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Abstract

Despite the outstanding performance of transformers in both language and vision tasks, the
expanding computation and model size have increased the demand for efficient deployment.
To address the heavy computation and parameter drawbacks, quantization is frequently
studied in the community as a representative model compression technique and has seen
extensive use on ConvNets. However, due to the unique properties of transformers, the
extreme low-bit quantization applications are still limited and underexplored. In this paper,
we identify the difficulty of transformer-based low-bit quantization-aware training on its
unique variation behaviors, which significantly differ from ConvNets. The term variation
is defined based on comprehensive quantitative analysis in three hierarchies: various module
quantization sensitivities, outliers in static weight and activation distribution, and oscillation
in dynamic parameter fluctuations. These variations of transformers bring instability to the
quantization-aware training (QAT) and negatively influence the performance. We explore
the best practices to alleviate the variation’s influence during low-bit transformer QAT and
propose a variation-aware quantization scheme for both vision and language transformers.
We extensively verify and demonstrate our scheme can alleviate the variation and improve
the performance of transformers across various models and tasks. For the 2-bit Swin-T
and binary BERT-base, our solutions achieve a 3.35% and 1.4% accuracy improvement
over previous state-of-the-art methods on the ImageNet-1K dataset and GLUE benchmark.
Codes and models are available at https://github.com/HuangOwen/Quantization-Variation.

1 Introduction
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Figure 1: Left: ImageNet-1K Top-1 accuracy vs. BitOPs com-
parison of 2/3/4-bit quantized ViT models using LSQ+ (Bhalgat
et al., 2020) and our method. Right: GLUE performance com-
parison of different binary (1-1-1-bit) BERT models.

Transformer-based models have achieved
impressive accuracy across multiple
modalities including a variety of computer
vision (Zhang et al., 2020a;b; Kirillov
et al., 2023), natural language (Devlin
et al., 2018; Chowdhery et al., 2022;
Touvron et al., 2023; Achiam et al.,
2023), acoustic and speech Di et al.
(2021); Li et al. (2023a); Gao et al. (2024)
tasks. Despite the intrinsic superiority
of transformer architecture, their re-
markable performance also comes from
the parameter numbers. For instance,
Swin-L (Liu et al., 2021a) has a total
number of parameters of 197M with
FLOPs of 34.5G. Dehghani et al. (2023)
scales vision transformers to 22B for better performance. The language model GPT-3 (Brown et al., 2020)
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boasts 175 billion parameters. As a result of the tremendous parameter numbers, high latency and large
model sizes have become the most significant obstacles to the efficient deployment of transformers, especially
on devices with computation constraints.

In recent years, researchers have explored and proposed various model compression methods to improve
the computational efficiency of deep learning models. These model compression techniques include quan-
tization (Bhalgat et al., 2020; Huang et al., 2022; Ding et al., 2022; Tang et al., 2023; Xiao et al., 2023a),
pruning (Liu et al., 2017; 2018; 2019b; Kim et al., 2023; Ma et al., 2023), knowledge distillation (Hinton
et al., 2015; Shen & Xing, 2021), and compact network design (Howard et al., 2017; Pham et al., 2018; Guo
et al., 2020). Among these methods, quantization of weights and activations have been the most widely
utilized techniques because they enjoy the advantage of the promising affinity across different hardware ar-
chitectures (Judd et al., 2016; Jouppi et al., 2017; Sharma et al., 2018). Although efforts (Liu et al., 2021c;
Yuan et al., 2021; Lin et al., 2021; Li et al., 2022c; Ding et al., 2022; Liu et al., 2023b; Frantar et al., 2023b;
Wei et al., 2023) have been made to apply quantization techniques to transformers, most of them are based
on Post-Training Quantization (PTQ) which suffers from a significant decline in performance and a bitwidth
limitation at 8-bit or 6-bit. Additionally, the few existing Quantization-Aware Training (QAT) methods (Li
et al., 2022b; Li & Gu, 2022; Li et al., 2022a; Tao et al., 2022; Liu et al., 2023c; Yu et al., 2023; Dong
et al., 2023) take significantly more time than the full-precision model in training, and the models still fail to
achieve the desired performance when being quantized to extreme low-bit precision such as 2-bit and binary.

The higher degradation in accuracy of quantized transformers compared to ConvNets guides us to raise
the question: What is it that hinders us from improving the performance of low-bit quantized transformers?
Meanwhile, the low efficiency of previous QAT methods makes applying quantization to more transformer
structures difficult. Thus, another question we would like to raise is: How to improve the efficiency of
transformer quantization?

To comprehensively decipher the inherent obstacles that adversely impact the efficacy and performance of
transformer quantization, in this work, we research the unique variation behavior of transformers in differ-
ent hierarchies. The terminology variation in our paper refers to both the various quantization sensitivity
of different modules (described in Section 4.1), outliers in weight/activation distribution (as described in
Section 4.2), and weight updating instability during QAT (as described in Section 4.3). We empirically find
that these challenges are inherently inter-connected, thus we use term variation to summarize them. We
initially conducted an exhaustive investigation of the quantization resilience of each component within the
structural layout of the transformer. The empirical findings derived from the quantization ablation experi-
ments show that specific components, such as Multi-head self-attention (MHSA), exhibit higher sensitivity to
quantization than others. We further compare the weight and activation distribution between transformers
and ConvNets, deducing that the distribution outliers serve as the pivotal factor instigating complications
with respect to transformer quantization. Through constant monitoring of the weight-changing trajectory
during the training phase, we revealed that variation in distribution instigates the variation in weight up-
dates known as weight oscillation. Such a phenomenon has detrimental effects on quantization, potentially
culminating in decelerated convergence. Different from previous research Xiao et al. (2023a); Wei et al.
(2022); Lin et al. (2023) to analyze the outlier of distribution in PTQ, we are the first to provide novel and
quantitative analysis on the variations in transformer QAT and reveal their inner causality.

Based on the variation analysis, we propose an optimized solution for transformer quantization that is at-
tuned to variations, demonstrating enhanced efficiency. In terms of the sensitivity distribution variance
observed across differing modules, we introduce a module-specific scaling methodology. This strategy seeks
to identify varying scale factors pertinent to different modules, thereby holistically accommodating the diver-
sity in weight distribution through a gradient scaling technique that is sensitive to weight magnitude. When
compared with the baseline quantization method, LSQ+ (Bhalgat et al., 2020), the presented approach
exhibits less susceptibility to fluctuations in weight distribution and outliers that may arise within trans-
formers. For Vision Transformers (ViTs), a multi-crop knowledge distillation approach is employed, which
aids in decreasing the data variance within mini-batches during the training phase, thereby stabilizing and
expediting the training process. Furthermore, to combat the potential oscillation throughout the training
phase, we put forth a regularizer that is attuned to oscillation within quantization bins. This process seeks
to penalize the variance in weight distribution within each respective quantization bin.
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Extensive experiments across various transformer architectures with different characteristics, including
DeiT (Touvron et al., 2021), Swin Transformer (Liu et al., 2021a), SReT (Shen et al., 2021a), and BERT (De-
vlin et al., 2018), are conducted to verify the effectiveness and efficiency of our proposed method. As shown
in Figure 1, for DeiT-T on ImageNet-1K dataset, our 4-bit quantized model can significantly improve top-
1 accuracy to 74.71% compared to the model quantized by LSQ+ (Bhalgat et al., 2020) which achieves
72.62%. Furthermore, our binarized BERT-based model achieves 74.9% average accuracy on the GLUE
benchmark, surpassing the previous state-of-the-art method by 1.4%. Through these methodologies, we
exhibit exceptional training optimization, as evidenced by a 50% reduction in total training time compared
to our established baseline. In summary, our contribution can be concluded as:

• We are the first to reveal the inherent complexity associated with low-bit quantization of transform-
ers from the perspective of variation. Our claims that variations lurk in multiple hierarchies of
transformers are substantiated through sensitivity analysis, a comparison of transformers to Con-
vNets, and an investigation of oscillatory behavior.

• We explore the best practices to reduce the variation in transformer quantization, including module-
dependent quantization, oscillation-aware regularization, and a novel multi-crop knowledge distilla-
tion scheme designed for ViTs.

• We perform extensive experiments of DeiT, Swin, SReT, and BERT across multiple modalities,
including the ImageNet-1K dataset and GLUE benchmark. Our approach significantly reduces
variation and results in both superior efficiency and performance over prior state-of-the-art schemes.

