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Abstract

Complex logical query answering (CLQA) is a recently emerged task of graph machine
learning that goes beyond simple one-hop link prediction and solves a far more complex
task of multi-hop logical reasoning over massive, potentially incomplete graphs in a latent
space. The task received a significant traction in the community; numerous works expanded
the field along theoretical and practical axes to tackle different types of complex queries and
graph modalities with efficient systems. In this paper, we provide a holistic survey of CLQA
with a detailed taxonomy studying the field from multiple angles, including graph types
(modality, reasoning domain, background semantics), modeling aspects (encoder, processor,
decoder), supported queries (operators, patterns, projected variables), datasets, evaluation
metrics, and applications.
Refining the CLQA task, we introduce the concept of Neural Graph Databases (NGDBs).
Extending the idea of graph databases (graph DBs), NGDB consists of a Neural Graph
Storage and a Neural Graph Engine. Inside Neural Graph Storage, we design a graph store,
a feature store, and further embed information in a latent embedding store using an encoder.
Given a query, Neural Query Engine learns how to perform query planning and execution in
order to efficiently retrieve the correct results by interacting with the Neural Graph Storage.
Compared with traditional graph DBs, NGDBs allow for a flexible and unified modeling of
features in diverse modalities using the embedding store. Moreover, when the graph is
incomplete, they can provide robust retrieval of answers which a normal graph DB cannot
recover. Finally, we point out promising directions, unsolved problems and applications of
NGDB for future research.
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1 Introduction

Graph databases (graph DBs) are key architectures to capture, organize and navigate structured relational
information over real-world entities. Unlike traditional relational DBs storing information in tables with
a rigid schema, graph DBs store information in the form of heterogeneous graphs, where nodes represent
entities and edges represent relationships between entities. In graph DBs, a relation (i.e. heterogeneous
connection between entities) is the first-class citizen. With the graph structure and a more flexible schema,
graph DBs allow for a more efficient and expressive way to handle higher-order relationships between distant
entities, especially navigating through multi-hop hierarchies. While traditional DBs require expensive join
operations to retrieve information, graph DBs can directly traverse the graph and navigate through links
more efficiently with the adjacency matrix. Due to its capabilities, graph databases serve as the backbone
of many critical industrial applications including question answering in virtual assistants (Flint, 2021; Ilyas
et al., 2022), recommender systems in marketplaces (Dong, 2018; Hamad et al., 2018), social networking
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Figure 1: A complex logical query a and its execution over an incomplete graph b . Symbolic engines like
SPARQL c perform edge traversal and retrieve an incomplete set of easy answers directly reachable in the
graph, i.e., {UofT}. Neural query execution d recovers missing ground truth edges (dashed) and returns
an additional set of hard answers {UdeM, NYU} unattainable by symbolic methods.

in mobile applications (Bronson et al., 2013), and fraud detection in financial industries (Tian et al., 2019;
Pourhabibi et al., 2020).

Given a downstream task, one of the most important tasks of graph DBs is to perform complex query
answering. The goal is to retrieve the answers of a given input query of interest from the graph database.
Given the query, graph DBs first translate and optimize the query into a more efficient graph traversal
pattern with a query planner, and then execute the pattern on the graph database to retrieve the answers
from the graph storage using the query executor. The storage compresses the graphs into symbolic indexes
suitable for fast table lookups. Querying is thus fast and efficient under the assumption of completeness,
i.e., stored graphs have no missing edges.

However, most real-world graphs are notoriously incomplete, e.g., in Freebase, 93.8% of people have no
place of birth and 78.5% have no nationality (Mintz et al., 2009), about 68% of people do not have any
profession (West et al., 2014), while in Wikidata, about 50% of artists have no date of birth (Zhang et al.,
2022a), and only 0.4% of known buildings have information about height (Ho et al., 2022). Naïvely traversing
the graph in light of incompleteness leads to a significant miss of relevant results and the issue further
exacerbates with an increasing number of hops. This inherently hinders the application of graph databases.
Link prediction is a challenging task, prior works predict links by learning a latent representation of each
link (Bordes et al., 2013; Yang et al., 2015; Trouillon et al., 2016; Sun et al., 2019) or mining rules (Galárraga
et al., 2013; Xiong et al., 2017; Lin et al., 2018; Qu et al., 2021). However, it is always a trade-off between
possibly incomplete results and decidability – with a denser graph, some SPARQL entailment regimes (Hawke
et al., 2013) do not guarantee that query execution terminates in finite time.

On the other hand, recent advances in graph machine learning enabled expressive reasoning over large graphs
in a latent space without facing decidability bottlenecks. The seminal work of Hamilton et al. (2018) on
Graph Query Embedding (GQE) laid foundations of answering complex, database-like logical queries over
incomplete KGs where inferring missing links during query execution is achieved via parameterization of
entities, relations, and logical operators with learnable vector representations and neural networks. For
the incomplete knowledge graph in (Fig. 1), given a complex query “At what universities do the Turing
Award winners in the field of Deep Learning work?”, traditional symbolic graph DBs (SPARQL- or Cypher-
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like) would return only one answer (UofT), reachable by edge traversal. In contrast, neural query embedding
parameterizes the graph and the query with learnable vectors in the embedding space. Neural query execution
is akin to traversing the graph and executing logical operators in the embedding space that infers missing links
and enriches the answer set with two more relevant answers UdeM and NYU unattainable by symbolic DBs.

Since then, the area has seen a surge of interest with numerous improvements of supported logical operators,
query types, graph modalities, and modeling approaches. In our view, those improvements have been rather
scattered, without an overall aim. There still lacks a unifying framework to organize the existing works
and guide future research. To this end, we propose to present one of the first holistic studies about the
field. We devise a taxonomy classifying existing works along three main axes, i.e., (i) Graphs (Section 4
– logical formalisms behind the underlying graph and its schema) (ii) Modeling (Section 5 – what are the
neural approaches to answer queries) (iii) Queries (Section 6 – what queries can be answered). We then
discuss Datasets and Metrics (Section 7 – how we measure performance of NGDB engines). Each of these
dimensions is further divided into fine-grained aspects. Finally, we list CLQA applications (Section 8) and
summarize open challenges for future research (Section 9).

We further propose a novel framework Neural Graph Databases (NGDB, Section 3), where complex approx-
imate query answering (Section 2) is the core task and approached by the neural query embedding methods.
NGDB consists of a neural graph storage and a neural query engine, which correspond to a neural version of
both counterparts in a regular graph DB respectively. Besides a graph store and feature store that store the
graph structure as well as the multimodal node-/edge-level features, neural graph storage assumes an encoder
that further compresses the raw information in a semantic-preserving latent embedding space, i.e., similar
entities/relations are mapped to similar embeddings. During retrieval, such a design choice instantly allows
for both exact identity match as well as approximate nearest neighbor search. As another key component,
the neural query engine is responsible for optimizing, planning and executing a given input query in the
embedding space, and finally returning the query answers by interacting with the neural graph storage. We
provide a detailed conceptual scheme for an NGDB with various levels of design principles and assumptions
over the two components. We hope this sheds light on the current state of the art and provides a roadmap
for future research on NGDBs.

Related Work. While there exist insightful surveys on general graph machine learning (Chami et al., 2022),
simple link prediction in KGs (Ali et al., 2021; Chen et al., 2023), and logic-based link prediction (Zhang
et al., 2022b; Delong et al., 2023), the complex query answering area remained uncovered so far. With our
work, we close this gap and provide a holistic view on the state of affairs in this emerging field.

2 Preliminaries

Here, we discuss the foundational terms and preliminaries often seen in the database and graph learning
literature before introducing neural graph databases. This includes definitions of different types of graphs,
graph queries and their mapping to structured languages like SPARQL, formalizing approximate graph query
answering, logical operators, and fuzzy logic. The full hierarchy of definitions is presented in Fig. 3.

2.1 Types of Graphs

Here we introduce different types of graphs relevant for this research area. These serve as the core data
structure of various query reasoning works and also our neural graph storage module (Section 3.1). Our
definitions are adaptations from those in (Hogan et al., 2021, ch. 2).

We begin by defining a set with all elements used in our graph

Definition 2.1 (Con) Con is an infinite set of constants.1

Definition 2.2 ((Standard / Triple based) Knowledge Graph) We define a knowledge graph (KG)
G = (E , R, S), where E ⊂ Con represents a set of nodes (entities), R ⊂ Con is a set of relations (edge types),

1In case the constants do not include representations for the real numbers, this set would be countably infinite.
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Figure 2: An example of KG modalities. Triple-only graphs have directed binary edges between nodes.
Hyper-relational graphs allow key-value relation-entity attributes over edges. Hypergraphs consist of hyper-
edges composed of multiple nodes.

and S ⊂ (E × R × E) is a set of edges (triples) 2. Each edge s ∈ S on a KG G denotes a statement (or fact)
(es, r, eo) in a triple format or r(es, eo) as a formula in first-order logic (FOL) form, where es, eo ∈ E denote
the subject and object entities, and r ∈ R denotes the relationship between the subject and the object. Often,
the graph is restricted such that the set of nodes and edges must be finite, we will make this assumption
unless indicated otherwise.

For example, one statement on the KG in Fig. 1 b is (Hinton, university, UofT) or
university(Hinton, UofT). Note all relations are binary on KGs, i.e., each relation involves exactly two
entities. This is also the choice made for the resource description framework (RDF) (Brickley et al., 2014)
that defines a triple as a basic representation of a fact, yet RDF allows a broader definition of triples, where
the object can be literals including numbers and timestamps (detailed in the following paragraphs).

Hyper-relational KGs generalize triple KGs by allowing edges to have relation-entity qualifiers. We define
them as follows:

Definition 2.3 (Hyper-relational Knowledge Graph - derived from Alivanistos et al. (2022))
With E and R defined as in Definition 2.2, let Q = 2(R×E), we define a hyper-relational knowledge graph
G = (E , R, S). In this case, the edge set S ⊂ (E × R × E × Q) consists of qualified statements, where each
statement s = (es, r, eo, qp) includes qp that represent contextual information for the main relation r. This
set qp = {q1, . . .} = {(qr1, qe1), (qr2, qe2) . . .} ⊂ R × E is the set of qualifier pairs, where {qr1, qr2, . . .} are
the qualifier relations and {qe1, qe2, . . .} the qualifier entities.

We note that if E and R are finite sets, then also Q is finite and, there are only a finite number of (r, qp)
combinations possible. As a consequence, we find that with these conditions, and by defining a canonical
ordering over Q, we can represent the hyper-relational graph using first order logic by coining a new predicate
rqp for each combination. The statement from the definition can then be written as rqp(es, eo).

For example, one statement on a hyper-relational KG in (Fig. 2) is (Hinton, education, Cambridge,
{(degree, Bachelor)}). The qualifier pair {(degree, Bachelor)} provides additional context to the
main triple and helps to distinguish it from other education facts. If the conditions mentioned above are
met, we can write this statement as education{(degree:Bachelor)}(Hinton, Cambridge).

Hyper-relational KGs can capture a more diverse set of facts by using the additional qualifiers for facts on the
graph. This concept is closely connected to the RDF-star (previously known as RDF*) format introduced
in Hartig et al. (2022), as an extension of RDF. RDF-star explicitly separates metadata (context) from data

2There might be an overlap between E and R, i.e., some constants might be used as an edge and as a node.
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(statements). RDF-star supports a superset of hyper-relational graphs; it extends the values allowed in the
object and qualifier value position to include literals, which we will discuss below.

Definition 2.4 (Hypergraph Knowledge Graph) With E and R defined as in Definition 2.2, a hyper-
graph KG is a graph G = (E , R, S) where statements S ⊂ (R × 2E) are hyperedges. Such a hyperedge
s = (r, e) = (r, {e1, . . . , ek}) has one relation type r and links the k entities together, where the order of these
entities is not significant. k, the size of e is called the arity of the hyperedge.

An example hyperedge in Fig. 2 is (education_degree, {Hinton, Cambridge, Bachelor}). This is a 3-ary
statement (being comprised of three entities). In contrast to hyper-relational KGs, hyperedges consist of
only one relation type and cannot naturally incorporate more fine-grained relational compositions. Instead,
the type of the hyperedge is rather a merged set of statement relations and every composition leads to a new
relation type on hypergraph KGs. It is thus not as compositional as the hyper-relational KG. That is, when
describing, for instance, a major relation of the education(Hinton, Cambridge) fact, a hyper-relational
KG can simply use it as a qualifier and retain both relations whereas a hypergraph model has to come
up with a new hyperedge type education_major. With a growing number of relations, such a strategy of
creating new hyperedge relation types might lead to a combinatorial explosion. However, the hypergraph
model is more suitable for representing relationships of varying arity, with equal contributions of all entities
such as partnership(companyA, companyB, companyC).

Each of the graph types introduced above can be extended to also support literals. This happens by allowing
nodes or qualifier values to contain a literal value. Some graphs, like property graphs allow nodes to contain
attributes, but this is equivalent with creating extra nodes with these attribute values and adding relations
to those. In theory, also the edge type could be a literal, but we exclude these from this work.

Definition 2.5 (KG with Literals) With E and R as for one of the graph types above, a corresponding KG
with literals GL = (E , R, SL, L) has an additional set of literals L ⊂ Con representing numerical, categorical,
textual, images, sound waves, or other continuous values (L is disjoint from E and R). If we extend standard
KGs to RDF graphs, literals can only be used in the objects position, that is SL ⊂ (E ×R×(E ∪L)). In RDF-
star graphs, literals can be objects or qualifier values, that is, Q = 2(R×(E∪L)) and SL ⊂ (E ×R×(E ∪L)×Q).3
For both of these, we could also define graph types with literals in other positions of the triples, as necessary,
or introduce more complex substructures in the elements of the triple (see e.g., Cochez (2012)). In hypergraph
KGs, literals can be introduced in the elements of a hyperedge, SL ⊂ (R × 2E∪L)

If the set of possible statements of the KG with literals has the same finiteness properties as the one without
literals, then the properties regarding expressing it using first order logic do not change.

An example triple with a literal object (Fig. 10) is (Cambridge, established, 1209). Literals contain
numerical, categorical, discrete timestamps, or text data that cannot be easily discretized in an exhaustive
set of possible values, like entities. Similarly to the Web Ontology Language (OWL, Motik et al. (2009)) that
distinguishes object properties that connect two entities from datatype properties that connect an entity and
a literal, it is common to use the term relation for an edge between two entities, and attribute for an edge
between an entity and a literal. For example, in education(Hinton, Cambridge), education is a relation,
whereas established(Cambridge, 1209) is an attribute.

The knowledge graph definitions above are not exhaustive. It is possible to create graphs with other prop-
erties. Examples include graphs with undirected edges, without edge labels, with time characteristics, with
probabilistic or fuzzy relations, etc. Besides, it is also possible to have graphs or edges with combined char-
acteristics. One could, for instance, define a hyperedge with qualifying information. Because of this plethora
of options, we decided to limit ourselves to the limited set of options above. In the next section we introduce
how to query these graphs.

3Both RDF and RDF-star also allow blank nodes used to indicate entities without a specified identity in the subject and
object position Brickley et al. (2014) . Besides, they also have support for named graphs (and in some cases for quadruples).
We do not support these explicitly in our formalism, but all of these can be modeled using hyper-relational graphs.
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2.2 Basic Graph Query Answering

We base our definition of basic graph queries on the one from (Hogan et al., 2021, section 2.2.1 basic graph
patterns), but adapt it to our graph formalization.

Definition 2.6 (Term and Var) Given a knowledge graph G = (E , R, S) (or equivalent G = (E , R, S, L)),
we define the set of variables Var = {v1, v2, . . . } which take values from Con, but is strictly disjoint from it.
We call the union of the variables and the constants the terms: Term = Con ∪ Var

Basic Graph Query
(Definition 2.7)

• Conjunctive
• Tree/DAG/Cycle
• Multi-hop

Regular Path Query
Definition 2.12

Graph Query (extend)
• Union / UCQ (2.11)
• Optional (2.11)
• Join (2.16)
• Projection (2.14)

Basic Graph Query
Answering

Definition 2.8

Regular Path Query
Answering

Definition 2.13

Graph Query
Answering

Definition 2.10

Basic Approximate
Graph Query

Answering
Definition 2.9

Approximate Graph Query Answering
Definition 2.17

Neural Query Engine (See Section 3.2) Neural
Graph Database

Definition 3.1Neural Graph Storage (See Section 3.1)

Figure 3: A hierarchy of definitions from
Graph Query to Graph Query Answering , a

more general Approximate Graph Query Answering
leading to Neural Graph Database, NGDB .

With these concepts in place a Basic Graph Query
is defined as follows:

Definition 2.7 (Basic Graph Query) A ba-
sic graph query is a 4-tuple Q = (E ′, R′, S ′, S ′)
(equivalently a 5-tuple Q = (E ′, R′, S ′, S ′, L′),
with literals), with E ′ ⊂ Term a set of node
terms, R′ ⊂ Term a set of relation terms, and
S ′, S ′ ⊂ E ′ × R′ × E ′, two sets of edges (or equiv-
alent to how graph edges are defined with literals).
The query looks like two (small) graphs; one formed
by the edges in S ′, and another by the edges in S ′.
The former set includes edges that must be matched
in the graph to obtain answers to the query, while
the latter contains edges that must not be matched
(i.e., atomic negation).

With VarQ = E ′ ∩ Var (all variables in the query), the answer to the query is defined as follows.

Definition 2.8 (Basic Graph Query Answering) Given a knowledge graph G and a query Q as defined
above, an answer to the query is any mapping µ : VarQ → Con such that replacing each variable vi in the
edges in S ′ with µ(vi) results in an edge in S, and replacing each variable vj in the edges in S ′ with µ(vj)
results in an edge that is not in S. The set of all answers to the query is the set of all such mappings.

For triple-based KGs, each edge (a, R, b) of the edge set S (respectively S ′) can be seen as relation projec-
tions R(a, b) (resp. ¬R(a, b)), i.e., binary functions. Now, because the conjunction (i.e., all) of these relation
projections (resp. the negation) have to be true, we also call these conjunctive queries with atomic nega-
tion (CQneg). The SPARQL query language defines basic graph patterns (BGPs). These closely resemble
our basic graph query for RDF graphs, but with S ′ = ∅, i.e., they do not support atomic negation but only
conjunctive queries (CQ). We could analogously create CQ and CQneg classes for the other KG types.

In Fig. 1 c we provide an example of a Basic Graph Query expressed in the form of a SPARQL query. This
corresponds to our formalism:

Q = ({TuringAward, ?person, DeepLearning, ?uni}, (# Node Terms E ′)
{win, field, university}, (# Relation Terms R′)
{(TuringAward, win, ?person), (DeepLearning, field, ?person), (?person, university, ?uni)}, (S ′)
∅) (S ′)

A possible answer to this query is the following partial mapping: µ1 = {(?person, Hinton), (?uni, UofT)}
This is also the only answer, so the set of all answers is {µ1}

If we want to exclude people who have worked together with Welling, then we modify the query as follows:
Q = ({TuringAward, ?person, DeepLearning, ?uni},

{win, field, university},

{(TuringAward, win, ?person), (DeepLearning, field, ?person), (?person, university, ?uni)},

{(?person, collab, Welling)}{(?person, collab, Welling)}{(?person, collab, Welling)})
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Note the key difference here is that we add {(?person, collab, Welling)} to S ′. The answer set to this query
is empty.

2.3 Basic Approximate Graph Query Answering

Until now, we have assumed that our KG is complete, i.e., it is possible to exactly answer the queries.
However, we are interested in the setting where we do not have the complete graph. The situation can be
described as follows: Given a knowledge graph G (subset of a complete, but not observable graph Ĝ) and
a basic graph query Q. Basic Approximate Graph Query Answering is the task of answering Q, without
having access to Ĝ. Depending on the setting, an approach to this could have access to G, or to a set of
example (query, answer) pairs, which can be used to produce the answers (see also Section 7.3). In the
example from Fig. 1, we also have several edges drawn with dashes. These are edges which are true, but
only there in the non-observable part of the graph Ĝ.

The goal is to find the answer set as if Ĝ was known. In this case, the complete answer set becomes
{µ1, {(?person, Bengio), (?uni, UdeM)}, {(?person, LeCun), (?uni, NYU)}}, which includes the answer µ1 of the
non-approximate version.

The query which includes the negation would have the following answers if our graph was complete:
{{(?person, Bengio), (?uni, UdeM)}, {(?person, LeCun), (?uni, NYU)}}, which does not include µ1.

Approximate Query Answering Systems provide a score ∈ R for every possible mapping4. Hence, the answer
provided by these systems is a function from mappings (i.e., a µ) to their corresponding score in R.

Definition 2.9 (Basic Approximate Graph Query Answering) Given a knowledge graph G (subgraph
of a complete, but not observable knowledge graph Ĝ), a basic graph query Q, and the scoring domain R, a
basic approximate graph query answer to the query Q is a function f which maps every possible mapping
(µ : VarQ → Con) to R.

Table 1: Ordered scored map-
pings for the example query. The
two wrong mappings are in red.

?person ?uni score
Hinton UofT 40
Bengio UdeM 35
Welling UofT 34
UdeM Hinton 33
LeCun NYU 32
. . . . . . . . .

The objective is to make it such that the correct answers according to the
graph Ĝ get a better score (are ranked higher, have a higher probability,
have a higher truth value) than those which are not correct answers.
However, it is not guaranteed that answers which are in the observable
graph G will get a high score.

For our example, a possible mapping is visualized in Table 1. Each row
in the table corresponds to one mapping µ. Ideally, all correct mappings
should be ranked on top, and all others below. However, in this example
we see several correct answers ranked high, but also two which are wrong.

2.4 Graph Query Answering

In the previous sections, we introduced the basic graph query and how it can be answered either exactly,
or in an approximate graph querying setting. However, there is variation in what types of queries methods
can answer; some only support a subset of our basic graph queries, while others support more complicated
queries. In this section we will again focus on exact (non-approximate) query answering and look at some
possible restrictions and then at extensions. We will also highlight links to FOL fragments.

Definition 2.10 (Graph Query Answering) Given a knowledge graph G, a query formalism, and a graph
query Q according to that formalism. An answer to the query is any mapping µ : VarQ → Con such that the
requirements of the query formalism are met. The set of all answers is the set of all such mappings.

For our basic graph queries introduced in Definition 2.7, the query formalism sets requirements as to what
edges must and must not exist in the graph (Definition 2.8). In that context we already mentioned conjunctive
queries, which exist either with (CQneg) or without (CQ) negation. If the conditions for writing our graphs

4This score can indicate the rank of the mapping, a likelihood or a truth value, or be a binary indicating value.
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Figure 4: A space of query patterns and their relative expressiveness. Multi-hop reasoning systems tackle
the simplest Path queries. Existing complex query answering systems support Tree queries whereas DAG
and Cyclic queries remain unanswerable by current neural models.

using first order logic (FOL) hold, we can equivalently write our basic graph queries in first order logic.
Each variable in the query becomes existentially quantified, and the formula becomes a conjunction of 1) the
terms formed from the triples in S′, and 2) the negation of the terms formed from the triples in S′. If there
are variables on the edges of the query graph, then we can rewrite the second order formula in first order
logic, by interpreting them as a disjunction over all possible predicates from the finite number of options.
Our example query from above becomes the following FOL sentence.

q = ∃?person, ?uni : win(TuringAward, ?person)∧field(DeepLearning, ?person)∧university(?person, ?uni)

The answer to the query is the variable assignment function. For several of the more restrictive fragments,
it is useful to formulate the queries using this FOL syntax.

