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Abstract
Given two weighted graphs G = (V,E,wG) and
H = (V, F,wH) defined on the same vertex set,
the constrained clustering problem seeks to find
a subset S ⊂ V that minimises the cut ratio
between wG(S, V \ S) and wH(S, V \ S). In
this work, we establish a Cheeger-type inequality
that relates the solution of the constrained clus-
tering problem to the spectral properties of G
and H . To reduce computational complexity, we
utilise the signed Laplacian of H , streamlining
calculations while maintaining accuracy. By solv-
ing a generalised eigenvalue problem, our pro-
posed algorithm achieves notable performance
improvements, particularly in challenging scenar-
ios where traditional spectral clustering methods
struggle. We demonstrate its practical effective-
ness through experiments on both synthetic and
real-world datasets.

1. Introduction
Clustering is a fundamental technique in machine learning,
with extensive applications across computer science and
various scientific disciplines. The primary goal of cluster-
ing is to partition data points into clusters, such that points
within each cluster are more densely connected than those in
other clusters. Traditional clustering, such as spectral clus-
tering (von Luxburg, 2007) relies solely on the structure of
the data. However, in many real-world scenarios, additional
domain knowledge is available, introducing specific con-
straints that should be incorporated into the clustering pro-
cess to achieve more accurate and meaningful results (Basu
et al., 2008).

Constrained clustering focuses on developing algorithms
that effectively incorporate this domain knowledge to en-
hance clustering performance (Wagstaff et al., 2001). The
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domain knowledge is represented by two types of pairwise
constraints: (1) MUST-LINK constraints, requiring that a
pair of data points must be assigned to the same cluster, and
(2) CANNOT-LINK constraints, requiring that a pair of data
points must be assigned to different clusters. In the context
of graph clustering, the goal is to partition the vertices of a
graph based on edge connectivity while satisfying the given
constraints.

In this paper, we examine the constrained clustering prob-
lem by formalising these constraints using the graphs
G = (V,E,w) and H = (V,E′, w′), in which every
data point corresponds to a graph vertex, every MUST-
LINK (resp. CANNOT-LINK) constraint corresponds to an
edge in G (resp. H), and the edge weights capture the
strength of the user’s preference for satisfying the corre-
sponding constraint. For any set S ⊆ V , we define the cut
ratio of S between G and H by

cutGH(S, V \ S) = wG(S, V \ S)
wH(S, V \ S)

, (1)

and the objective is to find S that achieves

ΦG
H = min

∅⊂S⊂V
cutGH(S, V \ S).

We develop an efficient approximation algorithm for the
constrained graph clustering problem. The key to our algo-
rithm is a Cheeger-type inequality that upper bounds ΦG

H

with respect to λ2(∆G
H) and λ2(∆H), where

λ2
(
∆G

H

)
= min

x⊥1

⟨x,∆Gx⟩
⟨x,∆Hx⟩

, (2)

λ2
(
∆H

)
= min

x⊥1

⟨x,∆Hx⟩
⟨x, x⟩

. (3)

and ∆G and ∆H are the Laplacian operators of G and H
respectively. By introducing several techniques to adjust
G and H , we significantly reduce the time complexity for
solving the generalised eigenvalue problem, while maintain-
ing the one-to-one correspondence between the solution of
the new reduced instance and the initial one. The empiri-
cal studies on both the synthetic and real-world data sets
confirm that with the two sets of constraints our algorithm
presents significantly better performance than the classical
spectral clustering algorithm, and the running time of our
algorithm is close to traditional spectral clustering methods.
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Related work. Cheeger-type inequalities for constrained
graph clustering are studied in the literature. For example,
Cucuringu et al. (2016) proved that ΦG

H · ΦG
K ≤ 4λ2(∆

G
H);

this inequality is based on a third graph K, which they
call the demand graph. Koutis et al. (2023) showed that
ΦG

H ≤ 16λ2(∆
G
H)/Φ(G), where Φ(G) is the standard con-

ductance of G. These two results cannot be directly com-
pared with ours, since both inequalities upper bound ΦG

H

with respect to λ2(∆G
H) and parameters of H , i.e., ΦG

K in
(Cucuringu et al., 2016) and Φ(G) in (Koutis et al., 2023).
In contrast, we upper bound ΦG

H with respect to λ2(∆G
H)

and λ2(∆H). Trevisan (2013) studied the computational
complexity of the problem and proved that under the Unique
Games Conjecture, it’s impossible to find a cut that achieves

O

(√
ΦG

H

)
approximation in polynomial time.

Our work also relates to the studies on constrained graph
clustering from practical perspectives (Jia et al., 2021; Wang
& Davidson, 2010; Wang et al., 2014) and signed cuts us-
ing the signed Laplacian (Knyazev, 2017). Most of these
studies, however, lack the rigorous analysis of the quality
of the resulting clusters compared to the optimal solution.
Our work is further linked to Cheeger-type inequalities for
different graph Laplacians (Lange et al., 2015; Li et al.,
2019) including the signed Laplacian (Atay & Liu, 2020),
and their higher-order generalisations (Lee et al., 2014).

Contribution. We propose a novel method for constrained
graph clustering that establishes a Cheeger-type inequality
explicitly linking the cut ratio objective to the spectral prop-
erties of two graphs G and H . Our approach introduces a
signed Laplacian–based implementation, which avoids addi-
tional parameters while improving both numerical stability
and computational efficiency. Finally, our experiments on
synthetic and real-world datasets confirm the robustness
and scalability of our algorithm, significantly outperforming
standard spectral clustering under challenging scenarios.

2. Background & Preliminaries
We consider a finite, undirected graph G = (V,E), where
V is the set of vertices and E is the set of edges. Each edge
uv ∈ E denotes an undirected connection between vertices
u and v. A self-loop in this context is represented by uu,
indicating an edge that starts and ends at the same vertex
u. The notation u ∼ v means that u and v are connected
by an edge. We define weights in the graph G through the
function w : E → R+, where wuv = wvu specifies the
weight of the edge between vertices u and v. By definition,
each self-loop uu contributes twice to the degree of vertex
u.

ForE0 ⊆ E, we interpretw as a discrete measure on the cor-
responding sets, using the notation w(E0) =

∑
uv∈E0

wuv.

For V0, V1 ⊆ V , we denote the set of unoriented edges
between V0 and V1 as E(V0, V1) = {uv ∈ E | u ∈
V0 and v ∈ V1}. We denote by Ev the set of all edges
connected to v, and Nv the neighbourhood of v as the
set of vertices adjacent to v, i.e., Ev = E({v}, V ) and
Nv = {u ∈ V | v ∼ u}. The edge weights on a
graph determine a weighted degree of a vertex, defined
by deg(v) = w(Ev) =

∑
e∈Ev

we.