2 Related Work

Transformer-based Models: Transformer (Vaswani et al., 2017) was proposed based on an attention
mechanism and demonstrated remarkable performance across various benchmarks such as GLUE (Wang
et al., 2018) and SQuAD (Rajpurkar et al., 2016). BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019a), XL-Net Yang et al. (2019), GPT Achiam et al. (2023), LLaMA Touvron et al. (2023) have served
as an essential building block in modern NLP pipelines. Inspired by the success in NLP, Vision Transform-
ers(ViTs) (Dosovitskiy et al., 2020) utilize multi-head self-attention treating an image as patches/tokens.
The attention mechanism can help capture both short-range and long-range visual dependencies. Various
extensions of ViTs (Touvron et al., 2021; Liu et al., 2021a; Wu et al., 2021; Dong et al., 2022; Hatamizadeh
et al., 2023) and more applications (Zheng et al., 2021; Arnab et al., 2021) are still emerging.

Quantization Techniques: Quantization techniques aim to replace the full-precision weights and acti-
vations with lower-precision representation. Based on the quantization intervals, they can be categorized
into uniform and non-uniform quantization. While uniform quantization (Huang et al., 2022) with uniform
quantization interval has better hardware affinity and efficiency, Non-uniform quantization (Li et al., 2019),
due to its flexible representation, can usually better allocate the quantization values to minimize the quanti-
zation error and achieve better performance. In addition, the quantization methods can also be classified as
quantization-aware training (QAT) (Bhalgat et al., 2020; Liu et al., 2023a;c) and post-training quantization
(PTQ) (Nagel et al., 2020; Fang et al., 2020; Wang et al., 2020; Lee et al., 2023; Xiao et al., 2023a) based
on whether to retrain a model with quantized weights and activations or start with a pre-trained model
and directly quantize it without extra training. The majority of previous transformer quantization methods,
such as Liu et al. (2021c), PTQ4ViT (Yuan et al., 2021), FQ-ViT (Lin et al., 2021), ZeroQuant (Yao et al.,
2022), and NoisyQuant (Liu et al., 2023b) focused on PTQ of transformers. Due to the intrinsic restriction
of PTQ, these methods only perform 8-bit or 6-bit quantization. In this work, we focus on low-bit (≤ 4-bit)
uniform QAT setting.

Knowledge Distillation: The concept of knowledge distillation is first proposed in (Hinton et al., 2015),
where the core insight is to encourage student models to emulate the distribution of teacher models’ predic-
tion. The prediction distribution of teacher models contains more information than the one-hot labels. More
recently, various knowledge distillation methods (Cho & Hariharan, 2019; Park et al., 2019; Tung & Mori,
2019; Mirzadeh et al., 2020; Shen & Xing, 2021; Li et al., 2023b) have been proposed for better efficiency
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and effectiveness. The knowledge-distillation methods are also widely adopted in previous research (Mishra
& Marr, 2018; Polino et al., 2018; Huang et al., 2022; Liu et al., 2023a) to help quantization-aware training.

3 Preliminaries

Transformer Architecture. The basic block of the transformers is the transformer layer, consisting of
Multi-head Self Attention (MHSA), Layer Normalization (LN) (Ba et al., 2016), and Feed-forward Network
(FFN). The transformer layer can be formulated as

X′ = LN(Xi + MHSA(Xi)), XO = LN(X′ + FFN(X′)), (1)

where Xi, X′, and Xo are this transformer block’s input, intermediate representation, and output. The
MHSA module consists of h heads, and each head performs inner products with a scaling factor and a softmax
operation. For the i-th head, input Xi is projected into query, key, and value vectors with multiplication
with learnable weight matrix WQ,i, WK,i, WV,i, which can be written as:

Qi = XiWQ,i, Ki = XiWK,i, Vi = XiWV,i, (2)

and the output of i-th head is
headi = softmax(QiKT

i /
√

dk)Vi, (3)

where 1/
√

dk is the scaling factor for normalization. MHSA further concatenates the output of these heads
to improve the representative capacity and projects to the output by multiplication with a learnable weight
matrix Wo:

MHSA(Xi) = Concat(head1, head2, ..., headh)Wo. (4)

Quantization. Given the real-value data to be quantized as xr, the scale factor s of the quantizer, the
number of positive quantization levels QP , and the number of negative quantization levels QN , we can have
the quantizer qb that output the b-bit quantized representation of the input real value as xq = qb(xr) :

xq = qb(xr) = s× ⌊clip(xr/s,−QN , QP )⌉, (5)

where ⌊·⌉ is the rounding function that rounds the input to the nearest integer, clip(x, r1, r2) return x
with all value below r1 set to be r1 and all values above r2 set to be r2. For the unsigned quantization,
QN = 0, QP = 2b − 1. While for the quantization of signed data, QN = 2b−1, QP = 2b−1 − 1. To
solve the problem that the gradient cannot back-propagate in Equation 5, the straight-through estimator
(STE) (Bengio et al., 2013) is utilized to approximate the gradient during quantization-aware training. The
gradient of the rounding operation is approximated as 1 in the quantization limit. In the back-propagation
with STE, the gradient of the loss L with respect to the real-value data xr is set to be:

∂L
∂xr

= ∂L
∂xq
· 1−QN ≤xr/s≤QP

, (6)

where 1 is the indicator function that outputs 1 within the quantization limit and 0 otherwise. This STE
is widely used in quantization-aware training and we can derive the gradient of the quantized value xq with
respect to the scale factor s as

∂xq

∂s
=


xr/s + ⌊xr/s⌉ if xr/s ∈ (−QN , QP )
−QN if xr/s ∈ (−∞,−QN

]
QP if xr/s ∈

[
QP ,∞)

(7)

4 Understanding Quantization Variation of Transformers

Many existing studies highlight that transformers exhibit greater sensitivity to quantization compared to
ConvNets. For instance, Bit-Split (Wang et al., 2020), which successfully achieves 4-bit quantization on
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Figure 2: An overview of the variation in transformers of different hierarchies: various quantization sensi-
tivities of different modules, outlier in weight and activation distributions, and oscillation phenomenon in
dynamic parameter updates.

ResNet with an accuracy loss of less than 1%, exhibits significant accuracy degradation of over 2% (Lin
et al., 2021) when applied to 8-bit quantization of DeiT on the same ImageNet-1K dataset. However,
there is a paucity of analyses detailing the reasons behind transformers’ heightened sensitivity compared
to ConvNets. In this section, we will give a comprehensive analysis of the fundamental challenge in low-
bit quantization of transformers referred to in this work as variation. As depicted in Figure 2, we define
the term variation to include three components: (1) different quantization sensitivity of each module, (2)
variance of weight and activation frequency distribution compared to ConvNets, and (3) abnormal weight
oscillation phenomenon during QAT. We will explore the variation in sensitivity in Section 4.1 and delve into
the variation in distribution and its subsequent side-effect of oscillation phenomenon in Sections 4.2 and 4.3.

4.1 Quantization Sensitivity

Prior study Li et al. (2022b) conducted a quantization robustness analysis on transformers, concluding
that the GELU activation function substantially mitigates performance during the quantization process.
However, their experiments relied on post-training quantization (PTQ), which stands in stark contrast
to quantization-aware training (QAT). Moreover, their experimental methodology lacked a comprehensive
analysis of different components at a more granular level, such as the quantization impact on query, key, and
value weight matrices. In this section, we aim to disentangle the intricacies of transformer quantization by
executing an in-depth leave-one-out analysis employing low-bit QAT.

Table 1: Leave-one-out-analysis for quantization of various components in DeiT-T on ImageNet-1K. The
Para(%) stands for the percentage of parameters that are not quantized among all trainable parameters.

Quantization Target DeiT-T (W3A3) Swin-T (W2A2) SReT-T (W3A3)
Top-1 Acc(%) Top-5 Acc(%) Top-1 Acc(%) Top-5 Acc(%) Top-1 Acc(%) Top-5 Acc(%)

None (FP Model) 73.75 91.87 81.00 95.25 75.81 91.74
All 68.22 88.56 70.21 85.50 72.59 89.90
All, except FFN 69.47 89.60 72.77 88.02 73.06 90.22
All, except MHSA 71.28 90.66 77.93 92.59 75.10 91.21
All, except query in MHSA 69.66 89.94 73.15 89.74 73.66 90.43
All, except key in MHSA 69.92 89.81 73.09 89.98 73.58 90.37
All, except value in MHSA 70.72 90.40 75.80 90.66 74.15 90.84

In terms of quantization methods, we employ LSQ+(Bhalgat et al., 2020). All components except for the
analysis target will be quantized, while the analysis target will be retained at full precision. The results of
DeiT-T (3-bit), Swin-T (2-bit), and SReT-T (3-bit) on the ImageNet-1K are presented in Table 1. The results
across various models and bitwidth settings indicate that MHSA, particularly the value weight matrices, are
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highly susceptible to quantization. Although MHSA and the value weight matrix constitute a relatively minor
fraction of parameters in comparison to the FFN, maintaining these parts at full precision can optimize the
performance of the quantized model. We also provide a quantize-one-module-only analysis shown in Table 9
in the Appendix, which also comes to the same conclusion.
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Figure 3: The accuracy degradation compared to the
full-precision model when a specific head in a layer of
Transformer is quantized. The label h-l in abscissa indi-
cates the head h in layer l is quantized.

