A Visual Studio Code Extension for Automatically Repairing Planning Domains

Songtuan Lin*, Mohammad Yousfi*, Pascal Bercher

School of Computing, The Australian National University
{firstName.lastName } @anu.edu.au

Abstract

We demonstrate a Visual Studio Code extension which aims
at providing modeling assistance for modeling planning do-
mains in PDDL, which serves as a front-end of our previous
work. The extension can identify potential flaws in a domain
and propose respective corrections by taking as input a set of
counter-example plans, which are known to be valid but ac-
tually contradict the domain. Those input plans shall be pro-
vided by the user. The flaws are then identified and corrected
by making changes to the domain so as to turn those plans
into solutions, i.e., the changes are regarded as potential cor-
rections to the domain. The extension supports corrections
that add predicates to or remove predicates from actions’ pre-
conditions and effects.

Introduction

The complexity of modeling a planning domain has emerged
as a major obstacle for deploying planning techniques more
broadly, raising the demand for tools for providing modeling
assistance. To contribute toward this direction, we present a
plugin for Visual Studio Code which can identify and cor-
rect potential errors in a domain in PDDL (see the work by
Haslum et al. (2019) for an introduction to PDDL).

The plugin serves as the front-end of our earlier technique
(Lin, Grastien, and Bercher 2023). More concretely, the plu-
gin takes as input a set of counter-example plans which are
supposed to be solutions but are actually not, due to errors
in the domain. It then proposes corrections to the user which
are changes to the domain that turn the input plans into so-
lutions. After receiving the proposed corrections, the user
could justify which changes are desired and which are not.
The justification will then be sent back to the plugin, starting
another iteration of domain correction where the true correc-
tions will be kept while the false changes will be forbidden.
This process continues until the user is satisfied with all the
changes proposed by the plugin.

Plugin Description
After presenting the general workflow of this plugin, we now
describe in more detail how it works. Currently, our exten-
sion supports PDDL 1.2. The corrections our plugin can pro-
vide are restricted to adding predicates to and deleting predi-
cates from actions’ preconditions and effects, including both

“These authors contributed equally.

Root
Task-1
task-1.pddl

val-plan.1

val-plan.n
Task-2
task-2.pddl

val-plan.1

val-plan.m

Figure 1: The structure of the folder containing all counter-
example plans.

positive and negative ones, i.e., exactly those described by

Lin, Grastien, and Bercher (2023).

To use the extension, the user should first place the do-
main (in PDDL) to be corrected and a folder containing all
counter-example plans into the same directory. In particular,
the folder that contains the counter-example plans should be
structured as follows:

1) There should be one subdirectory for each planning task
with respect to the domain.

2) Each subdirectory with respect to a planning task should
contain the respective task file (in PDDL) together with
plan files each of which contains a plan that is supposed
to be a solution to the planning problem defined by the
domain and the planning task.

3) The name of a plan file should be val-plan.i where
1 is the index of the plan file in the directory with respect
to a planning task.

An example of the structure of the folder is shown in Fig. 1.

After that, the user needs to open the directory containing
both the domain and the folder of input plans in Visual Stu-
dio Code as a workplace. The next step is to open the domain
file in the editor. Fig. 2 demonstrates the interface of the ex-
tension with an example input domain. The input domain



DOMAIN REPAIR: MY EXTENSION VIEW
[REETS Fix
v Repair-Set #1

vYUNSTACK
effect

¥ handempty()

vSTACK
precondition

¥ -ontable(2x)

vSTACK
effect

¥ handempty()
Domain Read
» PICK-UP
» PUT-DOWN
vSTACK
precondition
¥ holding(?x)
¥ clear(?y)
¥ ontable(?x)
effect
¥ clear(?x)
¥ on(?x, ?y)
¥ not holding(?x)
v UNSTACK
precondition
¥ on(?x, ?y)
¥ clear(?x)
¥ handempty()
effect
¥ holding(?x)
¥ clear(?y)

¥ not clear(?x)

a) domain.pddi X

) domain.pddl

R R N R R R N R R R R R R R R R

4 Op-blocks world

R R R R N R R R R R R R R R

(define (domain BLOCKS)
(:requirements :strips)
(:predicates (on ?x ?y)

(ontable ?x)
(clear ?x)
Mhandemptyj
(holding ?x)
)

(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect
(and (not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))

(:action put-down
:parameters (?x)
:precondition (holding ?x)
reffect
(and (not (holding ?x))
(clear ?x)
(ontable ?x)))
(:action stack
:parameters (?x ?y)

¥ not handempty()

:precondition (and (holding ?x) (clear ?y) (ontable ?x))

Figure 2: The user interface of the plugin. The upper part of the left panel shows the history of proposed corrections on each
iteration while the lower part displays the domain. If a checkbox is unmarked, it means that the corresponding component is

unmodifiable, i.e., the respective correction is forbidden.

is the BlocksWorld domain with the following errors: The
predicate handempty is missing from the positive effects
of the actions stack and unstack, and the precondition
of stack has an extra predicate ontable (?x) . Once the
domain file is opened, the user could click the “Read” button
on the lower part of the left panel. This will let the extension
read the domain file and display it (see the lower part of the
left panel in Fig. 2). If a checkbox in the displayed domain
is unmarked, it means that the respective component is un-
changeable. To start correcting the domain, the user could
click the “Fix” button. The extension will then return the
proposed corrections, under the label “Repair Set” followed
by the index of the current iteration A correction which is
crossed out indicates that the respective predicate should be
removed from the corresponding component of the action,
e.g., the second correction displayed in Fig. 2. A correction
that is not crossed out means that the predicate is added, e.g.,
the first and the third correction in Fig. 2. The user could un-
mark the checkbox associated with a correction to indicate
that this correction is undesired. The next iteration will start
with those corrections being forbidden.

Discussion and Conclusion

In this paper, we present a VS code extension for correcting
errors in a domain by turning a set of counter-example plans
into solutions. Note that there exists another tool (Gragera
et al. 2023b,a) which was developed for the same purpose as

ours, i.e., fixing errors in a domain. However, their underly-
ing approach is different from ours which finds corrections
to a domain by turning an unsolvable planning problem into
a solvable one while allowing only adding positive effects
to actions. One remark is that our extension can also make
unsolvable problems solvable if plan traces are provided.

Acknowledgements

Pascal Bercher is the recipient of an Australian Research
Council (ARC) Discovery Early Career Researcher Award
(DECRA), project number DE240101245, funded by the
Australian Government.

References
Gragera, A.; Fuentetaja, R.; Olaya, A. G.; and Fernandez, F.

2023a. PDDL Domain Repair: Fixing Domains with Incom-
plete Action Effects. In ICAPS—-Demo 2023.

Gragera, A.; Fuentetaja, R.; Olaya, A. G.; and Fernandez, F.
2023b. A Planning Approach to Repair Domains with In-
complete Action Effects. In ICAPS 2023, 153—-161. AAAL

Haslum, P.; Muise, C.; Magazzeni, D.; and Lipovetzky, N.
2019. An Introduction to the Planning Domain Definition
Language. Springer.

Lin, S.; Grastien, A.; and Bercher, P. 2023. Towards Auto-
mated Modeling Assistance: An Efficient Approach for Re-
pairing Flawed Planning Domains. In AAAI 2023, 12022—
12031. AAAL