The Laplacian. We define some standard spaces related
to a finite and weighted graph G = (V,E) with weight
function w. We define the Hilbert spaces ℓ2(V,w) and
ℓ2(E,w) as

ℓ2(V,w) = {φ : V → R}, ℓ2(E,w) = {η : E → R}.

Furthermore, we consider the natural inner product for these
spaces. For ℓ2(V,w), the inner product between functions
φ and ψ is defined as ⟨φ,ψ⟩V =

∑
v∈V φ(v)ψ(v) deg(v).

For ℓ2(E,w), the inner product between functions η and ξ
is defined as ⟨η, ξ⟩E =

∑
e∈E ηeξewe. Let G = (V,W,w)

be a weighted graph. The derivative d is defined as

d : ℓ2(V,w) −→ ℓ2(E,w), (dφ)e=(u,v) = φ(u)−φ(v).

The adjoint d∗ : ℓ2(E,w) −→ ℓ2(V,w) is given by

(d∗η)(v) = − 1

deg(v)

∑
e∈Ev

weηe.

The weighted Laplacian ∆ : ℓ2(V,w) −→ ℓ2(V,w) is de-
fined as ∆ = d∗d, and acts as

(∆φ)(v) =
1

deg(v)

∑
u∈Nv

(
φ(v)− φ(u)

)
wuv.

Let G = (V,E,w) be a weighted graph, and for all φ ∈
ℓ2(V,w) we have that

⟨φ,∆Gφ⟩ = ⟨φ, d∗dφ⟩ℓ2(V ) = ⟨dφ, dφ⟩ℓ2(E)

=
∑
u∼v

|dφuv|2wuv =
∑
u∼v

(φ(u)− φ(v))2wuv.

Graph Signature. A signature of a graphG = (V,E) is a
map α : E → {+1,−1}, which assigns a sign to each edge.
Let G = (V,E,w) be a weighted graph with a signature α.
The signed Laplacian, denoted as ∆α, is a linear operator
∆α : ℓ2(V,w) → ℓ2(V,w), defined by

(∆αφ)(v) =
1

deg(v)

∑
u∈Nv

(
φ(v)− αvuφ(u)

)
wvu,

where wuv is the weight of the edge uv, and αuv indicates
the sign of the edge as given by the signature α. Observe that
the Laplacian is a particular case of the signed Laplacian by
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taking αuv = 1 for all edges and the signless Laplacian by
taking αuv = −1 for all edges. The signed Laplacian can
be viewed as a special case of the magnetic Laplacian with
a discrete magnetic potential taking values in {0, π}. The
operators ∆α (and therefore ∆) are positive, semi-definite,
and self-adjoint, hence all of their eigenvalues are real and
non-negative.

3. Algorithm & Analysis
In this section, we present a constrained graph clustering
algorithm called CC++. At a high level, our algorithm con-
sists of the following: in the preprocessing step, we adjust
the edge weights of G and add self-loops to the vertices
of G, such that both of G and H have the same degree se-
quence. Then, we show that a desired cut can be found by a
sweep-set algorithm when the eigenvector corresponding to
a generalised eigenvalue problem is given as input. Taking
the practical implementation into account, we introduce a
negative self-loop inH for efficient computation, and justify
its performance both in theory and in practice. Due to page
limitations, proofs omitted from this section can be found
in the appendix.

3.1. Preprocessing G and H

In the preprocessing step, our algorithm first scales the
weights of all the edges in G by the same factor, and adds
self-loops to the resulting graph G. These two operations
ensure that the constructed graph G̃ and H have the same
degree sequence, while maintaining the optimal cut of the
input instance.

Scaling the graph G. For any c ∈ R+, we scale the edge
weights ofG by a factor of c and defineG(c) = (V,E, c·w),
where (c · w)e = c · we for each edge e. By (1), we have
that

cutG(c)
H (S, V \ S) = wG(c)(S, V \ S)

wH(S, V \ S)
= c · w

G(S, V \ S)
wH(S, V \ S)

= c · cutGH(S, V \ S).

Thus, the minimum cut problem for the scaled graph can be
expressed as

Φ
G(c)
H = c · ΦG

H .

This equivalence indicates that choosing an appropriate scal-
ing factor c is crucial for balancing the edge weights be-
tween G and H . To ensure that the degrees of the vertices in
the scaled graph G(c0) do not exceed those in H , we define
the scaling factor c0 by

c0 = min
v∈V

{
degH(v)

degG(v)

}
. (4)

This choice of c0 guarantees that for the scaled graph
G(c0), the degree of each vertex v ∈ V satisfies that
degG(c0)(v) ≤ degH(v) for all v ∈ V . With this scaling
factor c0 established, we now proceed to study the properties
of the graphG = (V,E,w) and its corresponding minimum
cut value ΦG

H in comparison to H = (V,E′, w′), under the
assumption that degG(v) ≤ degH(v) for all v ∈ V .

Equalising the Degrees of G. To further refine this com-
parison, consider the subset of vertices

V0 =
{
v ∈ V | degG(v) < degH(v)

}
.

We now construct a new graph G̃ = (V, Ẽ, w̃), where Ẽ =
E ∪ {(v, v)}v∈V0

, and the weight function w̃ is defined by

w̃ |E= w and w̃vv =
degH(v)− degG(v)

2
∀v ∈ V0.

Observe that the construction ensures that degG̃(v) =
degH(v) for all v ∈ V . Indeed, we have that

degG̃(v) =
∑

u : u∼v

w̃uv =
∑

u : u∼v

wuv + 2
∑
(v,v)

w̃(v, v)

= degG(v) + (degH(v)− degG(v)) = degH(v).

This modification of G demonstrates that, despite the ad-
ditional restriction imposed by c0, the problems remain
equivalent. Specifically, we observe that

ΦG
H = min

S⊆V

wG(S, V \ S)
wH(S, V \ S)

= min
S⊆V

w̃(S, V \ S)
w̃H(S, V \ S)

= ΦG̃
H .

Therefore, the generalized cut problem forG andH remains
equivalent to that of G̃ and H , despite the degree adjust-
ments made in G̃. The following remark will be used in our
analysis.
Remark 3.1. For the weighted graphG = (V,E,w), the pre-
vious G̃ = (V, Ẽ, w̃) where Ẽ includes additional self-loops
at some vertices, and any function φ : V (G) = V (G̃) → R,
the following holds: adding self-loops does not affect the
quadratic form associated with the graph Laplacian, i.e.,
⟨φ,∆Gφ⟩ = ⟨φ,∆G̃φ⟩. Specifically,

⟨φ,∆Gφ⟩ =
∑
u∼Gv

|φ(u)− φ(v)|2wuv

=
∑
u∼G̃v

|φ(u)− φ(v)|2w̃uv = ⟨φ,∆G̃φ⟩.