While we have fully exploited the clue that the
quantization sensitivity of MHSA is higher than
other components in transformers, another criti-
cal clue is that some heads in MHSA are more
important than other heads in Transformer-based
models. To empirically verify this clue, we apply
an analysis to quantize various heads in different
layers in transformers. The target heads are quan-
tized to 2-bit while the remaining components are
quantized to 8-bit. The results of DeiT-T with
three heads in a layer and 12 layers are shown
in Figure 3. The results that some heads have
higher accuracy degradation show that the quan-
tization sensitivity of different heads at different
layers varies. The first and last few layers are
more sensitive to quantization. Additionally, the heads in the same layer show a variation in quantization
robustness. For example, in layer 8 of the quantized model, the lower precision of head 0 (shown in 8-0 in
Figure 3) will result in a higher accuracy drop compared to the two parallel heads in the same layer.

4.2 Distribution Outlier

In Section 4.1, we have demonstrated that transformers suffer from significant variation in the sensitivity to
quantization. However, previous mixed precision quantization research on ConvNet has also discovered that
different parts of models have various quantization robustness. To fully understand why the sensitivity to
quantization in transformers is higher than ConvNets, we visualize and quantify the distribution of different
modules inside full-precision ConvNets and transformers to compare the real distribution variation of
transformers and ConvNets as shown in Figure 2 (b).

To give an intuitive result on the variation of ConvNets and transformers, we first visualize the weight
distribution across different channels in full precision ResNet-18 (He et al., 2016) and DeiT-T. The results
are shown in Figure 2. Based on our investigation, the ResNet-18 model shares a similar distribution across
different channels, while the weight distribution varies significantly in different modules in the transformer-
based model DeiT-T. If layer-wise quantization methods that work well for ConvNets are directly applied to
transformers, the variation of distribution will result in high quantization error, which is one of the reasons
that the ConvNet-based method failed on low-bit transformers.

For the activation distribution, previous research (Wei et al., 2022; Bondarenko et al., 2023) has pointed out
outliers appear regularly and consistently across multiple layers in transformers. To quantify the fluctuation
in the latent real-valued activation magnitude, we proceed to calculate the Average Standard Deviation
of the Absolute Mean (SDAM) of the real-valued activation magnitude within each module of ConvNets
and transformers. The SDAM metric has been previously employed to evaluate the stability and fairness
of training in prior studies (Liu et al., 2021b). The corresponding results of the SDAM comparison are
tabulated in Table 2. These numerical findings corroborate that the variability associated with transformers
surpasses that of ConvNets with respect to the activation distribution.

Table 2: Standard Deviation of the Absolute Mean (SDAM) of activation in ConvNets and transformers.

Model ResNet-18 VGG-11 ViT-T DeiT-T Swin-T
SDAM 5.59e-2 3.74e-2 9.65e-2 8.35e-2 9.71e-2
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Correspondingly, prior work (Lin et al., 2021) has highlighted significant disparities in the distribution of
activations in transformers as opposed to ConvNets. Although these variations may augment the representa-
tional capacity of transformers, they concurrently introduce complexities when implementing quantization.
Consequently, the conception and arrangement of the quantization scheme become paramount, particularly
in the generation of quantization scales and the determination of clipping factors during the process of
quantization-aware training.

4.3 Weight Oscillation in Training

High variation in weight and activation distribution can lead to suboptimal quantization, thereby inducing
increased quantization errors. In QAT, certain modules fail to learn meaningful representation during the
optimization process. This effect and its association with distribution variation have been investigated in
AdamBNN (Liu et al., 2021b), where the notion of flip-flop was introduced, signifying the change in quan-
tization results of weights at specific iterations. We observed that low-bit transformers are also subject to
a comparable effect, termed oscillation. This denotes the circumstance where the latent weights fluctuate
around the boundary of adjacent quantization bins during quantization-aware training. As per our under-
standing, Nagel et al. (2022) is one of the few works probing into these effects. However, it restricts its scope
to ConvNets and their impact on batch normalization, a technique not employed in transformers. We take
the initiative to identify and analyze this oscillation phenomenon specific to transformers.

An illustration of the oscillation phenomenon is shown in Figure 4. Conventionally, the distribution of
full-precision initialization adheres to a Gaussian distribution. There exist only a limited number of latent
weights that precisely coincide with the optimal quantization value. However, when certain real-value weights
wr

t cross the quantization boundary at iteration t, the update of real weights |wr
t −wr

t−1| triggers an update
in the quantized value by a constant value |q(wr

t )− q(wr
t−1)| = s. Here, s represents the quantization scale

and constitutes the length of a quantization bin in a uniform quantization scheme. As indicated by the STE
detailed in Equation 6, the gradient of the real value is assigned a value identical to this quantized value,
resulting in a consistent gradient that encourages the real value to once again traverse the quantization
boundary.

We further observe the side effects of transformers in the QAT. As shown in Figure 4a, the weights associated
with MHSA tend to accumulate around the quantization threshold following a certain number of epochs.
Figure 4b presents an example of this oscillatory behavior within the weights of transformers. This oscillation
adversely influences the training and leads to substantial quantization error. The formulation of a solution
to prevent this phenomenon through the reduction of variation and mitigation of the impact will be the
essential challenge in transformer quantization. In Appendix C, we quantitatively verify our observation
across multiple transformer-based models and different layers, proving that weight oscillation phenomenon
is a common challenge in transformer QAT.
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(a) Weight distribution
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Figure 4: The weight distribution during QAT and the weight oscillation effect due to distribution variance.
The layer we select is blocks.1.attn.proj-v.weight in 4-bit quantized DeiT-S with scale α = 0.0077.
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4.4 Best Practices of Transformer Quantization

As observed in Section 4, there exists a substantial variation in transformers across three hierarchies: quanti-
zation sensitivity, distribution outlier, and weight oscillation. Motivated by these observations, we aim to find
the best practices to mitigate the impacts of these variations for effective and efficient low-bit transformer
quantization. Our variation-aware solutions incorporate several crucial components: a module-dependent
quantization scheme, training with variation-aware knowledge distillation, and a regularization strategy to
suppress oscillatory behaviors.

4.4.1 Module-dependent Quantization

The scale factor s is the most important parameter in our quantization setting and will be optimized during
the quantization-aware training. Our exploration in Section 4.1 establishes a substantial variation in the
sensitivity of distinct modules to quantization. However, conventional implementations of transformer quan-
tization often overlook this characteristic. In view of the variability observed in transformers, we propose a
module-dependent quantization scheme that facilitates the learning of the quantization scale s at the gran-
ular module level (query, key, and value in distinct heads of MHSA). This approach contrasts with previous
layer-wise or head-wise quantization methods that assigned a uniform scale to differing modules. Instead,
we implement scale-learning quantization at a higher resolution, thereby promoting a finer granularity.

In addition, the outliers in the distribution located in Section 4.2 pose the challenge of an imbalanced gradient
scale as these outliers will cause weight updates at a larger scale. Previous work (Bhalgat et al., 2020) has
already pointed out the negative impact of an imbalance gradient scale. To overcome this challenge, we
adopt a module-wise gradient scaling that balances the weights and scale factor gradient, fully considering
the distribution variation in different modules. We multiply the loss of scale factor s by a gradient scale g that
encodes the magnitude of the weights in this module, which can be formulated as ∂L

∂s ←−
∂L
∂s ·

1√
QP ||w||1

, where
||w||1 computes the L1-norm of weights in the quantized module. For the modules with higher variation, the
L1-norm of weights will be higher than average, and the update of scale factor s will be decreased to ensure
that the outliers of the distribution do not influence the scale factor.

Compared to the baseline quantization scheme LSQ, the proposed module-dependent quantization signifi-
cantly differs from it as we use a mixed granularity for learnable scale factors considering the variation
in the module sensitivity and scale the gradient considering the variation in weight distribution.

4.4.2 Knowledge Distillation

Another practical solution to reduce the variation mentioned in Section 4.2 and help stabilize the training
is the Knowledge Distillation (KD) scheme. The core insight of KD is to train our quantized transformer
models with a full-precision model as the teacher. The loss function is designed to enforce the similarity
between the output distribution of the full-precision teacher and quantized transformer student:

LVanillaKD = − 1
N

∑
c

N∑
i=1

p
Tf
c (Xi) log(pSq

c (Xi)), (8)

where the KD loss is defined as the cross-entropy between the output distributions pc of a full-precision
teacher Tf and a quantized transformer student Sq. Xi is the input sample. c and N denote the classes
and the number of samples, respectively. Note that one hot label is not involved in training in our setting.
The KD scheme helps our model converge fast because it learns the mapping directly from the full-precision
teacher, which contains richer information. Previous research (Yuan et al., 2020; Zhou et al., 2020; Menon
et al., 2021) also points out that KD loss can be seen as a regularization term to reduce the variance during
the training, which makes the training more stable and alleviates the influence of the distribution variation.
Here we only employ KD loss as the sole objective to optimize the model, which is more effective with
adequate supervision signal in KD (Shen et al., 2021b).