Restrictions The first restriction one can introduce are multi-hop queries, known in the NLP and KG
literature for a long time (Guu et al., 2015; Das et al., 2017; Asai et al., 2020) mostly in the context of
question answering. Formally, multi-hop queries (or path queries) are CQ which form a chain, where the tail
of one projection is a head of the following projection, i.e.,

qpath = Vk, ∃V1, . . . , Vk−1 : r1(v, V1) ∧ r2(V1, V2) ∧ · · · ∧ rk(Vk−1, Vk)

where v ∈ E , ∀i ∈ [1, k] : ri ∈ R, Vi ∈ Var and all Vi are existentially quantified variables. In other words,
path queries do not contain branch intersections and can be solved iteratively by fetching the neighbors of
the nodes. One could also define multi-hop queries which allow negation.

Other ways of restricting CQ and on CQneg, resulting in more expressive queries than the multi-hop ones
exist. One can define families of logical queries shaped as a Tree, a DAG, and allowing cyclic parts. Illustrated
in Fig. 4, path (multi-hop) queries form the least expressive set of logical queries. Tree queries add more
reasoning branches connected by intersection operators, DAG queries drop the query tree requirement and
allow queries to be directed acyclic graphs, and, finally, cyclic queries further drop the acyclic requirement.
Note that these queries do not allow variables in the predicate position. Besides, all entities (in this context
referred to as anchors) must occur before all variables in the topological ordering.

We elaborate more on these query types in Section 6.2 and note that the majority of surveyed neural CLQA
methods in Section 5 are still limited to Tree-like queries, falling behind the expressiveness of many graph
database query languages. Bridging this gap is an important avenue for future work.

Extensions The first extension we introduce is the union.

Definition 2.11 (Union of Sets of Mappings) Given two sets of mappings (like µ from Definition 2.8),
we can create a new set of mappings by taking their union. This union operator is commutative and asso-
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Figure 5: Current query answering models cover Existential Positive First Order (EPFO) and Existential
First Order (EFO) logic fragments (marked in a red rectangle). EPFO and EFO are equivalent to unions
of conjunctions (UCQ), and those with atomic negation (UCQneg), respectively. These, in turn, are a
subset of first order logic (FOL). FOL queries, in turn, are only a subset of queries answerable by graph
database languages. For example regular path queries cannot be expressed in FOL. Languages like SPARQL,
SPARQL*, or Cypher, encompass all the query types and more.

ciative, we can hence also talk about the union of three or more mappings. It is permissible that the domains
of the mappings in the input sets are not the same.

We can define a new type of query by applying the union operation on the outcomes of two or more underlying
queries. If these underlying queries are basic graph queries, we will call this new type of queries Unions
of Conjunctive Queries with negation (UCQneg) and if the basic queries did not include negation, as
Union of Conjunctive Queries (UCQ). These classes are also familiar from FOL, and indeed correspond
to a disjunction of conjunctions.

As an example, the following query is in UCQneg because it is a disjunction of conjunctive terms which
consist of atoms ai that are relation projections or their negations:

q = v?.∃v1, . . . , vn :
(

r1(c, v1)︸ ︷︷ ︸
a1

∧ r2(v1, v2)︸ ︷︷ ︸
a2

)
∨

(
¬r3(v2, v3)︸ ︷︷ ︸

a3

)
∨ · · · ∨ rk(vn, v?)︸ ︷︷ ︸

am

Moreover, there are FOL fragments that are equivalent to these fragments. Specifically, all queries in EPFO,
which are Existential Positive First Order sentences, have an equivalent query in UCQ, and all queries in
EFO, Existential First Order sentences, have an equivalent query in UCQneg. The reason is that EPFO and
EFO sentences can be written in the Disjunctive Normal Form (DNF) as a union of conjunctive terms.

Some query languages, like SPARQL, allow an optional part to a query. In our formalism, we can define
the optional part using the union operator. Assuming there are n optional parts in the query, create 2n

different queries, in which other combinations of optional parts are removed. The answer to the query is then
the union of the answers to all those queries. If the query language already allowed unions, then optionals
do not make it more expressive.

Beyond these extensions, one could extend further to all queries one could express with FOL, which
requires either universal quantification, or negation of conjunctions. These are, however, still not all possible
graph queries. An example of interesting queries, which are not in FOL, are conjunctive regular path
queries. These are akin to the path queries we discussed above, but without a specified length.

Definition 2.12 (Regular Path Query) A regular path query is a 3-tuple (s, R, t), where s ∈ Term the
starting term of the path, R ∈ Term the relation term of the path, and t ∈ Term the ending term of the path.
The query represents a path starting in s, traversing an arbitrary number of edges of type R ending in t.

Because this kind of query is a conjunction of an arbitrary length, it cannot be represented in FOL. If one
wants to express paths with a fixed length, this would be a multi-hop path like the one described above. If
one wants to express a maximum length, then this could be done using a union of all allowed lengths. For
the two latter cases, the query can still be expressed in EPFO.
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Definition 2.13 (Regular Path Query Answering) Given a knowledge graph G and a regular path
query Q = (s, R, t). An answer to the query is any mapping µ : VarQ → Con , such that if we replace
all variables v in Q with µ(v), obtaining (ŝ, R̂, t̂), there exists a path in the graph that starts at node ŝ, then
traverses one or more edges of type R̂, and ends in t̂. The set of all answers to the query is the set of all
such mappings.

There exist several variations on regular path queries and they can also be combined with the above query
types to form new ones. In Fig. 5 we illustrate how the fragments relate to other query classes. Most methods
fall strictly within the EFO fragment, i.e., they only support a subset with restrictions as we discussed above.
We will discuss further limitations of these methods in Section 6.

Two final aspects we want to highlight here are projections and joins.

Definition 2.14 (Projection of a Query Answer) Given a query answer µ, and a set of variables V ∈
Var. The projection of the query answer on the variables V is {(var, val|(var, val) ∈ µ, var ∈ V}.

In other words, it is the answer but restricted to a specific set of variables. The query forms introduced
above can all be augmented with a projection to only obtain values for specific variables. This corresponds
to the SELECT ?var clause in SPARQL. Alternatively, it is possible to project all variables in V which is
equivalent to the SELECT * clause. A query without any projected variable is a Boolean subgraph matching
problem equivalent to the ASK query in SPARQL.

A join is used to combine the results of two separate queries into one. Specifically,

Definition 2.15 (Join of Query Answers) Given two query answers µA and µB, and VarA, and VarB

the variables occurring in µA and µB, respectively. The join of these two answers only exists in case they
have the same value for all variables they have in common, i.e., ∀var ∈ VarA ∩ VarB : µA(var) = µb(var).
In that case, join(µA, µB) = µA ∪ µB.

Given two sets of answers, their join is defined as follows.

Definition 2.16 (Join of Query Answer Sets) Given two sets of query answers A and B, the join of
these two is a new set join(A, B) = {join(a, b)|a ∈ A, b ∈ B, and join(a, b) exists}.

This operation enables us to combine multiple underlying queries, potentially of multiple types into a single
one. For example, given the set of answers from our example basic graph query above:

A = {{(?person, Hinton), (?uni, UofT)}, {(?person, Bengio), (?uni, UdeM)}, {(?person, LeCun), (?uni, NYU)}}

and another set of answers

B = {{(?person, Hinton), (?born, 1947)}, {(?person, Bengio), (?born, 1964)}, {(?person, Welling), (?born, 1968)}}

The join of these becomes:

join(A, B) = {{(?person, Hinton), (?uni, UofT), (?born, 1947)}, {(?person, Bengio), (?uni, UdeM), (?born, 1964)}}

We will discuss joins further in Section 6.1, where we will use these basic building blocks to define a broader
set of query operators, aiming to cover all operations that exist in SPARQL. This includes Kleene plus/star
(+/*) for building property paths, FILTER, OPTIONAL, and different aggregation functions.

2.5 Approximate Graph Query Answering

Now that we have defined what Basic Approximate Graph Query Answering is, we can define what we mean
by the more general Approximate Graph Query Answering. The definition of Approximate Graph Query
Answering is the same as the basic case, but rather than only providing answers to basic queries, it is about
answering a broader set of query types.

11
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Definition 2.17 (Approximate Graph Query Answering) Given a knowledge graph G, subgraph of a
complete, but not observable knowledge graph Ĝ, a query formalism, any graph query Q according to that
formalism, and the scoring domain R.

An approximate graph query answer to the query Q is a function f which maps every possible mapping
(µ : VarQ → Con) to R.

Note there that the variables are not always mapped to nodes which occur in the graph. It is well possible
that the query contains an aggregation function which results in a literal value.

In the literature, we can find the concepts of easy and hard answers. This refers to whether the answers can
be found by only having access to G or not.

Definition 2.18 (Easy and Hard answers) Given a knowledge graph G, subgraph of a larger unobserv-
able graph Ĝ, and a query Q. Easy and hard answers are defined in terms of exact query answering (Defi-
nition 2.10). The set of easy answers is the intersection of the answers obtained from G, and those from Ĝ.
The set of hard answers is the set difference between the answers from Ĝ and those from G.

Note the asymmetry in the definitions. Easy answers are those that can be found in both G and Ĝ. Hard
answers are those that can be found only in Ĝ but not in G. For Basic Graph Queries (Definition 2.7), all
easy answers can also be found from Ĝ. However, for some more complex query types (e.g., these which
allow negation) there could also be answers which in G which are not in Ĝ. We call these answers false
positives in the context of answering over Ĝ.

2.6 Triangular Norms and Conorms

Answering logical queries implies execution of logical operators. Approximate query answering, in turn,
implies continuous vector inputs and output truth values that are not necessarily binary. Besides, the
methods often require that the logical operators are smooth and differentiable. Triangular norms (T-norms)
and triangular conorms (T-conorms) define functions that generalize logical conjunction and disjunction,
respectively, to the continuous space of truth values and implement fuzzy logical operations.

T-norm defines a continuous function ⊤ : [0, 1] × [0, 1] → [0, 1] with the following properties ⊤(x, y) =
⊤(y, x) (commutativity), ⊤(x, ⊤(y, z)) = ⊤(⊤(x, y), z) (associativity), and y ≤ z → ⊤(x, y) ≤ ⊤(x, z)
(monotonicity). Also, we have 1 to be the identity element for ⊤, i.e., ⊤(x, 1) = 1. The goal of t-norms is
to generalize logical conjunction with a continuous function. T-conorm can be seen as a duality of a t-norm
that similarly defines a function ⊥ with the same domain and range ⊥ : [0, 1] × [0, 1] → [0, 1]. T-conorms
use the continuous function ⊥ to generalize disjunction to fuzzy logic. The function ⊥ satisfies the same
commutativity, associativity, and monotonicity properties as ⊤ with the only difference being 0 is the identity
element, i.e., ⊥(x, 0) = x.

There exist many triangular norms, conorms, and fuzzy negations (Klement et al., 2013; van Krieken
et al., 2022) that stem from the corresponding logical formalisms, e.g., (1) Gödel logic defines t-norm:
⊤min(x, y) = min(x, y), t-conorm: ⊥max(x, y) = max(x, y); (2) Product logic with t-norm: ⊤prod(x, y) = x ·y,
t-conorm: ⊥prod(x, y) = x + y − x · y; (3) in the Łukasiewicz logic t-norm: ⊤Łuk(x, y) = max(x + y − 1, 0),
t-conorm: ⊥Łuk(x, y) = min(x + y, 1). Using fuzzy negation N(x) = 1 − x, it is easy to verify that
⊥(x, y) = N(⊤(N(x), N(y))) (De Morgan’s laws) naturally obtaining a pair of (⊤, ⊥).

2.7 Graph Representation Learning

Graph Representation Learning (GRL) is a subfield of machine learning aiming at learning low-dimensional
vector representations of graphs or their elements such as single nodes (Hamilton, 2020). For example,
hv ∈ Rd denotes a d-dimensional vector associated with a node v. Conceptually, we want nodes that share
certain structural and semantic features in the graph to have similar vector representations (where similarity
is often measured by a distance function or its modifications).
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Shallow Embeddings The first GRL approaches focused on learning shallow node embeddings, that is,
learning a unique vector per node directly used in the optimization task. For homogeneous (single-relation)
graphs, DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016) trained node embeddings
on the task of predicting walks in the graph whereas in multi-relational graphs TransE (Bordes et al., 2013)
trained node and edge type embeddings in the autoencoder fashion by reconstructing the adjacency matrix.

Graph Neural Networks The idea of graph neural networks (GNNs) (Scarselli et al., 2008) implies learn-
ing an additional neural network encoder with shared parameters on top of given (or learnable) node features
by performing neighborhood aggregation. This framework can be generalized to message passing (Gilmer
et al., 2017) where at each layer t a node v receives messages from its neighbors (possibly adding edge and
graph features), aggregates the messages in the permutation-invariant way, and updates the representation:

h(t)
v = Update

(
h(t−1)

v , Aggregateu∈N (v)
(
Message(h(t−1)

v , h(t−1)
u , euv))

))
Here, hu is a feature of the neighboring node u, euv is the edge feature, Message function builds a message
from node u to node v and can be parameterized with a neural network. As the set of neighbors N (v) is
unordered, Aggregate is often a permutation-invariant function like sum or mean. The Update function
takes the previous node state and aggregated messages of the neighbors to produce the final state of the
node v at layer t and can be parameterized with a neural network as well.

Classical GNN architectures like GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018), and GIN (Xu
et al., 2019) were designed to work with homogeneous, single-relation graphs. Later, several works have
developed GNN architectures that work on heterogeneous graphs with multiple relations (Schlichtkrull et al.,
2018; Vashishth et al., 2020; Zhu et al., 2021). GNNs and message passing paved the way for Geometric Deep
Learning (Bronstein et al., 2021) that leverages symmetries and invariances in the input data as inductive
bias for building deep learning models.

3 Neural Graph Databases

Traditional databases (including graph databases) are designed around two crucial modules: the storage
layer for data and the query engine to process queries over the stored data. From that perspective, neural
database per se is not a novel term and many machine learning systems already operate in this paradigm
when data is encoded into model parameters and querying is equivalent to a forward pass that can output
a new representation or prediction for a downstream task. One of the first examples of neural databases is
vector databases. In vector databases, the storage module consists of domain-agnostic vector representations
of the data, which can be muliti-modal e.g., text paragraphs or images. Vector databases belong to the
family of storage-oriented systems commonly built around approximate nearest neighbor libraries (ANN)
like Faiss (Johnson et al., 2019) or ScaNN (Guo et al., 2020) to answer distance-based queries (like maximum
inner product search, MIPS). Being encoder-independent (that is, any encoder yielding vector representations
can be a source), vector databases lack graph reasoning and complex query answering capabilities. Still,
ANN systems are a convenient choice for implementing certain layers of Neural Graph Databases as we
describe below.

With the recent rise of large-scale pretrained models (i.e., foundation models (Bommasani et al., 2021)), we
have witnessed their huge success in natural language processing and computer vision tasks. We argue that
such foundation models are also a prominent example of neural databases. In foundation models, the “storage
module” might be presented directly with model parameters or outsourced to an external index often used in
retrieval-augmented models (Lewis et al., 2020; Guu et al., 2020; Alon et al., 2022) since encoding all world
knowledge even into billions of model parameters is hard. The “query module” performs in-context learning
either via filling in the blanks in encoder models (BERT or T5 style) or via prompts in decoder-only models
(GPT-style) that can span multiple modalities, e.g., learnable tokens for vision applications (Kolesnikov
et al., 2022) or even calling external tools (Mialon et al., 2023). Applied to the text modality, Thorne et al.
(2021a;b) devise Natural Language Databases (NLDB) where atomic elements are textual facts encoded to a
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vector via a pre-trained language model (LM). Queries to NLDB are sent as natural language utterances that
get encoded to vectors and query processing employs the retriever-reader approach. First, a dense neural
retriever returns a support set of candidate facts, and a fine-grained neural reader performs a join operation
over the candidates (as a sequence-to-sequence task).

The amount of graph-structured data is huge and spans numerous domains like general knowledge with
Freebase (Bollacker et al., 2008), DBpedia (Lehmann et al., 2015), Wikidata (Vrandecic & Krötzsch, 2014),
YAGO (Pellissier Tanon et al., 2020), commonsense knowledge with ConceptNet (Speer et al., 2017),
ATOMIC (Hwang et al., 2021), and biomedical knowledge such as Bio2RDF (Callahan et al., 2013) and
PrimeKG (Chandak et al., 2023). With the growing sizes, the incompleteness of those graphs grows si-
multaneously. At this scale, symbolic methods struggle to provide a meaningful approach to deal with
incompleteness. Therefore, we argue that neural reasoning and graph representation learning methods are
capable of addressing incompleteness at scale while maintaining high expressiveness and supporting complex
queries beyond simple link prediction. We propose to study those methods under the framework of Neural
Graph Databases (NGDB). The concept of NGDB extends the ideas of neural databases to the graph domain.
NGDB combines the advantages of traditional graph databases (graphs as a first-class citizen, efficient stor-
age, and uniform querying interface) with modern graph machine learning (geometric and physics-inspired
vector representations, ability to work with incomplete and noisy inputs by default, large-scale pre-training
and fine-tuning on downstream applications). In contrast to the work of Besta et al. (2022) that proposed
LPG2Vec, a featurization strategy for labeled property graphs to be then used in standard graph database
pipelines, we design the NGDB concept to be neural-first.

Using the definition of Approximate Graph Query Answering (Definition 2.17), we define Neural Graph
Databases as follows.

Definition 3.1 (Neural Graph Database, NGDB) A Neural Graph Database (see Fig. 6) is a tuple
(S, E, fθ). S is a Neural Graph Storage (see Section 3.1), E is a Neural Query Engine (see Section 3.2), and
fθ is a parameterized Approximate Graph Query Answering function, where θ represents a set of parameters.

In particular, our NGDB design agenda includes:

• The data incompleteness assumption, i.e., the underlying data might have missing information
on node-, link-, and graph-levels which we would like to infer and leverage in query answering;

• Inductiveness and updatability, i.e., similar to traditional databases that allow updates and
instant querying, representation learning algorithms for building graph latents have to be inductive
and generalize to unseen data (new entities and relation at inference time) in the zero-shot (or
few-shot) manner to prevent costly re-training (for instance, of shallow node embeddings);

• Expressiveness, i.e., the ability of latent representations to encode logical and semantic relations
in the data akin to FOL (or its fragments) and leverage them in query answering. Practically, the
set of supported logical operators for neural reasoning should be close to or equivalent to standard
graph database languages like SPARQL or Cypher;

• Multimodality beyond KGs, i.e., any graph-structured data that can be stored as a node or record
in classical databases (consisting, for example, of images, texts, molecular graphs, or timestamped
sequences) and can be imbued with a vector representation is a valid source for the Neural Graph
Storage and Neural Query Engine.

The key methods to address the NGDB design agenda are:

• Vector representation as the atomic element, i.e., while traditional graph DBs hash the
adjacency matrix (or edge list) in many indexes, the incompleteness assumption implies that both
given edges and graph latents (vector representations) become the sources of truth in the Neural
Graph Storage;
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Figure 6: A conceptual scheme of Neural Graph Databases. An input query is processed by the Neural
Query Engine where the Planner derives a computation graph of the query and the Executor executes the
query in the latent space. Neural Graph Storage employs Graph Store and Feature Store to obtain latent
representations in the Embedding Store. The Executor communicates with the embedding store via the
Approximate Graph Query Answering Function fθ (Definition 3.1) to retrieve and return results.

• Neural query execution in the latent space, i.e., basic operations such as edge traversal cannot
be performed solely symbolically due to the incompleteness assumption. Instead, the Neural Query
Engine operates on both adjacency and graph latents to incorporate possibly missing data into query
answering;

A conceptual scheme of NGDB is presented in Fig. 6. On a higher level, NGDB contains two main com-
ponents, Neural Graph Storage and Neural Query Engine that we describe in the following Section 3.1 and
Section 3.2, respectively. The processing pipeline starts with the query sent by some application or down-
stream task already in a structured format (obtained, for example, via semantic parsing (Drozdov et al.,
2022) if an initial query is in natural language). The query first arrives to the Neural Query Engine, and,
in particular, to the Query Planner module. The task of the Query Planner is to derive an efficient com-
putation graph of atomic operations (e.g., projections and logical operations) with respect to the query
complexity, prediction tasks, and underlying data storage such as possible graph partitioning. We elaborate
on similarities and differences of the planning mechanism to standard query planners in classic databases in
Section 3.2. The derived plan is then sent to the Query Executor that encodes the query in a latent space,
executes the atomic operations over the underlying graph and its latent representations, and aggregates the
results of atomic operations into a final answer set. The execution is done via the Retrieval module that
communicates with the Neural Graph Storage. The storage layer consists of (1) Graph Store for keeping the
multi-relational adjacency matrix in space- and time-efficient manner (e.g., in various sparse formats like
COO and CSR; (2) Feature Store for keeping node- and edge-level multimodal features associated with the
underlying graph; (3) Embedding Store that leverages an Encoder module to produce graph representations
in a latent space based on the underlying adjacency and associated features. The Retrieval module queries
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Figure 7: The storage and execution pipeline of NGDB (left) and traditional databases (right). Traditional
DBs store the graph in a collection of lookup indexes and each query pattern from the query tree plan is
answered by some of those indexes. In NGDBs, due to graph incompleteness, the graph and its features are
first encoded in a latent space. Queries (or their atomic patterns) are encoded in a latent space either and
probed using the Retrieval module (e.g., can be implemented with MIPS).

the encoded graph representations to build a distribution of potential answers to atomic operations. In the
following subsections, we describe the Neural Graph Storage and Neural Query Engine in more detail.

3.1 Neural Graph Storage

In traditional graph databases, storage design often depends on the graph modeling paradigm. The two most
popular paradigms are Resource Description Framework (RDF) graphs (Brickley et al., 2014) and Labeled
Property Graphs (LPG) (Besta et al., 2022). While the detailed comparison between those frameworks is
out of scope of this work, the principal difference consists in that RDF is a triple-based model allowing
for some formal semantics suitable for symbolic reasoning whereas LPG allows literal attributes over edges
but has no formal semantics. We posit that the new RDF-star paradigm (Hartig et al., 2022) would be a
convergence point of graph modeling combining the best of both worlds, i.e., attributes over edges (enabling
other nodes and relations to be in key-value attributes) together with expressive formal semantics. We note
that hyper-relational KGs (Definition 2.3) and Wikidata Statement Model (Vrandecic & Krötzsch, 2014) are
conceptually close to the RDF-star paradigm. On a physical level, graph databases store edges employing
various indexes and data structures optimized for read (e.g., B+ trees (Neumann & Weikum, 2008) or
HDT (Fernández et al., 2013)) or write applications (such as LSM trees (Sagi et al., 2022)).

However, unlike the above methods, we propose the concept of a neural graph storage (Fig. 7) where both
the input graph and its vector representations are sources of truth. Physically, it consists of the (1) Graph
Store that stores a (multi-relational) adjacency matrix that in the basic form can be implemented with sparse
COO, CSR, or more efficient compressed formats, (2) Feature Store that stores node- and edge-level feature
vectors of various formats and modalities, e.g., numerical, categorical, text data, or already given vectors.
(3) Embedding Store that leverages an Encoder to produce graph representations in a latent space based
on the underlying adjacency and associated features. Feature and Embedding stores can be implemented
with vector databases with efficient retrieval operators (more on retrieval is in the following paragraph).
The embedding store is one of the biggest differences between neural graph storage and its counterpart in
traditional graph DBs. The embedding process can be viewed as a compression step but the semantic and
structure similarity of entities/relations is kept. The distance between entities/relations in the embedding
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space should be positively correlated with the semantic/structure similarity. There are several options for
the architecture of the encoder.

