
IT3: Idempotent Test-Time Training

Nikita Durasov * 1 Assaf Shocher * 2 Doruk Oner 3 Gal Chechik 2 Alexei A. Efros 4 Pascal Fua 1

Abstract

Deep learning models often struggle when de-
ployed in real-world settings due to distribution
shifts between training and test data. While ex-
isting approaches like domain adaptation and
test-time training (TTT) offer partial solutions,
they typically require additional data or domain-
specific auxiliary tasks. We present Idempotent
Test-Time Training (IT3), a novel approach that
enables on-the-fly adaptation to distribution shifts
using only the current test instance, without any
auxiliary task design. Our key insight is that
enforcing idempotence—where repeated appli-
cations of a function yield the same result—can
effectively replace domain-specific auxiliary tasks
used in previous TTT methods. We theoretically
connect idempotence to prediction confidence and
demonstrate that minimizing the distance between
successive applications of our model during in-
ference leads to improved out-of-distribution per-
formance. Extensive experiments across diverse
domains (including image classification, aerody-
namics prediction, and aerial segmentation) and
architectures (MLPs, CNNs, GNNs) show that
IT3 consistently outperforms existing approaches
while being simpler and more widely applicable.
Our results suggest that idempotence provides a
universal principle for test-time adaptation that
generalizes across domains and architectures.

poster / code / video / web

1. Introduction
Supervised learning methods, while powerful, typically as-
sume that training and test data come from the same distri-
bution. Unfortunately, this is rarely true in practice. Data

This work was supported in part by the Swiss National Sci-
ence Foundation. *Equal contribution 1CVLAB, EPFL 2NVIDIA
3NeuraVision Lab, Bilkent University 4UC Berkeley. Correspon-
dence to: Nikita Durasov <nikita.durasov@nvidia.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

encountered by systems operating in the real world often
differs substantially from what they were trained on due
to data distribution shifts over time or other changes in the
environment. This inevitably degrades performance, even in
state-of-the-art models (Recht et al., 2018; Hendrycks et al.,
2021; Yao et al., 2022). Machine learning systems used in
production not only need to adapt to distribution shifts but
also must do so on-the-fly using very limited data.

Thus, in this work, we focus on adapting to distribution
shifts on-the-fly using only the current test instance or batch,
without access to any additional labeled or unlabeled data
during inference. During training, the model only has access
to the base distribution training data, without any knowledge
of the test distribution, which may be different.

Adversarial robustness and domain adaptation address re-
lated challenges. However, they typically require additional
data either during training or inference, and sometimes rely
on specific assumptions about the nature of the shift. While
effective when such additional knowledge is available, they
are not designed for immediate, instance-level adaptation
and are not applicable in the scenario we envision. Test-
Time Training (TTT) (Sun et al., 2020) offers a promis-
ing alternative by adapting the model during inference by
performing an auxiliary self-supervised task on each test
sample. This enables the model to handle corrupted and
Out-of-Distribution (OOD) data using only the current test
instance or batch, without access to anything else. However,
TTT requires performing an auxiliary task specific to the
data modality, such as orientation prediction or inpainting
for image data (Gandelsman et al., 2022). And defining an
appropriate auxiliary task is not straightforward in general.

In this paper, we argue that enforcing idempotence can
profitably replace the auxiliary tasks in TTT and yields
an approach we dub IT3 that is a versatile and powerful
while generalizing well across domains and architectures.

More specifically, let f be a deep network that takes as input
a vector x and a second auxiliary variable that can either
be the ground truth label y corresponding to x or a neutral
uninformative signal 0. In (Durasov et al., 2024b), it was
shown that if such a network is trained so that f(x,0) =
f(x,y) = y, then at test time the distance ||f(x, f(x,0))−
f(x,0)|| correlates strongly with the prediction error. What
if, at test time, we could actively minimize this distance

1

https://icml.cc/virtual/2025/poster/45551
https://github.com/nikitadurasov/ittt
https://nikitadurasov.github.io/projects/ittt/video.html
https://nikitadurasov.github.io/projects/ittt/