However, the addition of self-loops does affect the norm in
the space of vertices:

⟨φ,φ⟩ℓ2(V,w) =
∑
v∈V

φ(v)2 degG(v)

≤
∑
v∈V

φ(v)2 degG̃(v) = ⟨φ,φ⟩ℓ2(V,w̃).
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Therefore, while the first quadratic form remains unchanged,
the vertex norm in the extended space is generally increased
due to the additional self-loops.

3.2. A Cheeger-type Inequality for Constrained
Clustering

Next we relate the constrained clustering problem to the
generalised eigenvalue problem. Our key result is a Cheeger-
type inequality proving that the value of ΦG

H can be upper
bounded with respect to λ2(∆G

H) and λ2(∆H), and the cut
with the proven approximation guarantee can be found by a
sweep-set algorithm. Our result is as follows:

Theorem 3.2. Let G = (V,E,w) and H = (V,E′, w′) be
graphs such that degG(v) = degH(v) for all v ∈ V . Then,
it holds that

ΦG
H ≤ 4

√
λ2(∆G

H)

λ2(∆H)
, (5)

where ∆H denotes the normalised Laplacian of the graph
H , ∆G

H is the operator given by

∆G
H(x) =

⟨x,∆Gx⟩
⟨x,∆Hx⟩

,

and λ2 is the smallest non-trivial eigenvalue of the corre-
sponding operator defined in (2). Moreover, the cut achiev-
ing this approximation guarantee can be found with a sweep-
set algorithm.

Notice that we can assume that G is a connected graph.
If H has m connected components, we will work with
λm−1(∆

H), i.e. x ⊥ 1C for each connected component,
ensuring x ⊥ ker(∆H). Before presenting the proof, no-
tice that we can assume without loss of generality that the
graphs G and H have the same degree sequence due to the
preprocessing step.

Proof Sketch of Theorem 3.2. At a high level, our proof is
similar with the one of the Cheeger inequality for graphs.
We present the proof sketch here, and the full proof can be
found in Appendix A.

Step 1. Let x1 ≤ x2 ≤ . . . ≤ xn be the eigenvector
associated with λ2(∆G

H). It suffices to prove the existence
of a non-empty, proper subset ∅ ⊂ S ⊂ V such that

wG(S, V \ S)
wH(S, V \ S)

= 4

√
⟨x,∆Gx⟩ · ⟨x, x⟩

⟨x,∆Hx⟩2
. (6)

This suffices because the above inequality implies

ΦG
H ≤ 4

√
λ2(∆G

H)

√
⟨x, x⟩√

⟨x,∆Hx⟩
≤ 4

√
λ2(∆G

H)

√
1

λ2(∆H)
.

Step 2. We reduce the problem to proving (6) for a scaled
version of x, defined as z = cx, where z2n + z21 = 1. The
scaling ensures the invariance of the expression:√

⟨z,∆Gz⟩
⟨z,∆Hz⟩

⟨z, z⟩
⟨z,∆Hz⟩

=

√
c2⟨x,∆Gx⟩
c2⟨x,∆Hx⟩

√
c2⟨x, x⟩

c2⟨x,∆Hx⟩

=

√
⟨x,∆Gx⟩
⟨x,∆Hx⟩

√
⟨x, x⟩

⟨x,∆Hx⟩
.

Thus, the next equation is sufficient to establish (6):

wG(S, V \ S)
wH(S, V \ S)

= 4

√
⟨z,∆Gz⟩ · ⟨z, z⟩

⟨z,∆Hz⟩2
. (7)

Step 3. We now consider sweep sets St, defined as St =
{v ∈ V | zv ≤ t}. To establish (7), it suffices to prove that
there exists a threshold t0 ∈ [z1, zn] and defining S = St0 :

wG(St0 , V \ St0)

wH(St0 , V \ St0)
≤ 4

√
⟨z,∆Gz⟩
⟨z,∆Hz⟩

·

√
⟨z, z⟩

⟨z,∆Hz⟩
. (8)

Step 4. To establish (8), we will find a probability density
function over [z1, zn], and prove

E (wG(St, V \ St))

E (wH(St, V \ St))
≤ 4

√
⟨z,∆Gz⟩⟨z, z⟩
⟨z,∆Hz⟩2

. (9)

Thus, (8) holds because the existence of a threshold t0 is
guaranteed by the next equation:

wG(St0 , V \ St0)

wH(St0 , V \ St0)
≤ E (wG(St, V \ St))

E (wH(St, V \ St))
,

and this implies

P

{
wG(St0 , V \ St0)

wH(St0 , V \ St0)
≤ 4

√
⟨z,∆Gz⟩⟨z, z⟩
⟨z,∆Hz⟩2

}
> 0.

Step 5. To establish (9), it suffices to find a probability
distribution over [z1, zn] such that

E (wG(St, V \ St))

E (wH(St, V \ St))

≤
∑

u∼Gv |zu − zv|(|zu|+ |zv|)wuv∑
u∼Hv

|zu−zv|2
2 wuv

. (10)

Using the Cauchy-Schwarz inequality, the definition of ∆,
and the property degG(v) = degH(v), we can derive (9)
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from (10) as follows:∑
u∼Gv

|zu − zv| (|zu|+ |zv|)wuv

∑
u∼Hv

|zu − zv|2

2
wuv

≤

√( ∑
u∼Gv

|zu − zv|2 wuv

)( ∑
u∼Gv

(|zu|+ |zv|)2 wuv

)
1
2 ⟨z,∆Hz⟩

≤ 4

√
⟨z,∆Gz⟩ ⟨z, z⟩
⟨z,∆Hz⟩2

.

Thus, finding a distribution that satisfies (10) is sufficient to
complete the proof.

Step 6. We define a distribution, and choose t according
to the probability density function 2|t|. Specifically, the
probability that a value between [a, b] is chosen is

P[t ∈ [zv, zu]] =

∫ zu

zv

2|t|dt = sgn(zu) ·z2u− sgn(zv) ·z2v .

Since z21 + z2n = 1, we have that P[t ∈ [z1, zn]] = 1.

Step 7. For this distribution, and regardless of the sign of
zu and zv , we have

E [wG(St, V \ St)] =
∑
u∼Gv

P [zu ≤ t and t < zv]wuv

≤
∑
u∼Gv

|zu − zv|(|zu|+ |zv|)wuv,

and

E [wH(St, V \ St)] =
∑

u∼Hv

P [zu ≤ t and t < zv]wuv

≥
∑

u∼Hv

|zu − zv|2

2
wuv.

This establishes (10) and concludes the proof. The complete
details are in the appendix.