First, we may implement the encoder as a matrix lookup, of which each row corresponds to the embedding of
an entity/relation. The benefit of such modeling is that it provides the most flexibility and the most number
of free parameters – any entry of the embedding matrix is trainable. However, it comes at the cost that it
is challenging to edit the storage. We cannot easily add new entities/relations to the storage because any
novel entity/relation may need a new embedding that requires learning from scratch. If we remove an entity
and later add it back, such embedding matrix modeling also cannot recover the original learned embedding.

Another option for the encoder is a graph neural network (GNN) that can be analyzed through the lens
of message passing and neighborhood aggregation (Section 2.7). The idea is that we may learn the en-
tity/relation embeddings by aggregating its neighbor information. The GNN parameters are shared for all
the entities and relations on the graph. Such modeling provides clear benefit with much better generalization
capability then shallow embedding matrices.

One important process in the neural graph storage is the retrieval step. Traditional graph databases directly
perform identity-based exact match retrieval from the indexes. In contrast, in a neural graph storage, since
we store each entity and relation in the latent space, besides performing retrieval by the entity/relation id,
users can also input an vector, and the retrieval process may return “relevant” entities/relations by measuring
the distance in the embedding space. The retrieval process can be seen as a nearest neighbor search of the
input vector in the embedding space. There are three direct benefits of a neural graph storage compared with
traditional storages. The first advantage is that since the retrieval is operated in the embedding space with
a predefined distance function, each retrieved item naturally comes with a score which may represent the
confidence/relevance of the input vector in a retrieval step. Besides, NGDB allows for different definitions of
the latent space and the distance function (which will be detailed in Section 5.2), such that NGDB is flexible
and users may customize the latent space and distance function based on different desired properties and
user need. Lastly, with the whole literature on efficient nearest neighbor search, we have the opportunity to
implement the retrieval step on extremely large graphs with billions of nodes and edges with high efficiency
and scalability. Existing frameworks including Faiss (Johnson et al., 2019), ScaNN (Guo et al., 2020)
provide scalable implementation of nearest neighbor search. A major limitation, however, is that existing
frameworks are only applicable to L1, L2 and cosine distance functions. It is still an open research problem
how to design efficient scalable nearest neighbor search algorithms for more complex distance functions such
as KL divergence so that we can retrieve with much better efficiency for different CLQA methods.

3.2 Neural Query Engine

In traditional databases, a typical query engine (Neumann & Weikum, 2008; Endris et al., 2018) performs
three major operations. (1) Query parsing to verify syntax correctness (often enriched with a deeper semantic
analysis of query terms); (2) Query planning and optimization to derive an efficient query plan (usually, a
tree of relational operators) that minimizes computational costs; (3) Query execution that scans the storage
and processes intermediate results according to the query plan.

In NGDBs, the sources of truth are both graph adjacency (possibly incomplete) and latent graph represen-
tations (e.g., vector representations of entities and relations). Similarly, queries (or their atomic operations)
are encoded into a latent space. To answer encoded queries over latent spaces, we devise Neural Query
Engines that include two modules: (1) Query Planner to derive an efficient query plan of atomic opera-
tions (e.g., projections and logical operators) maximizing completeness (all answers over existing edges must
be returned) and inference (of missing edges predicted on the fly) taking into account query complexity,
prediction tasks, and partitioning of sources; (2) Query Executor that encodes the derived plan in a latent
space, executes the atomic operations (or the whole query) over the graph and its latent representations,
and aggregates intermediate results into a final answer set with possible postprocessing.

Broadly in Deep Learning, prompting large language models (LLMs) can be seen as a form of a neural query
engine where queries are unstructured texts. Recent prompting techniques like Chain of Thought (Wei
et al., 2022) or Program of Thought (Chen et al., 2022a) achieved remarkable progress in natural language
reasoning (Qiao et al., 2022) by providing few prompts with “common sense” examples of solving a given
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Figure 8: Query planning in NGDBs (left) and traditional graph DBs (right). The NGDB planning (assuming
incomplete graphs) can be performed autoregressively step-by-step (1) or generated entirely in one step (2).
The traditional DB planning is cost-based and resorts to metadata (assuming complete graphs and extracted
from them) such as the number of intermediate answers to build a tree of join operators.

problem step-by-step. Such step-by-step instructions resemble a query plan designed manually by a prompt
engineer and optimized for query execution against a particular LLM where query execution is framed as the
language model objective (predicting next few tokens). Prompting often does not require any additional LLM
fine-tuning or training and works in the inference regime (often called in-context learning). Pre-trained LLMs
can thus be seen as neural databases that can be queried with a sequence of prompts organized in a domain-
specific query language (Beurer-Kellner et al., 2022). Recently, a similar prompting technique (Drozdov et al.,
2022) demonstrated strong systematic generalization skills by solving a long-standing semantic parsing task
of converting natural language questions to SPARQL queries. Several major drawbacks of such querying
techniques are: (1) a limited context window (usually, less than 8192 tokens) that does not allow prompting
the whole database content; (2) issues with factual correctness and hallucinating of the generated reponses.

Query Planner In NGDBs, an input query is expected to arrive in the structured form, e.g., as generic as
FOL – we leave the discussion on possible query languages out of scope of this work emphasizing the breadth
of general and domain-specific languages. For illustrating example queries, however, we use the SPARQL
notation as one of the standard query languages for graph databases. Broadly, principal differences between
symbolic and neural query planning are illustrated in Fig. 8. While traditional graph DBs are symbolic
and deductive, NGDBs are neural and inductive (i.e., can generalize to unseen data). As we assume the
graph data is incomplete, neural reasoning is expected to process more intermediate results that makes query
planning even more important in deriving the most efficient plan.

The task of the Query Planner is to optimize the execution process by deriving the most efficient query plan,
i.e., the execution order of atomic and logical operations, given the query complexity, expected prediction
task, and configuration of the storage. We envision the storage configuration to play an important role in
very large graphs that cannot be stored entirely in the main memory. A typical configuration would resort
to partitioning of graphs and latent representations across many devices in a distributed fashion. Therefore,
the planner has to identify which parts of the input query to send to a relevant partition. Training and
inference of ML models in distributed environments (with possible privacy restrictions) is at the core of
federated learning (Li et al., 2020) and differential privacy (Dwork et al., 2006) and we posit they would be
important components of very large NGDBs.

Common metrics of evaluating the quality of plans are execution time (in units of time) and throughput
(number of queries per unit of time). In traditional graph DBs, different query plans return the same
answers but require different execution time (Endris et al., 2018) due to the order of join operators (e.g.,
nested loop joins or hash joins), the number of calls to indexes, and intermediate results to process. In
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contrast, NGDBs execute queries in the latent space together with link prediction and, depending on the
approach, time complexity of atomic operations (relation projection and logical operators) might depend on
the hidden dimension O(d) or the number of entities O(E) (we elaborate on complexity in Section 5.4).

To date, query planning is still a challenge for neural query answering methods as all existing approaches
(Section 5) execute an already given sequence of operators and all existing datasets (Section 7) provide such
a hardcoded sequence without optimizations. Furthermore, some existing approaches, e.g., CQD (Arakelyan
et al., 2021), are susceptible to the issue when changing a query plan might result in a different answer set.

We hypothesize that principled approaches for deriving efficient query plans taking into account missing edges
and incomplete graphs might be framed as Neural Program Synthesis (Nye et al., 2020) often used to derive
query plans for LLMs to solve complex numerical reasoning tasks (Gupta et al., 2020; Chen et al., 2020).
In the complex query answering domain, the first attempt to apply neural program synthesis for generating
query plans was made by the Latent Execution-Guided Reasoning (LEGO) framework (Ren et al., 2021).
LEGO iteratively expands the initial query tree root by sampling from the space of relation projection and
logical operators. The sampling is based on learnable heuristics and pruning mechanisms.

Query Executor Once the query plan is finalized, the Query Executor module encodes the query (or its
parts) into a latent space, communicates with the Graph Storage and its Retrieval module, and aggregates
intermediate results into the final answer set. Following the Definition 2.18, there exists easy answers and
hard answers. Query Executors are expected to return the compelte set of easy answers and recover missing
edges to return the missing hard answers.

There exist two common mechanisms for neural query execution described in Section 5: (1) atomic, re-
sembling traditional DBs, when a query plan is executed sequentially by encoding atomic patterns (such
as relation projections), retrieving their answers, and executing logical operators as intermediate steps; (2)
global, when the entire query graph is encoded and executed in a latent space in one step. For example
(Fig. 7), given a query plan q = U?.∃V : win(TuringAward, V ) ∧ field(DeepLearning, V ) ∧ university(V, U?),
the atomic mechanism executes separate relation projections, e.g., win(TuringAward, V ), sequentially while
the global mechanism encodes the whole query graph and probes it against the latent space of the graph.

Direct implications of the chosen mechanism include computational complexity (Section 5.4) and supported
logical operators (Section 6), i.e., fully latent mechanisms are mostly limited to conjunctive and intersection
queries and have worse generalization qualities. To date, most methods follow the atomic mechanism.

The main challenge for neural query execution is matching query expressiveness to that of symbolic languages
like SPARQL or Cypher. The challenge includes three aspects: (1) handling more expressive query operators
such as FILTER or aggregations like COUNT or SUM; (2) supporting query patterns more complex than trees;
(3) supporting several projected variables and operations on them. We elaborate in Section 6.

A Taxonomy of Query Reasoning Methods In the following sections, we devise a taxonomy of query
answering methods as a component of the Neural Query Engine (NQE). We categorize existing and future
approaches along three main directions: (i) Graphs – what is the underlying structure against which
we answer queries; (ii) Modeling – how we answer queries and which inductive biases are employed; (iii)
Queries – what we answer, what are the query structures and what are the expected answers. The taxonomy
is presented in Fig. 9. In the following sections, we describe each direction in more detail and illustrate them
with examples covering the whole existing literature on complex query answering (more than 40 papers).
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Figure 9: The Neural Query Engine Taxonomy consists of three main branches – Graphs, Modeling, and
Queries. We describe each branch in more detail including prominent examples in the relevant sections.
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4 Graphs

The Graphs category covers the underlying graph structure (G in Definition 2.9) against which complex
queries are sent and the answers are produced. Understanding the graph, its contents and modeling
paradigms is crucial for designing query answering models. To this end, we propose to analyze the un-
derlying graph from three aspects: Modality, Reasoning Domain, and Background Semantics.

4.1 Modality

We highlight four modalities common for KGs and graph databases: standard triple-based KGs adhering
to the RDF data model, hyper-relational KGs following the RDF-star or Labeled Property Graph (LPG)
formats, and hypergraph KGs (we elaborate on choosing an appropriate modeling paradigm in Section 3.1).
The difference among the three modalities is illustrated in Fig. 2. Additionally, we outline multi-modal
KGs that contain not just a graph of nodes and edges, but also text, images, audio, video, and other data
formats linked to the underlying graph explicitly or implicitly.

We categorize the literature along the Modality aspect in Table 2. To date, most query answering approaches
operate solely on triple-based graphs. Among approaches supporting hyper-relational graphs, we are only
aware of StarQE (Alivanistos et al., 2022) that incorporates entity-relation qualifiers over labeled edges and
its extension NQE (Luo et al., 2023). We posit that the hyper-relational model might serve as a theoretical
foundation of temporal query answering approaches since temporal attributes are in fact continuous key-value
edge attributes. To date, we are not aware of complex query answering models supporting hypergraphs or
multi-modal graphs. We foresee them as possible area of future research in the area.

Table 2: Complex Query Answering approaches categorized under Modality.

Triple-only Hyper-Relational Hypergraph Multi-modal
GQE (Hamilton et al., 2018), GQE w hash (Wang et al., 2019), CGA (Mai
et al., 2019), TractOR (Friedman & Broeck, 2020), Query2Box (Ren et al.,
2020), BetaE (Ren & Leskovec, 2020), EmQL (Sun et al., 2020), MPQE (Daza
& Cochez, 2020), Shv (Gebhart et al., 2021), Q2B Onto (Andresel et al., 2021),
RotatE-Box (Adlakha et al., 2021), BiQE (Kotnis et al., 2021), HyPE (Choud-
hary et al., 2021b), NewLook (Liu et al., 2021), CQD (Arakelyan et al., 2021),
PERM (Choudhary et al., 2021a), ConE (Zhang et al., 2021b), LogicE (Luus
et al., 2021), MLPMix (Amayuelas et al., 2022), FuzzQE (Chen et al., 2022b),
GNN-QE (Zhu et al., 2022), GNNQ (Pflueger et al., 2022), SMORE (Ren et al.,
2022), KGTrans (Liu et al., 2022), LinE (Huang et al., 2022b), Query2Particles
(Bai et al., 2022a), TAR (Tang et al., 2022), TeMP (Hu et al., 2022), FLEX (Lin
et al., 2022b), TFLEX (Lin et al., 2022a), NodePiece-QE (Galkin et al., 2022b),
ENeSy (Xu et al., 2022), GammaE (Yang et al., 2022a), NMP-QEM (Long
et al., 2022), QTO (Bai et al., 2022b), SignalE (Wang et al., 2022a), LMPNN
(Wang et al., 2023d), Var2Vec (Wang et al., 2023a), CQDA (Arakelyan et al.,
2023), Query2Geom (Sardina et al., 2023), SQE (Bai et al., 2023), RoConE (He
et al., 2023), FIT (Yin et al., 2023), LitCQD (Demir et al., 2023), CylE (Nguyen
et al., 2023), LARK (Choudhary & Reddy, 2023), WFRE (Wang et al., 2023c)

StarQE (Alivanistos et al., 2022),
NQE (Luo et al., 2023)

None None

4.2 Reasoning Domain

Following Definition 2.8, a query Q includes constants Con, variables Var, and returns answers as mappings
µ : VarQ → Con. By Reasoning Domain we understand a space of possible constants, variables, and answers,
that is, what query answering models can reason about. We highlight three common domains (Discrete,
Discrete + Time, Discrete + Continuous), illustrate them in Fig. 10, and categorize existing works in Table 3.
Each subsequent domain is a superset of the previous domains, e.g., Discrete + Continuous includes the
capabilities of Discrete and Discrete + Time and expands the space to continuous inputs and outputs.

In the Discrete domain, constants, variables, and answers can be entities E and (or) relation types R of
the KG, Con ⊆ E ∪ R, Var ⊆ E ∪ R, µ ⊆ E ∪ R. That is, input queries may only contain entities (or
relations) and their answers are only entities (or relations). For example, a query ?x : education(Hinton, x)
in Fig. 10 can only return two entities {Edinburgh, Cambridge} as answers. Conceptually, the framework
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Figure 10: Reasoning Domains. The Discrete domain only allows entities and relations as constants, vari-
ables, and answers. The Discrete + Time domain extends the space to discrete timestamps and time-specific
operators. The Discrete + Continuous domain allows continuous inputs (literals) and outputs.

allows relation types r ∈ R to be variables as well describing, for example, a SPARQL graph pattern
{Hinton ?r Cambridge} – or ?r : r(Hinton, Cambridge) in the functional form – that returns all relation
types between two nodes Hinton and Cambridge. However, to the best of our knowledge, the majority
of existing query answering literature and datasets limit the space of constants, variables, and answers to
entities-only, Con ⊆ E , Var ⊆ E , µ ⊆ E and all relation types are given in advance (we discuss queries
structure in more detail in Section 6). To date, most of the literature in the field belongs to the Discrete
reasoning domain (Table 3).

Some nodes and edges might have timestamps from a set of discrete timestamps t ∈ T S indicating a validity
period of a certain statement. In a more general case, certain subgraphs might be timestamped. We define the
Discrete + Time domain when queries include temporal data. In this domain, the set of constants is extended
with timestamps Con ⊆ E ∪ R ∪ T S and relation projections might be instantiated with a certain timestamp
Rt(a, b). For instance (Fig. 10), given a timestamped graph and a query ?x : educationyear==1973(Hinton, x),
the answer set includes only Edinburgh as the timestamp 1973 falls into the validity period of only one edge.

It is possible to extend the domain of variables and query answers with timestamps as well, Var, µ ⊆
E ∪ R ∪ T S, such that queries might employ timestamps as intermediate existentially quantified variables
and possible answers can be entities or timestamps. This approach is followed by the Temporal Feature-
Logic Embedding Framework (TFLEX) by Lin et al. (2022a) that defines additional operators before, after,
between over edges with discrete timestamps.

Finally, the most expressive domain is Discrete + Continuous that enables reasoning over continuous inputs
(such as numbers, texts, continuous timestamps) often available as node and edge attributes or literals.
Formally, for numerical data, the space of constants, variables, and answers is extended with real numbers
R, i.e., Con, Var, µ ⊆ E ∪R∪T S ∪R. An example query in Fig. 10 ?x : education(Hinton, x)∧x.students <
30000 includes a conjunctive term x.students < 30000 that requires numerical reasoning over the students
attribute of a variable x to produce the answer Cambridge. In a similar fashion, extending the answer set
to continuous outputs can be framed as a regression task. To date, LitCQD (Demir et al., 2023) is the only
approach supporting numerical literals (in R) as query constants and potential query answers. In addition
to the ComplEx-based (Lacroix et al., 2018) link predictor between entities, LitCQD employs TransEA (Wu
& Wang, 2018) as a regressor to predict numerical values of entities’ attributes. Incorporating literals into
queries, LitCQD defines filtering operators less than, greater than, equal implemented as exponential
functions of predicted and target values. For example, the term x.students < 30000 is represented as a
conjuction students(x, C) ∧ lt(C, 30000) of a relation projection and the less-than filter. The ability to reason
over continuous data is crucial for query answering given that most real-world KGs heavily rely on literals.
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Table 3: Complex Query Answering approaches categorized under Reasoning Domain.

Discrete Discrete + Time Discrete + Continuous
GQE (Hamilton et al., 2018), GQE w hash (Wang et al., 2019), CGA (Mai
et al., 2019), TractOR (Friedman & Broeck, 2020), Query2Box (Ren et al.,
2020), BetaE (Ren & Leskovec, 2020), EmQL (Sun et al., 2020), MPQE (Daza
& Cochez, 2020), Shv (Gebhart et al., 2021), Q2B Onto (Andresel et al., 2021),
RotatE-Box (Adlakha et al., 2021), BiQE (Kotnis et al., 2021), HyPE (Choud-
hary et al., 2021b), NewLook (Liu et al., 2021), CQD (Arakelyan et al., 2021),
PERM (Choudhary et al., 2021a), ConE (Zhang et al., 2021b), LogicE (Luus
et al., 2021), MLPMix (Amayuelas et al., 2022), FuzzQE (Chen et al., 2022b),
GNN-QE (Zhu et al., 2022), GNNQ (Pflueger et al., 2022), SMORE (Ren et al.,
2022), KGTrans (Liu et al., 2022), LinE (Huang et al., 2022b), Query2Particles
(Bai et al., 2022a), TAR (Tang et al., 2022), TeMP (Hu et al., 2022), FLEX (Lin
et al., 2022b), NodePiece-QE (Galkin et al., 2022b), ENeSy (Xu et al., 2022),
GammaE (Yang et al., 2022a), NMP-QEM (Long et al., 2022), StarQE (Ali-
vanistos et al., 2022), QTO (Bai et al., 2022b), SignalE (Wang et al., 2022a),
LMPNN (Wang et al., 2023d), NQE (Luo et al., 2023), Var2Vec (Wang et al.,
2023a), CQDA (Arakelyan et al., 2023), Query2Geom (Sardina et al., 2023),
SQE (Bai et al., 2023), RoConE (He et al., 2023), FIT (Yin et al., 2023), CylE
(Nguyen et al., 2023), LARK (Choudhary & Reddy, 2023), WFRE (Wang et al.,
2023c)

TFLEX (Lin et al., 2022a) LitCQD (Demir et al., 2023)

4.3 Background Semantics
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Figure 11: Background Semantics. Facts-only are graphs that only have assertions (ABox) and have no
higher-level schema. Class Hierarchy introduces node types (classes) and hierarchical relationships between
classes. Finally, Complex Axioms add even more complex logical rules (TBox) governed by certain OWL
profiles, e.g., A professor is someone who has one or more students and works at university.

Relational databases often contain a schema, that is, a specification of how tables and columns are organized
that gives a high-level overview of the database content. In graphs databases, schemas exist as well and
might describe, for instance, node types are common in the Labeled Property Graph (LPG) paradigm. RDF
graphs, however, might provide an additional layer of logical consistence by employing standards based on
Description Logics (Baader et al., 2003). As incorporating schema is crucial for designing effective query
answering ML models, we introduce the Background Semantics (Fig. 11) as the notion of additional schema
information available on top of plain facts (statements).
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Facts-only. In the simplest case, there is no background schema such that a KG consists of statements
(facts) only, that is, a KG follows Definition 2.2, G = (E , R, S). In terms of description logics, a graph only
has assertions (ABox). Queries, depending on the Reasoning Domain (Section 4.2), involve only entities,
relations, and literals. The original GQE (Hamilton et al., 2018) focused on facts-only graphs and the
majority of subsequent query answering approaches (Table 4) operate exclusively on schema-less KGs.

Class Hierarchy. Classes of entities, or node types, are a natural addition to a facts-only graph as a basic
schema. Extending Definition 2.2 with a set of types T , a graph G is defined as G = (E , R, S, T ). Each
entity e might have one or more associated classes type(e) = {t1, . . . , tk}|t ∈ T . Both LPG and RDF graphs
support classes albeit in RDF it is possible to specify hierarchical relationships between classes using RDF
Schema (RDFS) (Brickley et al., 2014)5. Formally, types become explicit nodes in a graph, and statements
S can now have types as subjects or objects, S ⊂ ((E ∪ T ) × R × (E ∪ T )), or other statement elements
in graphs of other modalities. Practically, edges involving types might be present physically in a KG or be
considered as an additional supervised input to a particular model.

To date, we are aware of three query answering approaches (Table 4) that incorporate entity types. Con-
textual Graph Attention (CGA, Mai et al. (2019)) only uses types for entity embedding initialization
and requires each entity to have only one type. The queries are not conditioned by entity types and
the answer set still includes entities only. That is, query constants, variables, and the answer set follow
Con ⊆ E , Var ⊆ E , µ ⊆ E .

In Type-Aware Message Passing (Temp, Hu et al. (2022)), type embeddings are used to enrich entity and
relation representations that are later sent to a downstream query answering model. Each node might have
several types. In the inductive scenario (we elaborate on inference scenarios in Section 5.1) with unseen
nodes at inference time, type and relation embeddings are learned invariants that transfer across training
and inference entities. Query-wise, constants, variables, and the answer set are still limited to entities only.

The TBox and ABox Neural Reasoner (TAR, Tang et al. (2022)) incorporates types and their hierarchy
to improve predictions over entities as well as introduces a task of predicting types of answer entities, that
is, µ ⊆ (E ∪ T ). Constants and variables are still entity-only such that using types as query variables is not
allowed. The class hierarchy in TAR is used in three auxiliary losses besides the original entity prediction,
that is, concept retrieval – prediction of the answer set of types, subsumption – predicting which type is a
subclass of another type, and instantiation – predicting a type for each entity.

A natural next step for the Class Hierarchy family of approaches is to incorporate types in queries in the
form of constants and variables, Con ⊆ (E ∪ T ), Var ⊆ (E ∪ T ).

Complex Axioms. Finally, a schema might contain not just a class hierarchy but a set of more complex
axioms involving, for example, a hierarchy of relations, qualified restrictions on relations, or composite
classes. Such a complex schema can now be treated as an ontology O that extends the definition of the graph
G = (E , R, S, O). In Fig. 11, the axiom Professor ⊑ ≥ 1 hasStudent ⊓ ∀works.University describes that A
professor is someone who has one or more students and works at university. In terms of description logics,
a graph has an additional terminology component (TBox). The expressiveness of TBox directly affects
the complexity of symbolic reasoning engines up to exponential (ExpTime) for most expressive fragments.
To alleviate this issue, ontology languages (like Web Ontology Language, OWL) specify less expressive but
computationally feasible profiles, e.g., OWL 2 introduces three profiles OWL EL, OWL QL, OWL RL (Motik
et al., 2009). OWL-QL, in turn, is loosely connected to the DL-LiteR ontology language (Artale et al., 2009).