IT³: Idempotent Test-Time Training

Figure 1. Idempotent Test-Time Training (IT3) approach. During training (left), the model fθ is trained to predict the label y with or
without y given to it as input. At test time (right), when given a corrupted input, the model is sequentially applied. It then briefly trains
with the objective of making fθ(x, ·) to be idempotent using only the current test input.

whenever we encounter an OOD instance? Could we “pull it”
into the distribution? IT3 uses this distance as a loss for TTT
sessions. Unfolding y0, y1 we obtain: ||f(x, f(x,0)) −
f(x,0)||. This makes f(x, ·) idempotent. Fortunately, it
has been shown that, while not trivial, training a model to
achieve idempotence is feasible (Shocher et al., 2024). See
further discussion in Appendix B.

This yields a generic method that does not rely on any spe-
cific domain properties. This is in contrast to prior TTT
methods that rely on a domain specific auxiliary task. By
leveraging the universal property of idempotence, IT3 can
adapt OOD test inputs on-the-fly across various domains,
tasks and architectures. This includes image classification
with corruptions, aerodynamic predictions for airfoils and
cars, tabular data with missing information, age prediction
from faces, and large-scale aerial photo segmentation, using
MLPs, CNNs, or GNNs.

2. Related Work
In essence, IT3 relies on idempotence to generalize Test-
Time Training. We briefly review these two fields.

2.1. Test-Time Training (TTT)

The idea of leveraging test data for model adaptation dates
back to methods like transductive learning (Gammer-
man et al., 1998). Early approaches, such as transductive
SVMs (Collobert et al., 2006) and local learning (Bottou &
Vapnik, 1992), aimed to adapt predictions for specific test
samples rather than generalizing across unseen data.

Training neural networks solely on single test instances,
without pre-training, has been demonstrated in the ”deep
internal learning” line of work, for many image enhance-
ment tasks (Shocher et al., 2018; Gandelsman et al., 2019)
and single image generative models (Shocher et al., 2019;
Shaham et al., 2019).

Distribution Shifts: TTT has emerged as a solution to the
problem of generalization under distribution shifts. Using
a pre-trained network and at test-time refining on a single
instance each time. In the foundational work of Sun et al.
(2020), the model is adjusted in real-time by solving an
auxiliary self-supervised task, such as predicting image ro-
tations, on each test sample. This on-the-fly adaptation has
proven good at improving robustness on corrupted and Out-
Of-Distribution (OOD) data. As the self-supervised learning
methods became more efficient (He et al., 2022), they could
be exploited for TTT (Gandelsman et al., 2022). Extensions
such as TTT++ (Liu et al., 2021) require access to the entire
test set. TENT (Wang et al., 2021) adapts during inference
at the batch level, based on batch entropy, but cannot be ap-
plied to single instances or very small batches. Moreover, it
relies on updating the model’s normalization layers, making
it architecture dependent. Another problem that many exist-
ing TTT approaches face is their task dependency, meaning
they are designed to work for a specific data types, which
is almost always image classification. The recent method
ActMAD (Mirza et al., 2023) addresses this limitation by
pulling the mean and variance of data embeddings closer
to those of the training data, improving predictions on out-
of-distribution or corrupted data. While its effectiveness
has been mostly demonstrated on image data, the approach
has the potential to be applied to other types of data as well
and we will use as one of the baselines we compare against.
In (Park et al., 2024), the authors propose a test-time adap-
tation method for depth completion, fine-tuning a specific
adaptor layer using a consistency loss between two predic-
tions. However, the approach is tailored to depth completion
and not applicable to other tasks.

TTT vs. Test Time Adaptation (TTA): TTT operates per-
instance, with no assumption that future test data will be
similar. In contrast, TTA (Liang et al., 2024) adapts using
a large test set from the same shift (Batch/Domain TTA),
or assuming correlation between instances (Online TTA).

2

IT³: Idempotent Test-Time Training

Most previous work (Sun et al., 2020; Gandelsman et al.,
2022) have thus treated TTA and TTT as distinct paradigms
rather than direct competitors. TTA exploits abundant test
data but cannot tune the training process, while TTT shapes
training but handles every test instance in isolation. Each
approach suits different scenarios.