Based on the proof of Theorem 3.2, to find the cut with
the guaranteed approximation, we only need to order the
vertices based on the entries of the eigenvector for the gener-
alised eigenvalue problem, and construct n sweep sets. See
Algorithm 1 for the formal description of our algorithm.
Remark 3.3. Theorem 3.2 can be viewed as a generalisation
of the classical Cheeger inequality for graphs (Chung, 1997).
Specifically, if we consider the graph H as the complete

Algorithm 1 The Constrained Clustering Algorithm

Input: Graph G and graph H
Output: A bi-partition of the vertex sets
Compute the scaling factor c0 defined in (4).
Scale all edge weights in G by multiplying them with c0.

for each vertex v ∈ V do
if degH(v) > degG(v) then

Add a loop with weight 1
2 (degH(v)− degG(v)).

end if
end for
Compute the Laplacians ∆G and ∆H for the graphs G
and H .
Solve the generalised eigenvalue problem

⟨f,∆Gf⟩
⟨f,∆Hf⟩

subject to f ⊥ 1, (11)

where f is the eigenvector that minimises the ratio.
Apply a sweep-set algorithm on the eigenvector f to
partition the vertices of G into two clusters.
Return: a bi-partition of the vertex set

graph with wuv = 1 for all edges, then it is straightforward
to show that

min
∅⊂S⊂V

wG(S, V \ S)
|S| · |V \ S|

≤ 4
√
λ2(∆G),

where λ2(∆G) is the second smallest eigenvalue of the
normalised graph Laplacian of G. Similarly, if we consider
the graph H = (V,E′, wH) as the complete graph with
self-loops where wH

uv = degG(u) degG(v)
vol(G) , then

min
∅⊆S⊆V

wG(S, V \ S)
min(vol(S), vol(V \ S))

≤ min
∅⊆S⊆V

vol(G)wG(S, V \ S)
vol(S) vol(V \ S)

≤ 4
√
λ2(∆G).

3.3. Practical Considerations

The proof of Theorem 3.2 not only establishes the general
cut bound but also provides a constructive method to find
a subset S ⊆ V that is close to minimising the generalised
cut problem. However, this approach can be computation-
ally expensive, particularly because the Laplacian H is not
invertible. To address this issue, we modify the graph H
by adding a “negative” self-loop at any vertex, effectively
making the Laplacian invertible. This modification lever-
ages the signed Laplacian, which adjusts the operator to
ensure invertibility, and the introduction of a negative self-
loop has little impact on the overall results, which will be
demonstrated in Section 4 through experiments.
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Formally, we prove that adding a negative self-loop to
H makes the signed Laplacian ∆H′

α invertible, ensuring
λ1(∆

H′

α ) > 0. Since λ1(∆H′

α ) ≤ λ2(∆
H), we can replace

λ2(∆
H) with λ1(∆H′

α ) in Theorem 3.2, maintaining the
theorem’s validity.

Lemma 3.4. Let H = (V,E,w) be a weighted graph, and
let H ′ = (V,E′, w′) be another weighted graph such that
E′ = E ∪ {(v0, v0)}, where v0 is a vertex with a self-loop.
Assume that w′|E = w and consider the signature s = 1
for all E and s(v0,v0) = −1. Then,

0 < λ1(∆
H′

α ) ≤ λ2(∆
H),

where ∆H is the Laplacian of graph H .

The proof of Lemma 3.4 shows that ⟨g,∆H′

α g⟩ ≈ ⟨g,∆Hg⟩
for a small weight in the self-loop, then we will solve (11)
for the self-loop, because

⟨f,∆Gf⟩
⟨f,∆H

α f⟩
≈ ⟨f,∆Gf⟩

⟨f,∆H′
α f⟩

.

The problem involves identifying the eigenfunction and
eigenvalue of a linear operator using a Lagrangian-based
framework. The Lagrangian L(φ, λ) is defined as

L(φ, λ) = ⟨∆Gφ,φ⟩ − λ(⟨∆H′

α φ,φ⟩ − 1),

where φ is the function to be optimised, and λ is the La-
grange multiplier. To find the minimiser φ, we set the
gradient of L with respect to φ to zero, i.e., ∇φL(φ, λ) = 0.
Expanding this condition yields that 2∆Gφ−2λ∆H′

α φ = 0,
which simplifies to ∆Gφ = λ∆H′

α φ. This formulation leads
to a generalised eigenvalue problem where φ is the eigen-
function, and λ is the eigenvalue. If ∆H′

α is invertible, the
equation can be reformulated as

(∆H′

α )−1∆Gφ = λφ,

illustrating the relationship between the linear operators
and providing a solution to the eigenvalue problem via the
Lagrange multiplier method. This eigenvalue equation is
crucial for extracting the optimal partitions of the graph
based on the constraints encoded within ∆H′

α . We prove
that solving the generalised eigenvalue problem for ∆G and
∆H′

α produces all feasible solutions, as all eigenvalues are
real and non-negative. This contrasts with the approach by
Wang et al. (2014).

Lemma 3.5. Let ∆H′

α be the signed Laplacian of the
weighted graph H ′, and ∆G the normalized Laplacian of
the weighted graph G. The operator (∆H′

α )−1∆G is a posi-
tive, self-adjoint operator, with all its eigenvalues being real
and non-negative.

We remark that solving (11) becomes significantly more
efficient for ∆H′

α because it is symmetric positive definite

and invertible. For dense matrices, this property allows
for the use of the Cholesky decomposition, reducing the
problem to a standard eigenvalue problem (Saad, 2011).
This is an improvement over the general case for the QZ
algorithm (the generalised Schur decomposition). Moreover,
the Cholesky decomposition enhances numerical stability,
leading to fewer round-off errors. For large, sparse graphs
and positive definite operators, iterative methods such as the
Lanczos algorithm could be used. The complexity of these
solvers is O(nkm), where k is the number of eigenvalues to
find and m related to the iterations required for convergence
and the condition number.

4. Experiments
We conducted experiments to compare the spectral cluster-
ing method with the constrained clustering approach, using
both synthetic and real-world datasets. The clustering accu-
racy was evaluated using the Adjusted Rand Index (ARI).
All simulations were run on a PC equipped with an Intel®
Core™ i7-10610U CPU running at 1.80 GHz and 32 GB of
RAM, using MATLAB R2024a for computation. The three
clustering algorithms compared in our experiments are as
follows:

• SPECTRAL CLUSTERING (SC): We computed the nor-
malized Laplacian ∆G and used its second smallest eigen-
vector (Fiedler vector) for clustering the vertices.

• CONSTRAINED CLUSTERING (CC): We solved (11) and
used the eigenvector corresponding to the smallest posi-
tive eigenvalue (excluding the trivial zero eigenvalue) for
clustering.