Specifically for ViTs, one disadvantage of the conventional KD scheme is that generating the prediction
p

Tf
c of the teacher Tf consumes a relatively long time, which makes the training inefficient. To tackle this
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Table 3: Comparision with previous quantization methods on BERT-base model and GLUE benchmark.
“Bit(W/A/E)” denotes the bitwidth for weights, activations, and embedding.

Method Bit(W/A/E) MNLI(-m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg
FP Baseline 32-32-32 84.9/85.5 91.4 92.1 93.2 59.7 90.1 86.3 72.2 83.9

BinaryBERT (Bai et al., 2021) 1-1-1 35.6/35.3 66.2 51.5 53.2 0 6.1 68.3 52.7 53.7
BiBERT (Qin et al., 2021) 1-1-1 66.1/67.5 84.8 72.6 88.7 25.4 33.6 72.5 57.4 63.2
ReBNN Xu et al. (2023) 1-1-1 69.9/71.3 85.2 79.2 89.3 28.8 38.7 72.6 56.9 65.8

BEBERT (Tian et al., 2023) 1-1-1 75.7/76.6 84.9 80.7 90.2 27.7 - 75.1 58.6 70.5
SGBERT (Ardakani, 2022) 1-1-1 74.3/75.2 86.6 82.7 91.4 36.9 70.1 77.2 61.7 72.9

BiT (Liu et al., 2022) 1-1-1 79.5/79.4 85.4 86.4 89.9 32.9 72.0 79.9 62.1 73.5
Ours 1-1-1 79.9/79.2 87.1 86.2 91.9 36.1 73.8 80.9 59.2 74.9 (↑1.4)

challenge, we follow Shen & Xing (2021) to utilize a multi-crop KD scheme that first random crops M
regions from one image Xi, and inputs each cropped image to the teacher model Tf to get the soft label
p

Tf
c (Xi,m), m ∈ M , where m is the index of the cropped region. The soft label is stored together with its

coordinates. In the training phase, we directly load the soft label and cropping parameter from the storage
for the training with KD. The loss function of this multi-crop KD (MCKD) scheme is:

LKD = − 1
NM

∑
c

N∑
i=1

M∑
m=1

p
Tf
c (Xi,m) log(pSq

c (Xi,m)). (9)

The higher quality of the soft label generated by this scheme would reduce the variation within a mini-batch
to a greater extent. Meanwhile, the data and its corresponding label are loaded the same as the training
without knowledge distillation, where the time for inference with the teacher model is saved. We further
show in the experiment that this multi-crop KD scheme improves performance by reducing variation and
significantly boosts efficiency.

4.4.3 Oscillation-aware Bin Regularization

In the analysis of Section 4.3, we identify that the weight distribution variance in the transformer caused
oscillation, leading to instability during training. In the view of distribution in each quantization bin, the
majority of the weights oscillate between both sides of the quantization bin. To suppress the oscillation during
QAT, we regularize the weight distribution with an Oscillation-aware Bin Regularizer (OBR) to encourage
the real-value weights to be close to the quantization bin center. The proposed OBR can be formulated as

LOBR =
M∑

m=1

(||wr
m − wq

m||2 +
2b∑

n=1

V(wr
n,m)), (10)

where wr
m, wq

m, wr
n,m represent the real value and quantized value of weights in module m, and real value

weights in the quantization bin n, respectively. || · ||2 computes the L2-norm and V(·) computes variance for
all quantization bins with more than two elements. Unlike the previous weight regularization (Chmiel et al.,
2020) applied in quantization which only considers the global weight distribution, we minimize the global
quantization error and local distribution variance in a specific quantization bin. Ideally, the distribution of
the weights in a quantization bin is regularized to be a Dirac delta distribution which can largely suppress
the oscillation during training. The final optimization target is L = LKD +λLOBR, where λ is the weighting
coefficient to balance between LKD and LOBR. To make sure that the regularization does not influence the
learning of scale factors at the very early stage of training, we gradually increase the coefficient λ during
training by applying a cosine annealing schedule following Nagel et al. (2022).

5 Experiments

5.1 Experimental Settings

Datasets and Models. The experiments are carried out on the ImageNet-1K dataset (Deng et al., 2009)
and GLUE benchmark (Wang et al., 2018). Our methods are evaluated on DeiT-T (Touvron et al., 2021),
SReT-T (Shen et al., 2021a), and Swin-T/S (Liu et al., 2021a) for ImageNet-1K, and BERT-base (Devlin
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Table 4: Comparison with previous quantization methods on ImageNet-1K. “Bit-width (W/A)” denotes the
bitwidth for weights and activations. “Epochs” denote the total training epochs. The “Baseline” method we
use is LSQ+ (Bhalgat et al., 2020).

Network QAT Method Epochs Apply KD? Bit-width Top-1 Bit-width Top-1 Bit-width Top-1(W/A) (W/A) (W/A)

Q-ViT (Li et al., 2022b) 300 ✓ 4/4† 72.79 3/3† 69.62 - -
GPUSQ-ViT (Yu et al., 2023) 300 ✓ 4/4 71.70 - - - -

DeiT-T PackQViT (Dong et al., 2023) 300 ✓ 4/4 72.70 - - - -
(FP Top-1: 73.8) Baseline 300 4/4 72.62 3/3 68.22 2/2 54.45

Baseline + KD 300 ✓ 4/4 73.56 3/3 69.83 2/2 56.29
Ours 150 ✓ 4/4 74.71 (↑1.15) 3/3 71.22 (↑1.39) 2/2 59.73 (↑3.44)

SReT-T Baseline 300 4/4 75.65 3/3 72.59 2/2 62.11

(FP Top-1: 75.8) Baseline + KD 300 ✓ 4/4 76.13 3/3 74.20 2/2 64.98
Ours 150 ✓ 4/4 76.99 (↑0.86) 3/3 75.40 (↑1.20) 2/2 67.53 (↑2.55)

Q-ViT (Li et al., 2022b) 300 ✓ 4/4† 80.59 3/3† 79.45 - -
GPUSQ-ViT (Yu et al., 2023) 300 ✓ 4/4 80.70 - - - -

Swin-T PackQViT (Dong et al., 2023) 300 ✓ 4/4 81.50 - - - -

(FP Top-1: 81.0) Li et al. (Li et al., 2022a) 300 ✓ 4/4 82.10 3/3 80.57 2/2 74.31
Baseline 300 4/4 80.61 3/3 79.07 2/2 70.21

Baseline + KD 300 ✓ 4/4 81.37 3/3 80.01 2/2 73.50
Ours 150 ✓ 4/4 82.42 (↑0.32) 3/3 81.37 (↑0.80) 2/2 77.66 (↑3.35)

GPUSQ-ViT (Yu et al., 2023) 300 ✓ 4/4 83.20 - - - -

Swin-S PackQViT (Dong et al., 2023) 300 ✓ 4/4 82.80 - - - -

(FP Top-1: 83.5) Baseline 300 4/4 82.45 3/3 80.57 2/2 72.38
Baseline + KD 300 ✓ 4/4 82.77 3/3 81.34 2/2 73.01

Ours 150 ✓ 4/4 83.66 (↑0.46) 3/3 82.70 (↑1.36) 2/2 78.11 (↑5.10)
† average bitwidth for mixed-precision quantization

et al., 2018) for GLUE. For ViTs, due to the fact that the first (patch embedding) and the last (classification)
layer are more sensitive to perturbation compared to intermediate layers, we fix their bitwidth to 8-bit
following previous work (Yang & Jin, 2021).

Training Details. We adopt real-value pre-trained weights as initialization. The full-precision ViTs are
trained from scratch, and the full-precision BERT for various tasks are obtained from public repository1. Our
baseline quantization method is LSQ+ (Bhalgat et al., 2020). Details of all hyper-parameters and settings
are shown in Table 10 and Table 11 in the Appendix.

5.2 Comparison with State-of-the-Art Methods

NLP Tasks. Table 3 compares our variation-aware solution with existing methods for BERT-base on the
GLUE benchmark under binarization (1-bit) setting. The binarized BERT-base with our solution establishes
a new state-of-the-art across most tasks in GLUE and improves the average accuracy by 1.4% compared to
BiT (Liu et al., 2022).

Vision Tasks. Table 4 fairly compares our variation-aware solution with existing methods for DeiT-T,
SReT-T, Swin-T, and Swin-S on the ImageNet-1K dataset. We also report the results of baseline LSQ+ with
knowledge distillation using the same teacher model to show that performance improvement cannot simply
be summarized as learning from the teacher model. Compared with the FP model, our 4-bit quantized DeiT-
T achieves 74.71% Top-1 accuracy with a 0.96% absolute gain. Compared with the previous quantization
methods, our model also demonstrates remarkable improvement. For example, our 4-bit Swin-T achieves
a Top-1 accuracy of 82.42%, which has an absolute gain of 2.83% compared to Q-ViT (Li et al., 2022b).
Our method is especially effective for low-precision 2-bit quantization, as our 2-bit Swin-T and Swin-S yields
77.66% and 78.11% Top-1 accuracy, which is 3.35% and 5.1% higher than previous state-of-the-art methods.

