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Abstract

High Altitude Platform Station (HAPS) offers significant
flexibility for dynamic adaptability and efficient user cover-
age. However, achieving high levels of automation in HAPS
systems is fraught with challenges, particularly in compre-
hending complex environments and processing natural lan-
guage inputs essential for autonomous operations. Existing
methods, such as reinforcement learning, are task-specific
and lack the ability to integrate broader environmental in-
formation. To address these limitations, we propose an Au-
tonomous Coverage Multi-Agent (ACMA) framework, which
leverages Large Language Models (LLMs) to enhance cov-
erage through intelligent coordination of HAPS. By incor-
porating techniques like in-context learning, fine-tuning, and
tool-calling, our framework enables agents to understand
and respond to environmental cues and natural language in-
structions effectively. Simulation results demonstrate that the
ACMA system outperforms traditional methods in coordinat-
ing coverage, adeptly managing dynamic incidents and max-
imizing user coverage. Compared to traditional approaches,
ACMA exhibits higher intelligence and autonomy, paving the
way for more adaptable and efficient HAPS systems in real-
world scenarios.

Introduction

High Altitude Platform Station (HAPS) is strategically po-
sitioned within the Earth’s stratosphere, typically operating
at altitudes ranging from approximately 20 to 50 kilome-
ters. These advanced platforms fulfill a dual role: firstly,
they act as wireless communication nexuses, bridging con-
nectivity gaps between urban areas and remote regions; and
secondly, they function as data repositories, supplying es-
sential computational and storage capabilities for an inte-
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grated air-to-ground network (Kurt et al. 2021). Addition-
ally, HAPS is anticipated to be instrumental in the develop-
ment of smart city frameworks and the initiation of intel-
ligent community projects (Belmekki et al. 2024). The in-
herently dynamic characteristics of HAPS systems present
a myriad of challenges that are contingent upon the fluctu-
ations of environmental conditions. This complexity poses
difficulties in addressing these challenges with a one-size-
fits-all algorithm or model. Existing research primarily fo-
cuses on specific optimization objectives based on fixed-
format inputs, restricts the capacity to leverage diverse real-
world information, such as natural language descriptions of
future environmental states.

Fortunately, the advent of Large Language Models
(LLMs) presents a promising avenue to surmount these ob-
stacles. Particularly, the introduction of ChatGPT (Brown
et al. 2020) has marked a significant advancement, with
LLMs exhibiting exceptional proficiency in comprehending
and processing natural language, a capability largely due
to their underlying Transformer architecture (Vaswani et al.
2017). It is crucial to recognize that HAPS relies on airships
or aircraft as platforms, capable of accommodating a specific
payload, which in turn enables the onboarding of the com-
putational power required for the deployment of LLMs. De-
spite these advancements, current research predominantly
employs LLMs as collaborative assistants to tackle specific,
intricate, and laborious engineering challenges. However,
such an approach underestimates the potential of LLMs in
more sophisticated and dynamic environments. Instead of
treating LLMs as standalone tools, a promising direction lies
in integrating LLMs into pertinent inference systems. Such
integration positions LLMs as an intermediary bridge, fa-
cilitating effective communication between the system and
the environment. Adopting such an approach could unlock
the potential to develop a more intelligent and autonomous
network of agents, endowed with the capacity for adaptive
decision-making and the execution of tasks in a dynamic
context.

Inspired by the challenges outlined, our objective is to en-
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Figure 1: Example of the proposed ACMA framework within a multi-HAPS system.

hance the intelligence of autonomous agent services within
the HAPS system and to unleash the perception and com-
puting capabilities of LLMs for intelligent system applica-
tions. Thus, we propose the Autonomous Coverage Multi-
Agent (ACMA) framework, designed to address the multi-
HAPS coordinated communication area coverage challenge.
Specifically, the research focuses on optimizing the posi-
tions of HAPS airships to ensure efficient and adaptive cov-
erage of ground nodes. Given the highly dynamic nature of
user distributions and varying network demands, the pro-
posed framework is designed to enable HAPS airships to
dynamically adjust their locations in response to changes
in user density, mobility patterns, and special events. The
ultimate goal is to maximize user coverage while mini-
mizing redundancy and resource utilization, thereby ensur-
ing seamless connectivity in complex and evolving environ-
ments. The ACMA framework consists of multiple genera-
tive agents that leverage large foundation models, enabling
them to gather and analyze environmental data to make de-
cisions aimed at maximizing user coverage. By incorporat-
ing advanced techniques such as in-context learning, fine-
tuning, and tool-calling, we strive to enhance the efficacy of
LLMs in tackling specific downstream tasks. The simulation
results indicate that the ACMA framework excels in execut-
ing coverage maximization tasks. Furthermore, it is capable
of planning and decision-making based on natural language
descriptions of anticipated environments, akin to the capa-
bilities of autonomous agents. For instance, upon receiving
a natural language input such as “On March 3, 2025, at 6:00
AM, there will be a gathering at location [50, 500], ending
at 3:00 PM on the same day,” the system can autonomously
direct a specific HAPS to the designated location in advance
to provide coverage. Post-event, it seamlessly reverts to its
standard coverage maximization operations. This capability
signifies that when the system is equipped to receive and act