• CONSTRAINED CLUSTERING WITH NEGATIVE SELF-
LOOPS (CC++): Our algorithm consisted in adding a
negative self-loop and solved (11) for the signed Lapla-
cian.

4.1. Stochastic Block Model

We considered a binary Stochastic Block Model (SBM) with
n = 1, 000 vertices divided into two equal-sized commu-
nities. Edges between vertices were generated based on
intra-cluster probability p and inter-cluster probability q.
Specifically, we fixed p = 0.2 and varied q from 0.12 to 0.2
in 30 equidistant steps. For each value of q, we generated
two graphs generated from the SBM:

• G: a graph with intra-cluster edge probability p and inter-
cluster edge probability q.

• H: a graph generated with intra-cluster edge probabil-
ity q and inter-cluster edge probability p, effectively the
complement of G in terms of edge probabilities.

The vertex labels were kept consistent between G and H .
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This variation allows us to observe how the clustering per-
formance changes as the distinction between communities
becomes less pronounced (since higher q implies more inter-
cluster edges). The experimental results, visualised in Fig-
ure 1, illustrate the superior performance of CC++ com-
pared to traditional SC, particularly as the inter-cluster edge
probability q increases.

At low values of q both methods perform well, achieving
near-perfect ARI values. As seen in Figure 1, both methods
maintain the ARI values close to 1.0 when q ≤ 0.14. This
is expected, as the strong intra-cluster edge probability p =
0.2 dominates the inter-cluster connections, making the
community structure relatively easy to detect.

However, as q increases, the performance of SC deteriorates
rapidly. For instance, between q = 0.16 and q = 0.18, the
ARI for SC drops sharply from approximately 0.7 to near
0.1. This decline occurs because higher values of q increase
the number of inter-cluster edges, blurring the distinction
between communities. SC relies solely on the structure of
G, and struggles to correctly partition the vertices under
these conditions.

In contrast, both of CC and CC++ are significantly more
robust to increasing q. Even as q approaches 0.17, the
ARI remains above 0.5, significantly outperforming SC in
this regime. This robustness stems from the ability of the
generalised eigenvalue method to leverage the structural
information of both G and H , the method mitigates the
negative impact of increased inter-cluster edges, thus main-
taining better clustering accuracy even when the community
structure is less pronounced.

This set of experimental results clearly demonstrates that
the CC++ algorithm outperforms the traditional SC, partic-
ularly in challenging scenarios where the inter-cluster edge
probability q is high.

Figure 2 compares the mean execution time of SC, CC,
and CC++ as the number of vertices increases. For smaller
graphs, CC++ has nearly the same runtime as standard
spectral clustering (SC), indicating minimal overhead from
incorporating the second graph’s constraints. As the graph
size grows, however, CC++ clearly scales more efficiently
than the original CC: the runtime of CC++ increases only
modestly with n, remaining close to SC’s runtime, whereas
CC’s runtime rises sharply. This demonstrates that CC++
retains the computational efficiency of SC while handling
larger graphs far more effectively than CC, underscoring its
superior scalability.

4.2. Varying Cluster Distance

Based on the Geometric Random Graphs
(RGG) (Avrachenkov et al., 2021; Dall & Chris-
tensen, 2002), we generated two clusters of vertices,
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Figure 1. Mean ARI versus inter-cluster edge probability q with
error bars. CC (red) and CC++ (blue) consistently outperform SC
(yellow), especially as q increases.

each containing 500 points, randomly distributed within
two-dimensional circular regions (disks) of radius 0.2. The
separation between the clusters’ centroids varied between
-0.35 and 0.35, in 25 equidistant steps. This range allows us
to simulate different levels of overlap between the clusters.
Each configuration of cluster separation was repeated
10 times, and we generated G and H on the same set of
vertices but with different connectivity structures:

• G: vertices within the same cluster were connected with
a large radius rintra = 0.1, and vertices between clusters
were connected with a smaller radius rinter = 0.05.

• H: the intra-cluster connection radius is reduced to
rintra = 0.05, while the inter-cluster radius is increased to
rinter = 0.1. Edges more likely connect vertices across
the two clusters

Figure 3 shows the RGG used in the experiments. The clus-
ter distance is varied to simulate different levels of overlap
between clusters. Figure 4 shows the ARI scores for both
methods across different cluster distances. Each point repre-
sents the mean ARI, with error bars indicating the standard
error across 10 repetitions.

When the cluster distance is large (above 0.3), both methods
achieve near-perfect ARI values. The separation between
the clusters is clear, and both algorithms can detect the un-
derlying structure accurately. As the clusters get closer,
SC shows a significant drop in performance. For distances
near zero, where clusters overlap, the ARI scores for SC
drop to nearly zero, indicating its struggle to differentiate
overlapping clusters. In contrast, the generalised eigenvalue
method is more resilient to cluster overlap, maintaining sig-
nificantly higher ARI values even when the clusters become
indistinguishable by conventional means. This robustness
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Figure 2. Mean execution time versus the number of vertices. The
plot shows that CC++ (blue) performs similarly to SC (yellow)
for smaller graphs but scales more efficiently than CC (red) as the
number of vertices increases.

Figure 3. Clusters generated by a RGG with varying separation.

is due to the method’s ability to leverage information from
both graphs G and H , capturing both intra- and inter-cluster
relationships.

4.3. Experiments with Temperature Data

We evaluated SC and CC++ on real-world temperature data
from ground stations in Brittany, January 2014 (Girault,
2015). The experiments considered three data types: tem-
perature, maximal temperature, and minimal temperature.
Temperature values can be seen as graph signals (Ortega
et al., 2018), with vertices representing readings. The objec-
tive is to cluster stations by proximity and similar tempera-
ture patterns, combining spatial and temperature data. This
approach can be applied to identify micro climates (Cao
et al., 2021) and segment regions for agricultural (Yao et al.,
2022), where both location and temperature are important
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Figure 4. Comparison of ARI vs Cluster Distance for SC, CC, and
CC++.

factors.

We construct a graph from the input data as follows: every
station is represented as a vertex, and the edge weight is
defined by spatial similarity via a Gaussian kernel: Wij =

exp
(
−d(i,j)2

2σ2
1

)
if d(i, j) ≤ σ2, and 0 otherwise, where

d(i, j) is the Euclidean distance. Parameters were set to
σ2
1 = 5× 108 and σ2 = 105 (Girault, 2015). SC primarily

grouped stations by proximity (Figure 5a).