In graph representation learning, incorporating complex ontological axioms is non-trivial even for simple
link prediction models (Zhang et al., 2022b). In the query answering literature, the only attempt to include
complex axioms is taken by Andresel et al. (2021). In Q2B Onto (O2B), an extension of Query2Box (Q2B,
Ren et al. (2020)), the set of considered complex axioms belongs to the DL-LiteR fragment and supports
the hierarchy of classes (subclasses), the hierarchy of relations (subproperties), as well as range and domain
of relations. The model architecture is not directly conditioned on the axioms and remains the original
Query2Box. Instead, the axioms affect the graph structure, query sampling, and an auxiliary loss, that

5RDFS has more expressive means (e.g., a hierarchy of relations) but we leave them to Complex Axioms
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is, query rewriting mechanisms are used to materialize more answers to original queries as if executed
against the complete graph (deductive closure) akin to data augmentation. During optimization, an auxiliary
regularization loss aims at including a specialized query box q into the more general version of this query q′.

Still, even the expensive procedure of incorporating complex axioms in query sampling in O2B benefits
mostly the deductive capabilities of query answering, that is, inferring answers that are already implied by
the graph G and ontology O, and does not improve the generalization capabilities when missing edges cannot
be inferred by ontological axioms. We elaborate on deductive, generalization, and other setups in Section 7.

Another avenue for future work is a better understanding of theoretical expressiveness of Graph Neural Net-
work (GNN) encoders when applied to multi-relational KGs. Initial works on non-relational graphs (Barceló
et al., 2020) map the expressiveness to the FOC2 subset of FOL with two variables and counting quantifiers,
and to FOCB (Luo et al., 2022) for hypergraphs of maximum arity B. In relational graphs, Barceló et al.
(2022) quantified the expressiveness of relational GNNs in terms of the relational Weisfeiler-Leman (RWL)
test proving that RWL is more expressive than classical WL test (Weisfeiler & Leman, 1968) and that com-
mon relational GNN architectures like R-GCN (Schlichtkrull et al., 2018) and CompGCN (Vashishth et al.,
2020) are bounded by 1-RWL. Using RWL, Huang et al. (2023) derive that the family of GNNs conditioned
on the query node, such as Neural Bellman-Ford Networks (Zhu et al., 2021), are bounded by the asymmetric
local 2-RWL and expressive as rGFO3

cnt, restricted guarded first-order logic fragment with three variables
and counting. Concurrently, Gao et al. (2023) study KGs as double permutation equivariant structures
(to permuting nodes and edge types) and map their expressiveness to universally quantified entity-relation
(UQER) Horn clauses. However, it is still an open question if GNNs can capture OWL-like axioms and
leverage them as an inductive bias in complex query answering.

Table 4: Complex Query Answering approaches categorized under Background Semantics .

Facts-only (ABOX) + Class Hierarchy + Complex Axioms (TBOX)
GQE (Hamilton et al., 2018), GQE w hash (Wang et al., 2019), Trac-
tOR (Friedman & Broeck, 2020), Query2Box (Ren et al., 2020), BetaE
(Ren & Leskovec, 2020), EmQL (Sun et al., 2020), Shv (Gebhart et al.,
2021), RotatE-Box (Adlakha et al., 2021), MPQE (Daza & Cochez, 2020),
BiQE (Kotnis et al., 2021), HyPE (Choudhary et al., 2021b), NewLook
(Liu et al., 2021), CQD (Arakelyan et al., 2021), PERM (Choudhary et al.,
2021a), ConE (Zhang et al., 2021b), LogicE (Luus et al., 2021), MLPMix
(Amayuelas et al., 2022), FuzzQE (Chen et al., 2022b), GNN-QE (Zhu
et al., 2022), GNNQ (Pflueger et al., 2022), SMORE (Ren et al., 2022),
KGTrans (Liu et al., 2022), LinE (Huang et al., 2022b), Query2Particles
(Bai et al., 2022a), FLEX (Lin et al., 2022b), TFLEX (Lin et al., 2022a),
NodePiece-QE (Galkin et al., 2022b), ENeSy (Xu et al., 2022), Gam-
maE (Yang et al., 2022a), NMP-QEM (Long et al., 2022), StarQE (Ali-
vanistos et al., 2022), QTO (Bai et al., 2022b), SignalE (Wang et al.,
2022a), LMPNN (Wang et al., 2023d), NQE (Luo et al., 2023), Var2Vec
(Wang et al., 2023a), CQDA (Arakelyan et al., 2023), Query2Geom (Sar-
dina et al., 2023), SQE (Bai et al., 2023), RoConE (He et al., 2023), FIT
(Yin et al., 2023), LitCQD (Demir et al., 2023), CylE (Nguyen et al.,
2023), LARK (Choudhary & Reddy, 2023), WFRE (Wang et al., 2023c)

CGA (Mai et al.,
2019), TeMP (Hu
et al., 2022), TAR
(Tang et al., 2022)

Q2B Onto (Andresel et al., 2021)

5 Modeling

In this section, we discuss the literature from the perspective of Modeling. Following the common methodol-
ogy (Battaglia et al., 2018), we segment the Modeling methods through the lens of Encoder-Processor-Decoder
modules (illustrated in Fig. 12). (1) The Encoder Enc() takes an input query q, target graph G with its
entities and relations, and auxiliary inputs (e.g., node, edge, graph features) to build their representations in
the latent space. (2) The Processor P leverages the chosen inductive biases to process representations of the
query with its logical operators in the latent or symbolic space. (3) The Decoder Dec() takes the processed
latents and builds desired outputs such as a distribution over discrete entities or regression predictions in
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Figure 12: Neural Query Execution through the Encoder-Processor-Decoder modules. Encoder function f
builds representations of inputs (query, target graph, auxiliary data) in the latent space. Processor P executes
the query with its logical operators against the graph conditioned on other inputs. Decoder function g builds
requested outputs that might be discrete or continuous.

case of continuous tasks. Generally, encoder, processor, and decoder can be parameterized with a neural
network θ or be non-parametric. Finally, we analyze computational complexity of existing processors.

5.1 Encoder

We start the modeling section with encoders, i.e., how different methods encode and represent entities and
relations from the KG. There are three different categories, Shallow Embedding, Transductive Encoder, and
Inductive Encoder each representing a different way of producing the neural representation of the enti-
ties/relations. Different encoding methods are suitable in different inference setups (details in Section 7.4),
and may further require different logical operator methods (details in Section 5.2). Fig. 13 illustrates the
three common encoding approaches.
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Figure 13: Categorization of Encoders. Shallow encoders perform entity and relation embedding lookup
and send them to the processor. Transductive encoders additionally enrich the representations with query,
graph, classes, or other latents. Inductive encoders do not need learnable entity embeddings.

Shallow Embeddings. The first line of approaches encodes each entity/relation on the graph as a low-
dimensional vector, and thus we achieve an entity embedding matrix E and a relation embedding matrix R.
The shape of the entity embedding matrix is |E| × d (|R| × d), where d is the dimension of the embedding.
Shallow embedding methods assume independence of the representation of all the nodes on the graph. This
independence assumption gives the model much freedom, free parameters to learn. Such modeling origins
from the KG completion literature, where the idea is to learn the entity and relation embedding matrices by
optimizing a pre-defined distance/score function over all edges on the graph, e.g., a triplet fact dist(es, r, eo).
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Table 5: Complex Query Answering approaches categorized under Encoder.

Shallow Embedding Transductive Encoder Inductive Encoder
GQE (Hamilton et al., 2018), GQE w hash (Wang et al., 2019), CGA
(Mai et al., 2019), TractOR (Friedman & Broeck, 2020), Query2Box (Ren
et al., 2020), BetaE (Ren & Leskovec, 2020), EmQL (Sun et al., 2020),
Shv (Gebhart et al., 2021), Q2B Onto (Andresel et al., 2021), RotatE-
Box (Adlakha et al., 2021), HyPE (Choudhary et al., 2021b), NewLook
(Liu et al., 2021), CQD (Arakelyan et al., 2021), PERM (Choudhary et al.,
2021a), ConE (Zhang et al., 2021b), LogicE (Luus et al., 2021), FuzzQE
(Chen et al., 2022b), SMORE (Ren et al., 2022), LinE (Huang et al.,
2022b), Query2Particles (Bai et al., 2022a), TAR (Tang et al., 2022),
FLEX (Lin et al., 2022b), TFLEX (Lin et al., 2022a), GammaE (Yang
et al., 2022a), NMP-QEM (Long et al., 2022), QTO (Bai et al., 2022b),
SignalE (Wang et al., 2022a), Var2Vec (Wang et al., 2023a), CQDA

(Arakelyan et al., 2023), Query2Geom (Sardina et al., 2023), RoConE
(He et al., 2023), FIT (Yin et al., 2023), LitCQD (Demir et al., 2023),
CylE (Nguyen et al., 2023), WFRE (Wang et al., 2023c)

MPQE (Daza & Cochez,
2020), BiQE (Kotnis et al.,
2021), KGTrans (Liu et al.,
2022), StarQE (Alivanistos
et al., 2022), MLPMix
(Amayuelas et al., 2022),
ENeSy (Xu et al., 2022),
LMPNN (Wang et al.,
2023d), NQE (Luo et al.,
2023), SQE (Bai et al., 2023)

NodePiece-QE (Galkin
et al., 2022b), GNN-QE
(Zhu et al., 2022), GNNQ
(Pflueger et al., 2022), TeMP
(Hu et al., 2022)

The majority of query answering literature follows the same paradigm with various different embedding
spaces and distance functions to learn the entity and relation embedding matrices. Multiple embedding
spaces have been proposed. For example, GQE (Hamilton et al., 2018) and Query2Box (Ren et al., 2020)
embed into Rd (point vector in the Euclidean space); FuzzQE (Chen et al., 2022b) embeds into the space
of real numbers in range [0, 1] (fuzzy logic score); BetaE (Ren & Leskovec, 2020) uses Beta distribution, a
probabilistic embedding space; ConE Zhang et al. (2021b) on the other hand embeds entities as a point on
a unit circle. Each design choice motivates the inductive bias for executing logical operators (as we show
in Section 5.2). Some approaches employ shallow entity and relation embeddings already pre-trained on a
simple link prediction task and just apply on top of them a query answering decoder with non-parametric
logical operators. For example, CQD (Arakelyan et al., 2021), LMPNN (Wang et al., 2023d), Var2Vec (Wang
et al., 2023a), and CQDA (Arakelyan et al., 2023) take pre-trained embeddings in the complex space Cd and
apply non-parametric t-norms and t-conorms to model intersection and union, respectively. QTO (Bai et al.,
2022b) goes even further and fully materializes scores of all possible triples in one [0, 1]|R|×|E|×|E| matrix
given pre-trained entity and relation embeddings at preprocessing stage.

Despite being the mainstream design choice, the downside of shallow methods is that (1) shallow embeddings
do not use any inductive bias and prior knowledge of the entity or its neighboring structure since the
parameters of all entities/relations are free parameters learned from scratch; (2) they are not applicable
in the inductive inference setting since these methods do not have a representation/embedding for those
unseen novel entities by design. One possible solution is to randomly initialize one embedding vector for a
novel entity and finetune the embedding vector by sampling queries involving the novel entity (detailed in
Section 7.3) However, such a solution requires gradient steps during inference, rendering it not ideal.

Transductive Encoder. Similar to shallow embedding methods, transductive encoder methods learn the
same entity embedding matrix E . Besides, they learn an additional encoder Encθ(q, E, R, . . . ) (parameter-
ized with θ) on top of the query q, entity and relation embedding matrices (and, optionally, other available
inputs). The goal is to apply the encoder to the embeddings of entities in the query q in order to capture
dependencies between neighboring entities in the graph. Specifically, the additional encoder may take several
rows of the feature matrix as input and further apply transformations. For example, BiQE (Kotnis et al.,
2021) and kgTransformer (Liu et al., 2022) linearize a query graph Gq into a sequence and apply a Trans-
former (Vaswani et al., 2017) encoder that attends to all other embeddings in the query and obtain the final
representation of the [MASK] token as the target query. MPQE (Daza & Cochez, 2020) and StarQE (Ali-
vanistos et al., 2022) run a message passing GNN architecture on top of the query graph Gq to enrich entity
and relation embeddings and extract the final node representation as the query embedding. These methods
share similar benefit and disadvantage of the shallow embeddings. Namely, there are many free parameters
in the method to train. Unlike the shallow embeddings, the additional encoder leverages relational inductive
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bias between an entity and its neighboring entities or other entities in a query, allowing for a better learned
entity representation and generalization capacity. However, since at its core the method is still based on the
large look-up matrix of entity embeddings, it still exhibits the same downside that all such methods cannot
be directly applied to an inductive setting where we may observe new entities.

Inductive Encoder. In order to address the aforementioned challenges of shallow embeddings and trans-
ductive encoders, inductive encoder methods aim to avoid learning an embedding matrix E for a fixed
number of entities. Instead, inductive representations are often calculated by leveraging certain invariances,
that is, the features that remain the same when transferred onto different graphs with new entities at infer-
ence time. As we describe in Section 7.4, inductive encoders might employ different invariances albeit the
majority of inductive encoders rely on the assumption of the fixed set of relation types R. Formally, follow-
ing Definition 2.7, given a complex query Q = (E ′, R′, S ′, S̄ ′) composed of entity and relation terms E ′, R′

(that, in turn, contain constants Con and variables Var), relation projections R(a, b) ∈ S (and, optionally, in
S̄ ′), a target graph G (and, optionally, other inputs), inductive encoders learn a conditional representation
function Encθ(e|E ′, R′, G, . . . ) for each entity e ∈ E . Galkin et al. (2022b) devise two families of inductive
representations, i.e., (1) inductive node representations and (2) inductive relational structure representations.

Inductive node representation approaches parameterize Encθ as a function of a fixed-size invariant vocab-
ulary. For instance, NodePiece-QE (Galkin et al., 2022b) employs the invariant vocabulary of relation types
and parameterizes each entity through the set of incident relations. TeMP (Hu et al., 2022) employs the
invariant vocabulary of entity types and class hierarchy and injects their representations into entity represen-
tations. Inductive node representation approaches reconstruct embeddings of new entities and can be used
as a drop-in replacement of shallow lookup tables paired with any processor method, e.g., NodePiece-QE
used CQD as the processor while TeMP was probed with GQE, Query2Box, BetaE, and LogicE processors.

Inductive relational structure representation methods parameterize Encθ as a function of the relative
relational structure that only requires learning of relation embeddings and uses relations as invariants. Such
methods often employ various labeling tricks (Zhang et al., 2021a) to label constants (anchor entities) of
the input query Q such that after the message passing procedure all other nodes would encode a graph
structure relative to starting nodes. In particular, GNN-QE (Zhu et al., 2022) labels anchor nodes with the
embedding vector of the queried relations, e.g., for a projection query (h, r, ?) a node h will be initialized with
the embedding of relation r, whereas all other nodes are initialized with the zero vector. In this way, GNN-
QE learns only relation embeddings R and GNN weights. GNNQ (Pflueger et al., 2022) represents a query
with its variables and relations as a hypergraph and learns a relational structure through applying graph
convolutions on hyperedges. Hyperedges are parameterized with multi-hot feature vectors of participating
relations, so the only learnable parameters are GNN weights.

Still, there exists a set of open problems for inductive models. As the majority of inductive methods rely on
learning relation embeddings, they cannot be easily used in setups where at inference time KGs are updated
with new, unseen relation types, that is, relations are not invariant. This fact might require exploration
of novel invariances and featurization strategies (Huang et al., 2022a; Gao et al., 2023; Chen et al., 2023).
Inductive models are more expensive to train in terms of both time and memory than shallow models and
cannot yet be easily extended to large-scale graphs. We conjecture that inductive encoders will be in the
focus of the future work in CLQA as generalization to unseen entities and graphs at inference time without re-
training is crucial for updatability of NGDB. Furthermore, updatability might increase the role of continual
learning (Thrun, 1995; Ring, 1998) and amplify the negative effects of catastrophic forgetting (McCloskey
& Cohen, 1989) that have to be addressed by the encoders. Larger inference graphs also present a major
size generalization issue (Yehudai et al., 2021; Buffelli et al., 2022; Zhou et al., 2022b) when performance of
GNNs trained on small graphs decreases when running inference on much larger graphs. The phenomenon
has been observed by Galkin et al. (2022b) in the inductive complex query answering setup.

5.2 Processor

Having encoded the query and other available inputs, the Processor P executes the query in the latent (or
symbolic) space against the input graph. Recall that a query q is defined as q(E ′, R′, S, S̄) where E ′ and R′

terms include constants Con and variables Var, statements in S and S̄ include relation projections R(a, b),
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and logical operators ops over the variables. We define Processor P as a collection of modules that perform
relation projections R(a, b) given constants Con and logical operators ops ⊆ {∧, ∨, ¬, . . . } over variables
Var (we elaborate on the logical operators in Section 6.1). Depending on the chosen inductive biases and
parameterization strategies behind those modules, we categorize Processors into Neural and Neuro-Symbolic
(Table 6a). Furthermore, we break down the Neuro-Symbolic processors into Geometric, Probabilistic, and
Fuzzy Logic (Table 6b). Note that in this section we omit pure encoder approaches like TeMP (Hu et al., 2022)
and NodePiece-QE (Galkin et al., 2022b) that can be paired with any neural or neuro-symbolic processor.
To describe processor models more formally, we denote e as an entity vector, r as a relation vector, and q
as the query embedding that is often a function of e and r. We use Gq as the query graph.

Table 6: Categorization of Query Processors. Table 6a provides a general view on Neural, Symbolic, Neuro-
Symbolic methods as well as encoders that can be paired with any processor. Table 6b further breaks down
neuro-symbolic processors.

(a) Complex Query Answering approaches categorized under the Processor type.

Any Processor Neural Neuro-Symbolic
TeMP (Hu et al., 2022),
NodePiece-QE (Galkin
et al., 2022b)

GQE (Hamilton et al., 2018), GQE w/ hashing (Wang et al.,
2019), CGA (Mai et al., 2019), BiQE (Kotnis et al., 2021),
MPQE (Daza & Cochez, 2020), StarQE (Alivanistos et al., 2022),
MLPMix (Amayuelas et al., 2022), Query2Particles (Bai et al.,
2022a), KGTrans (Liu et al., 2022), RotatE-m, DistMult-m,
ComplEx-m (Ren et al., 2022), GNNQ (Pflueger et al., 2022),
SignalE (Wang et al., 2022a), LMPNN (Wang et al., 2023d), SQE
(Bai et al., 2023), LARK (Choudhary & Reddy, 2023)

Table 6b

(b) Neuro-symbolic Processors

Geometric [Neuro-Symbolic] Probabilistic [Neuro-Symbolic] Fuzzy Logic [Neuro-Symbolic]

Query2Box (Ren et al., 2020), Query2Onto
(Andresel et al., 2021), RotatE-Box (Adlakha
et al., 2021), NewLook (Liu et al., 2021),
Knowledge Sheaves (Gebhart et al., 2021),
HypE (Choudhary et al., 2021b), ConE (Zhang
et al., 2021b), Query2Geom (Sardina et al.,
2023), CylE (Nguyen et al., 2023), RoConE (He
et al., 2023)

BetaE (Ren & Leskovec, 2020),
PERM (Choudhary et al.,
2021a), LinE (Huang et al.,
2022b), GammaE (Yang et al.,
2022a), NMP-QEM (Long et al.,
2022)

EmQL (Sun et al., 2020), TractOR (Friedman &
Broeck, 2020), CQD (Arakelyan et al., 2021), Log-
icE (Luus et al., 2021), FuzzQE (Chen et al., 2022b),
TAR (Tang et al., 2022), FLEX (Lin et al., 2022b),
TFLEX (Lin et al., 2022a), GNN-QE (Zhu et al.,
2022), ENeSy (Xu et al., 2022), QTO (Bai et al.,
2022b), NQE (Luo et al., 2023), Var2Vec (Wang
et al., 2023a), CQDA (Arakelyan et al., 2023), FIT
(Yin et al., 2023), LitCQD (Demir et al., 2023),
WFRE (Wang et al., 2023c)

Neural Processors. Neural processors execute relation projections and logical operators directly in the
latent space Rd parameterizing them with neural networks. To date, most existing purely neural approaches
operate exclusively on the query graph Gq only executing operators within a single query and do not condition
the execution process on the full underlying graph structure G. Since the query processing is performed in
the latent space with neural networks where Union (∨) and Negation (¬) are not well-defined, the majority of
neural processors implement only relation projection (R(a, b)) and intersection (∧) operators. We aggregate
the characteristics of neural processors as to their embedding space, the way of executing relation projection,
logical operators, and the final decoding distance function in Table 7. We illustrate the difference between
two families of neural processors (sequential execution and joint query encoding) in Fig. 14.

The original GQE (Hamilton et al., 2018) is the first example of the neural processor. That is, queries q,
entities e, and relations r are vectors in Rd. Query embedding starts with embeddings of constants C (anchor
nodes e) and they get progressively refined through relation projection and intersection, i.e., it is common to
assume that query embedding at the initial step 0 is equivalent to embedding(s) of anchor node(s), q(0) = e.
Relation projection is executed in the latent space with the translation function q + r, and intersection
is modeled with the permutation-invariant DeepSet (Zaheer et al., 2017) neural network. Several follow-up
works improved GQE to work with hashed binary vectors {+1, −1}d (Wang et al., 2019) or replaced DeepSet
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Figure 14: Neural Processors. (a) Relation projections Rθ(a, b) and logical operators (non-parametric or
parameterized with θ) are executed sequentially in the latent space; (b) a query is encoded to a graph or
linearized to a sequence and passed through the encoder (GNN or Transformer, respectively). A pooled
representation denotes the query embedding.

with self-attention and translation-based projection to a matrix-vector product (Mai et al., 2019). Recently,
Ren et al. (2022) proposed DistMult-m, ComplEx-m, and RotatE-m, extensions of simple link prediction
models for complex queries that, inspired by GQE, perform relation projection by the respective composition
function and model the intersection operator with DeepSet and, optionally, L2 norm.

The other line of works apply neural encoders to whole query graphs Gq without explicit execution of logical
operators. Depending on the query graph representation, such encoders are often GNNs, Transformers,
or MLPs. It is assumed that neural encoders can implicitly capture logical operators in the latent space
during optimization. For instance, MPQE (Daza & Cochez, 2020), StarQE (Alivanistos et al., 2022), and
LMPNN (Wang et al., 2023d) represent queries as relational graphs (optionally, hyper-relational graphs for
StarQE) where each edge is a relation projection and intersection is modeled as two incoming projections
to the same variable node. All constants C and known relation types are initialized from the respective
embedding matrices. All variable nodes in all query graphs are initialized with the same learnable [VAR]
feature vector while all target nodes are initialized with the same [TAR] vector. Then, the query graph is
passed through a GNN encoder (R-GCN (Schlichtkrull et al., 2018) for MPQE, StarE (Galkin et al., 2020)
for StarQE, GIN (Xu et al., 2019) for LMPNN), and the final state of the [TAR] target node is considered
the final query embedding ready for decoding. A recent LMPNN extends query graph encoding with an
additional edge feature indicating whether a given projection R(a, b) has a negation or not and derives a
closed-form solution for the merged projection and negation operator for the ComplEx composition function.
A different approach is taken by GNNQ (Pflueger et al., 2022) that frames query answering as a subgraph
classification task. That is, an input query is not directly executed over a given graph G, but, instead,
the task is to classify whether a given precomputed subgraph G′ ⊂ G satisfies a given conjunctive query.
For that, GNNQ first augments the graph with Datalog-derived triples and converts the subgraph to a
hypergraph where only hyperedges are parameterized with learnable vectors. On the one hand, this strategy
allows GNNQ to be inductive and not learn entity embeddings. On the other hand, GNNQ is limited to
conjunctive queries only and extensions to union and negation queries are not defined.