upon natural language directives from the network, it can de-
vise more intelligent strategies that align more closely with
real-world requirements. As shown in Figure 1, the proposed
system not only optimizes coverage but also adapts to dy-
namic events, showcasing its versatility and responsiveness
in intelligent system applications.

Related Work

Research on the Autonomy of HAPS

Several studies on HAPS autonomy have explored reinforce-
ment learning(RL) as a control strategy, focusing on its abil-
ity to optimize coverage by learning policies through in-
teraction with the environment (Anicho et al. 2019). How-
ever, RL often requires extensive training time and signifi-
cant computational resources, making it less practical for dy-
namic and real-time applications in HAPS systems. Swarm
intelligence(SI) has also been investigated as a method for
autonomous coordination in HAPS, leveraging decentral-
ized algorithms inspired by collective behaviors in nature
(Anicho et al. 2019). While effective in certain scenarios, SI
approaches may struggle with scalability and precision, par-
ticularly in handling complex user coverage and node failure
challenges in multi-HAPS networks.

Research on LLM-based agents

In the realm of LLM applications, researchers have lever-
aged their text comprehension capabilities to accomplish
various tasks, such as automating the generation of tech-
nical reports (Wang et al. 2024b), building related seman-
tic communication systems (Guo et al. 2023), (Guo et al.
2024), and addressing complex problem modeling in satel-
lite communications (Zhang et al. 2024) and base station
siting (Wang et al. 2024a). LLMs are also adept at simu-
lating human behaviors and social interactions (Park et al.
2023), and facilitating collaborative tasks through dialogues
(Qian et al. 2024). Some advanced agents can even under-
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Figure 2: An illustration of the internal architecture of our proposed ACMA framework, which incorporates LLM-enhanced
techniques such as fine-tuning, in-context learning, and tool-calling.

stand user needs and operate computers similarly to humans
(Anthropic 2024). Our goal is to harness these capabilities
to develop intelligent cooperative agents that enhance au-
tonomous services in systems, setting our work apart from
typical LLM-based approaches.

Proposed Methods

The proposed ACMA framework, as shown in Figure 2, in-
corporates a Multi-Agent workflow to decompose the over-
all coverage task into four subtasks. To enhance the ability of
different agents to handle their respective tasks, we integrate
in-context learning, fine-tuning, and tool-calling techniques.
Constructed on LangChain (LangChain 2024), our architec-
ture leverages OpenAI’s GPT-40-mini (OpenAl 2024) as the
foundation model that powers the agents. It is noteworthy
that our framework is a general-purpose architecture and is
not restricted to LangChain or GPT-40-mini. The system in-
gests environmental information, including metrics like the
number of users covered and the positions of HAPS, as its
input. This data is subsequently processed through the multi-
agent workflow, culminating in the generation of a JSON-
formatted file that outlines the target locations. The location
data encapsulated within this JSON file is then utilized to
control the HAPS system.

Precisely, we integrate pertinent environmental data into
crafted prompts, which act as a unified input for the LLM.
Tailoring prompts for various tasks, we employ in-context
learning to ensure the LLM to generate outputs that align
more closely with our requirements. To handle the four dis-
tinct subtasks, we designed intelligent agents with the fol-
lowing four functionalities:

* Data Analysis Agent: This agent is tasked with extract-
ing “high-quality locations” from both historical and cur-
rent environmental data. High-quality locations” are de-

fined as coordinates that exhibit high user density, sig-
nificant coverage demands, or strategic importance for
communication efficiency. These locations are identified
and offered as reference points for subsequent agents to
optimize their decision-making processes.