2.2. Idempotence in Deep Learning

Idempotence, a concept rooted in mathematics and func-
tional programming, refers to an operation whose repeated
application yields the same result as a single application.
Mathematically, for a function f , being idempotent means

f(f(x)) = f(x), ∀x . (1)

In other words, applying the function multiple times has
no effect beyond the first one. In the context of linear op-
erators, idempotence corresponds to orthogonal projection.
Over Rn, these are matrices A that satisfy A2 = A, with
eigenvalues of either 0 or 1; they can be interpreted as geo-
metrically preserving certain components while nullifying
others. This concept was recently applied in generative
modeling. Idempotent Generative Network (IGN) (Shocher
et al., 2024) is a generative model that maps data instances
to themselves, f(x) = x, and maps latents to targets that
also map to themselves, f(f(z)) = f(z). It was shown
to ’project’ corrupted images onto the data manifold, effec-
tively removing the corruptions without prior knowledge of
the degradation.

Energy-Based Models (EBMs; (Ackley et al., 1985)) offer
a related perspective by defining a function f that assigns
energy scores to inputs, with higher energy indicating less
desirable or likely examples, and lower energy indicating
those that fit the model well. IGN introduces a similar con-
cept but frames it differently: Instead of f directly serving
as the energy function, the energy is implicitly defined via
the difference δ(y) = D(f(y), y), where D measures the
distance between the model’s prediction and its input. In this
framework, training f to be idempotent minimizes δ(f(z)),
pushing the model toward a low-energy configuration where
its outputs remain stable under repeated applications. Thus,
f can be interpreted as a transition operator that drives high-
energy inputs toward a low-energy, stable domain, reducing
the need for separate optimization procedures to find the
energy minimum.

In concurrent work, the ZigZag method has first been pro-
posed and then extended to recursive networks (Durasov
et al., 2024a;b). It introduces idempotence as a means to
assess uncertainty in neural network predictions. ZigZag op-
erates by recursively feeding the model’s predictions back
as inputs, allowing the model to refine its outputs. The
consistency between successive predictions acts as an un-
certainty metric, where stable, unchanged outputs indicate

higher confidence, while divergent predictions signal un-
certainty or out-of-distribution (OOD) data. Unlike popu-
lar sampling-based uncertainty estimation methods (Gal &
Ghahramani, 2016; Lakshminarayanan et al., 2017; Wen
et al., 2020; Durasov et al., 2021), ZigZag does not require
many forward passes or complex sampling, making it more
computationally efficient for real-time applications.

3. Method
Given a pre-trained model, IT3 aims to dynamically adapt its
weights at inference time using Test-Time Training (TTT)
to reduce uncertainty and handle Out-of-Distribution (OOD)
instances. As discussed above, other TTT approaches rely
on satisfying domain specific auxiliary tasks to achieve this.
Instead, we rely on the model we train being idempotent on
the training set and adapt its weights at inference time to
approach idempotence on the test set as new samples are
being fed to it. This pulls the representations of OOD inputs
back into the distribution of the training data and improves
the model’s performance on corrupted or OOD instances.

In this section, we describe how we make our models idem-
potent for training set samples, how we use the idempotence
loss for TTT during inference, and how we adapt the algo-
rithm for online scenarios.

3.1. Making the Network Idempotent at Training Time

Let fθ be a generic network with weights θ that takes an
input x. We wish to deploy in an environment where the
statistical distribution of the samples it receives may change
over time. To this end, as in ZigZag (Durasov et al., 2024a),
we modify slightly its input layer so that it can accept a
second argument that be either y, the desired output of the
network given input x, or a neutral uninformative signal 0.
During the initial training, we minimize the supervised loss

Ltrain = ∥fθ(x,y)− y∥+ ∥fθ(x,0)− y∥ , (2)

as depicted on the left side of Fig. 1. This enforces

y0 = fθ(x,0) ≈ y , (3)
y1 = fθ(x,y0) ≈ fθ(x,y) ≈ y , (4)

⇒ fθ(x, fθ(x,0)) ≈ fθ(x,0) .