A more exotic approach by Gebhart et al. (2021) is based on the sheaf theory and algebraic topology (Hansen
& Ghrist, 2019). There, a graph is represented as a cellular sheaf and conjunctive queries are modeled as
chains of relations (0-cochains). A sheaf is induced over the query graph and relevant answers should be
consistent with the induced sheaf and entity embeddings. The optimization problem is a harmonic extension
of a 0-cochain using sheaf Laplacian and Schur complement of the sheaf Laplacian. Conceptually, this
approach merges execution of projection and intersection operators as functions over topological structures.

Considering Transformer encoders, BiQE (Kotnis et al., 2021), kgTransformer (Liu et al., 2022), and
SQE (Bai et al., 2023) linearize a conjunctive query graph into a sequence of relational paths composed
of entity constants C and relation tokens. The order of tokens in paths and intersections of paths are marked
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with positional encodings. The target node (present in many paths) is marked with the [MASK] token (op-
tionally, kgTransformer also annotates existentially quantified variables with [MASK]). SQE does not model
variables explicitly but instead relies on auxiliary bracket tokens that separate branches of the computation
graph. Passing the sequence through the Transformer encoder, the final query embedding is the aggregated
representation of the target node. BiQE only supports conjunctive queries while kgTransformer converts
queries with unions to the Disjunctive Normal Form (DNF) with post-processing of score distributions (we
elaborate on query rewritings and normal forms in Section 6.1). SQE explicitly includes all operator tokens
into the linearized sequence and thus supports negations.

Finally, MLPMix (Amayuelas et al., 2022) sequentially executes operations of the query where projection,
intersection, and negation operators are modeled as separate learnable MLPs. Union queries are converted
to DNF such that they can be answered with projection and intersection operators with the final post-
processing of scores as a union operator. Similarly, Query2Particles (Bai et al., 2022a) represents each query
as a set of vectors in the embedding space and models projection, intersection, and negation operators as
attention over the set of particles followed by an MLP. Union is a concatenation of query particles.

Table 7: Neural Processors. Most methods implement only Relation Projection and Intersection operators.
The top part of models execute a query sequentially, the bottom part encode the whole query graph Gq.

Model Embedding Space Relation Projection Intersection Union Negation Distance
GQE q, e, r ∈ Rd q + r DeepSet({qi}) - - ∥q − e∥

GQE+hashing q, e ∈ {±1}d, r ∈ Rd sgn(q + r) sgn(DeepSet({qi})) - - −cos(q, e)
CGA q, e, r ∈ Rd Wrq SelfAttn({qi}) - - −cos(q, e)

RotatE-m q, e, r ∈ Cd q ◦ r DeepSet({qi}) - - ∥q − r∥
DisMult-m q, e, r ∈ Rd L2Norm(q ◦ r) L2Norm(DeepSet({qi})) - - −⟨q, e⟩
ComplEx-m q, e, r ∈ Cd L2Norm(q ◦ r) L2Norm(DeepSet({qi})) - - −Re(⟨q, e⟩)

Query2Particles q, e ∈ Rd×K , r ∈ Rd f(q, r)
MLP(Attn([q1, q2])) [q1, . . . , qN ] MLP(Attn(q)) − maxk⟨qk, e⟩

f is neural gates

SignalE q, e, r = [z, v] zq ◦ zr SelfAttn({zqi}) DNF (1 − zamp
q , β∥vq − ve∥2+

z ∈ Cd, v = IDFT(z) ∈ Rd zphase
q ) ∥zq − ze∥2

MLPMix q, e, r ∈ Rd MLPmix(q, r) MLPmix(q1, q2) DNF MLP(q) ∥q − e∥
MPQE q, e, r ∈ Rd Wrq RGCN(q, Gq) - - cos(q, e)
StarQE q, e, r ∈ Rd f(q, g(r, hquals)) StarE(q, Gq) - - dot(q, e)
GNNQ q, r ∈ Rd Hypergraph RGCN(G′) - - BCE

LMPNN q, e, r ∈ Cd ρ(q, r, dir, neg) GIN(q, Gq) DNF ρ(q, r, dir, neg) cos(q, e)
BiQE q, e, r ∈ Rd Transformer(q, linearized Gq) - - CE

kgTransformer q, e, r ∈ Rd Transformer(q, linearized Gq) DNF - dot(q, e)
SQE q, e, r ∈ Rd LSTM / Transformer(q, linearized Gq with operator tokens) dot(q, e)

Sheaves q, e ∈ Rd, Fr ∈ Rd×d f(q, Gq as cochain) - - ∥Frq − Fre∥

Neuro-Symbolic Processors. In contrast to purely neural and symbolic models, we define neuro-symbolic
processors as those who (1) explicitly design logic modules (or neural logical operators) that simulate the
real logic/set operations, or rely on various kinds of fuzzy logic formulations to provide a probabilistic view
of the query execution process, and (2) execute relation traversal in the latent space. The key difference
between neuro-symbolic processors and the previous two is that neuro-symbolic processors explicitly model
the logical operations with strong inductive bias so that the processing / execution is better aligned with
the symbolic operation (e.g., by imposing restrictions on the embedding space) and more interpretable. We
further segment these methods into the following categories.

Geometric Processors. Geometric processors design an entity/query embedding space with different
geometric intuitions and further customize neuro-symbolic operators that directly simulate their logical
counterparts with similar properties (as illustrated in Fig. 15). We aggregate the characteristics of geometric
models as to their embedding space and inductive biases for logical operators in Table 8.

Query2Box (Ren et al., 2020) embeds queries q as hyper-rectangles (high-dimensional boxes) in the Euclidean
space. To achieve that, entities e and relations r are embedded as points in the Euclidean space where each
relation has an additional learnable offset vector ro (entities’ offsets are zeros). The projection operator
is modeled as an element-wise summation q + r of centers and offsets of the query and relation, that is,
the initial box is obtained by projecting the original anchor node embedding e (with zero offset) with the
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Figure 15: Geometric Processors and their inductive biases.

Table 8: Geometric Neuro-Symbolic Processors. ⊙ denotes element-wise multiplication, ⊕c denotes Möbius
addition, ⊙c denotes Möbius scalar product. DS denotes DeepSets neural network. NewLook only partially
implements negation as the difference operator.

Model Embedding Space Relation Projection Intersection Union Negation Distance
Query2Box q, r ∈ R2d, e ∈ Rd q + r qc = Attn({qi

c}) DNF - dout + αdinQuery2Onto qo = min({qi
o}) ⊙ σ(DS({qi

o}))

Query2Geom q, r ∈ R2d, e ∈ Rd q + r qc = 1
2 ((qi

c + qi
o) + (qj

c − qj
o)) DNF - dout + αdinqo = qc − (qi

c − qi
o)

RotatE-Box q, r ∈ C2d, e ∈ Cd (qc ◦ rc, qo + ro) - DNF / - dout + αdinDS({qi})

NewLook q, r ∈ R2d, e ∈ Rd MLP[MLP(qc + rc) ∥ qc = Attn({qi
c, xi}) DNF Attn({qi

c}) dout + αdinx ∈ T |R|×|E|×|E| MLP(ro) ∥ xt] qo = min({qi
o}) ⊙ σ(DS({qi

o})) Attn({qi
o, xi})

HypE q, r ∈ R2d, e ∈ Rd q ⊕c r qc = Attn({qi
c}) DNF - dout + αdinqo = min({qi

o}) ⊙c σ(DS({qi
o}))

ConE
q, r = (θax, θap)

g(MLP(q + r)) θax = SemanticAvg(q1, . . . , qn)
DNF/DM

θax = θax ± π
dout + αdin

e = (θax, 0)
θax ∈ [−π, π)d g gates θax and θap θap = CardMin(q1, . . . , qn) θap = 2π − θapRoConE θap ∈ [0, 2π]d q ◦ r

CylE Same as ConE +
g(MLP(q + r)) q = Attn({qi}) DNF Same as ConE dout + αdinθhe ∈ (−π, π)d

relation embedding r and relation offset ro. Accordingly, an attention-based neuro-intersection operator is
designed to simulate the set intersection of the query boxes in the Euclidean space. The operator is closed,
permutation invariant and aligns well with the intuition that the size of the intersected set is smaller than
that of all input sets. The union operator is achieved via DNF, that is, union is the final step of concatenating
results of operand boxes. Several works extend Query2Box, i.e., Query2Onto (Andresel et al., 2021) attempts
to model complex ontological axioms by materializing entailed triples and enforcing hierarchical relationship
using inclusion of the box embeddings; RotatE-Box (Adlakha et al., 2021) designs an additional rotation-
based Kleene plus (+) operator denoting relational paths (we elaborate on the Kleene plus operator in
Section 6.1); NewLook (Liu et al., 2021) adds symbolic lookup from the adjacency tensor6 to the operators,
modifies projection with MLPs and models the difference operator as attention over centers and offsets
(note that the difference operator is a particular case of the 2in negation query, we elaborate on that in
Section 6.1); Query2Geom (Sardina et al., 2023) replaces an attention-based intersection operator with a
simple non-parametric closed-form geometric intersection of boxes.

HypE (Choudhary et al., 2021b) extends the idea of Query2Box and embeds a query as a hyperboloid (two
parallel pairs of arc-aligned horocycles) in a Poincaré hyperball to better capture the hierarchical information.
A similar attention-based neuro-intersection operator is designed for the hyperboloid embeddings with the
goal to shrink the limits with DeepSets.

6Incorrect implementation led to the major test set leakage and incorrect reported results.
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Figure 16: Probabilistic Processors and their inductive biases.

ConE (Zhang et al., 2021b), on the other hand, embeds queries on the surface of a set of unit circles. Each
query is represented as a cone section and the benefit is that in most cases the intersection of cones is still
a cone, and the negation/complement of a cone is also a cone thanks to the angular space bounded by 2π.
Based on this intuition, they design geometric neuro-intersection and negation operators. RoConE (He et al.,
2023) replaces the projection operator of ConE with the angular rotation in the complex plane. CylE (Nguyen
et al., 2023) turns cones into cylinders by adding an additional height dimension.

To sum up, the geometric-based processors are often designed with a strong geometric prior such that
properties of the logical/set operations can be better simulated or satisfied.

Probabilistic Processors. Instead of a geometric embedding space, probabilistic processors aim to model
the query and the logic/set operations in a probabilistic space. Such methods are similar to the geometric
based methods in that they also require a probabilistic space on which one can design a neuro-symbolic
logic/set operator that aligns well with the real one. Some examples of implementing logical operators in a
probabilistic space are illustrated in Fig. 16. The aggregated characteristics are presented in Table 9.

BetaE (Ren & Leskovec, 2020) builds upon the Beta distribution and embeds entities/queries as high-
dimensional Beta distribution with learnable parameters. The benefit is that one can design a parameterized
neuro-intersection operator over two Beta embeddings where the output is still a Beta embedding with more
concentrated density function. A neuro-negation operator can be designed by simply taking the reciprocal
of the parameters in order to flip the density. PERM (Choudhary et al., 2021a) looks at the Gaussian
distribution space and embeds queries as a multivariate Gaussian distribution. Since the product of Gaussian
probability density functions (PDFs) is still a Gaussian PDF, the neuro-intersection operator accordingly
calculates the parameters of the Gaussian embedding of the intersected set. NMP-QEM (Long et al., 2022)
develops this idea further and represents a query as a mixture of Gaussians where logical operators are
modeled with MLP or attention over distribution parameters. LinE (Huang et al., 2022b) transforms the
Beta distribution into a discrete sequence of values. A similar neuro-negation operator is introduced by
taking the reciprocal as BetaE while designing a new neuro-intersection/union operator by taking element-
wise min/max. GammaE (Yang et al., 2022a) replaces Beta distribution with Gamma distribution as entity
and query embedding space. Parameterizing logical operators with operations over mixtures of Gamma
distributions, union and negation become closed, do not need DNF or DM transformations, and can be
executed sequentially along the query computation graph. Overall, probabilistic processors are similar to
geometric processors since they are all inspired by certain properties of the probability and geometry used
for embeddings and customize neuro-logic operators.

Fuzzy-Logic Processors. Unlike the methods above, fuzzy-logic processors directly model all logical
operations using existing fuzzy logic theory (Klement et al., 2013; van Krieken et al., 2022) where intersection
can be expressed via t-norms and union via corresponding t-conorms (Section 2.6). In such a way, fuzzy-
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Table 9: Probabilistic Neuro-Symbolic Processors.

Model Embedding Space Relation Projection Intersection Union Negation Distance
BetaE q, e ∈ R2d MLPr(q) q = [(

∑
wiαi,

∑
wiβi)] DNF/DM 1

q KL(e; q)

PERM q, e, r = N (µ, Σ) N (µq + µr, Σ−1
q = Σ−1

q1
+ Σ−1

q2 Attn({qi}) - (µq − µe)T Σ−1
q

(Σ−1
q + Σ−1

r )−1) µq = Σq(Σ−1
q2

µ1 + Σ−1
q1

µ2) (µq − µe)
LinE q, e ∈ Rk×h MLPr(q) min{q1, q2} max{q1, q2} [ 1

pq
1
, . . . , 1

pq
k

]h ∥q − e∥2
2

GammaE q, e ∈ R2d MLPr(q) q = [(
∑

wiαi,
∑

wiβi)] Attn({qi}) [ 1
α , β] KL(e; q)

NMP-QEM e ∈ Rd

MLPr(q) Attn({qi}) DNF MLP(q) ∥e −
∑K

i=1 ωq
i µq

i ∥q =
∑K

i=1 ωiN (µi, Σi)
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Figure 17: Fuzzy-Logic Processors and fuzzy logical operators.

logic processors avoid the need to manually design or learn neural logical operators as in the previous two
processors but rather directly use established fuzzy operators commonly expressed as differentiable, element-
wise algebraic operators over vectors (Fig. 17). While intersection, union, and negation are non-parametric,
the projection operator might still be parameterized with a neural network. The aggregated characteristics
of fuzzy-logic processors are presented in Table 10. Generally, fuzzy processors aim to combine execution
in embedding space (vectors) with entity space (symbols). The described methods are different in designing
such a combination.

One of the first fuzzy processors is EmQL (Sun et al., 2020) that imbues entity and relation embeddings
with a count-min sketch (Cormode & Muthukrishnan, 2005). There, projection, intersection, and union are
performed both in the embedding space and in the symbolic sketch space, e.g., intersection is modeled as
an element-wise multiplication and union is an element-wise summation of two sketches. CQD (Arakelyan
et al., 2021) scores each atomic formula in a query with a pretrained neural link predictor and uses t-norms
and t-conorms to compute the final score of a query directly in the embedding space. CQD does not train
any neural logical operators and only requires pretraining the entity and relation embeddings with one-hop
links such that the projection operator is equivalent to top-k results of the chosen scoring function, e.g.,
ComplEx (Lacroix et al., 2018). The idea was then extended in several directions: Query Tree Optimization
(QTO) (Bai et al., 2022b) added a look-up from the materialized tensor of scores of all possible triples
M ∈ [0, 1]|R|×|E|×|E| to the relation projection step; CQDA (Arakelyan et al., 2023) and Var2Vec (Wang
et al., 2023a) learn an additional linear transformation of the entity-relation concatenation W[q, r]; Fuzzy
Inference with Truth Value (FIT) (Yin et al., 2023) added several query rewriting steps to tackle DAG and
cyclic queries, LitCQD (Demir et al., 2023) added a jointly trained regression model on entities’ numerical
attributes to include numerical literals into queries and answers.

LogicE (Luus et al., 2021) designs logic embeddings for each entity with a list of lower bound – upper bound
pairs in range [0, 1], which can be interpreted as a uniform distribution between the lower and upper bound.
LogicE executes negation and conjunction with continuous t-norms over the lower and upper bounds. Fuz-
zQE (Chen et al., 2022b), TAR (Tang et al., 2022), and WFRE (Wang et al., 2023c) embed query to a
high-dimensional fuzzy space [0, 1]d and similarly use Gödel t-norm and Łukasiewicz t-norm to model dis-
junction, conjunction and negation. FuzzQE and WFRE model relation projection as a relation-specific MLP
whereas TAR uses a geometric translation (element-wise sum). FLEX (Lin et al., 2022b) and TFLEX (Lin
et al., 2022a) embed a query as a mixture of feature and logic embedding. For the logic part, both methods
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Table 10: Fuzzy Neuro-Symbolic Processors.

Model Embedding Space Relation Projection Intersection Union Negation Distance

EmQL e, r ∈ Rd, q ∈ R3d

MIPS(q, [r, eh, et])
(q1 + q2)/2 (q1 + q2)/2 - dot(q, e)b count-min sketch b1 ⊙ b2 b1 + b2

CQD q, e, r ∈ Cd minq2 d(q1, r, q2) or Product: q1 · q2 q1 + q2 − q1 · q2 - dist(q, e)LitCQD topk(d(q1, r, ek)) Gödel: min(q1, q2) max(q1, q2)

CQDA q, e, r ∈ Cd θ = W[q1, r] Product: q1 · q2 q1 + q2 − q1 · q2 1 − q
dist(q, e)W ∈ R2×2d topk[ρθ(d(q1, r, ek))] Gödel: min(q1, q2) max(q1, q2) (1 + cos(πq))/2

Var2Vec q, e, r ∈ Cd q2 = W[q1, r] Product: q1 · q2 q1 + q2 − q1 · q2 1 − q dist(q, e)W ∈ Rd×2d d(q1, r, q2) Gödel: min(q1, q2) max(q1, q2)
QTO q, e, r ∈ Cd d(q1, r, q2) q1 · q2 q1 + q2 − q1 · q2

d(q1, r, q2)
dist(q, e)FIT M ∈ [0, 1]|R|×|E|×|E| rowq1(Mr) rowq1(1 − Mr)

LogicE
q, e = ([li, ui], σ(max(0, max(0, ([⊤(l(1)

i , . . . , l
(n)
i ),

DM
([1 − li,

∥q − e∥1li, ui ∈ [0, 1])d
i=1 [r, q]F1)F2)F3) ⊤(u(1)

i , . . . , u
(n)
i )]) 1 − ui])

r ∈ Rd i = 1 . . . d i = 1 . . . d

FuzzQE q, e ∈ [0, 1]d σ(MLPr(q)) Product: q1 · q2 q1 + q2 − q1 · q2 1 − q
dot(q, e)Gödel: min(q1, q2) max(q1, q2) -

WFRE q, e ∈ [0, 1]d σ(MLPr(q)) min(q1, q2) max(q1, q2) 1 − q WFR(q, e)
TAR q, e, r ∈ Rd q + r Attn(q1, q2) max(q1, q2) 1 − q ∥q − e∥

GNN-QE q ∈ R|E|, r ∈ Rd σ(GNN(q, G)) q1 · q2 q1 + q2 − q1 · q2 1 − q BCE(q)

FLEX

q = (θf , θl) g(MLP([θf + θf,r;
θf =

∑
i aiθqi,f

θf =
∑

i aiθqi,f θf = L · tanh(
θf ∈ [−L, L]d θl + θl,r])) θl =

∑
i θqi,l− MLP([θf ; θl])) ∥θe

f − θq
f ∥1+

e = (θf , 0)
g gates θf , θe. θl = Πiθqi,l

∑
1≤i<j≤n θqi,lθqj ,l+ θl = 1 − θl

θq
l

θl ∈ [0, 1]d · · · + (−1)n−1Πiθqi,l

TFLEX

q, r = (qe
f , qe

l , qt
f , qt

l ) Entity: g(MLP(
∑

i αqe
i,f ,

⊗
i({qe

i,l}),
∑

i αqe
i,f ,

⊕
i({qe

i,l}), fe
not(qe

f ), ∥ee
f − qe

f ∥1+
qe

f , qt
f , ee

f ∈ Rd q + r + t))
∑

i βqt
i,f ,

⊗
i({qt

i,l})
∑

i βqt
i,f ,

⊗
i({qt

i,l}) ⊖(qe
l ), qt

f , qt
l qe

f ∥1 + qe
l

e = (ee
f , 0, 0, 0) Time: g(MLP(

∑
i αqe

i,f ,
⊗

i({qe
i,l}),

∑
i αqe

i,f ,
⊕

i({qe
i,l}), qe

f , qe
l , ∥tt

f − qt
f ∥1+

qe
l , qt

l ∈ [0, 1]d q1 + r + q2))
∑

i βqt
i,f ,

⊗
i({qt

i,l})
∑

i βqt
i,f ,

⊗
i({qt

i,l}) f t
not(qt

f ), ⊖(qt
l ) qt

l

ENeSy
q, e, r ∈ Cd Neural: q ◦ r

g(p1 · p2) g(p1 + p2 − p1 · p2) g( α
|E| − p) ∥q − e∥pq, pe ∈ {0, 1}|E| Symb: g(pqMr)⊤

Mr ∈ {0, 1}|E|×|E| g = x/sum(x)
NQE q, e, r ∈ [0, 1]d σ(Trf(q, Gq)) q1 · q2 q1 + q2 − q1 · q2 1 − q dot(q, e)

use the real logical operations in vector logic (Mizraji, 2008). TFLEX adds a temporal module conditioning
logical operators on the time embedding.

GNN-QE (Zhu et al., 2022) models the likelihood of all entities for each relation projection step with a graph
neural network NBFNet (Zhu et al., 2021). It further adopts product logic to directly model the set operations
(intersection, union, and negation) over the fuzzy set obtained after a relation projection. GNN-QE employs
a node labeling technique where a starting node is initialized with the relation vector (while other nodes are
initialized with zeros). This allows GNN-QE to be inductive and not rely on trainable entity embeddings.
ENeSy (Xu et al., 2022), on the other hand, maintains both vector and symbolic representations for queries,
entities, and relations (where symbolic relations are encoded into Mr sparse adjacency matrices). Logical
operators are executed first in the neural space, e.g., relation projection is RotatE composition function (Sun
et al., 2019), and then get intertwined with symbolic representations. Logical operators in the symbolic space
employ a generalized version of the product logic and corresponding t-(co)norms.