Training Efficiency. Our methods show better training efficiency on ViTs with the help of a multi-crop
knowledge distillation scheme. The better quantization scheme and regularization also help our models
converge faster than previous methods with the same training configurations. We only train our models
with 150 epochs, sufficient to outperform previous methods with 300 epochs shown in Table 4. The total
training time for our DeiT-T with 4 NVIDIA A100 GPUs is 57.3 hours, significantly lower than baseline
methods shown in Table 5.

1https://huggingface.co/textattack/bert-base-uncased-{}
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Table 5: Comparison of different teacher models of knowledge distillation for our 4-bit quantized DeiT-T on
ImageNet-1K. “Time” indicates the GPU hours of the training process on 4 NVIDIA A100 GPUs.

Method Teacher Top-1 Acc Top-5 Acc Time (h)
Ours w/o KD Ground Truth 72.62 91.19 -

Ours w/ Vanilla KD ResNet152 (He et al., 2016) 73.56 91.52 143.5
ResNet152 (He et al., 2016) 74.26 91.81

Ours w/MCKD BEiT-L (Bao et al., 2021) 74.49 91.92 57.3
EfficientNet-L2 (Xie et al., 2020) 74.71 92.02

5.3 Ablation Study

We first perform an overall ablation experiment on 4-bit quantized DeiT-T and 2-bit Swin-T to look into
the effectiveness of all proposed modules. The results are shown in Table 6. From the average Standard
Deviation of the Absolute Mean (SDAM) and accuracy results, we can see that each module helps alleviate
the variation influence and improve the performance of quantized transformers. The following subsections
provide a more detailed ablation study of each module.

Table 6: Overall ablation experiment on 4-bit quantized DeiT-T and 2-bit Swin-T. For the experiment “Ours
w/o MCKD”, the vanilla knowledge distillation with a ResNet152 teacher is applied.

Method DeiT-T Swin-T
Top-1 Acc Top-5 Acc SDAM Top-1 Acc Top-5 Acc SDAM

Ours 74.71 92.02 2.13e-2 77.66 93.68 2.97e-2
Ours w/o Multi-crop Knowledge Distillation 73.56 91.52 2.30e-2 74.15 92.20 2.95e-2
Ours w/o Module-dependent Quantization 73.79 91.54 7.15e-2 74.80 92.33 8.89e-2

Ours w/o Oscillation-aware Bin Regularization 74.22 91.41 3.79e-2 75.91 93.05 6.13e-2

Multi-crop Knowledge Distillation for ViTs. Table 5 compares the Top-1 accuracy of 4-bit quantized
DeiT-T without knowledge distillation, with vanilla KD, and with our multi-crop KD of different teachers.
The results demonstrate an improvement in both accuracy and efficiency. The teacher model of higher
accuracy can improve the performance of student ViTs regardless of architecture. The training time can also
be reduced as the soft label is extracted before the training. The time in Table 5 does not include the time
for soft label generation, which can be ignored when we have to apply QAT on different models and settings.
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(b) Ours (Module-dependent)

Figure 5: Loss landscape visualization of the 4-bit quantized
Swin-T using the baseline (LSQ+ quantization) method and our
module-dependent quantization method.

Module-dependent Quantization.
The module-dependent quantization ap-
plies a finer-grained quantization scheme
at the module level and scales the scale
factors’ gradients to ensure the scale
factor update is not influenced by the
variation in transformers. We visualize
the loss landscape showing the smooth-
ness of optimization following Li et al.
(2018) shown in Figure 6b. Compared to
the baseline quantized model, the more
centralized and smoother loss landscape
reflects that the proposed quantiza-
tion scheme substantially improves the
training stability and efficiency.

Oscillation-aware Bin Regulariza-
tion. To better know how our oscillation-aware bin regularization can help alleviate the oscillation, we
quantify the degree of oscillation during training by measuring the frequency of this phenomenon over time.

11



Published in Transactions on Machine Learning Research (10/2024)

We define the oscillation as occurring at iteration t when the quantized integer value changes and the direction
of the update in integer value also changes. This can be formulated as:

xint
t ̸= xint

t−1, sign(∆t
int) ̸= sign(∆tprev

int ), (11)

where xint
t = ⌊clip(xr/s,−QN , QP )⌉ is the integer value of input real-value xr following the notion in Equa-

tion 5. The update ∆t
int = xint

t − xint
t−1 and tprev is the iteration of last integer value change. Then the

frequency of oscillation is measured using an exponential moving average (EMA):

f t = m · ot + (1−m) · f t−1, where ot = (xint
t ̸= xint

t−1) ∧ (sign(∆t
int) ̸= sign(∆tprev

int )). (12)

We define the weights as oscillating weights at iteration t as f t >0.005. The Top-1 Accuracy of 3-bit
quantized SReT-T and the percentage of oscillating weights are shown in Table 7. From the results, we
can see a clear negative correlation between weight oscillation percentage and model performance. The
proposed Oscillation-aware Bin Regularization (OBR) with a gradually increasing coefficient helps stabilize
the training to achieve higher model accuracy.

Table 7: Comparison of 3-bit quantized SReT-T using different regularization. “Oscillation” indicates the
percentage of weights that are oscillated at the last iteration of training.

Regularization Top-1 Acc Top-5 Acc Oscillation (%)
Baseline 75.02 92.31 7.33

KURE (Chmiel et al., 2020) 74.85 92.24 8.12

Ours
λ=cos(0,1) 75.06 92.32 0.23
λ=cos(0,0.1) 75.40 92.49 0.78
λ=cos(0,0.01) 75.11 92.36 4.36

5.4 Hardware Cost Comparison

One direct solution to solve the variation in the quantization sensitivity of different modules is mixed-
precision quantization (MPQ), which assigns various bitwidth to different components. However, searching
for or learning the optimal bitwidth assignment is difficult and time-consuming, especially for QAT. Among
the existing Transformer MPQ methods Liu et al. (2021c); Li et al. (2022b); Xiao et al. (2023b); Ranjan &
Savakis (2024); Xu et al. (2024), Q-ViT Li et al. (2022b) is the only work that applies mixed-precision to
QAT while the remaining all targets PTQ. Under the same average bitwidth setting, our module-dependent
scaling scheme is a more efficient solution to the quantization sensitivity variation than MPQ.

To quantitatively examine the inference efficiency of our method, We compare the hardware utilization of
the Q-ViT Li et al. (2022b) MPQ solution with ours, including multiply-accumulate (MAC) units in terms of
area and power dissipation. We implemented the MAC operator by Verilog HDL and utilized Cadence Genus
to obtain the synthesized area under TSMC 40nm technology and 0.5GHz clock frequency. Specifically, the
bitwidth of the partial sum is set to 32bit in case of overflow. The results are listed in Table 8, where the
MPQ approach imposes significant overhead in terms of hardware costs compared to our efficient module-
dependent scheme. The details of mixed-precision settings are listed in the Appendix.

Table 8: Hardware utilization comparison with MPQ methods for 4/4-bit DeiT-T quantization.

Quantization Method Area(µm2) Power(mW)
Ours (Module-dependent Quantization) 608.404 1.589

Q-ViT Li et al. (2022b) (Mixed-precision Quantization) 893.642 1.812
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6 Conclusion

In this work, we have provided a comprehensive understanding of the complexities associated with transform-
ers’ low-bit quantization. Through an in-depth analysis of quantization sensitivity, contrasting ConvNets
with transformers, and monitoring the weight oscillation during training, we elucidate that the variation
behavior inherent to transformers poses considerable challenges to low-bit quantization-aware training. To
address the challenges presented by variation, we explore the best practice and propose an effective variation-
aware quantization technique, including module-dependent quantization and scaling, variation-aware knowl-
edge distillation, and oscillation-aware bin regularization. Through extensive demonstrations, we have shown
that our proposed solution to reduce variation in transformers results in state-of-the-art performance across
various transformer architectures on both vision and language tasks and significantly improves efficiency.

Acknowledgments

This research was supported by National Natural Science Foundation of China/HKSAR Research Grants
Council Joint Research Scheme under Grant N_HKUST627/20 and by HKSAR RGC General Research
Fund (GRF) #16208823.

References
Samira Abnar and Willem H Zuidema. Quantifying attention flow in transformers. In ACL, 2020.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Arash Ardakani. Partially-random initialization: A smoking gun for binarization hypothesis of bert. In
Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 2603–2612, 2022.