In other words, θ has been adjusted so that function fθ(x, ·)
is as idempotent as possible for all x in the training set.
Of course, when x is comes from the test set, there is no
guarantee of that because there may be distribution shift
between the two sets. In (Durasov et al., 2024a), it is shown
that the deviation from the equality of Eq. 4 expressed as
∥fθ(x, fθ(x,0)) − fθ(x,0)∥ correlates strongly with the
accuracy of the prediction and can be used to detect testing
samples that are out-of-distribution with respect to the train-
ing set. Fig. 2 illustrates this in the case of a network trained

3

IT³: Idempotent Test-Time Training

to predict the lift-over-drag ratio (L/D) of a 2D airfoil. In
other words, here, x is a 2D outline representing an airfoil
and the output y is expected the corresponding L/D.

Figure 2. Idempotence vs. Out-of-Distributionness: We plot
the distribution of idempotence errors, measured by the distance
|y1 − y2| in Eq.4, for training, test, and OOD data. For OOD
samples, we show the errors both before and after minimizing them
globally. OOD samples exhibit significantly larger idempotence
errors, which decrease after optimization. Figuratively, IT3 pushes
the OOD representations to be more similar to those of the training
distribution. In Sec.4, we show that this reduction yields improved
performance.

3.2. Test-Time Training

In ZigZag (Durasov et al., 2024a), deviations from idem-
potence, as measured by the distance between the two pre-
dictions of Eq. 4, are used to evaluate the accuracy of a
prediction. In IT3 , we propose to go further and to mini-
mize these deviations at inference time to compensate for
potential domain shifts between training and test data.

A naive way would be to minimize the loss function

LTTT = ∥fθ(x, fθ(x,0))− fθ(x,0)∥ , (5)

for all samples x received as inference time. However,
this can produce undesirable side effects. For instance,
if y0 = fθ(x,0) is an incorrect prediction, minimizing
∥y0 − y1∥ may cause y1 = fθ(x,y0) to be pulled toward
the incorrect y0, thereby magnifying the error. Another
potential failure mode is to encourage fθ(x, ·) to become
the identity function, with is trivially idempotent.

To prevent this, we modify the test-time training procedure
as shown on the right side of Fig, 1. We keep a copy of the
model as it was at the end of the training phase, denoted as
F = fΘ, where Θ are the weights obtained after the initial
training of Sec. 3.1, which will not be updated further. We
then take the test-time loss to be

LIT3 = ∥F (x, fθ(x,0))− fθ(x,0)∥ , (6)

where fθ is the model being updated at test-time. Here, the
first prediction y0 = fθ(x,0) is computed as before, but the
second one, y1 = F (x, fθ(x,0)), is made using the frozen

model F . By updating only fθ and keeping F fixed, we
ensure that y0 is adjusted to minimize the discrepancy with
y1, without pulling y1 toward an incorrect y0. A similar
idea was employed in the IGN approach (Shocher et al.,
2024) when meaningful predictions are required. After
each TTT optimization iteration, the dynamic model fθ is
initialized with Θ, ready for the next input.

Essentially, IT3 extends the projection principle of Idem-
potent Generative Networks (IGN) (Shocher et al., 2024).
IGNs map corrupted inputs onto the distribution of valid
data by enforcing idempotence. Similarly, IT3 projects
OOD (x, y) pairs onto the distribution of valid ones by
iteratively refining the network’s internal representations.
While only y explicitly changes, every layer’s activa-
tions—functions of both x and y—adjust to better fit the
distribution of in-distribution representations, much like
IGN corrects corrupted data by pulling it toward the natural
image manifold. See detailed discussion in Appendix B.

3.3. Online IT3

We introduce a variant of IT3 for a different scenario: Given
data streams, where the distribution shifts continuously over
time, in a continual learning setup, we modify IT3 to operate
in an online mode by not resetting fθ back to F after each
TTT episode, as we did in Section 3.2. We essentially
assume that the distribution mostly shifts smoothly and,
thus, there is a good reason to believe that the current state
of fθ is a better initialization for the next TTT episode than
the original F . This makes the model evolve over time. In
this scheme, it can happen that the performance of the model
on data from its original training decreases significantly, a
phenomenon known as catastrophic forgetting (Kirkpatrick
et al., 2017). This is acceptable as the goal is to perform well
on data at the present moment, rather than on past examples.