To construct the constraint graph H , we use the tempera-
ture values and an inverse Gaussian kernel, assigning edge
weights close to 1 for large temperature differences and 0
for similar temperatures, analogous to how G is built using
spatial proximity. This allows the clustering algorithm to in-
corporate both geographical and temperature constraints for
a more nuanced partition. The output of CC++ is shown in
Figure 5b, where only two cities differ from the clustering
based on spatial proximity alone (SC). Finally, we com-
pute the mean and standard error (SE) for every clustering
method. For this specific hour, SC shows overlap between
clusters’ temperature values, whereas CC++ achieves no
overlap, indicating better clustering of stations with similar
temperatures (Figure 5c).

Figure 5. (a) Clustering based on SC, grouping stations by geo-
graphical proximity. (b) Clustering using CC++, which considers
both location and temperature similarity. (c) Mean and SE of tem-
perature, illustrating no overlap for CC++ compared to SC.
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We repeated this process for all available measurements,
one per hour, across 24 hours over 31 days, totaling 744
observations. To evaluate clustering accuracy, we calculated
the mean and SE for clustering using both methods. A
separation was considered correct if the clusters’ values did
not overlap, as determined by their SE. Table 1 summarises
the results, showing the percentage of correct separations for
each temperature data type when comparing SC and CC++,
and demonstrates that CC++ consistently outperformed CC
across all temperature data types. This can be attributed to
the method’s ability to leverage both the spatial structure
of the stations and the actual temperature data. In contrast,
SC, which relies solely on the graph structure, struggled to
accurately separate stations into distinct clusters when the
temperature differences were subtle.

Table 1. Percentage of successful separation of regions using tem-
perature and location data.

Data Type SC CC CC++
Temperature 63.30% 79.16% 79.16%
Maximal Temperature 62.90% 80.91% 81.04%
Minimal Temperature 62.63% 79.16% 77.95%

5. Conclusion
In this paper, we introduced a novel spectral method for
the constrained clustering problem that incorporates MUST-
LINK and CANNOT-LINK constraints on the same vertex
set. We established a Cheeger-type inequality that provides
a theoretical approximation guarantee, relating the optimal
constrained cut value to the spectral properties of the graphs.
Building on this insight, we proposed an efficient algorithm
(CC++) that solves a generalised eigenvalue problem in-
volving the signed Laplacian of the constraint graph, which
significantly reduces computational complexity while main-
taining accuracy.

Empirically, CC++ demonstrated superior clustering per-
formance on both synthetic and real-world datasets, partic-
ularly in challenging scenarios with weak or noisy cluster
structure. It also achieved runtime comparable to standard
spectral clustering (SC) and scaled much better than the
original constrained clustering method (CC). These results
highlight the significance of our proposed CC++ method
as a principled and practical solution for constrained graph
clustering, bridging the gap between theoretical guarantees
and scalable real-world performance.
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A. Omitted Details from Section 3
This section presents the details omitted from Section 3.

Proof of Theorem 3.2. Our objective is to prove that

ΦG
H ≤ 4

√
λ2(∆G

H)

λ2(∆H)
. (12)

Step 1. Let x : V → R be the eigenfunction associated with λ2(∆G
H). Without loss of generality, we renumber the vertices

such that the coordinates of x satisfy x1 ≤ x2 ≤ . . . ≤ xn. It suffices to prove the existence of a non-empty, proper subset
∅ ⊂ S ⊂ V such that

wG(S, V \ S)
wH(S, V \ S)

= 4

√
⟨x,∆Gx⟩ · ⟨x, x⟩

⟨x,∆Hx⟩2
. (13)

This is sufficient because

ΦG
H ≤ wG(S, V \ S)

wH(S, V \ S)
(Definition of ΦG

H as the minimum ratio cut)

= 4

√
⟨x,∆Gx⟩
⟨x,∆Hx⟩

·

√
⟨x, x⟩

⟨x,∆Hx⟩
(By (13))

= 4
√
λ2(∆G

H) ·
√
⟨x, x⟩√

⟨x,∆Hx⟩
(Using x is the eigenvector of λ2(∆

G
H))

≤ 4
√
λ2(∆G

H) ·

√
1

λ2(∆H)
(Since

⟨x,∆Hx⟩
⟨x, x⟩ ≥ λ2(∆

H)).

This inequality proves that establishing (13) suffices to derive (12).

Step 2. We now show that proving (13) for x is equivalent to proving the existence of S such that

wG(S, V \ S)
wH(S, V \ S)

= 4

√
⟨z,∆Gz⟩⟨z, z⟩
⟨z,∆Hz⟩2

, (14)

where z = cx is a scaled version of x, defined such that z2n + z21 = 1.

Because x ⊥ 1, we have x1 < 0 < xn, and thus scaling x does not affect the ratio. Specifically,√
⟨z,∆Gz⟩
⟨z,∆Hz⟩

· ⟨z, z⟩
⟨z,∆Hz⟩

=

√
c2⟨x,∆Gx⟩
c2⟨x,∆Hx⟩

· c2⟨x, x⟩
c2⟨x,∆Hx⟩

=

√
⟨x,∆Gx⟩
⟨x,∆Hx⟩

· ⟨x, x⟩
⟨x,∆Hx⟩

.

Thus, proving (14) suffices to establish (13).

Step 3. Let t ∈ R, and define the set
St = {v ∈ V | zv ≤ t},

commonly referred to as a sweep set. To establish (14), it suffices to prove that there exists a threshold to such that

wG(Sto , V \ Sto)

wH(Sto , V \ Sto)
≤ 4

√
⟨z,∆Gz⟩
⟨z,∆Hz⟩

·

√
⟨z, z⟩

⟨z,∆Hz⟩
. (15)

Establishing S = St0 , (15) directly implies (14).
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Step 4. To establish (15), it suffices to show that there exists a distribution f(t) over [z1, zn] such that the expectation
satisfies

E (wG(St, V \ St))

E (wH(St, V \ St))
≤ 4

√
⟨z,∆Gz⟩⟨z, z⟩
⟨z,∆Hz⟩2

. (16)

Here, St is treated as a random variable parameterized by t ∈ [z1, zn], where t is drawn from a probability density function
f(t). St depends on the distribution of t, which influences the likelihood of including a vertex v in St based on its value zv .

This suffices because, if we define

φ =
E (wG(St, V \ St))

E (wH(St, V \ St))
∈ R,

then, by linearity of expectation it holds that

E [wG(St, V \ St)− φwH(St, V \ St)] = E [wG(St, V \ St)]− φE [wH(St, V \ St)] = 0.

This implies that for some t0:

P [wG(Sto , V \ Sto)− φwH(Sto , V \ Sto) ≤ 0] > 0, (17)

because if for all t we have

P [wG(St, V \ St)− φwH(St, V \ St) ≤ 0] = 0,

it would follow that wG(St, V \ St)− φwH(St, V \ St) > 0 for all t, contradicting the fact that

E [wG(St, V \ St)− φwH(St, V \ St)] = 0.