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid. Vivit: A
video vision transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 6836–6846, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin King.
Binarybert: Pushing the limit of bert quantization. In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 4334–4348, 2021.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers. In
International Conference on Learning Representations, 2021.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak. Lsq+: Improving low-
bit quantization through learnable offsets and better initialization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 696–697, 2020.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Removing outliers
by helping attention heads do nothing. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

13



Published in Transactions on Machine Learning Research (10/2024)

Brian Chmiel, Ron Banner, Gil Shomron, Yury Nahshan, Alex Bronstein, Uri Weiser, et al. Robust quan-
tization: One model to rule them all. Advances in neural information processing systems, 33:5308–5317,
2020.

Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4794–4802, 2019.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, An-
dreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision
transformers to 22 billion parameters. In International Conference on Machine Learning, pp. 7480–7512.
PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Shangzhe Di, Zeren Jiang, Si Liu, Zhaokai Wang, Leyan Zhu, Zexin He, Hongming Liu, and Shuicheng Yan.
Video background music generation with controllable music transformer. In Proceedings of the 29th ACM
International Conference on Multimedia, pp. 2037–2045, 2021.

Yifu Ding, Haotong Qin, Qinghua Yan, Zhenhua Chai, Junjie Liu, Xiaolin Wei, and Xianglong Liu. Towards
accurate post-training quantization for vision transformer. In Proceedings of the 30th ACM International
Conference on Multimedia, pp. 5380–5388, 2022.

Peiyan Dong, Lei Lu, Chao Wu, Cheng Lyu, Geng Yuan, Hao Tang, and Yanzhi Wang. Packqvit: Faster
sub-8-bit vision transformers via full and packed quantization on the mobile. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and
Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped windows. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12124–12134,
2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. In International Conference on Learning Rep-
resentations, 2020.

Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Georgios Georgiadis, and Joseph H Hassoun.
Post-training piecewise linear quantization for deep neural networks. In European Conference on Computer
Vision, pp. 69–86. Springer, 2020.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quan-
tization for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2023a.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization for gen-
erative pre-trained transformers. In The Eleventh International Conference on Learning Representations,
2023b.

Shengyi Gao, Zhe Chen, Guo Chen, Wenhai Wang, and Tong Lu. Avsegformer: Audio-visual segmentation
with transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 12155–
12163, 2024.

14



Published in Transactions on Machine Learning Research (10/2024)

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single path
one-shot neural architecture search with uniform sampling. In European Conference on Computer Vision,
pp. 544–560. Springer, 2020.

Ali Hatamizadeh, Hongxu Yin, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. Global context vision
transformers. In International Conference on Machine Learning, pp. 12633–12646. PMLR, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Xijie Huang, Zhiqiang Shen, Shichao Li, Zechun Liu, Hu Xianghong, Jeffry Wicaksana, Eric Xing, and
Kwang-Ting Cheng. Sdq: Stochastic differentiable quantization with mixed precision. In International
Conference on Machine Learning, pp. 9295–9309. PMLR, 2022.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th annual international symposium on computer architecture, pp.
1–12, 2017.

Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and Andreas Moshovos. Stripes: Bit-
serial deep neural network computing. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1–12. IEEE, 2016.

Jangho Kim, Jayeon Yoo, Yeji Song, KiYoon Yoo, and Nojun Kwak. Finding efficient pruned network
via refined gradients for pruned weights. In Proceedings of the 31st ACM International Conference on
Multimedia, pp. 9003–9011, 2023.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023.

Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. Flexround: Learnable rounding based on
element-wise division for post-training quantization. In International Conference on Machine Learning,
pp. 18913–18939. PMLR, 2023.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. In Neural Information Processing Systems, 2018.

Kexin Li, Zongxin Yang, Lei Chen, Yi Yang, and Jun Xiao. Catr: Combinatorial-dependence audio-queried
transformer for audio-visual video segmentation. In Proceedings of the 31st ACM International Conference
on Multimedia, pp. 1485–1494, 2023a.

Yanjing Li, Sheng Xu, Baochang Zhang, Xianbin Cao, Peng Gao, and Guodong Guo. Q-vit: Accurate and
fully quantized low-bit vision transformer. arXiv preprint arXiv:2210.06707, 2022a.

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient non-uniform
discretization for neural networks. In International Conference on Learning Representations, 2019.

Zheng Li, Xiang Li, Lingfeng Yang, Borui Zhao, Renjie Song, Lei Luo, Jun Li, and Jian Yang. Curriculum
temperature for knowledge distillation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 1504–1512, 2023b.

15



Published in Transactions on Machine Learning Research (10/2024)

Zhexin Li, Tong Yang, Peisong Wang, and Jian Cheng. Q-vit: Fully differentiable quantization for vision
transformer. arXiv preprint arXiv:2201.07703, 2022b.

Zhikai Li and Qingyi Gu. I-vit: Integer-only quantization for efficient vision transformer inference. arXiv
preprint arXiv:2207.01405, 2022.

Zhikai Li, Mengjuan Chen, Junrui Xiao, and Qingyi Gu. Psaq-vit v2: Towards accurate and general data-free
quantization for vision transformers. arXiv preprint arXiv:2209.05687, 2022c.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-aware
weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978, 2023.

Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang Zhou. Fq-vit: Fully quantized vision trans-
former without retraining. arXiv preprint arXiv:2111.13824, 2021.

Shih-Yang Liu, Zechun Liu, and Kwang-Ting Cheng. Oscillation-free quantization for low-bit vision trans-
formers. In International Conference on Machine Learning, pp. 21813–21824. PMLR, 2023a.

Yijiang Liu, Huanrui Yang, Zhen Dong, Kurt Keutzer, Li Du, and Shanghang Zhang. Noisyquant: Noisy bias-
enhanced post-training activation quantization for vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 20321–20330, 2023b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 10012–10022, 2021a.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian Sun.
Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 3296–3305, 2019b.

Zechun Liu, Zhiqiang Shen, Shichao Li, Koen Helwegen, Dong Huang, and Kwang-Ting Cheng. How do
adam and training strategies help bnns optimization. In International Conference on Machine Learning,
pp. 6936–6946. PMLR, 2021b.

Zechun Liu, Barlas Oguz, Aasish Pappu, Lin Xiao, Scott Yih, Meng Li, Raghuraman Krishnamoorthi, and
Yashar Mehdad. Bit: Robustly binarized multi-distilled transformer. Advances in neural information
processing systems, 35:14303–14316, 2022.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi,
Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware training for
large language models. arXiv preprint arXiv:2305.17888, 2023c.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quantization for
vision transformer. Advances in Neural Information Processing Systems, 34:28092–28103, 2021c.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Proceedings of the IEEE international conference
on computer vision, pp. 2736–2744, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network
pruning. In International Conference on Learning Representations, 2018.

Qian Lou, Feng Guo, Minje Kim, Lantao Liu, and Lei Jiang. Autoq: Automated kernel-wise neural network
quantization. In International Conference on Learning Representations, 2019.

16



Published in Transactions on Machine Learning Research (10/2024)

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. In Advances in Neural Information Processing Systems, 2023.

Aditya K Menon, Ankit Singh Rawat, Sashank Reddi, Seungyeon Kim, and Sanjiv Kumar. A statistical
perspective on distillation. In International Conference on Machine Learning, pp. 7632–7642. PMLR,
2021.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 34, pp. 5191–5198, 2020.

Asit Mishra and Debbie Marr. Apprentice: Using knowledge distillation techniques to improve low-precision
network accuracy. In International Conference on Learning Representations, 2018.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or down?
adaptive rounding for post-training quantization. In International Conference on Machine Learning, pp.
7197–7206. PMLR, 2020.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen, and Tijmen
Blankevoort. A white paper on neural network quantization. arXiv preprint arXiv:2106.08295, 2021.

Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming oscillations
in quantization-aware training. arXiv preprint arXiv:2203.11086, 2022.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3967–3976, 2019.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via
parameters sharing. In International Conference on Machine Learning, pp. 4095–4104. PMLR, 2018.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quantization.
In International Conference on Learning Representations, 2018.

Haotong Qin, Yifu Ding, Mingyuan Zhang, YAN Qinghua, Aishan Liu, Qingqing Dang, Ziwei Liu, and Xian-
glong Liu. Bibert: Accurate fully binarized bert. In International Conference on Learning Representations,
2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 2383–2392, 2016.

Navin Ranjan and Andreas Savakis. Lrp-qvit: Mixed-precision vision transformer quantization via layer-wise
relevance propagation. arXiv preprint arXiv:2401.11243, 2024.

Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas Chandra, and Hadi Es-
maeilzadeh. Bit fusion: Bit-level dynamically composable architecture for accelerating deep neural net-
work. In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), pp.
764–775. IEEE, 2018.

Zhiqiang Shen and Eric Xing. A fast knowledge distillation framework for visual recognition. arXiv preprint
arXiv:2112.01528, 2021.