In summary, fuzzy-logic processors directly rely on established fuzzy logic formalisms to perform all the
logical operations in the query and avoid manually designing and learning neural operators in (possibly)
unbounded embedding space. The fuzzy logic space is continuous but bounded within [0, 1] – this is both
the advantage and weakness of such processors. The bounded space is beneficial for closed logical operators
as their output values still belong to the same bounded space. On the other hand, most of the known
t-norms (and corresponding t-conorms) still lead to vanishing gradients and only the Product logic norms
are stable (van Krieken et al., 2022; Badreddine et al., 2022). Another caveat is designing an effective and
differentiable interaction mechanism between the fuzzy space [0, 1]d and unbounded embedding space Rd (or
Cd) where relation representations are often initialized from. That is, re-scaling and squashing of vector
values when processing a computation graph might lead to noisy gradients and unstable training which is
observed, for instance, by GNN-QE that has to turn off gradients from all but last projection step.
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5.3 Decoder

The goal of decoding is to obtain the final set of answers or a ranking of all the entities. It is the final
step of the query answering task after processing. Here we categorize the methods into two buckets: non-
parametric and parametric. Parametric methods require a parameterized method to score an entity (or
predict a regression target from the processed latents) while non-parametric methods can directly measure
the similarity (or distance) between a pair of query and entity on the graph. Most of the methods belong to
the non-parametric category as shown in the Distance column of processor tables Table 7, Table 8, Table 9,
Table 10. For instance, geometric models (Ren et al., 2020; Andresel et al., 2021; Adlakha et al., 2021;
Choudhary et al., 2021b; Zhang et al., 2021b) pre-define a distance function between the representation of
the query and that of an entity. Commonly employed distance functions are L1 (Hamilton et al., 2018; Ren
et al., 2022; Gebhart et al., 2021; Amayuelas et al., 2022; Tang et al., 2022; Xu et al., 2022; Long et al., 2022),
L2 (Huang et al., 2022b; Chen et al., 2022b), or their variations (Luus et al., 2021; Lin et al., 2022b;a), cosine
similarity (Wang et al., 2019; Mai et al., 2019; Daza & Cochez, 2020; Wang et al., 2023d), dot product (Sun
et al., 2020; Ren et al., 2022; Alivanistos et al., 2022; Liu et al., 2022; Bai et al., 2022a; Luo et al., 2023), or
naturally model the likelihood of all the entities without the need of a distance function (Arakelyan et al.,
2021; Kotnis et al., 2021; Zhu et al., 2022; Pflueger et al., 2022; Bai et al., 2022b; Arakelyan et al., 2023;
Wang et al., 2023a). Probabilistic models often employ KL divergence (Ren & Leskovec, 2020; Yang et al.,
2022a) or Mahalanobis distance (Choudhary et al., 2021a). A rather exotic approach is Wasserstein-Fisher-
Rao metric (WFR) used in WFRE Wang et al. (2023c). WFR is an optimal transport (OT) metric between
distributions. Due to its computational complexity, the metric is approximated by the 1D convolution-based
Sinkhorn optimization routine.

One important direction (orthogonal to the distance function) that current methods largely ignore is how
to perform efficient answer entity retrieval over extremely large graphs with billions of entities. A scalable
and approximate nearest neighbor (ANN) search algorithm is necessary. Existing frameworks including
FAISS (Johnson et al., 2019) or ScaNN (Guo et al., 2020) provide scalable implementations of ANN. However,
ANN is limited to L1, L2 and cosine distance and mostly optimized for CPUs. It is still an open research
problem how to design efficient scalable ANN search algorithms for more complex distance functions such
as KL divergences so that we can retrieve with much better efficiency for different CLQA methods with
different distance functions (preferably, using GPUs).

We conjecture that parametric decoders are to gain more traction in numerical tasks on top of plain entity
retrieval for query answering. Such tasks might involve numerical and categorical features on node-, edge-,
and graph levels, e.g., training a regressor to predict numerical values for node attributes like age, length,
etc. Besides, a parametric decoder gives new opportunities to generalize to inductive settings where we may
have unseen entities during evaluation. SE-KGE (Mai et al., 2020) takes a step in this direction by predicting
geospatial coordinates of query targets. LitCQD (Demir et al., 2023) expands the set of query variables and
answers to continuous numerical values by joint training of a link prediction model between entities and a
regression model on top of entities’ attributes with numerical values.

5.4 Computation Complexity

Here we analyze the time complexity of different query reasoning models categorized by different operations,
including relation projection, intersection, union, negation and answer retrieval after obtaining the repre-
sentation of the query. We list the asymptotic complexity in Table 11 for methods that perform stepwise
encoding of the query graph, and Table 12 for methods (mostly GNN-based) that encode the whole query
graph simultaneously including projection and other logic operations.

6 Queries

The third direction to segment the methods is from the queries point of view. Under the queries category, we
have three subcategories: Query Operators, Query Patterns, and Projected Variables. For query operators,
methods have different operator expressiveness, which means the set of query operators one model is able
to handle including existential quantification (∃), conjunction (∧), disjunction (∨), negation (¬), Kleene
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Table 11: Time complexity of each operation on G = (E , R, S). Across all methods, we denote the embedding
dimension and hidden dimension of MLPs as d, number of layers of MLPs/GNNs as l, number of branches
in an intersection operation as i, number of branches in a union operation as u.

Model Projection Intersection Negation Union Answer Retrieval Definitions
GQE

O(d) O(ild2) - - O(|E|d) -
GQE+hashing

RotatE-m
Distmult-m
ComplEx-m

CGA O(d2) O(id + d2) - - O(|E|d) -
Query2Particles O(Kd2) O(iKd2) O(Kd2) DNF O(|E|dK) K : #particles.

SignalE O(d) O(ild2) O(d) DNF O(|E|d) -
MLPMix O(ld2) O(ild2) O(ld2) DNF O(|E|d) -

Query2Box O(d) O(ild2) - DNF O(|E|d) -Query2Onto
Query2Geom O(d) O(d) - DNF O(|E|d) -
RotatE-Box O(d) - - DNF / O(uld2) O(|E|d) -

NewLook O(|E|d + ld2) O(i(|E| + ld2)) O(ld2) DNF O(|E|d) -
HypE O(d) O(ild2) - DNF O(|E|d) -

ConE/BetaE O(ld2) O(ild2) O(d) DNF O(|E|d) -
PERM O(d2) O(id3) - DNF O(|E|d2) -
LinE O(ld2) O(d) O(d) O(d) O(|E|d) -

GammaE O(ld2) O(ild2) O(d) O(uld2) O(|E|d) -
NMP-QEM O(Kld2) O(iK2d) O(Kld2) DNF O(|E|dK) K : # centers

EmQL O(|E|d) O(d) - O(d) O(|E|d) -
CQD-CO O(|E|d) Opt - Opt O(|E|d) -

CQD-Beam O(|E|d) O(|E|kd) - O(|E|kd) O(|E|d) -

QTO O(|E|) O(|E|) O(|E|) O(|E|)

T ∗(v) : the
O(maxk |T ∗(vk) maximum truth value

> 0||E|) for the subquery
rooted at node v.

LogicE O(ld2) O(d) O(d) O(d) O(|E|d) -
FuzzQE O(d2) O(d) O(d) O(d) O(|E|d) -

TAR O(d) O(d) O(d) O(d) O(|E|d) -
GNN-QE O(|E|d2 + |S|d) O(|E|) O(|E|) O(|E|) O(|E|) -

FLEX O(ld2) O(ild2) O(ld2) O(uld2 + 2ud) O(|E|d) -
TFLEX O(ld2) O(ild2) O(ld2) O(uld2) O(|E|d) -

Table 12: Time complexity of answering a query for methods that directly encode the query graph. Besides
the operators defined in Table 11, we denote nq as average degree of the query graph Gq = (Eq, Rq, Sq).

Model Projection Intersection Negation Union Answer Retrieval
MPQE / GNNQ O(d2nql|Eq|) - - O(|E|d)

StarQE O(d2nql|Eq| + |Sq||qp|d) - - O(|E|d)
LMPNN O(d2nql|Eq|) DNF O(|E|d)

BiQE O((|Eq|d2 + |Eq|2d)l) - - O(|E|d)
kgTransformer O((d2nq|Eq| + |Eq|n2

qd)l) - O(|E|d)
SQE O((|Eq|d2 + |Eq|2d)l) O(|E|d)

plus (+), filter and various aggregation operators. For query patterns, we refer to the structure/pattern of
the (optimized) query plan, ranging from paths and trees to arbitrary directed acyclic graphs (DAGs) and
cyclic patterns. As to projected variables (by projected we refer to target variables that have to be bound
to particular graph elements like entity or relation), queries might have a different number (zero or more) of
target variables. We are interested in the complexity of such projections as binding of two and more variables
involves relational algebra (Codd, 1970) and might result in a Cartesian product of all retrieved answers.
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6.1 Query Operators

Different query processors have different expressiveness in terms of operators a method can handle. Through-
out all the works, we compiled Table 13 that classifies all methods based on the supported operators.

Table 13: Query answering processors and supported query operators. Processors supporting unions ∨ also
support projection and intersection (∧). Models supporting negation (¬) also support unions, projections,
and intersections.

Projection and Intersection (∧) Union (∨) Negation (¬) Kleene + Filter & Aggr
GQE (Hamilton et al., 2018)
GQE hashed (Wang et al., 2019)
CGA (Mai et al., 2019)
TractOR (Friedman & Broeck, 2020)
MPQE (Daza & Cochez, 2020)
BiQE (Kotnis et al., 2021)
Sheaves (Gebhart et al., 2021)
StarQE (Alivanistos et al., 2022)
RotatE-m, DistMult-m,
ComplEx-m (Ren et al., 2022)
GNNQ (Pflueger et al., 2022)

Query2Box (Ren et al., 2020)
EmQL (Sun et al., 2020)
Query2Onto (Andresel et al., 2021)
HypE (Choudhary et al., 2021b)
NewLook (Liu et al., 2021)
PERM (Choudhary et al., 2021a)
CQD (Arakelyan et al., 2021)
kgTransformer (Liu et al., 2022)
Query2Geom (Sardina et al., 2023)
LitCQD (Demir et al., 2023)

BetaE (Ren & Leskovec, 2020)
ConE (Zhang et al., 2021b)
LogicE (Luus et al., 2021)
MLPMix (Amayuelas et al., 2022)
Query2Particles (Bai et al., 2022a)
LinE (Huang et al., 2022b)
GammaE (Yang et al., 2022a)
NMP-QEM (Long et al., 2022)
FuzzQE (Chen et al., 2022b)
TAR (Tang et al., 2022)
GNN-QE (Zhu et al., 2022)
FLEX (Lin et al., 2022b)
TFLEX (Lin et al., 2022a)
ENeSy (Xu et al., 2022)
QTO (Bai et al., 2022b)
SignalE (Wang et al., 2022a)
LMPNN (Wang et al., 2023d)
NQE (Luo et al., 2023)
Var2Vec (Wang et al., 2023a)
CQDA (Arakelyan et al., 2023)
SQE (Bai et al., 2023)
RoConE (He et al., 2023)
CylE (Nguyen et al., 2023)
FIT (Yin et al., 2023)
WFRE (Wang et al., 2023c)
LARK (Choudhary & Reddy, 2023)

RotatE-Box
(Adlakha et al., 2021)

LitCQD (numbers)
(Demir et al., 2023)

We start from simplest conjunctive queries that involve only existential quantification (∃) and conjunction
(∧) and gradually increase the complexity of supported operators.

Existential Quantification (∃). When ∃ appears in a query, this means that there exists at least one
existentially quantified variable. For example, given a query “At what universities do the Turing Award
winners work?” and its logical form q = U? . ∃V : win(TuringAward, V ) ∧ university(V, U?), here V is
the existentially quantified variable. Query processors model existential quantification by using a relation
projection operator. Mapping to query languages like SPARQL, relation projection is equivalent to a triple
pattern with one variable, e.g., {TuringAward win ?v} (Fig. 18). Generally, as introduced in Section 5.2,
query embedding methods embed a query in a bottom-up fashion, starting with the embedding of the anchors
(leaf nodes) and gradually traversing the query tree up to the root. In such a way, query embedding methods
(e.g., geometric or probabilistic) explicitly obtain an embedding for the existentially quantified variables. The
embeddings/representations of these variables are calculated by a relation projection function implemented
as shallow vector operations (Hamilton et al., 2018; Ren et al., 2020; Choudhary et al., 2021b; Arakelyan
et al., 2021; Ren et al., 2022) or deep neural nets (Ren & Leskovec, 2020; Zhang et al., 2021b; Bai et al.,
2022a; Amayuelas et al., 2022). Another set of methods based on GNNs and Transformers directly assigns
a learnable initial embedding for the existentially quantified variables. These embeddings are then updated
through several message passing layers over the query plan (Daza & Cochez, 2020; Alivanistos et al., 2022;
Pflueger et al., 2022; Wang et al., 2023d) or attention layers over the serialized query plan (Kotnis et al.,
2021; Liu et al., 2022).

The major drawback of existing neural query processors is the assumption of at least one anchor en-
tity in the query from which the answering process starts and relation projections can be executed. It
remains an open challenge and an avenue for future work to support queries without anchor entities,
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Figure 18: Query operators (relation projection and intersection), corresponding SPARQL basic graph pat-
terns (BGP), and their computation graphs. Relation Projection (left) corresponds to a triple pattern.

e.g., q1 = U?.∃v1, v2 : win(v1, v2) ∧ university(v2, U?), and queries where relations are variables, e.g.,
q2 = r? : r?(TuringAward, Bengio), that can be framed as the relation prediction task.

Universal Quantification (∀). A universally quantified variable ∀x.P (x) means that a logical for-
mula P (x) holds for all possible x. Usually, the universal quantifier does not appear in facts-only ABox
graphs without types and complex axioms (see Section 4.3) as it would imply that some entity is con-
nected to all other entities. For example, ∀V.win(TuringAward, V ) without other constraints implies that
all entities are connected to TuringAward by the win relation (which does not occur in practice). How-
ever, universal quantifiers are more useful when paired with the class hierarchy (unary relations), e.g.,
∃?paper, ∀r ∈ Researcher : Researcher(r)∧authored(r, ?paper) means that the authored relation projection
would be applied only to entities of class Researcher.

Currently, existing CLQA approaches do not support universal quantifiers explicitly nor the datasets include
queries with the ∀ quantifier. Still, using the basic identity ∀x.P (x) ≡ ¬(∃x.¬P (x)) it is possible to model
the universal quantifier by any approach supporting existential quantification ∃ and negation ¬. By default,
we assume the closed-world assumption in NGDBs. We leave the implications of universal quantification
pertaining to the open-world assumption (OWA) out of the scope of this work.

Conjunction (∧). We elaborate on the differences of those query patterns in the following Section 6.2
and emphasize our focus on more complex intersection queries going beyond simpler path-like queries.

Query processors, as described in Section 5.2, employ different parameterizations of conjunctions as
permutation-invariant set functions. A family of neural processors (Hamilton et al., 2018; Wang et al.,
2019; Ren et al., 2022) often resort to the DeepSet architecture (Zaheer et al., 2017) that first projects each
set element independently and then pools representations together with a permutation-invariant function
(e.g., sum, mean) followed by an MLP. Alternatively, (Mai et al., 2019; Bai et al., 2022a) self-attention,
can serve as a replacement of the DeepSet where set elements are weighted with the attention operation.
The other family of neural processors combine projection and intersection by processing the whole query
graph with GNNs (Daza & Cochez, 2020; Alivanistos et al., 2022; Pflueger et al., 2022; Wang et al., 2023d)
or with the Transformer over linearized query sequences (Kotnis et al., 2021; Liu et al., 2022). Geometric
processors (Ren et al., 2020; Liu et al., 2021; Choudhary et al., 2021b; Zhang et al., 2021b; He et al., 2023;
Nguyen et al., 2023) implement conjunction as the attention-based average of centroids and offsets of respec-
tive geometric objects (boxes, hyperboloids, cones, or cylinders). Probabilistic processors (Ren & Leskovec,
2020; Choudhary et al., 2021a; Huang et al., 2022b; Yang et al., 2022a) implement intersection as a weighted
sum of parametric distributions that represent queries and variables.
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Fuzzy-logic processors (Arakelyan et al., 2021; Luus et al., 2021; Chen et al., 2022b; Zhu et al., 2022; Wang
et al., 2023c; Yin et al., 2023; Demir et al., 2023) commonly resort to t-norms, generalized versions of
conjunctions in the continuous [0, 1] space and corresponding t-conorms for modeling unions (Section 2.6).
Often, due to the absence of a principal study, the choice of the fuzzy logic is a hyperparameter. We posit
that such a study is an important avenue for future works in fuzzy processors. More exotic neuro-symbolic
methods for modeling conjunctions include element-wise product of count-min sketches (Sun et al., 2020)
or as a weighted sum in the feature logic (Lin et al., 2022b;a). Finally, some processors (Tang et al., 2022;
Xu et al., 2022) perform conjunctions both in the embedding and symbolic space with neural and fuzzy
operators.

We note that certain neural query processors that embed queries directly (Hamilton et al., 2018; Wang et al.,
2019; Mai et al., 2019; Friedman & Broeck, 2020; Ren et al., 2022) or via GNN/Transformer encoder over a
query graph (Daza & Cochez, 2020; Kotnis et al., 2021; Gebhart et al., 2021; Alivanistos et al., 2022; Das
et al., 2022; Pflueger et al., 2022) support only projections and intersections, that is, their extensions to
more complex logical operators are non-trivial and might require changing the underlying assumptions of
modeling entities, variables, and queries. In some cases, support of unions might be enabled when re-writing
a query to the disjunctive normal form (discussed below).

Disjunction (∨). Query processors implement the disjunction operator in several ways. However, mod-
eling disjunction is notoriously hard since it requires modeling any powerset of entities7 on the graph in a
vector space. Before delving into details about different ways of modeling disjunction, we first refer the read-
ers to the Theorem 1 in Query2Box (Ren et al., 2020). The theorem proves that we need the VC dimension
of the function class of the distance function to be around the number of entities on the graph.

The theorem shows that in order to accurately model any EPFO query with the existing framework, the
complexity of the distance function measured by the VC dimension needs to be as large as the number
of KG entities. This implies that if we use common distance functions based on hyper-plane, Euclidean
sphere, or axis-aligned rectangle,8 their parameter dimensionality needs to be Θ(M), which is Θ(|E|) for real
KGs we are interested in. In other words, the dimensionality of the logical query embeddings needs to be
Θ(|E|), which is not low-dimensional; thus not scalable to large KGs and not generalizable in the presence
of unobserved KG edges.

The first idea proposed in Query2Box (Ren et al., 2020) is that given a model has defined a distance function
between a query representation and the entity representation, then a query can be transformed (or re-written)
into its equivalent disjunctive normal form (DNF), i.e., a disjunction of conjunctive queries. For example, we
can safely convert a query (A∨B)∧ (C ∨D) to ((A∧C)∨ (A∧D)∨ (B ∧C)∨ (B ∧D)), where A, B, C, D are
atomic formulas. In such a way, we only need to process disjunction ∨ at the very last step. For models that
have defined a distance function between the query representation and entity representation d(q, e) (such as
geometric processors (Ren et al., 2020; Andresel et al., 2021; Adlakha et al., 2021; Choudhary et al., 2021b;
Zhang et al., 2021b; Sardina et al., 2023; He et al., 2023; Nguyen et al., 2023) and some neural processors (Liu
et al., 2022; Amayuelas et al., 2022; Wang et al., 2023d), the idea of using DNF to handle disjunction is to
(1) embed each atomic formula / conjunctive query in the DNF into a vector qi, (2) calculate the distance
between the representation/embedding of each atomic formula / conjunctive query and the entity d(qi, e),
(3) take the minimum of the distances mini(d(qi, e)). The intuition is that since disjunction models the
union operation, as long as the node is close to one atomic formula / conjunctive query, it should be close
to the whole query. Potentially, many neural processors with the defined distance function and originally
supporting only intersection and projection can be extended to supporting unions with DNF. One notable
downside of this modeling is that it is exponentially expensive (to the number of disjunctions) in the worst
case when converting a query to its DNF.

Another category of mostly probabilistic processors (Choudhary et al., 2021a; Yang et al., 2022a) proposes
a neural disjunction operator implemented with the permutation-invariant attention over the input set with

7Here the most rigorous description should be powerset of sets of “isomorphic” entities on the graph. By “isomorphic”
entities, it refer to an entity set where each elemen

8For the detailed VC dimensions of these function classes, see Vapnik (2013). Crucially, their VC dimensions are all linear
with respect to the number of parameters d.
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Figure 19: Query operators (union, negation, Kleene plus), corresponding SPARQL basic graph patterns
(BGP), and their computation graphs.

the closure assumption that the result of attention weighting union remains in the same probabilistic space
as its inputs. Such models design a more black-box framework to handle the disjunction operation under
the strong closture assumption that might not be true in all cases.

The third way of modeling disjunction is based on the De Morgan’s laws (Ren & Leskovec, 2020). According
to the De Morgan’s laws (DM), the disjunction is equivalent to the negation of the conjunction of the negation
of the statements making up the disjunction, i.e., A ∨ B = ¬(¬A ∧ ¬B). For methods that can handle the
negation operator (detailed in the following paragraph), they model disjunction by using three negation
operations and one conjunction operation. DM conversion was explicitly probed in probabilistic (Ren &
Leskovec, 2020), geometric (Zhang et al., 2021b), and fuzzy (Luus et al., 2021) processors.

Finally, most fuzzy-logic (Arakelyan et al., 2021; Chen et al., 2022b; Tang et al., 2022; Zhu et al., 2022; Bai
et al., 2022b; Arakelyan et al., 2023; Wang et al., 2023a;c; Yin et al., 2023; Demir et al., 2023) processors
employ t-conorms, generalized versions of disjunctions in the continuous [0, 1] space (Section 2.6). More
exotic versions of neuro-symbolic disjunctions include element-wise summation of count-min sketches (Sun
et al., 2020), feature logic operations (Lin et al., 2022b;a), as well as performing a union in both embedding
and symbolic spaces (Tang et al., 2022; Xu et al., 2022) with fuzzy operators.

Negation (¬). For negation operation, the goal is to model the complement set, i.e., the answers Aq

to a query q = V? : ¬r(v, V?) are the exact complement of the answers Aq′ to query q′ = V? : r(v, V?):
Aq = V/Aq′ . Correspondingly, negation in SPARQL can be implemented with FILTER NOT EXISTS or
MINUS clauses. For example (Fig. 19), a logical formula with negation ¬field(DeepLearning, V) is equivalent
to the SPARQL BGP {?s ?p ?v. FILTER NOT EXISTS {DeepLearning field ?v}} where {?s ?p ?v}
models the universe set (1) of all facts that gets filtered by the triple pattern.

Modeling the universe set (1) and its complement is the key problem when designing a negation operator
in neural query processors, e.g., an arbitrary real R or complex C space is unbounded such that 1 is not
defined. For that reason, many neural processors do not support the negation operator. Still, there exist
several approaches to handle negation.

The first line of works (Bai et al., 2022a; Amayuelas et al., 2022; Long et al., 2022) designs a purely neural
MLP-based negation operator over the query representation avoiding the universe set altogether. Similarly,
a token of the negation operator can be included into the linearized query representation (Bai et al., 2023)
to be encoded with Transformer or recurrent network. A step aside from purely neural operators is taken by
GNN-based processors (Wang et al., 2023d) that treat a negation edge as a new edge type during message
passing over the query computation graph.
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The second line is customized to different embedding spaces and aims to simulate the calculation of the
universe and complement in the embedding space, e.g., using geometric cones (Zhang et al., 2021b; He et al.,
2023) or cylinders (Nguyen et al., 2023), parameters are angles θ such that the space (and, hence, 1) is
bounded to 2π and the complement is straight 2π − θ. Probabilistic methods (Ren & Leskovec, 2020; Huang
et al., 2022b; Yang et al., 2022a) naturally represent negation as an inverse of distribution parameters.

Thirdly, fuzzy logic processors explicitly model the universe set 1 and the complement over the same real
valued logic space. For instance, LogicE (Luus et al., 2021), FuzzQE (Chen et al., 2022b), WFRE (Wang
et al., 2023c) restrict the query embedding space to the range [0, 1]d where each query q ∈ [0, 1]d is a vector.
This way, the universe 1 is represented with a vector of all ones (in the embedding space 1d) and negation is
simply 1−q. TAR (Tang et al., 2022), GNN-QE (Zhu et al., 2022), FIT (Yin et al., 2023) operate over fuzzy
sets where each entity has a corresponding scalar q ∈ [0, 1] in the bounded range. Therefore, the universe
1 can still be a vector of all ones (in the entity space 1|E|) and negation is 1 − q. ENeSy (Xu et al., 2022)
defines the universe as the uniform distribution over the entity space with each element weighting α

|E| (α is a
hyperparameter). CQDA (Arakelyan et al., 2023) employs a strict cosine fuzzy negation 1

2 (1 + cos(πq)) over
scalar scores q. More exotic processors (Lin et al., 2022b;a) employ feature logic for modeling negation. We
also note that the difference operator introduced in Liu et al. (2021) is in fact a common intersection-negation
(2in) query pattern used in all standard benchmarks (Section 7).