Thus, (17) holds, which implies that for some t0 we have

wG(St0 , V \ St0)− φwH(St0 , V \ St0) ≤ 0,

and equivalently
wG(St0 , V \ St0)

wH(St0 , V \ St0)
≤ E (wG(St, V \ St))

E (wH(St, V \ St))
.

Combining this with (17), we obtain that

P
{
wG(St0 , V \ St0)

wH(St0 , V \ St0)
≤ E (wG(St, V \ St))

E (wH(St, V \ St))

}
> 0.

From Eq. (16), it follows that

P

{
wG(St0 , V \ St0)

wH(St0 , V \ St0)
≤ 4

√
⟨z,∆Gz⟩⟨z, z⟩
⟨z,∆Hz⟩2

}
> 0.

Establishing (16) thus guarantees the existence of t satisfying (15).

Step 5. To establish (16), it suffices to find a probability distribution over [z1, zn] such that the following inequality holds:

E (wG(St, V \ St))

E (wH(St, V \ St))
≤

∑
u∼Gv |zu − zv|(|zu|+ |zv|)wuv∑

u∼Hv
|zu−zv|2

2 wuv

. (18)
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We now show that (18) implies (16) as follows:

E (wG(St, V \ St))

E (wH(St, V \ St))
≤

∑
u∼Gv |zu − zv|(|zu|+ |zv|)wuv∑

u∼Hv
|zu−zv|2

2 wuv

(By (18))

≤

√∑
u∼Gv |zu − zv|2wuv ·

√∑
u∼Gv(|zu|+ |zv|)2wuv∑

u∼Hv
|zu−zv|2

2 wuv

(Cauchy-Schwarz inequality)

=

√
⟨z,∆Gz⟩ ·

√∑
u∼Gv(|zu|+ |zv|)2wuv∑

u∼Hv
|zu−zv|2

2 wuv

(Definition of ∆G)

≤

√
⟨z,∆Gz⟩ ·

√
2
∑

u∼Gv(z
2
u + z2v)wuv∑

u∼Hv
|zu−zv|2

2 wuv

(Since (a+ b)2 ≤ 2(a2 + b2))

=

√
⟨z,∆Gz⟩ ·

√
4⟨z, z⟩ℓ2(G)∑

u∼Hv
|zu−zv|2

2 wuv

(Definition of the inner product in G)

=

√
⟨z,∆Gz⟩ · 2

√
⟨z, z⟩ℓ2(G)

1
2 ⟨z,∆Hz⟩

(Definition of ∆H )

≤ 4

√
⟨z,∆Gz⟩⟨z, z⟩ℓ2(H)

⟨z,∆Hz⟩2
(Since degG(v) = degH(v)).

Thus, (18) implies (16).

Step 6. Consider the non-negative function 2|t| defined on the interval [z1, zn]. This function serves as a probability density
function (PDF) over [z1, zn] because z21 + z2n = 1, z1 is negative, and zn is positive. Specifically,∫ zn

z1

2|t| dt = sgn(zn) · z2n − sgn(z1) · z21 = 1.

The normalization in step 2 ensures that the integral of 2|t| over [z1, zn] equals 1, validating it as a PDF. Hence, the
probability that a value between [zu, zv] is given by

P[t ∈ [zv, zu]] =

∫ zu

zv

2|t|dt = sgn(zu) · z2u − sgn(zv) · z2v .

The expectation E [wG(St, V \ St)] represents the expected weight of the cut wG(St, V \St), which depends on the random
threshold t sampled from the previously defined probability density function. By the linearity of expectation it holds that

E [wG(St, V \ St)] =
∑
u∼Gv

E [1u∈St and v/∈St
]wuv,

where 1u∈St and v/∈St
is the indicator function that equals 1 when u ∈ St and v /∈ St, and 0 otherwise.

Using the definition of probability, the expectation simplifies to

E [wG(St, V \ St)] =
∑
u∼Gv

P [zu ≤ t and t < zv]wuv.

If we can establish
|zu − zv|2

2
≤ P [zu ≤ t and t < zv] ≤ (|zu|+ |zv|)|zu − zv|, (19)
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then we can bound the expectation of the weight of the cut as follows:

E [wG(St, V \ St)] ≤
∑
u∼Gv

(|zu|+ |zv|)|zu − zv|wuv.

Similarly, for H , we have

E [wH(St, V \ St)] =
∑

u∼Hv

P [zu ≤ t and t < zv]wuv ≥ 1

2

∑
u∼Hv

|zu − zv|2wuv.

These last two inequalities establish (18). Therefore, to conclude the proof, it remains to prove (19).

Step 7. To prove (19), recall that

P [zu ≤ t and t < zv] =

∫ zu

zv

2|t| dt =

{
|z2u − z2v | if sgn(zu) = sgn(zv),
z2u + z2v if sgn(zu) ̸= sgn(zv).

We first establish the upper bound in (19):

P [zu ≤ t and t < zv] ≤ (|zu|+ |zv|)|zu − zv|. (20)

Case 1: sgn(zu) = sgn(zv). In this case, we have

|z2u − z2v | = |(zu + zv)(zu − zv)| = |zu + zv||zu − zv|.

Since |zu + zv| ≤ |zu|+ |zv|, we have

|z2u − z2v | ≤ (|zu|+ |zv|)|zu − zv|.

Case 2: sgn(zu) ̸= sgn(zv). In this case, we have

z2u + z2v ≤ (zu − zv)
2 = |zu − zv|2,

and thus
z2u + z2v ≤ (|zu|+ |zv|)|zu − zv|.

Combining both cases establishes the upper bound in (20).

Now, we establish the lower bound in (19):

|zu − zv|2

2
≤ P [zu ≤ t and t < zv] . (21)

Case 1: sgn(zu) = sgn(zv). In this case we have∣∣z2u − z2v
∣∣ = |zu − zv| |zu + zv| .

Since |zu + zv| ≥ |zu − zv|, we have ∣∣z2u − z2v
∣∣ ≥ |zu − zv|2 ≥ (zu − zv)

2

2
.

Case 2: sgn(zu) ̸= sgn(zv). Using

0 ≤ (zu + zv)
2 = 2(z2u + z2v)− (zu − zv)

2,

it follows that
(zu − zv)

2

2
≤ z2u + z2v .

Combining both cases establishes the lower bound in (21).

Finally, combining (20) and (21) proves (19), completing the proof.
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Proof of Lemma 3.4. Let f be the eigenfunction corresponding to λ2(∆H). Consider the function g : V → R, defined as:
gv = fv − fv0 , for all v ∈ V , hence gv0 = 0. By computing the Rayleigh quotient for g with respect to the Laplacian of
H:

⟨g,∆Hg⟩H =
∑

u∼Hv

|gu − gv|2wuv =
∑

u∼Hv

|fu − fv|2wuv = λ2(∆
H)⟨f, f⟩H .

