original features to form tri-plane features for four frequency
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Table 1: Quantitative results on the NeRF-synthetic dataset. Chamfer distance on the left and PSNR
on the right.

Method Chair Ficus Lego Materials Mic Ship Mean Chair Ficus Lego Materials Mic Ship Mean

VOLSDF 1.26 1.54 2.83 1.35 3.62 2.92 2.37 25.91 24.41 26.99 28.83 29.46 25.65 26.86
NeuS 0.74 1.21 2.35 1.30 3.89 2.33 1.97 27.95 25.79 29.85 29.36 29.89 25.46 28.05

HF-NeuS 0.69 1.12 0.94 1.08 0.72 2.18 1.12 28.69 26.46 30.72 29.87 30.35 25.87 28.66
OURS 0.65 0.71 0.58 1.05 0.49 1.57 0.84 29.57 27.39 32.40 29.97 33.08 26.83 29.87

Figure 4: Qualitative evaluation on the Lego and Mic models. First column: reference images.
Second to the fifth column: VolSDF, NeuS, HF-NeuS, and OURS.

bands as follows.

T =
{
T i
}
, i = 0, 1, 2, 3. T i =

{
T i
xy, T

i
yz, T

i
xz

}
(19)

We multiply the features of the four frequency bands with the corresponding low-frequency to high-
frequency positional encoding, so as to achieve the goal of generating adaptive features for different
frequencies.

3.4 OPTIMIZATION

We use two different losses in the training (identical to what has been used in previous work NeuS
and HF-NeuS). The first one is the color reconstruction loss. The second is the Eikonal loss (Gropp
et al., 2020). We found that total variation regularization (Lombardi et al., 2019) (TVloss) can also
regularize the SDF like Eikonal loss, but Eikonal loss is especially suitable for learning SDF. Color
reconstruction loss is the L1 distance between ground truth colors and the volume rendered colors
of sampled pixel set S .

Lcolor =
1

|S|
∑
s∈S

∥∥∥Ĉs − Cs

∥∥∥
1

(20)

Eikonal loss is a regularization loss on sampled point set I that constrain the implicit function and
make the SDF smooth.

Lreg =
1

|I|
∑
i∈I

[
(∥∇sdf(xi, yi, zi)∥2 − 1)

2
]

(21)

We employ both loss functions to train our network with a hyperparameter λ. Note that in all settings
we do not provide masks and ignore mask loss in the training.

L = Lcolor + λLreg (22)
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Table 2: Quantitative results on the DTU dataset. Chamfer distance on top and PSNR on the bottom.
Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

VOLSDF 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86
NeuS 1.37 1.21 0.73 0.40 1.20 0.70 0.72 1.01 1.16 0.82 0.66 1.69 0.39 0.49 0.51 0.87

HF-NeuS 0.76 1.32 0.70 0.39 1.06 0.63 0.63 1.15 1.12 0.80 0.52 1.22 0.33 0.49 0.50 0.77
OURS 0.61 0.96 0.77 0.34 0.98 0.85 0.71 1.35 1.04 0.66 0.50 1.11 0.39 0.53 0.53 0.75

VOLSDF 26.28 25.61 26.55 26.76 31.57 31.50 29.38 33.23 28.03 32.13 33.16 31.49 30.33 34.90 34.75 30.38
NeuS 28.20 27.10 28.13 28.80 32.05 33.75 30.96 34.47 29.57 32.98 35.07 32.74 31.69 36.97 37.07 31.97

HF-NeuS 29.15 27.33 28.37 28.88 32.89 33.84 31.17 34.83 30.06 33.37 35.44 33.09 32.12 37.13 37.32 32.33
OURS 30.02 27.52 29.03 29.76 33.68 33.49 30.91 35.17 29.42 33.45 36.65 33.62 32.30 38.52 37.56 32.74

Figure 5: Qualitative evaluation on DTU house and Buddha models. First column: reference images.
Second to the fifth column: VolSDF, NeuS, HF-NeuS, and OURS.

4 RESULTS

Datasets. The NeRF synthetic dataset contains posed multi-view images of 800 × 800 resolution
with detailed and sharp features. The DTU dataset is a real dataset that contains posed multi-view
images of 1600 × 1200 resolution. We select the same 15 models as shown in other works for a
fair comparison. The DTU dataset contains non-Lambertian surfaces which are testing for methods
sensitive to noise. Besides the DTU dataset, 6 challenging scenes are selected from the NeRF-
synthetic dataset (Mildenhall et al., 2020). Ground truth surfaces and camera poses are provided in
both datasets.

Baselines. Three state-of-the-art baselines are considered: VolSDF (Yariv et al., 2021) embeds
an SDF into the density function and employs an error bound by using a sampling strategy. The
training time is 12 hours on the DTU dataset. NeuS (Wang et al., 2021) incorporates an SDF into
the weighting function and uses sigmoid functions to control the slope of the function. The training
time is 16 hours on the DTU dataset. HF-NeuS (Wang et al., 2022) builds on NeuS using offset
functions. The training time is 20 hours on the DTU dataset. Since NeuS and VolSDF compared to
older methods and demonstrated better results for surface reconstruction, we do not compare with
methods such as NeRF (Mildenhall et al., 2020), IDR (Yariv et al., 2020), or UNISURF (Oechsle
et al., 2021).

Evaluation metrics. For the DTU dataset, we follow the official evaluation protocol to evaluate the
Chamfer distance. For the NeRF synthetic dataset, we compute the Chamfer distance between the
ground truth shape and reconstructed surface. For completeness, PSNR metric is used to measure
the quality of reconstructed images. However, we would like to emphasize that the Chamfer distance
is the most important metric for comparing surface reconstruction methods.