Kleene Plus (+) and Property Paths. Kleene Plus is an operator that applies compositionally and
recursively to any regular expression (RegEx) that denotes one or more occurrence of the specified pattern.
Regular expressions exhibit a direct connection to property paths in SPARQL. We defined a very basic regular
graph query in Definition 2.12, here we generalize that further to property paths. To define property paths
more formally, given a set of relations R and operators {+, ∗, ?, !,̂ , /, |}, a property path p can be obtained
from the recursive grammar p ::= r | p+ | p∗ | p? | !p | p̂ | p1/p2 | “p1|p2” Here, r is any element of R, + is
a Kleene Plus denoting one or more occurrences, ∗ is a Kleene Star denoting zero or more occurrences, ?
denotes zero or one occurences, ! denotes negation of the relation or path, p̂ traverses an edge of type p in the
opposite direction, p1/p2 is a sequence of relations (corresponds to relation projection), and p1|p2 denotes an
alternative path of p1 or p2 (corresponds to a union operation). For example (Fig. 19), an expression with
Kleene plus knows(JohnDoe, V )+ can be represented as a SPARQL property path {JohnDoe knows+ ?v.}.

Property paths are non-trivial to model for neural query processors due to compositionalilty and recursive
nature. To the best of our knowledge, RotatE-Box (Adlakha et al., 2021) is the only geometric processor
that handles the Kleene Plus operator implementing the subset of operators {+, /, |}. RotatE-Box provides
two ways to handle Kleene Plus. The first method is to define a r+ embedding for each relation r ∈ R,
note this is independent and separate from the regular relation embedding for r; another way is to use a
trainable matrix to transform the relation embedding r to the r+ embedding. Note the two methods do
not support Kleene Plus over paths. RotatE-Box also implements relation projection (as a rotation in the
complex space) and union (with DeepSets or DNF) but does not support the intersection operator.

We hypothesize that better support of the property paths vocabulary might be one of main focuses in future
neural query processors. Particularly for Kleene Plus, some unresolved issues include supporting idempotence
((r+)+ = r+) and infinite union of sets (r+ = r|(r/r)|(r/r/r) . . . ).

Filter. Filter is an operation that can be inserted in a SPARQL query. It takes any expression of boolean
type as input and aims to filter the results based on the boolean value, i.e., only the results rendered True
under the expression will be returned. The boolean expression can thus be seen as a condition that the
answers to the query should follow. For the filter operator, we can do filter on values/literals/attributes,
e.g., Filter(Vdate ≥ “2000 − 01 − 01”&&Vdate ≤ “2000 − 12 − 31”) means we would like to filter dates not
in the year 2000; Filter(LANG(Vbook) = “en”) means we would like to filter books not written in English,
Filter(?pages > 100) means returning the books that have more than 100 pages (as illustrated in Fig. 20).
To the best of our knowledge, there does not exist a reasoning model that claims to handle all possible Filters,
which leaves room for future work on this direction. However, the first attempt towards handling filters is
taken by LitCQD (Demir et al., 2023) that allows greater than, less than, and equal filtering operators
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Figure 20: Query operators (Filter, Count Aggregation, Optional), corresponding SPARQL basic graph
patterns (BGP), and their computation graphs.

over numerical values and treats them as conjunctive terms to the main logical query, e.g., lt(?pages, 100).
Such terms are processed by a jointly trained regression model.

We envision several possibilities to support filtering in neural query engines: (1) the simplest option used
by Thorne et al. (2021a;b) in natural language engines is to defer filtering to the postprocessing stage when
the set of candidate nodes is identified and their attributes can be extracted by a lookup. (2) Filtering often
implies reasoning over literal values and numerical node attributes, that is, processors supporting continuous
values (as described in Section 4.1) might be able to perform filtering in the latent space by attaching, for
instance, a parametric regressor decoder (Section 5.3) when predicting ?pages > 100.

Aggregation. Aggregation is a set of operators in SPARQL queries including COUNT (return the number
of elements), MIN, MAX, SUM, AVG (return the minimum / maximum / sum / average value of all elements),
SAMPLE (return any sample from the set). For example (Fig. 20), given a triple pattern {StephenKing wrote
?book.}, the clause COUNT (?book) as ?n) returns the total number of books written by StephenKing.

Most aggregation operators require reasoning over sets of numerical values/literals. Such symbolic operations
have long been considered a challenge for neural models (Hendrycks et al., 2021). How to design a better
representation for numerical values / literals requires remains an open question. Some neural query proces-
sors (Ren et al., 2020; Ren & Leskovec, 2020; Zhang et al., 2021b; Zhu et al., 2022), however, have the means
to estimate the cardinality of the answer set (including predicted hard answers) that directly corresponds
to the COUNT aggregation over the target projected variable (assumed to be an entity, not a literal). For
example, GNN-QE (Zhu et al., 2022) returns a fuzzy set, i.e., a scalar likelihood value for each entity, that,
after thresholding, has low mean absolute percentage error (MAPE) of the number of ground truth answers.
Answer cardinality estimation is thus obtained as a byproduct of the neural query processor without tailored
predictors. Alternatively, when models cannot predict the exact count, Spearman’s rank correlation is a
surrogate metric to evaluate the correlation between model predictions and the exact count. Spearman’s
rank correlation and MAPE of the number of ground truth answers are common metrics to evaluate the
performance of neural query processors and we elaborate on the metrics in Section 7.5. LitCQD (Demir
et al., 2023) extends the answer set to numerical literals and by default implements the AVG aggregation of
predicted values when a query has multiple correct target entities. The target metrics are typical regression
metrics like mean absolute error (MAE) or mean squared error (MSE).

Optional and Solution Modifiers. SPARQL offers many features yet to be incorporated into neural
query engines to extend their expressiveness. Some of those common features include the OPTIONAL clause
that is essentially a LEFT JOIN operator. For example (Fig. 20), given a triple pattern {King wrote ?book.}
that returns books, the optional clause {King wrote ?book. OPTIONAL {King award ?a.}} enriches the
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Figure 21: Query patterns: path, tree-like, DAG, and cyclic queries. A DAG query has two branches from
the intermediate variable, a cyclic query contains a 3-cycle. Existing neural query processors support path
and tree-like patterns.
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Figure 22: Answers to example tree-like, DAG, and cyclic query patterns given a toy graph. Note the
difference in the answer set to the tree-like and DAG queries – in the DAG query, a variable v must have
two outgoing edges from the same node.

answer set with any existing awards received by King. Importantly, if there are no bindings to the optional
clause, the query still returns the values of ?book. In the query’s computation graph, the optional clause
corresponds to the optional branch of a relation projection. A particular challenge for neural query processors
operating on incomplete graphs is that the absence of the queried edge in the graph does not mean that
there are no bindings – instead, the edge might be missing and might be predicted during query processing.

Solution modifiers, e.g., GROUP BY, ORDER BY, LIMIT, apply further postprocessing of projected (returned)
results and are particularly important when projecting several variables in the query. So far, all existing
neural query processors are tailored for only one return variable. We elaborate on this matter in Section 6.3.

A General Note on Incompleteness. Finally, we would like to stress out that neural query engines
performing all the described operators (Projection, Intersection, Union, Negation, Property Paths,
Filters, Aggregations, Optionals, and Modifiers) assume the underlying graph is incomplete and queries
might have some missing answers to be predicted, hence, all the operators should incorporate predicted hard
answers in addition to easy answers reachable by graph traversal as in symbolic graph databases. Evaluation
of query performance with those operators in light of incompleteness is still an open challenge (we elaborate
on that in Section 7.5), e.g., having an Optional clause, it might be unclear when there is no true answer
(even predicted ones are in fact false) or a model is not able to predict them.

6.2 Query Patterns

Here, we introduce several types of query patterns commonly used in practical tasks and sort them in the
increasing order of complexity. Starting with chain-like Path queries known in the literature for years,
we move to Tree-Structured queries (the main supported pattern in modern CLQA systems). Then, we
overview DAG and cyclic patterns which currently are not supported by any neural query answering system
and represent a solid avenue for future work.

Path Queries. As introduced in Section 2.4, previous literature starts with path queries (aka multi-hop
queries), where the goal is simply to go beyond one-hop queries such as q = V?.r(v, V?), where r ∈ R, v ∈ V
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and V? represents the answer variable. As shown in Fig. 4 and Fig. 21, there is no logical operator such as
branch intersection or union involved. Therefore, in order to answer such a query, we simply find or infer the
neighbors of the entity v with relation r. Path queries are a natural extension of one-hop queries. Formally,
we denote a path query as follows. qpath = V?.∃V1, . . . , Vk−1 : r1(v, V1)∧ r2(V1, V2)∧· · ·∧ rk(Vk−1, V?), where
ri ∈ R, ∀i ∈ [1, k], v ∈ V, Vi are all existentially quantified variables. We denote a k-hop path query if it has
k atomic formulas. The query plan of a k-hop path query is a chain of length k starting from the anchor
entity. For example (Fig. 21), a 2-hop path query is V?.∃v : student(Stanford, v) ∧ roommate(v, V?) where
Stanford is the starting anchor node, v is a tail variable of the first projection student and at the same time
is the head variable of the second projection roommate thus forming a chain.

As shown in the definition, in order to handle path queries, it is necessary to develop a method to handle
existential quantification ∃ and conjunction ∧ operators. Several query reasoning methods (Guu et al., 2015;
Das et al., 2017) aim to answer the path queries with sequence models using either chainable KG embeddings
(e.g., TransE) in Guu et al. (2015) or LSTM in Das et al. (2017). These methods initiated one of the first
efforts that use embeddings and neural methods to answer multi-hop path queries. We acknowledge the
efforts in this domain but emphasize their limitations in terms of query expressiveness and, therefore, focus
our attention in this work on more expressive query answering methods that operate on tree-like and more
complex patterns.

Tree-Structured Queries. Path queries only have one anchor entity and one answer variable. Such
queries have limited expressiveness and are far away from real-world query complexity seen in the logs (Maly-
shev et al., 2018) of real-world KGs like Wikidata. One direct extension to increase the expressiveness and
complexity is to support tree-structured (tree-like) queries. Tree-like queries may have multiple anchor enti-
ties, and different branches (from different anchors) will merge at the final single answer node, thus forming
a tree structured query plan. Such merge can be achieved by intersection, union, or negation operators. For
example, as shown in Fig. 1, the query plan of “At what universities do the Turing Award winners in the
field of Deep Learning work?” is not a path but a tree. Alternatively, the example in Fig. 21 depicts a query
q = V?, ∃v1, v2 : student(Stanford, v1) ∧ roommate(v1, V?) ∧ student(Stanford, v2) ∧ classmate(v2, V?) that
consists of two branches of 2-hop path queries joined by the intersection operator at the end.

Tree-like queries pose more challenges to the previous models that are only able to handle path (multi-hop)
queries since a sequence model no longer applies to tree-structured execution plans with logical operators. In
light of the challenges, neural and neuro-symbolic query processors (described in Section 5) are designed to
execute more complex query patterns. These processors design neural set/logic operators and do a bottom-up
traversal of the tree up to the single root node.

Arbitrary DAGs. Based on tree-structured queries, one can further increase the complexity of the query
pattern to arbitrary directed acyclic graphs (DAGs). The key difference between the two types of queries
is that for DAG-structured queries, one variable node in the query plan (that represents a set of enti-
ties) may be split and routed to different reasoning paths, while the number of branches/reasoning paths
in the query plan always decreases from the anchor nodes to the answer node. We show one example
in Fig. 21 and in Fig. 22. Consider the tree-like query from the previous paragraph q1 = V?, ∃v1, v2 :
student(Stanford, v1) ∧ roommate(v1, V?) ∧ student(Stanford, v2) ∧ classmate(v2, V?) and the DAG query
q2 = V?, ∃v : student(Stanford, v) ∧ roommate(v, V?) ∧ classmate(v, V?). The two queries search for V? who
are roommate and classmate with Stanford students. However, the answer sets of the two queries are differ-
ent (illustrated in Fig. 22). That is, the answer to the DAG query Vq2 = {A} is the subset of the answers to
the tree-like query Vq1 = {A,E} because the answers to q2 have to be both roommate and classmate with the
same Stanford student in the intermediate variable v. On the other hand, the two branches of the tree-like
query q1 are independent such that intermediate variables v1 and v2 need not be the same entities, hence,
the query has more valid intermediate answers and more correct answers. To the best of our knowledge,
there still does not exist a neural query processor that can faithfully handle any DAG query. Although
BiQE (Kotnis et al., 2021) claims to support DAG queries, the mined dataset consists of tree-like queries.
FIT (Yin et al., 2023) processes DAG queries by rewriting and decomposing the query into fragments exe-
cutable by CQD-like inference mechanism. Nevertheless, we hypothesize that, potentially, processors with
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Figure 23: Projected variables of the tree-like query from Fig. 22. Current neural query processors support
the single-variable DISTINCT mode (center) whereas queries might have zero return variables akin to a
subgraph matching Boolean ASK query (left) or multiple projected variables (right) that imply returning
intermediate answers and form output tuples.

message passing or Transformer architectures that consider the entire query graph structure Gq may be
capable of handling DAG queries and leave this question for future work.

Cyclic Queries. Cyclic queries are more complex than DAG-structured queries. A cycle in a query
naturally entails no particular order to traverse the query plan. An example of the cyclic query is
illustrated in Fig. 21 and Fig. 22: q = V?, ∃v1, v2, v3 : student(Stanford, v1) ∧ roommate(v1, v2) ∧
roommate(v2, v3) ∧ roommate(v3, v1) ∧ classmate(v1, V?). In q, three variables form a triangle cycle
roommate(v1, v2) ∧ roommate(v2, v3) ∧ roommate(v3, V?). Given a graph in Fig. 22, the cycle starts and
ends at node C, hence the only correct answer is obtained after performing the classmate relation projection
from C ending in D, Vq = {D}.

Reasoning methods and query processors that assume a particular traversal or node ordering on the query
plan, therefore, cannot faithfully answer cyclic queries. Yin et al. (2023) attempt to answer cyclic queries
by cutting query edges according to pre-defined decomposition rules. It remains an open question how to
effectively model a query with cyclic structures. Moreover, cyclic structures often appear when processing
queries with regular expressions and property paths (Section 6.1). We posit that supporting cycles might be
a necessary condition to fully enable property paths in neural query engines.

6.3 Projected Variables

By projected variables we understand target query variables that have to be bound to particular graph
elements such as entity, relation, or literals. For example, a query in Fig. 1 q = V?.∃v : win(TuringAward, v)∧
field(DeepLearning, v) ∧ university(v, V?) has one projected variable V? that can be bound to three answer
nodes in the graph, V? = {UofT, UdeM, NYU}. In the SPARQL literature (Hawke et al., 2013), the SELECT
query specifies which existentially quantified variables to project as final answers. The pairs of projected
variables and answers form bindings as the result of the SELECT query. Generally, queries might have zero,
one, or multiple projected variables, and we align our categorization with this notion. Examples of such
queries and their possible answers are provided in Fig. 23. Currently, most neural query processors focus on
the setting where queries have only one answer variable – the leaf node of the computation graph, as shown
in Fig. 23 (center).

Zero Projected Variables. Queries with zero projected variables do not return any bindings but rather
probe the graph on the presence of a certain subgraph or relational pattern where the answer is Boolean
True or False. In SPARQL, the equivalent of zero-variable queries is the ASK clause. Zero-variable queries
might have all entities and relations instantiated with constants, e.g., q = student(S, D) ∧ roommate(D, E)
as in Fig. 23 (left) is equivalent to the SPARQL query ASK WHERE {S student D. D roommate E.}. The
query probes whether a graph contains a particular subgraph (path) induced by the constants. Such a path
exists, so the answer is q = {True}.
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Alternatively, zero-variable queries might have existentially quantified variables that are never projected (up
to the cases where all subjects, predicates, or objects are variables). For example, a query q1 = ∃v1, v2, v3 :
student(v1, v2) ∧ roommate(v2, v3) probes whether there exist any nodes forming a relational path v1

student−−−−−→
v2

roommate−−−−−−→ v3. In a general case, a query q2 = ∃p, s, o : p(s, o) asks if a graph contains at least one edge.

We note that in the main considered setting with incomplete graphs and missing edges zero-variable queries
are still non-trivial to answer. Particularly, a subfield of neural subgraph matching (Rex et al., 2020; Huang
et al., 2022a) implies having incomplete graphs. We hypothesize such approaches might be found useful for
neural query processors to support answering zero-variable queries.

One Projected Variable. Queries with one projected variable return bindings for one (of possibly many)
existentially quantified variable. In SPARQL, the projected variable is specified in the SELECT clause, e.g.,
SELECT DISTINCT ?v in Fig. 23 (center). Although SPARQL allows projecting variables from any part of a
query, most neural query engines covered in Section 5 follow the task formulation of GQE (Hamilton et al.,
2018) and allow the projected target variable to be only the leaf node of the query computation graph.
This limitation is illustrated in Fig. 23 (center) where the target variable ?v is the leaf node of the query
graph and has two bindings v = {A, E}.

It is worth noting that existing neural query processors are designed to return a unique set of answers to the
input query, i.e., it corresponds to the SELECT DISTINCT clause in SPARQL. In contrast, the default SELECT
returns multisets with possible duplicates. For example, the same query in Fig. 23 (center) without DISTINCT
would have bindings v = {A, A, E} as there exist two matching graph patterns ending in A. Implementing
non-DISTINCT query answering remains an open challenge.

Most neural query processors have a notion of intermediate variables and model their distribution in the entity
space. For instance, having a defined distance function, geometric processors (Ren et al., 2020; Choudhary
et al., 2021b) can find nearest entities as intermediate variables. Similarly, fuzzy-logic processors operating
on fuzzy sets (Tang et al., 2022; Zhu et al., 2022) already maintain a scalar distribution over all entities after
each execution step. Finally, GNN-based (Daza & Cochez, 2020; Alivanistos et al., 2022) and Transformer-
based (Liu et al., 2022) processors explicitly include intermediate variables as nodes in the query graph (or
tokens in the query sequence) and can therefore decode their representations to the entity space. The main
drawback of all those methods is the lack of filtering mechanisms for the sets of intermediate variables after
the leaf node has been identified. That is, in order to filter and project only those intermediate variables
that lead to the final answer, some notion of backward pass is required. The first step in this direction is
taken by QTO (Bai et al., 2022b) that runs the pruning backward pass after reaching the answer leaf node.

Multiple Projected Variables. The most general and complex case for queries is to have multiple
projected variables as illustrated in Fig. 23 (right). In SPARQL, all projected variables are specified in
the SELECT clause (with the possibility to project all variables in the query via SELECT *). In the logical
form, a query has several target variables q =?v1, ?v2, ?v : student(Stanford, ?v1) ∧ roommate(?v1, ?v) ∧
student(Stanford, ?v2) ∧ classmate(?v2, ?v) such that the output bindings are organized in tuples. For ex-
ample, one possible answer tuple is {?v1 : F, ?v2 : F, ?v : A} denotes particular nodes (variable bindings) that
satisfy the query pattern.

As shown in the previous paragraph about one-variable queries, some neural query processors have the means
to keep track of the intermediate variables. However, none of them have the means to construct answer tuples
with variables bindings and it remains an open challenge how to incorporate multiple projected variables
into such processors. Furthermore, some common caveats to be taken into account include (1) dealing with
unbound variables that often emerge, for example, in OPTIONAL queries covered in Section 6.1, where answer
tuples might contain an empty value (∅ or NULL) for some variables; (2) the growing complexity issue where
the answer set might potentially be polynomially large depending on the number of projected variables.
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Figure 24: Standard query patterns with names, where p is projection, i is intersection, u is union, n is
negation. In a pattern, blue node represents a non-variable entity, grey node represents a variable node, and
the green node represents the answer node. In a typical training protocol, models are trained on 10 patterns
(first and third rows) and evaluated on all patterns. In the hardest generalization case, models are only
trained on 1p queries. Some datasets further modify the patterns with additional features like qualifiers or
temporal timestamps.

7 Datasets and Metrics

7.1 Evaluation Setup

Multiple datasets have been proposed for evaluation of query reasoning models. Here we introduce the
common setup for CLQA task. Given a knowledge graph G = (E , R, S), the standard practice is to split
G into a training graph Gtrain, a validation graph Gval and a test graph Gtest (simulating the unobserved
complete graph Ĝ from Section 2). The standard experiment protocol is to train a query reasoning model
only on the training graph Gtrain, and evaluate the model on answering queries over the validation graph
Gval and the test graph Gtest. Given a query q, denote the answers of this query on training, validation
and test graph as JqKtrain, JqKval and JqKtest. During evaluation, queries may have missing answers, e.g.,
a validation query q may have answers JqKval that are not in JqKtrain, a test query q may have answers
JqKtest that are not in JqKval. The overall goal of CLQA task is to find these missing answers. The details
of typical training queries, training protocol, inference and evaluation metrics are introduced in Section 7.2,
Section 7.3, Section 7.4, and Section 7.5, respectively.

7.2 Query Types

The standard set of graph queries used in many datasets includes 14 types:
1p/2p/3p/2i/3i/ip/pi/2u/up/2in/3in/inp/pni/pin where p denotes relation projection, i is intersec-
tion, u is union, n is negation, and a number denotes the number of hops for projection queries or number of
branches to be merged by a logical operator. Fig. 24 illustrates common query patterns. For example, 3p is
a chain-like query of three consecutive relation projections, 2i is an intersection of two relation projections,
3in is an intersection of three relation projections where one of the branches contains negation, up is a union
of two relation projections followed by another projection. The original GQE by Hamilton et al. (2018)
introduced 7 query patterns with projection and intersection 1p/2p/3p/2i/3i/ip/pi, Query2Box (Ren et al.,
2020) added union queries 2u/up, and BetaE (Ren & Leskovec, 2020) added five types with negation.

Subsequent works modified the standard set of query types in several ways, e.g., hyper-relational queries (Ali-
vanistos et al., 2022; Luo et al., 2023) with entity-relation qualifiers on relation projections, or temporal op-
erators on edges (Lin et al., 2022a). New query patterns include queries with regular expressions of relations
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(property paths) (Adlakha et al., 2021), more tree-like queries (Kotnis et al., 2021), and more combinations
of projections, intersections, and unions (Wang et al., 2021; Pflueger et al., 2022). We summarize existing
query answering datasets and their properties in Table 15 covering supported query operators, inference
setups, and additional features like temporal timestamps, class hierarchies, or complex ontological axioms.

Commonly, query datasets are sampled from different KGs to study model performance under different graph
distributions, for example, BetaE datasets include sets of queries from denser Freebase (Bollacker et al.,
2008) with average node degree of 18 and sparser WordNet (Miller, 1998) and NELL (Mitchell et al., 2015)
with average node degree of 2. Hyper-relational datasets WD50K (Alivanistos et al., 2022) and WD50K-
NFOL (Luo et al., 2023) were sampled from Wikidata (Vrandecic & Krötzsch, 2014) where qualifiers are
natural. TAR datasets with class hierarchy (Tang et al., 2022) were sampled from YAGO 4 (Pellissier Tanon
et al., 2020) and DBpedia (Lehmann et al., 2015) where class hierarchies are well-curated. Q2B Onto
datasets with ontological axioms (Andresel et al., 2021) were sampled from LUBM (Guo et al., 2005) and
NELL. Temporal TFLEX datasets (Lin et al., 2022a) were sampled from ICEWS (Boschee et al., 2015) and
GDELT (Leetaru & Schrodt, 2013) that maintain event information. InductiveQE datasets (Galkin et al.,
2022b) were sampled from Freebase and Wikidata, while inductive GNNQ datasets (Pflueger et al., 2022)
were sampled from the WatDiv benchmark (Aluç et al., 2014) and Freebase.