The Rayleigh quotient for g with respect to ∆H′
is given by

⟨g,∆H′
g⟩H′ =

∑
u∼H′v

|gu − gv|2w′
uv + 2|gv0 |2w′

v0v0 =
∑

u∼Hv

|fu − fv|2wuv = ⟨g,∆Hg⟩H .

The norm of g with respect to H ′ satisfies that

⟨g, g⟩H′ =
∑
v∈V

|gv|2 degH
′
(v) =

∑
v∈V

|gv|2 degH(v) + g2(v0)(degH(v0) + 2) = ⟨g, g⟩H .

Thus, we have, since f is an eigenfunction f ⊥ 1, hence 0 = ⟨f,1⟩H :

⟨g, g⟩H =
∑
v∈V

|fv − fv0 |2 deg
H(v) = ⟨f, f⟩H − 2fv0⟨f,1⟩H + f2v0⟨1,1⟩H ≥ ⟨f, f⟩H .

Using this, we apply the Rayleigh quotient to bound λ1(∆H′

α ) as

λ1(∆
H′

α ) ≤ ⟨g,∆H′
g⟩H′

⟨g, g⟩H′
≤ ⟨g,∆Hg⟩H

⟨g, g⟩H
≤ λ2(∆

H)⟨f, f⟩H
⟨f, f⟩H

= λ2(∆
H).

Finally, let f be a non-zero function. Consider the following expression:

⟨f,∆H′

α f⟩ =
∑
u∼v

|fu − fv|2wuv + 2f2v0wv0v0 .

We have 0 ≤ ⟨f,∆H′

α f⟩, and equality holds if and only if: ⟨f,∆H′

α f⟩ = 0 ⇐⇒ fu − fv = 0 ∀u, v and fv0 = 0.
This implies that f = 0 for all v ∈ V , which contradicts the assumption that f is a non-zero function. Therefore,
λ1(∆

H′

α ) > 0.

Proof of Lemma 3.5. Since ∆H′

α is positive-definite and self-adjoint, its inverse (∆H′

α )−1 and its square root (∆H′

α )1/2 exist
and are self-adjoint operators. Define the operator C as

C = (∆H′

α )−1/2∆G(∆H′

α )−1/2.

Self-adjointness of C: The adjoint of C is

C∗ =
(
(∆H′

α )−1/2∆G(∆H′

α )−1/2
)∗

= (∆H′

α )−1/2(∆G)∗(∆H′

α )−1/2

= (∆H′

α )−1/2∆G(∆H′

α )−1/2 = C,

since ∆H′

α and ∆G are self-adjoint operators.

Positive Semi-definiteness of C: For any function φ ∈ ℓ2(V,w), consider

⟨Cφ,φ⟩ =
〈
(∆H′

α )−1/2∆G(∆H′

α )−1/2φ,φ
〉
.

Let ψ = (∆H′

α )−1/2φ. Then, ⟨Cφ,φ⟩ =
〈
∆Gψ,ψ

〉
. Since ∆G is positive semi-definite, we have ⟨∆Gψ,ψ⟩ ≥ 0.

Therefore, ⟨Cφ,φ⟩ ≥ 0, which means C is positive semi-definite.
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Because C is self-adjoint and positive semi-definite, it is diagonalizable with real, non-negative eigenvalues. Thus, there
exists an orthogonal matrix W and a diagonal matrix Λ with non-negative entries such that

C =WΛW ∗.

We can express (∆H′

α )−1∆G as

(∆H′

α )−1∆G = (∆H′

α )−1/2
(
(∆H′

α )−1/2∆G(∆H′

α )−1/2
)
(∆H′

α )1/2

= (∆H′

α )−1/2C(∆H′

α )1/2 = (∆H′

α )−1/2WΛW⊤(∆H′

α )1/2.

Let V = (∆H′

α )−1/2W . Then,
(∆H′

α )−1∆G = V ΛV ∗.

Since V is invertible (as the product of invertible matrices), (∆H′

α )−1∆G is diagonalizable with real, non-negative eigenval-
ues. This completes the proof.

B. Additional Experiments from Section 4
In this section, we present additional experiments to evaluate the performance of our algorithm. To provide comprehensive
analysis, we include comparisons with the following method

• FLEXIBLE CONSTRAINED SPECTRAL CLUSTERING (FC): This method is presented in Wang & Davidson (2010).

As in Subsection 4.1, we evaluate the performance of clustering methods using synthetic graphs generated by the stochastic
block model (SBM). We analyse the algorithms for graphs of varying sizes, focusing particularly on smaller graphs, where
subtle variations are more prominent. For larger graphs, the performance trends tend to stabilize and exhibit fewer differences.
In these experiments, graphs were generated with the number of nodes n varying across four sizes: n = 250, 500, 750, 1000.

The results are summarised in Figure 6, which illustrates the performance of the four clustering methods—Spectral Clustering
(SC), Constrained Clustering (CC), Constrained Clustering with Self-loops (CC++), and Flexible Clustering (FC)—for
varying inter-cluster edge probabilities q and different graph sizes.

Based on the results presented in Figure 6, we highlight the following key observations and advantages of our method
compared to the baseline approaches:

Improved Performance on Smaller Graphs: Our method demonstrates superior performance on smaller graphs (n =
250, 500) in terms of the mean Adjusted Rand Index (ARI), as shown in panels (a) and (b). As the graph size increases
(n = 750, 1000), the performance of our approach becomes comparable to that of the other methods, indicating that our
algorithm is robust across different graph sizes.

Parameter-Free Advantage: The Flexible Clustering (FC) method presented in Wang & Davidson (2010) requires the user to
define an additional parameter (β) that directly influences the solution of the generalized eigenvalue problem. This parameter
must be carefully chosen to ensure at least one feasible solution exists, as incorrect parameter selection can result in negative
eigenvalues and infeasible outcomes. In contrast, our method avoids this issue entirely. As shown in Lemma 3.5, the
introduction of self-loops ensures that the operator (∆H′

α )−1∆G is positive and self-adjoint, with all eigenvalues guaranteed
to be real and non-negative.

Cheeger-type inequality: Unlike the FC method, which does not provide a theoretical guarantee linking the eigenfunctions
used for clustering to the optimization objective, our approach establishes a Cheeger-type inequality.
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(a) n = 250
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Figure 6. Mean Adjusted Rand Index (ARI) as a function of inter-cluster edge probability q for four clustering methods. Each panel
represents a different graph size: (a) n = 250, (b) n = 500, (c) n = 750, and (d) n = 1000.
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