Implementation details. We use two MLPs to model the SDF and color function on top of tri-plane
features. Each MLP consists of only 3 layers. The hyperparameter for the Eikonal regularization is
λ = 0.1. We normalize scenes to fit L = 3.0. The resolution of each tri-plane is 512 × 512. The
number of tri-plane feature channels is nf = 24. Our three window sizes are set to 4, 8, and 16.
We use positional encoding with 8 scales, which means M = M = K = 8. The Adam optimizer
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Table 3: Ablation study results (Chamfer distance).
Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

TriSDF 1.23 1.12 1.28 0.46 1.08 0.90 0.84 1.40 1.21 0.85 0.58 1.76 0.42 0.59 0.56 0.95
TriSDF+MPE 0.69 1.04 0.96 0.42 1.00 0.87 0.75 1.38 1.19 0.81 0.55 1.38 0.41 0.54 0.55 0.84

TriSDF+PE+SCF 0.61 0.96 0.77 0.34 0.98 0.85 0.71 1.35 1.04 0.66 0.50 1.11 0.39 0.53 0.53 0.75

with a learning rate 5e−4 is utilized for network training using a single NVIDIA TITAN A100 40GB
graphics cards. The training time is 9 hours on the DTU dataset, which is faster than all competitors.

4.1 COMPARISON

We first report quantitative comparisons on the NeRF-synthetic dataset (Mildenhall et al., 2020).
In Table 1, we show Chamfer distance on the left and the PSNR values on the right. The results
show that our proposed framework PET-NeuS has the best surface reconstruction quality compared
to all other methods. This means that our network has the ability to better preserve local features.
Besides outperforming other baselines in terms of quantitative error, we also show the visual effect
of the improved reconstruction (Fig. 4). We find the reconstruction of the bumps and the wheel
holes of Lego model and the grid of the Mic model to be particularly impressive. The reconstructed
fine-grained structures are a lot better than what can be achieved with previous work.

The quantitative results on the DTU dataset (Jensen et al., 2014) are shown in Table 2. We show
Chamfer distance on the top and the PSNR values on the bottom. For the Chamfer distance, PET-
NeuS surpasses NeuS and VolSDF. Compared with HF-NeuS, PET-NeuS is comparable or slightly
better. Our PSNR outperforms all other competitors. The qualitative results compared with other
methods are shown in Fig. 5. The reconstructed surfaces by PET-NeuS preserve fine-grained details.
For instance, the holes between the eyes of the Buddha and the windows are more obvious.

4.2 ABLATION STUDY

In Table 3, we conduct an ablation study to analyze the effect of each component.
“TriSDF” refers to using tri-planes and MLPs to encode SDFs, which is sdf(x, y, z) =
MLP ([PE(x, y, z), T (x, y, z)]) as discussed in the method section. ”MPE” means we modulate
tri-plane features with positional encoding as in Eq. 18. ”SAC” refers to generating features with
different frequencies using self-attention convolution. We conduct experiments on the DTU dataset
quantitatively. From the results, we can observe that the result of using only ”TriSDF” still results in
a large geometric error. We believe that this is due to the discretization discontinuities. Modulating
tri-plane features using positional encoding can suppress noise interference. Using self-attention
convolution will match the positional encoding on different frequencies, which can further improve
the geometric fidelity. From Fig. 1, we can also observe an improvement in reconstruction quality.

5 CONCLUSION AND LIMITATIONS

We propose PET-NeuS, a novel tri-plane based method for multi-view surface reconstruction. By
modulating tri-plane features using positional encoding and producing tri-plane features with differ-
ent frequencies using self-attention convolution, our surface reconstruction can reduce noise inter-
ference while maintaining high fidelity. PET-NeuS produces fine-grained surface reconstruction and
outperforms other state-of-the-art competitors in qualitative and quantitative comparisons. One lim-
itation of our method is that it still requires long computation times. It would be an exciting avenue
of future work to improve computation times by one or two orders of magnitude without drastically
sacrificing quality. Another limitation that we observed is a trade-off between reconstructing fine
details and adding high frequency noise to otherwise flat surface areas. As we experimented with
many versions of our framework, we observed that network architectures that are more expressive
to model surface detail tend to be more prone to overfitting and hallucinating details, e.g. in areas of
high-frequency changes in light transport. It would be interesting to investigate this trade-off from
a theoretical perspective in future work. Finally, we would like to state that we do not expect a
noteworthy negative societal impact due to research on surface reconstruction.
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A APPENDIX

In this appendix, we show more qualitative comparisons for surfaces and images in Fig. 6, Fig. 7,
Fig. 8, and Fig. 9.

Figure 6: Qualitative evaluation on NeRF synthetic dataset. First column: reference images. Second
to the fifth column: VolSDF, NeuS, HF-NeuS, and OURS.
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Figure 7: Qualitative evaluation on NeRF synthetic dataset. First column: reference images. Second
to the fifth column: the generated images from VolSDF, NeuS, HF-NeuS, and OURS.
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Figure 8: Qualitative evaluation on DTU dataset. First column: reference images. Second to the
fifth column: VolSDF, NeuS, HF-NeuS, and OURS.
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Figure 9: Qualitative evaluation on DTU dataset. First column: reference images. Second to the
fifth column: the generated images from VolSDF, NeuS, HF-NeuS, and OURS.
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