We make another modification in the second sequen-
tial application of the model, that is, when computing
F (x, fθ(x,0)). Since the data keeps shifting, there is no
reason to retain the frozen F as an anchor indefinitely. Over
time, fθ may diverge far from F , making it irrelevant. Rely-
ing on the old state of the model would prevent the model
from evolving efficiently. Replacing it with the current state
of fθ is out of the question, as it could causes collapse as
described in Section 3.2. Instead, we need an anchor that
is influenced by a reasonable amount of data, yet evolves
over time. Our solution is to replace F with an Exponential
Moving Average (EMA) of the model fθ, denoted as fEMA.
This means fEMA is a smoothed version of fθ over time. The
test-time loss in the online setting then becomes

Lonline = ∥fEMA(x, fθ(x,0))− fθ(x,0)∥ . (7)

By updating both fθ and fEMA incrementally, with fEMA
serving as a stable reference that changes more slowly, the

4

IT³: Idempotent Test-Time Training

model adapts to gradual shifts without overfitting to noise
or temporary anomalies.

4. Experiments
We evaluate our approach across a diverse set of data types
and tasks, including age prediction, image classification,
and road segmentation in the visual domain, as well as
aerodynamics prediction using 3D data and tabular data ex-
periments. In all these scenarios, we first train the model
using the supervised approach of Section 3.1 and then per-
form the test-time training of Section 3.2. For each task, we
design an OOD test set for evaluation, that is, data drawn
from a shifted distribution with respect to that of the training
set. The OOD data is divided into several levels, with higher
levels representing data that is progressively further from
the training distribution. We evaluate our method for each
level, presenting the results as bar plots for different batch
sizes. After running the algorithm on a particular batch, we
reset the model to its original, non-updated weights before
evaluating the next batch.

In our experiments, we compare our method against a non-
optimized model to demonstrate the effectiveness of TTT
approaches relative to a vanilla model, as well as other pop-
ular baselines. For the image classification task, we include
the original TTT method and a newer more versatile ap-
proach, ActMAD (Mirza et al., 2023), which we described
in Section 2 and apply across all other setups. To further
assess the effectiveness of our approach, we also evalu-
ate all baselines, except the vanilla model, using different
batch sizes. Across all scenarios, our method degrades more
slowly than the baselines as the domain shift between train-
ing and testing data increases. Additionally, in Appendix A,
we provide inference time comparisons for the considered
approaches.

4.1. Tabular Data

Tabular data consists of numerical features and correspond-
ing continuous target values for regression tasks from the
UCI tabular datasets (Bay et al., 2000). They are widely
used in machine learning research to benchmark regression
models. In our case, we use The Boston Housing dataset
describes housing prices in the suburbs of Boston, Mas-
sachusetts. It includes various features related to socioe-
conomic and geographical factors that influence housing
prices. We take a test set and gradually apply random fea-
ture zeroing with increasing probabilities of 5%, 10%, 15%,
and 20% (4 mentioned levels of OOD). This random fea-
ture dropping simulates out-of-distribution (OOD) data by
progressively altering the input features, making the data
less similar to the original training distribution. As the
probability of feature dropping increases, the data becomes
more OOD, which lowers the model’s accuracy. The trained

model is a simple Multi-Layer Perceptron (MLP) optimized
using the Adam optimizer, and we observe that IT3 consis-
tently degrades less compared to other baselines across all
OOD levels as depicted in Fig. 3.