» Target Location Selection Agent: This agent is respon-
sible for making the primary decisions. It synthesizes
judgments based on the current environmental data and
the ‘high-quality locations’ provided by the Data Analy-
sis Agent. In a multi-HAPS system, the decision-making
process is structured in a sequential manner. This sequen-
tial selection process allows for informed and logically
coordinated outcomes, where decisions of one agent in-
fluence those of the next.

* Overlap Avoidance Agent: This agent refines the target
locations determined by the Target Location Selection
Agent. It detects and optimizes locations to mitigate sig-
nificant coverage overlaps, thereby enhancing resource
efficiency and minimizing redundancy.

* Special Event Handling Agent: This agent can interpret
natural language descriptions of unexpected events and
adapt the decision-making process, ensuring the system’s
agility and responsiveness to real-time changes.

The output provided by our designed agents includes
a JSON-formatted file, which facilitates direct extraction
and standalone use. JSON (JavaScript Object Notation) is a
lightweight data-interchange format widely used for its sim-
plicity and readability. Its structure is based on key-value
pairs and supports nested data types, making it ideal for rep-
resenting hierarchical information. Given the inherent vari-
ability in the outputs of LLMs, relying solely on in-context
learning templates may not ensure consistent formatting.
Therefore, we have implemented a fine-tuning strategy for
the target location selection agent by using a small dataset of
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Figure 3: Visualization of user distribution and HAPS coverage. The first row shows the execution strategy under normal
conditions without special events. The second row shows the execution strategy when the system encounters a special event
where the red exclamation mark indicates a burst user gathering event.

curated exemplary dialogues. This fine-tuning process bol-
stered the proficiency of our designed agents in producing
standardized JSON, which are pivotal for the target location
selection subtask.

To address the issue of coverage overlap, precise mathe-
matical computations are essential, including the determi-
nation of distances between various locations. Given that
LLMs are primarily designed for probabilistic language pre-
diction rather than precise numerical computations, they
may encounter inaccuracies, especially in operations in-
volving floating-point arithmetic. To counteract these poten-
tial inaccuracies, we have developed a straightforward tool-
calling function accessible to our agent. To ensure the ac-
curacy and reliability of our system’s spatial analysis, this
function is tasked with computing the pairwise distances be-
tween HAPS and generates a text prompt that encapsulates
the results of these calculations in the following format:

522.02 km
604.15 km

Distance between HAPSO and HAPS1:
Distance between HAPSO and HAPS2:

The agent interprets the function by analyzing its descrip-
tion, generates the required input parameters, and executes
the function accordingly. The output text returned by the
function is then fed back into the agent as new input to pro-
duce the final optimized result. To ensurethat the data is both

machine-readable and actionably informative, the system’s
output, encompassing a JSON file, is meticulously struc-
tured in the following format:
"2025-03-03 00:00:00": {
"HAPSO": {
"target_position":
"reasoning": {}

e

}

This JSON file records the start time of the decision-
making process, the target locations assigned to each
HAPS, and the corresponding reasoning. By extracting the
target_position coordinates for each HAPS from this file, we
are able to exert precise control over the positioning within
the HAPS system, ensuring that the operational directives
are executed with accuracy and efficiency.

Simulation & Results

To assess the efficacy of the proposed ACMA framework,
we established a tailored simulation environment for inter-
facing with our system. In the simulation, it is assumed that
there are 4 HAPS airships and a population of 500 users,
each employing a variety of mobility patterns. To focus on
the evaluation of the capabilities of LLM-based agents in
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Figure 4: Coverage performance for each individual HAPS
Airship.

understanding and executing tasks, we intentionally stream-
lined the physical representation of the HAPS airships, pri-
oritizing the agents’ cognitive and operational assessments
over detailed mechanical simulations. The deployment lo-
cation of the LLM is a key consideration in our framework.
Our ultimate goal is to deploy LLMs directly onboard HAPS
airships to enable autonomous decision-making with min-
imal dependence on ground infrastructure. However, due
to current hardware constraints, our simulation experiments
rely on accessing LLMs through internet-based requests to
ground servers.

Considering factors such as communication quality and
flight altitude, we defined the coverage radius of the HAPS
airships (Guan, Yuan, and Guo 2009) as approximately 210
km, based on a flight altitude of 22 km and a minimum com-
munication elevation angle of 5°, and adopted the concept of
“timestamps” to simulate a 24-hour operational cycle. At the
start of each hour within this cycle, the ACMA system deter-
mines the “target positions” for the HAPS airships based on
their current locations and the extent of user coverage. These
coordinates are then utilized by the simulation environment
to control the simulated movement of the HAPS airships,
while continuously refreshing the environmental data to re-
flect real-time changes throughout the simulation. This ap-
proach allows for a dynamic and responsive assessment of
the system’s performance in managing the airships’ cover-
age areas.