7.3 Training

Query reasoning methods are trained on the given Gtrain with different objectives/losses and dif-
ferent datasets. Following the standard protocol, methods are trained on 10 query patterns
1p/2p/3p/2i/3i/2in/3in/inp/pni/pin and evaluated on all 14 patterns including generalization to unseen
ip/pi/2u/up patterns. That is, the training protocol assumes that models trained on atomic logical opera-
tors would learn to compositionally generalize to patterns using several operators such as ip and pi queries
that use both intersection and projection.

We summarize different training objectives in Table 14. Most methods that learn a representation of the
queries and entities on the graph optimize a contrastive loss, i.e., minimizing the distance between the
representation of a query q and its positive answers e while maximizing that between the representation of
a query and negative answers e′. Various objectives include: (1) max-margin loss (first column in Table 14)
with the goal that the distance of negative answers should be larger than that of positive answers at least
by the margin γ. Such loss is often of the form as the equation below.

ℓ = max(0, γ − dist(q, e) + dist(q, e′));

(2) LogSigmoid loss (second column in Table 14) with a similar goal that pushes the distance of negatives
up and vice versa. Often the loss also includes a margin term and the gradient will gradually decrease when
the margin is satisfied.

ℓ = − log σ(γ − dist(q, e)) −
∑ 1

k
log σ(dist(q, e′) − γ),

where k is the number of negative answers. Other methods (third column in Table 14) that directly model
a logit vector over all the nodes on the graph may optimize a cross entropy loss instead of a contrastive loss.
Besides, methods such as the two variants of CQD (Arakelyan et al., 2021; 2023), QTO (Bai et al., 2022b),
FIT (Yin et al., 2023), and LitCQD (Demir et al., 2023) only optimize the link prediction loss since they do
not learn a representation of the query.

Almost all the datasets including GQE (Hamilton et al., 2018), Q2B (Ren et al., 2020), BetaE (Ren &
Leskovec, 2020), RegEx (Adlakha et al., 2021), BiQE (Kotnis et al., 2021), Query2Onto (Andresel et al.,
2021), TAR (Tang et al., 2022), StarQE (Alivanistos et al., 2022), GNNQ (Pflueger et al., 2022), TeMP (Hu
et al., 2022), TFLEX (Lin et al., 2022a), InductiveQE (Galkin et al., 2022b), SQE (Bai et al., 2023) provide
a set of training queries of given structures sampled from the Gtrain. The benefit is that during training,
methods do not need to sample queries online. However, it often means that only a portion of information
is utilized from the Gtrain since exponentially more multi-hop queries exist on Gtrain and the dataset can
never pre-generate all offline. SMORE (Ren et al., 2022) proposes a bidirectional online query sampler
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Table 14: Complex Query Answering approaches categorized under Loss.

Max Margin LogSigmoid (Sun et al., 2019) Cross Entropy
GQE (Hamilton et al.,
2018), GQE w hash (Wang
et al., 2019), CGA (Mai
et al., 2019), MPQE (Daza
& Cochez, 2020), HyPE
(Choudhary et al., 2021b),
Shv (Gebhart et al., 2021)

Query2Box (Ren et al., 2020), BetaE (Ren & Leskovec,
2020), RotatE-Box (Adlakha et al., 2021), ConE
(Zhang et al., 2021b), NewLook (Liu et al., 2021), Q2B
Onto (Andresel et al., 2021), PERM (Choudhary et al.,
2021a), LogicE (Luus et al., 2021), MLPMix (Amayue-
las et al., 2022), FuzzQE (Chen et al., 2022b), FLEX
(Lin et al., 2022b), TFLEX (Lin et al., 2022a), SMORE
(Ren et al., 2022), LinE (Huang et al., 2022b), Gam-
maE (Yang et al., 2022a), NMP-QEM (Long et al.,
2022), ENeSy (Xu et al., 2022), RoMA (Xi et al., 2022),
SignalE (Wang et al., 2022a), Query2Geom (Sardina
et al., 2023), RoConE (He et al., 2023), CylE (Nguyen
et al., 2023), WFRE (Wang et al., 2023c)

BiQE (Kotnis et al., 2021),
NodePiece-QE (Galkin et al.,
2022b), GNN-QE (Zhu et al.,
2022), GNNQ (Pflueger et al.,
2022), KGTrans (Liu et al., 2022),
Query2Particles (Bai et al., 2022a),
EmQL (Sun et al., 2020), LMPNN
(Wang et al., 2023d), StarQE
(Alivanistos et al., 2022), NQE (Luo
et al., 2023), CQDA (Arakelyan
et al., 2023), SQE (Bai et al., 2023)

Table 15: Existing logical query answering datasets classified along supported query operators, inference
scenarios, and domain properties. + is partial support – some operators on literals can be treated as filters.

Query Operators Inference Domain
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Hamilton et al. (2018) GQE datasets ✓ ✓ ✓
Ren et al. (2020) Q2B datasets ✓ ✓ ✓ ✓
Ren & Leskovec (2020) BetaE datasets ✓ ✓ ✓ ✓ ✓
Adlakha et al. (2021) Regex queries ✓ ✓ ✓ ✓ ✓
Kotnis et al. (2021) DAG queries ✓ ✓ ✓
Wang et al. (2021) EFO-1 queries ✓ ✓ ✓ ✓ ✓
Andresel et al. (2021) LUBM/NELL (type) ✓ ✓ ✓ ✓ ✓
Tang et al. (2022) TAR datasets ✓ ✓ ✓ ✓ ✓
Ren et al. (2022) SMORE datasets ✓ ✓ ✓ ✓
Alivanistos et al. (2022) WD50K dataset ✓ ✓ ✓ ✓
Hu et al. (2022) TeMP dataset ✓ ✓ ✓ ✓ ✓
Pflueger et al. (2022) GNNQ dataset ✓ ✓ ✓
Lin et al. (2022a) TFLEX dataset ✓ ✓ ✓ + ✓ ✓ ✓
Galkin et al. (2022b) InductiveQE dataset ✓ ✓ ✓ ✓ ✓
Luo et al. (2023) WD50K-NFOL dataset ✓ ✓ ✓ ✓ ✓ ✓
Bai et al. (2023) SQE dataset ✓ ✓ ✓ ✓ ✓
Huang et al. (2022b) WN18RR dataset ✓ ✓ ✓ ✓ ✓
Demir et al. (2023) FB15k237 w/ Literals ✓ ✓ + ✓ ✓ ✓
Yin et al. (2023) FIT dataset ✓ ✓ ✓ ✓ ✓

such that methods can directly do online sampling efficiently without the need to pre-generate a training
set offline. Alternatively, methods that do not have parameterized ways to handle logical operations, e.g.,
CQD (Arakelyan et al., 2021), only require one-hop edges to train the overall system.

7.4 Inference

By Inference we understand testing scenarios on which a trained query answering model will be deployed
and evaluated. Following the literature, we distinguish Transductive and Inductive inference (Fig. 25). In
the transductive case, inference is performed on the graph with the same set of nodes and relation types as
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Figure 25: Inference Scenarios. In the Transductive case, training and inference graphs are the same and
share the same nodes (Einf = Etrain). Inductive cases can be split into superset where the inference graph
extends the training one (Etrain ⊆ Einf, missing links cover both seen and unseen nodes) and disjoint where
the inference graph is disconnected (Etrain ∩ Einf = ∅, missing links are among unseen nodes).

in training but with different edges. Any other scenario when either the number of nodes or relation types
of an inference graph is different from that of the training is deemed inductive. The inference scenario plays
a major role in designing query answering models, that is, transductive models can learn a shallow entity
embedding matrix thanks to the fixed entity set whereas inductive models have to rely on other invariances
available in the underlying graph in order to generalize to unseen entity/relation types. We discuss many
transductive and inductive models in Section 5.2. Below, we categorize existing datasets from the Inferece
perspective. The overview of existing CLQA datasets is presented in Table 15 through the lens of supported
query operators, inference scenario, graph domain, and other features like types or qualifiers.

Transductive Inference. Formally, given a training graph Gtrain = (Etrain, Rtrain, Strain), the transductive
inference graph Ginf

9 contains the same set of entities and relation types, that is, Etrain = Einf and Rtrain =
Rinf, while the edge set on Gtrain is a subset of that on the inference graph Ginf, i.e., Strain ⊂ Sinf. In this
setup, query answering is performed on the same nodes and edges seen during training. From the entity set
perspective, the prediction pattern is seen-to-seen – missing links are predicted between known entities.

Traditionally, KG link prediction focused more on the transductive task. In CLQA, therefore, the majority
of existing datasets (Table 16) follow the transductive scenario. Starting from simple triple-based graphs
with fixed query patterns in GQE datasets (Hamilton et al., 2018), Query2Box datasets (Ren et al., 2020),
and BetaE datasets (Ren & Leskovec, 2020) that became de-facto standard benchmarks for query answering
approaches, newer datasets include regex queries (Adlakha et al., 2021), wider set of query patterns (Kotnis
et al., 2021; Wang et al., 2021; Bai et al., 2023), entity type information (Tang et al., 2022), ontological
axioms (Andresel et al., 2021), hyper-relational queries with qualifiers (Alivanistos et al., 2022; Luo et al.,
2023), temporal queries (Lin et al., 2022a), very large graphs up to 100M nodes (Ren et al., 2022), hierarchical
graphs (Huang et al., 2022b), queries with numerical literals (Demir et al., 2023), or queries with cycles and
multiedges (Yin et al., 2023).

Inductive Inference. Formally, given a training graph Gtrain = (Etrain, Rtrain, Strain), the inductive infer-
ence graph Ginf = (Einf, Rinf, Sinf) is different from the training graph in either the entity set or the relation
set or both. The nature of this difference explains several subtypes of inductive inference. First, the set of
relations might or might not be shared at inference time, that is, Rinf ⊆ Rtrain or |Rinf \ Rtrain| > 0. Most
of the literature on inductive link prediction (Teru et al., 2020; Zhu et al., 2021; Galkin et al., 2022a) in KGs
assumes the set of relations is shared whereas the setup where new relations appear at inference time is still
highly non-trivial (Huang et al., 2022a; Gao et al., 2023; Chen et al., 2023).

9Below we use Ginf to refer to the graphs we use during inference, it can be Gval or Gtest without loss of generalization.
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On the other hand, the inference graph might be either a superset of the training graph after adding new
nodes and edges, Etrain ⊆ Einf, or a disjoint graph with completely new entities as a disconnected component,
Einf ∩ Etrain = ∅ as illustrated in Fig. 25. From the node set perspective, the superset inductive inference
case might contain both unseen-to-seen and unseen-to-unseen missing links whereas in the disjoint inference
graph only unseen-to-unseen links are naturally appearing.

In CLQA, inductive reasoning is still an emerging area as it has a direct impact on the space of possible
variables V, constants C, and answers A that might now include entities unseen at training time. Several
most recent works started to explore inductive query answering (Table 16). InductiveQE datasets (Galkin
et al., 2022b) focus on the inductive superset case where a training graph can be extended with up to 500%
new unseen nodes. Test queries start from unseen constants and answering therefore requires reasoning over
both seen and unseen nodes. Similarly, training queries can have many new correct answers when answered
against the extended inference graph. GNNQ datasets (Pflueger et al., 2022) focus on the disjoint inductive
inference case where constants, variables, and answers all belong to a new entity set. TeMP datasets (Hu
et al., 2022) focus on the disjoint inductive inference as well but offer to leverage an additional class hierarchy
as a learnable invariant. That is, the set of classes at training and inference time does not change.

As stated in Section 3, inductive inference is crucial for NGDBs to enable running models over updatable
graphs without retraining. We conjecture that inductive datasets and models are likely to be the major
contribution area in the future work.

Table 16: Complex Query Answering datasets categorized under Inference.

Transductive Inductive
GQE datasets (Hamilton et al., 2018)
Query2Box datasets (Ren et al., 2020)
BetaE datasets (Ren & Leskovec, 2020)
Regex datasets (Adlakha et al., 2021)
BiQE dataset (Kotnis et al., 2021)
Query2Onto datasets (Andresel et al., 2021)
EFO-1 dataset (Wang et al., 2021)
TAR datasets (Tang et al., 2022)
SMORE datasets (Ren et al., 2022)
StarQE dataset (Alivanistos et al., 2022)
TFLEX dataset (Lin et al., 2022a)
WD50K-NFOL dataset (Luo et al., 2023)
SQE dataset (Bai et al., 2023)
WN18RR dataset (Huang et al., 2022b)
FB15k-237 w/ Literals (Demir et al., 2023)
FIT dataset (Yin et al., 2023)

InductiveQE datasets (Galkin et al., 2022b)
TeMP datasets (type-aware) (Hu et al., 2022)
GNNQ dataset (Pflueger et al., 2022)

7.5 Metrics

Several metrics have been proposed to evaluate the performance of query reasoning models that can be
broadly classified into generalization, entailment, and query representation quality metrics.

Generalization Metrics. Since the aim of query reasoning models is to perform reasoning over massive
incomplete graphs, most metrics are designed to evaluate models’ generalization capabilities in discovering
missing answers, i.e., JqKtest\JqKval for a given test query q. As one of the first works in the field, GQE (Hamil-
ton et al., 2018) proposes ROC-AUC and average percentile rank (APR). The idea is that for a given test
query q, GQE calculates a score for all its missing answers e ∈ JqKtest\JqKval and the negatives e′ /∈ JqKtest.
The model’s performance is the ROC-AUC score and APR, where they rank a missing answer against at
most 1000 randomly sampled negatives of the same entity type. Besides GQE, GQE+hashing (Wang et al.,
2019), CGA (Mai et al., 2019) and TractOR (Friedman & Broeck, 2020) use the same evaluation metrics.

52



Under review as submission to TMLR

However, the above metrics do not reflect the real world setting where we often have orders of magnitude
more negatives than the missing answers. Instead of ROC-AUC or APR, Query2Box (Ren et al., 2020)
proposes ranking-based metrics, such as mean reciprocal rank (MRR) and hits@k. Given a test query q, for
each missing answer e ∈ JqKtest\JqKval, we rank it against all the other negatives e′ /∈ JqKtest. Given the
ranking r, MRR is calculated as 1

r and hits@k is 1[r ≤ k]. This has been the most used metrics for the task.
Note that the final rankings are computed only for the hard answers that require predicting at least one
missing link. Rankings for easy answers reachable by edge traversal are usually discarded.

Representation Quality Metrics. Besides evaluating model’s capability of finding missing answers,
another aspect is to evaluate the quality of the learned query representation for all models. BetaE (Ren &
Leskovec, 2020) proposes to evaluate whether the learned query representation can model the cardinality of
a query’s answer set, and view this as a proxy of the quality of the query representation. For models with
a sense of “volume” (e.g., differential entropy for Beta embeddings), the goal is to measure the Spearman’s
rank correlation coefficient and Pearson’s correlation coefficient between the “volume” of a query (calculated
from the query representation) and the cardinality of the answer set. BetaE also proposed to evaluate an
ability to model queries without answers using ROC-AUC.

Entailment Metrics. The other evaluation protocol is about whether a model is also able to discover
the existing answers, e.g., JqKval for test queries, that does not require inferring missing links but focuses on
memorizing the graph structure (easy answers in the common terminology). This is referred to as faithfulness
(or entailment) in EmQL (Sun et al., 2020). Natural for database querying tasks, it is expected that query
answering models first recover easy answers already existing in the graph (reachable by edge traversal) and
then enrich the answer set with predicted hard answers inferred with link prediction. A natural metric is
therefore an ability to rank easy answers higher than hard answers – this was studied by InductiveQE (Galkin
et al., 2022b) that proposed to use ROC-AUC as the main metric for this task.

Still, we would argue that existing metrics might not fully capture the nature of neural query answering and
new metrics might be needed. For example, some under-explored but potentially useful metrics include (1)
studying reasonable answers (in between easy and hard answers) that can be deduced by symbolic reasoners
using a higher-level graph schema (ontology) (Andresel et al., 2021). A caveat in computing reasonable
answers is a potentially infinite processing time of symbolic reasoners that have to be limited by time or
expressiveness in order to complete in a finite time. Hence, the set of reasonable answers might still be
incomplete; (2) evaluation in light of the open-world assumption (OWA) stating that unknown triples in
the graph might not necessarily be false (as postulated by the standard closed-world assumption used a lot
in link prediction). Practically, OWA means that even the test set might be incomplete and some high-
rank predictions deemed incorrect by the test set might in fact be correct in the (possibly unobservable)
complete graph. Initial experiments of Yang et al. (2022b) with OWA evaluation of link prediction explain the
saturation of ranking metrics (e.g., MRR) on common datasets by the performance of neural link predictors
able to predict the answers from the complete graph missed in the test set. For example, saturated MRR of
0.4 on the test set might correspond to MRR of 0.9 on the true complete graph. Studying OWA evaluation
in the query answering task in both transductive and inductive setups is a solid avenue for future work.

8 Applications

In addition to graph database use cases, the framework of complex query answering is applied in a variety of
graph-conditioned machine learning tasks. For example, SE-KGE (Mai et al., 2020) applies GQE to answer
geospatial queries conditioned on numerical {x, y} coordinates. The coordinates encoder fuses numerical
representations with entity embeddings such that the prediction task is still entity ranking.

In case-based reasoning, CBR-SUBG (Das et al., 2022) is a method for question answering over KGs based
on subgraph extraction and encoding. As a byproduct, CBR-SUBG is capable of answering conjunctive
queries with projections and intersections. However, due to a non-standard evaluation protocol and custom
synthetic dataset, its performance cannot be directly compared to CLQA models. Similarly, Wang et al.
(2023b) merge a Query2Box-like model with a pre-trained language model to improve question answering
performance. LEGO (Ren et al., 2021) also applies CLQA models for KG question answering. The idea is
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to simultaneously parse a natural language question as a query step and execute the step in the latent space
with CLQA models.

LogiRec (Wu et al., 2022) frames product recommendation as a complex logical query such that source
products are root nodes, combinations of multiple products form intersections, and non-similar products to
be filtered out form negations. LogiRec employs BetaE as a query engine. Similarly, Syed et al. (2022) design
an explainable recommender system based on Query2Box. Given a logical query, they first use Query2Box
to generate a set of candidates and rerank them using neural collaborate filtering (He et al., 2017).

9 Summary and Future Opportunities

We presented a summary of the literature of the Complex logical query answering (CLQA) task, which is
at the core of our proposed neural query engine and neural graph database (NGDB) concepts. NGDBs
marry the idea of neural database and graph database where we have a unique latent space for information
(including entities, relations, facts). NGDBs perform query planning, execution, and result retrieval all in
the latent space using graph representation learning. Such a design choice allows for a unified, more efficient
and robust interface for storage and querying. We envision NGDBs to be the next generation of databases
tailored for predictive queries over sheer volumes of incomplete graph-structured data.

We also proposed a deep and detailed taxonomy of methods tackling certain aspects of the envisioned neural
query engine. Going forward, there is still much room to unlock the full power of NGDB by addressing the
open challenges in Neural Query Engines and Neural Storage domains. Pertaining to Neural Query Engines
and adhering to the taxonomy in Section 3.2, we summarize the challenges in three main areas: Graphs,
Modeling, and Queries.

Along the Graph branch:

• Modality: Supporting more graph modalities: from classic triple-only graphs to hyper-relational
graphs, hypergraphs, and multimodal sources combining graphs, texts, images, and more.

• Reasoning Domain: Supporting logical reasoning and neural query answering over temporal and
continuous (e.g., textual and numerical) data – literals constitute a major portion of graphs as well
as relevant queries over literals.

• Background Semantics: Supporting complex axioms and formal semantics that encode higher-
order relationships between (latent) classes of entities and their hierarchies, e.g., enabling neural
reasoning over description logics and OWL fragments.

In the Modeling branch:

• Encoder: Inductive encoders supporting unseen relation at inference time – this a key for (1) up-
datability of neural databases without the need of retraining; (2) enabling the pretrain-finetune
strategy generalizing query answering to custom graphs with custom relational schema.

• Processor: Expressive processor networks able to effectively and efficiently execute complex query
operators akin to SPARQL and Cypher operators. Improving sample efficiency of neural processors
is crucial for the training time vs quality tradeoff, i.e., reducing training time while maintaining high
predictive qualities.

• Decoder: So far, all neural query answering decoders operate exclusively on discrete nodes. Ex-
tending the range of answers to continuous outputs is crucial for answering real-world queries.

• Complexity: As the main computational bottleneck of processor networks is the dimensionality of
embedding space (for purely neural models) and/or the number of nodes (for neuro-symbolic), new
efficient algorithms for neural logical operators and retrieval methods are the key to scaling NGDBs
to billions of nodes and trillions of edges.
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In Queries:

• Operators: Neuralizing more complex query operators matching the expressiveness of declarative
graph query languages, e.g., supporting Kleene plus and star, property paths, filters.

• Patterns: Answering more complex patterns beyond tree-like queries. This includes DAGs and
cyclic graphs.

• Projected Variables: Allowing projecting more than a final leaf node entity, that is, allowing
returning intermediate variables, relations, and multiple variables organized in tuples (bindings).

• Expressiveness: Answering queries outside simple EPFO and EFO fragments, extending the ex-
pressiveness to the union of conjunctive queries with negations (UCQ and UCQneg and aiming for
the expressiveness of database languages.

In Datasets and Evaluation:

• The need for larger and diverse benchmarks covering more graph modalities, more expressive query
semantics, more query operators, and query patterns.

• As the existing evaluation protocol appears to be limited (focusing only on inferring hard answers)
there is a need for a more principled evaluation framework and metrics covering various aspects
of the query answering workflow.

Pertaining to the Neural Graph Storage and NGDB in general, we identify the following challenges:

• The need for a scalable retrieval mechanism to scale neural reasoning to graphs of billions of
nodes. Retrieval is tightly connected to the Query Processor and its modeling priors (as shown in
Section 3.1). Existing scalable ANN libraries can only work with basic L1, L2, and cosine distances
that limit the space of possible processors in the neural query engine.

• Currently, all complex query datasets listed in Section 7 provide a hardcoded query execution plan
that might not be optimal for neural processors. There is a need for a neural query planner that
would transform an input query into an optimal execution sequence taking into account prediction
tasks, query complexity, type of the neural processor, and configuration of the Storage layer (that
can be federated as well).

• Due to encoder inductiveness and updatability without retraining, there is a need to alleviate the
issues of continual learning (Thrun, 1995; Ring, 1998), catastrophic forgetting (McCloskey &
Cohen, 1989), and size generalization when running inference on much larger graphs than training
ones (Yehudai et al., 2021; Buffelli et al., 2022).

Finally, in the era of foundation models, many research works have demonstrated various capabilities hidden
inside these large language models often with hundreds of billions of parameters, and most importantly how
to unleash these capabilities (Wei et al., 2022; Wang et al., 2022b; Zhou et al., 2022a). We envision an
important future direction that is to design a natural language interface so that we can better harness the
reasoning capabilities of these large language models for the CLQA task along the directions we mentioned
ahead (Drozdov et al., 2022). Besides, NGDB also provides an exciting future opportunity to improve
foundation models at various stages, especially inference. Since not all the downstream tasks require a full
billion-parameter model call, it’s promising to research how NGDB can accelerate or compress foundation
models while still keeping the emergent behaviors that are essential for these extremely large models.
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