1 2 3 4
Out-of-distribution Level

0.0

0.2

0.4

0.6

0.8

1.0

M
AE

Not Optimized
ActMAD (batch=2)
ActMAD (batch=4)

ActMAD (batch=8)
IT3 (batch=1)

IT3 (batch=4)
IT3 (batch=8)

Figure 3. UCI Results on OOD inputs: The plots illustrate the
performance of IT3 compared to other baselines across different
OOD levels. The box plot for tabular data shows the distribution of
MAE at various OOD levels, where IT 3 with different batch sizes
([batch=1, batch=4, batch=8]) degrades less compared to the Not
optimized baseline and ActMAD. Larger batch sizes preserve
performance more effectively.

4.2. CIFAR

We conducted similar experiments using the CIFAR-
10 (Krizhevsky et al., 2014) dataset, selecting CIFAR-
C (Hendrycks & Dietterich, 2019) as the out-of-distribution
(OOD) data. CIFAR-C contains the same images as CIFAR-
10 but with various common corruptions, such as Gaussian
noise, blur, and contrast variations, simulating real-world
conditions. These corruptions are applied at different sever-
ity levels, allowing us to evaluate how the model’s perfor-
mance degrades as the data shifts further from the original
CIFAR-10 distribution. For this experiment, we used the
Deep Layer Aggregation (DLA) (Yu et al., 2018) network,
known for its strong performance in image classification and
robustness to overfitting. We trained the model according to
the guidelines from the original DLA paper to ensure opti-
mal results. Fig.3 shows the evaluation error on CIFAR-C
at severity level 5 for different types of corruptions, follow-
ing (Sun et al., 2020). As shown, IT3 outperforms other
baselines, with higher batch sizes yielding the best results.

4.3. Age Prediction

To experiment with image-based age prediction from face
images, we use the UTKFace dataset (Zhang et al., 2017),
a large-scale collection containing tens of thousands of
face images annotated with age information. The model is
trained on face images of individuals aged between 20 and
60, while individuals younger or older than this range are
considered out-of-distribution (OOD) (Fig.5). The further
the age is from the 20-60 interval, the higher the OOD level

5

IT³: Idempotent Test-Time Training

ori
gin

al
ga

uss sho
t

im
pu

lse

de
foc

us
gla

ss
moti

on
zoo

m
sno

w
fro

st fog
bri

gh
t

con
tra

st
ela

stic

pix
ela

te jpe
g

0
10
20
30
40
50
60

Er
ro

r (
%

)
Object recognition task only
ActMAD (batch=8)
ActMAD (batch=32)

ActMAD (batch=128)
TTT (batch=8)
TTT (batch=32)

TTT (batch=128)
IT3(batch = 8)

IT3(batch = 32)
IT3(batch = 128)

Figure 4. Test error (%) on CIFAR-10-C with level 5 corruptions. We compare our approaches, IT 3, with object recognition without
self-supervision, TTT, and ActMAD. IT 3 improves over other baselines and higher batch size improves even further.

Figure 5. Face Samples. The (top) row shows training images
of middle-aged individuals, while (middle) and (bottom) display
images of older and younger individuals (OOD).

1 2 3 4
Out-of-distribution Level

0

5

10

15

20

25

30

M
AE

Not Optimized
IT3 (batch=4)

IT3 (batch=8) IT3 (batch=16)

Figure 6. Age boxplot results on OOD shapes. Not optimized
corresponds to a single model without TTT applied. IT3 with
[batch=4, batch=8, and batch=16] represents our method at dif-
ferent batch sizes. As the data shifts further from the training
distribution, our method degrades less, with larger batches preserv-
ing performance more effectively.

we assign to it. We use a ResNet-152 backbone with five
additional linear layers and ReLU activations. This archi-
tecture delivers strong accuracy, outperforming the popular
ordinal regression model CORAL (Cao et al., 2020) and
matching other state-of-the-art methods (Berg et al., 2021).
We train our model on the UTKFace training set (limited to
individuals aged 20-60) and then run inference on faces at
different OOD levels. Again, IT3 significantly outperforms
the non-optimized model, as shown in Fig. 6.

4.4. Road Segmentation

Our method can be generalized to segmentation tasks as
well. To demonstrate this, we consider the problem of

Figure 7. Road Samples. The roadTracer dataset (left) cov-
ers urban areas of six different countries while the Mas-
sachusetts dataset (right) primarily features rural neighbor-
hoods along with some urban areas.