To visually represent the environmental dynamics, we
generated three coverage maps over a 24-hour period for two
simulation scenarios, as depicted in Figure 3. The first row of
images illustrates the control strategies of the ACMA frame-
work under normal conditions, with no special events occur-
ring. Under normal conditions, the control strategy aims to
maximize user coverage by dynamically adjusting the posi-
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Figure 5: Coverage performance comparison under different
control strategies.

tions of the HAPS airships. The system leverages the Data
Analysis Agent to extract high-density user regions and the
Target Location Selection Agent to assign optimal positions
to each HAPS. Overlap Avoidance Agents ensure minimal
redundancy, resulting in efficient resource utilization. The
second row shows the execution strategy when the system
encounters a special event indicated by the following natu-
ral language description:

On March 3, 2025, at 6:00 AM, there will be a
gathering at location [50, 500], ending at 3:00 PM on

the same day.

It has been observed that the system adeptly detects areas
with a high user density and navigates the HAPS airships
to target these zones effectively. Additionally, upon the oc-
currence of a gathering event at the coordinates [50, 500],
our system is proficient in dispatching an HAPS airship to
ensure coverage for the specified location. Post-event, the
system seamlessly reallocates the HAPS airship to return to
its regular coverage operations. This capability underscores
the system’s proficiency in comprehending natural language
descriptions of events and devising and executing fitting re-
sponses, highlighting its adaptability and effectiveness in
dynamic operational scenarios.

Figure 4 illustrates the coverage performance of individ-
ual HAPS airships during the simulation process. By analyz-
ing the trends in the number of covered users, it is evident
that the ACMA framework demonstrates robust dynamic
scheduling capabilities. Initially, some HAPS airships have
relatively low user coverage; however, the ACMA frame-
work effectively drives these HAPS to relocate to high user-
density areas, significantly increasing their coverage. Fur-
thermore, in the later stages of the simulation, the num-
ber of covered users gradually stabilizes, indicating that
the ACMA framework is not only capable of efficiently



responding to dynamic user distribution changes but also
ensures resource allocation stability as the system reaches
equilibrium. Among the four HAPS airships, the user cover-
age shows a certain degree of balance, reflecting the fairness
and efficiency of the resource scheduling.

Figure 5 depicts the cumulative number of users covered
by all HAPS airships under different control policies. In
this work, our proposed solution will be compared with the
following three existing strategies: random walk, reinforce-
ment learning, and swarm intelligence algorithms (Anicho
et al. 2019). It can be observed that our algorithm consis-
tently provides the maximum user coverage, followed by
the swarm intelligence algorithm, while the random walk
and reinforcement learning algorithms perform the worst.
It is worth mentioning that in our simulations using the re-
inforcement learning algorithm, despite multiple attempts,
its training did not converge in the short term. This lim-
itation may stem from the specific characteristics of the
simulation environment or to the intricacies of the reward
function’s design. This finding underscores a constraint in-
herent in traditional algorithms, necessitating a high level
of domain-specific expertise from engineers for their effec-
tive deployment. In contrast, the LLM-based agents in our
ACMA architecture, especially those with tool-calling capa-
bilities, can effectively execute similar tasks through natu-
ral language instructions, markedly lowering the expertise
threshold required for engagement. Moreover, its natural
language processing capabilities enable it to handle random
events in complex real-world environments, offering a no-
table advantage in practical applications.

Conclusion & Discussion

This work demonstrated the effectiveness of the proposed
ACMA architecture in addressing the multi-HAPS coordi-
nation task for user coverage, and it validated the capabil-
ity of the LLM-based agent framework to render more in-
telligent judgments regarding unpredictable events in real-
world scenarios. With the continuous advancements in LLM
quantization technologies and improvements in edge com-
puting capabilities, an environment and event-adaptive agent
framework will emerge as a promising solution soon. Such
frameworks, deployable at the edge, are poised to tackle
human-machine interaction challenges within systems that
necessitate a degree of autonomy. By providing solutions to
real-time challenges, these frameworks will enable more in-
telligent services for users and contribute to building a more
cohesive and intelligent network.
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