Zhiqiang Shen, Zechun Liu, and Eric Xing. Sliced recursive transformer. arXiv preprint arXiv:2111.05297,
2021a.

Zhiqiang Shen, Zechun Liu, Dejia Xu, Zitian Chen, Kwang-Ting Cheng, and Marios Savvides. Is label
smoothing truly incompatible with knowledge distillation: An empirical study. In International Conference
on Learning Representations, 2021b.

17



Published in Transactions on Machine Learning Research (10/2024)

Chen Tang, Kai Ouyang, Zenghao Chai, Yunpeng Bai, Yuan Meng, Zhi Wang, and Wenwu Zhu. Seam:
Searching transferable mixed-precision quantization policy through large margin regularization. In Pro-
ceedings of the 31st ACM International Conference on Multimedia, pp. 7971–7980, 2023.

Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong. Compression
of generative pre-trained language models via quantization. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4821–4836, 2022.

Jiayi Tian, Chao Fang, Haonan Wang, and Zhongfeng Wang. Bebert: Efficient and robust binary ensemble
bert. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5. IEEE, 2023.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International Conference
on Machine Learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1365–1374, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue: A multi-
task benchmark and analysis platform for natural language understanding. In International Conference
on Learning Representations, 2018.

Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. Towards accurate post-training network quantiza-
tion via bit-split and stitching. In International Conference on Machine Learning, pp. 9847–9856. PMLR,
2020.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei Yu, and
Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language models. Advances
in Neural Information Processing Systems, 35:17402–17414, 2022.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and Xianglong Liu.
Outlier suppression+: Accurate quantization of large language models by equivalent and optimal shifting
and scaling. arXiv preprint arXiv:2304.09145, 2023.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introduc-
ing convolutions to vision transformers. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 22–31, 2021.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. In International Conference on Machine
Learning, pp. 38087–38099. PMLR, 2023a.

Junrui Xiao, Zhikai Li, Lianwei Yang, and Qingyi Gu. Patch-wise mixed-precision quantization of vision
transformer. In 2023 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE, 2023b.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student improves
imagenet classification. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10687–10698, 2020.

18



Published in Transactions on Machine Learning Research (10/2024)

Ke Xu, Zhongcheng Li, Shanshan Wang, and Xingyi Zhang. Ptmq: Post-training multi-bit quantization
of neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
16193–16201, 2024.

Sheng Xu, Yanjing Li, Teli Ma, Mingbao Lin, Hao Dong, Baochang Zhang, Peng Gao, and Jinhu Lu. Resilient
binary neural network. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
10620–10628, 2023.

Linjie Yang and Qing Jin. Fracbits: Mixed precision quantization via fractional bit-widths. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10612–10620, 2021.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet: Gen-
eralized autoregressive pretraining for language understanding. Advances in neural information processing
systems, 32, 2019.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He. Zero-
quant: Efficient and affordable post-training quantization for large-scale transformers. Advances in Neural
Information Processing Systems, 35:27168–27183, 2022.

Chong Yu, Tao Chen, Zhongxue Gan, and Jiayuan Fan. Boost vision transformer with gpu-friendly spar-
sity and quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 22658–22668, 2023.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation via label
smoothing regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3903–3911, 2020.

Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. Ptq4vit: Post-training quantization
framework for vision transformers. arXiv preprint arXiv:2111.12293, 2021.

Dong Zhang, Hanwang Zhang, Jinhui Tang, Xian-Sheng Hua, and Qianru Sun. Causal intervention for
weakly-supervised semantic segmentation. Advances in Neural Information Processing Systems, 33:655–
666, 2020a.

Dong Zhang, Hanwang Zhang, Jinhui Tang, Meng Wang, Xiansheng Hua, and Qianru Sun. Feature pyramid
transformer. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXVIII 16, pp. 323–339. Springer, 2020b.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng
Feng, Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation from a sequence-to-sequence
perspective with transformers. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 6881–6890, 2021.

Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou, Guoli Wang, Junsong Yuan, and Qian Zhang. Rethink-
ing soft labels for knowledge distillation: A bias–variance tradeoff perspective. In International Conference
on Learning Representations, 2020.

19



Published in Transactions on Machine Learning Research (10/2024)

Appendix

A Additional Quantization Sensitivity Analysis

In our paper, the “leave-one-out quantization” experiments are carried out to verify the quantization sen-
sitivity. By quantizing every module except one, a more precise estimation of the real sensitivity of each
module to quantization can be achieved. In practical quantization-aware training situations, most modules
operate with low precision and are interconnected. Additionally, we provide another form of “quantize-one-
module-only” analysis that only quantizes specific parameters. The results are listed in Table 9, which also
proves that MHSA is the most sensitive module to the quantization perturbation.

Table 9: Quantize-one-module-only analysis for various components in DeiT-T on ImageNet-1K. The
Para(%) stands for the percentage of parameters that are quantized among all trainable parameters.

Quantization Target Top-1 Acc(%) Top-5 Acc(%) Para(%)
None (FP Model) 73.75 91.87 0
All (Baseline 3-bit) 68.22 88.56 100
FFN only 73.51 91.72 62.1
MHSA only 72.90 91.29 31.1
query in MHSA only 73.32 91.55 7.8
key in MHSA only 73.38 91.53 7.8
value in MHSA only 73.18 91.40 7.8

B Training Details and Dynamics

When training BERT-base across different datasets in the GLUE benchmark, most hyper-parameters are the
same. These shared settings include weight decay of 1e-2, warmup proportion of full epochs 10%, linear lr
scheduler, and Adam optimizer. No data augmentation is applied, and the teacher model for the knowledge
distillation is the full-precision pre-trained model of different tasks. For the training epochs, max sequence
length, batch size, and learning rate, the settings for different tasks are listed in Table 10.

Table 10: Detailed hyper-parameters and training scheme for different tasks in GLUE benchmark.

Tasks MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE
Epoch 6 6 20 40 200 40 40 200

Max Seq Length 128 128 128 64 64 128 128 128
Batch Size 16 32 16 16 64 16 8 32
Initial lr 2e-4 2e-4 2e-4 2e-4 5e-4 5e-4 5e-4 5e-4

When comparing the results of ViT quantization using our methods with other methods in the experiments,
we use the training settings and hyper-parameters shown in Table 11. Generally, most of these hyper-
parameters and training settings are the same across different ViT models and different bitwidths settings.
We found that applying the proposed Oscillation-aware Bin Regularization (OBR) is more effective for low-bit
quantization, including 3-bit and 2-bit. The different performance of OBR among different bitwidth is mainly
because penalizing the oscillation during QAT will harm the normal optimization of latent weights, which
is more prominent in higher bitwidth. Accordingly, we only apply OBR to the 2-bit and 3-bit quantization.

Fig. 6 compares the training loss and Top-1 test accuracy for 4-bit quantized DeiT-T using our method and
LSQ+ (Bhalgat et al., 2020). The core advantages of both effectiveness and efficiency are shown here. In
terms of effectiveness, our method can achieve higher Top-1 accuracy and has a more stable loss scheme.
For efficiency, our method helps the model converge faster, with only half of the total training epochs.
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Table 11: Detailed hyper-parameters and training scheme for different ViT architectures.

Network DeiT-T SReT-T Swin-T
Epoch 150 150 150

Batch Size 1024 640 512
Teacher EfficientNet-L2 (Xie et al., 2020) EfficientNet-L2 EfficientNet-L2

Optimizer AdamW AdamW AdamW
Initial lr 5e-4 5e-4 5e-4

lr scheduler Consine Consine Consine
Min lr 1e-5 1e-5 5e-6

Warmup lr 1e-6 1e-6 1e-6
Weight decay 1e-4 1e-4 1e-4

Warmup epochs 5 5 5
Random Resize & Crop ✓ ✓ ✓
Random Horizontal Flip ✓ ✓ ✓

Color jittering - - -
Number of Crops 4 4 4
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Figure 6: Training dynamics of 4-bit quantized DeiT-T with our methods and LSQ+ (Bhalgat et al., 2020).

C Generalizability of the Observations

In Section 4.3, we reveal that the weight and activation distribution outliers will potentially lead to an
oscillation phenomenon in QAT, which harms the training stability and quantized model performance. In
this section, we further generalize the research target of oscillation phenomenon to various transformer-based
models and conduct a finer granularity analysis on the oscillation of different layers. We use the quantitative
“oscillation percentage” in QAT defined in Section 4.3 to investigate more transformer-based models and
dive into specific layers. The results of the average “oscillation percentage” of DeiT-T (W4A4, W3A3),
Swin-T (W2A2), and BERT-base (W1A1E1) are listed in Table 12. We also include ResNet-18 (W4A4)
and MobileNetV2 (W2A2) for comparison. The QAT methods are LSQ and all models are initialized from
full-precision pretrained models. As can be seen from the results, all transformer-based models suffer from
this weight oscillation phenomenon, while it is not observed in ConvNets. These results further prove that
weight oscillation phenomenon is a common challenge in transformer QAT.

We also include a per-layer oscillation analysis of Swin-T (W2A2) in Table 13, showing that oscillation
phenomenon occurs across all linear weight layers in transformers. Another finding in this per-layer oscillation
analysis is that weights in self-attention have a higher oscillation ratio compared to MLP, which corresponds
to our conclusion that MHSA is more sensitive to quantization compared to other components.
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Table 12: Weight oscillation phenomenon in various transformers and ConvNets.

Model Bit Width Oscillation Percentage (%)
DeiT-T W4A4 6.69
DeiT-T W3A3 6.97
Swin-T W2A2 5.13

BERT-base W1A1E1 4.31
ResNet-18 W4A4 0.13

MobileNetV2 W2A2 0.20

Table 13: Weight oscillation phenomenon in various transformers and ConvNets.

Layer mlp.fc1 mlp.fc2 attn.qkv attn.proj
Oscillation Percentage (%) 2.17 2.29 7.64 7.11

D Attention Map Visualization on ViTs

To demonstrate how our quantization approach preserves the representational capacity of ViT models, we
illustrate the attention map of the quantized Swin-T following (Dosovitskiy et al., 2020) and (Abnar &
Zuidema, 2020). We fuse the attention heads utilizing maximum operators and exclude low attention pixels
to better accentuate the prominent object within the image. As shown in Figure 7, our quantized Swin-
T exhibits superior representational capacity by maintaining a more relative ranking within the attention
map. This distinction becomes more pronounced when the ViT model is quantized to 3-bit and 2-bit
representations. For the baseline LSQ+ quantization (Bhalgat et al., 2020), the attention substantially
deteriorates and distributes uniformly across the given input when quantized to extremely low bit-widths.
However, our 2-bit quantized Swin-T is still capable of segmenting the salient object region effectively.

Full Precision

Our Quantized Swin-T LSQ+ Quantized Swin-T

4-bit 3-bit 2-bit 4-bit 3-bit 2-bitInput Image

Figure 7: The attention map of quantized Swin-T using our method and LSQ+ (Bhalgat et al., 2020).

E Hardware Utilization Experiments Detail

The unit area and power dissipation of multiply-accumulate (MAC) units under different bitwidth settings
are listed in Table 14. For mixed-precision quantization schemes such as Q-ViT Li et al. (2022b), the final
area should be the maximum area for all bitwidth combinations, and the power dissipation is the weighted
average over different settings. Considering the non-linear growth for the power dissipation regarding the
bitwidth, a single-precision quantization scheme is better in terms of efficiency than mixed-precision under
the same average bitwidth. In addition, most existing mixed-precision accelerators only support power-of-
two-bits arithmetic, which poses another challenge for optimal assignment searching or learning.
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Table 14: Detailed multiply-accumulate (MAC) unit area and power dissipation of different bitwidth.

Type Area(µm2) Power(mW) Type Area(µm2) Power(mW)
INT2×INT2 539.960 0.86949 INT2×INT3 551.074 0.95939
INT2×INT4 562.363 1.13939 INT2×INT5 571.360 1.30085
INT2×INT6 581.062 1.41680 INT2×INT7 597.996 1.59534
INT2×INT8 605.405 1.75574 INT3×INT3 571.183 1.30043
INT3×INT4 589.882 1.42975 INT3×INT5 602.053 1.57912
INT3×INT6 621.634 1.69105 INT3×INT7 638.744 1.86085
INT3×INT8 656.737 1.99110 INT4×INT4 608.404 1.58901
INT4×INT5 635.569 1.70870 INT4×INT6 660.089 1.85997
INT4×INT7 677.200 1.94706 INT4×INT8 702.072 2.08973
INT5×INT5 664.499 1.86345 INT5×INT6 695.545 2.00091
INT5×INT7 718.301 2.14442 INT5×INT8 749.347 2.24832
INT6×INT6 723.593 2.12107 INT6×INT7 770.515 2.22367
INT6×INT8 805.090 2.41882 INT7×INT7 817.967 2.43294
INT7×INT8 864.889 2.52819 INT8×INT8 893.642 2.67960

F Overhead of Module-dependent Quantization

Applying quantization-aware training on finer granularity will introduce computation overhead. However, our
module-depend quantization (MDQ) only performs per-head-tensor quantization instead of finer granularity,
such as per-token or per-channel quantization. This per-head-tensor quantization scheme only introduces
minimal trainable parameters (scaling factors) into the training. In addition, the MDQ is only applied to
MHSA, and we use layer-wise quantization on feed-forward networks. Table 15 shows the GPU memory
consumption and the real training time per epoch on a single NVIDIA 80G A100 GPU with a batch size
of 32 on a Swin-T. In addition, the proposed fine-grained quantization scheme helps QAT converge faster.
With module-dependent quantization with only 150 training epochs, we can outperform vanilla layer-wise
LSQ with 300 epochs. Considering both the performance improvement and faster convergence of QAT, we
believe the proposed module-dependent quantization is both efficient and effective.

Table 15: GPU memory consumption and training time per epoch of Swin-T with on a single NVIDIA 80G
A100 GPU.

Quantization Scheme GPU Memory Training time
Layer-wise LSQ 16.2GB 40min

Module-dependent Quantization 16.4GB 43min

G Generalization to ConvNets

One original motivation for this research is to answer the question: Why can’t we directly apply the ConvNet
QAT method to Transformers? This question further leads to other motivations listed in our introduction
section. We believe the proposed techniques in this work are novel solutions to the specific variation challenges
we located in transformer-based models and will be hard to generalize to ConvNet QAT. More concretely:

• Module-dependent Quantization (MDQ) applies fine-grained quantization by assigning different scale
factors to tensors in various heads of MHSA. There is no such module in ConvNets. Therefore, we can
not directly apply our MDQ to ConvNet QAT. In addition, previous work on ConvNets Nagel et al.
(2021) found that applying channel-wise quantization does not always lead to better performance
than layer-wise quantization.

• Multi-crop Knowledge Distillation (MCKD) targets accelerating transformer QAT’s convergence.
We also agree that this technique will help improve ConvNet QAT. However, MCKD is less useful
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for ConvNet mainly because the training of ConvNets is more stabilized, and improving the training
stability by reducing the minibatch variation with the better soft label will not significantly improve
the performance.

• Oscillation-aware Bin Regularization (OBQ) is specifically designed for transformers based on com-
paring the weight and activation distribution. The OBQ will not work on ConvNet QAT mainly
because weight oscillation and activation outliers are minor challenges in ConvNet architectures.

H Additional Discussion with Related Research

Distribution Outliers Our analysis of distribution outliers is different from that of SmoothQuant Xiao et al.
(2023a). We compare the distribution of transformers to ConvNets and quantify this distribution outlier
by the Standard Deviation of the Absolute Mean (SDAM). In contrast, SmoothQuant solely investigates
how weights and activations are distributed in LLM and only gives qualitative analysis. In addition, our
work targets quantization-aware training (QAT) that could eliminate these outliers by updating weights
during gradient-based training. SmoothQuant researches post-training quantization (PTQ), which does not
update the model. This further leads to different solutions for our multi-crop knowledge distillation and
re-parameterization in SmoothQuant.

Oscillation OFQ Liu et al. (2023a) is one research also investigating the training instability of vision
transformer. The solutions in Liu et al. (2023a) are the statistical weight quantization (StatsQ) scheme,
confidence-guided annealing that freezes the weights, and query-key reparameterization. No solution in this
work is similar to our Oscillation-aware Bin Regularization (OBQ), which is simple and effective. In addition,
oscillation is only one part of the challenges faced in transformer quantization, and our research provides
a more comprehensive analysis, including other variations and performance on transformers for language
tasks.

Quantization Sensitivity and Granularity While previous research Yang & Jin (2021); Lou et al. (2019)
on ConvNet quantization has discussed the granularity of quantization, we would like to highlight that com-
ponents in transformers are very different from ConvNets. While ConvNet basically consists of similar conv
and linear layers, transformer-based models comprise more heterogeneous components with diverging char-
acteristics. More concretely, the head-wise quantization in this work is the unique quantization granularity
designed for multi-head self-attention modules in transformers, and this head-wise quantization can not be
applied to ConvNets. GPTQ Frantar et al. (2023a) is another work exploring the finer-grained quantiza-
tion for LLMs. While GPTQ Frantar et al. (2023a) employs finer-grain quantization for PTQ, our analysis
and solution are designed for QAT. Considering the trainable parameter overhead for the learnable scale
and bias in LSQ Bhalgat et al. (2020), the finer quantization granularity used in LLM PTQ, such as per-
token in GPTQ and per-channel quantization, are impractical in transformer QAT. Therefore, the head-wise
quantization in this research achieves the optimal trade-off between efficiency and performance.
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