1 2 3 4
Out-of-distribution Level

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Qu
al

ity

Not Optimized
ActMAD (batch=4)
ActMAD (batch=8)

ActMAD (batch=16)
TTT (batch=4)
TTT (batch=8)

TTT (batch=16)
IT3 (batch=4)

IT3 (batch=8)
IT3 (batch=16)

Figure 8. Roads results on OOD images. Not optimized corre-
sponds to a single model without TTT applied. IT3 with [batch=4,
batch=8, and batch=16] represents our method at different batch
sizes. As the data shifts further from the training distribution,
our method degrades less compared to the Not optimized, TTT,
and ActMAD, with larger batches preserving performance more
effectively.

road segmentation in aerial imagery using the RoadTracer
dataset (Bastani et al., 2018). We train a DRU-Net (Wang
et al., 2019), on the RoadTracer dataset.

We perform OOD experiments using Massachusetts Road
dataset (Mnih, 2013) that primarily comprises rural neigh-
borhoods, as depicted in Fig. 7. We sample 450 images,
each with dimensions of 1500 × 1500 pixels and divide
them into four groups based on the Mean Squared Error
(MSE) of the segmentation outputs, effectively creating dif-

6

IT³: Idempotent Test-Time Training

Figure 9. Qualitative effect of IT3 on Road Segmentation. From left to right: (1) Original aerial image, (2) Output before optimization,
(3) IT3 output at the 5th iteration, (4) IT3 output at the 15th iteration, and (5) Ground truth label. The segmentation quality improves
significantly with IT3 iterations, as observed in the progressively refined outputs at the 5th and 15th iterations.

ferent levels of distributional shift within the sampled set.
We then further train the network on these OOD subsets
using the ZigZag method (Durasov et al., 2024a).

We evaluate road segmentation performance by using Cor-
rectness, Completeness and Quality (CCQ) metric (Wiede-
mann et al., 1998) which is a popular metric to evaluate de-
lineation performance. The Correctness, Completeness and
Quality are equivalent to precision, recall and intersection-
over-union, where the definition of a true positive has been
relaxed from spatial coincidence of prediction and anno-
tation to co-occurrence within a distance of 5 pixels. As
shown in Fig.8, IT3 significantly improves performance on
OOD images (see Fig.16 for more qualitative examples).

4.5. Aerodynamics Prediction

Wings. Our method is versatile and can handle various
types of data. To illustrate this, we generated a dataset of
2,000 wing profiles, as depicted in Fig.10, by sampling the
widely used NACA parameters (Jacobs & Sherman, 1937).
We used the XFoil simulator (Drela, 1989) to compute the
pressure distribution along each profile and estimate its
lift-to-drag coefficient, a crucial indicator of aerodynamic
performance. The resulting dataset consists of wing profiles
xi, represented by a set of 2D nodes, and the corresponding
scalar lift-to-drag coefficient yi for 1 ≤ i ≤ 2000.

We selected the top 5% of shapes, based on their lift-to-drag
ratio, as out-of-distribution (OOD) samples. The OOD lev-
els were determined using the ground truth lift-to-drag ratio,
where higher OOD levels correspond to more aerodynami-
cally streamlined shapes. The training set includes shapes
with lift-to-drag values ranging from 0 to 60, with anything
beyond this threshold considered OOD and excluded from
training. We then trained a Graph Neural Network (GNN)
composed of 25 GMM (Monti et al., 2017) layers, featur-
ing ELU activations (Clevert et al., 2015) and skip connec-
tions (He et al., 2016), to predict the lift-to-drag coefficient
yi from the profile xi, following the approach of (Remelli
et al., 2020; Durasov et al., 2024a). As with previous ex-
periments, IT3 significantly improves performance on OOD
shapes and provides more accurate predictions compared to

Figure 10. Airfoil Samples. Training and testing profiles (left)
show reasonable aerodynamics, while OOD samples (right) fea-
ture rare, high lift-to-drag shapes. Black arrows indicate pressure,
and red lines show lift and drag.

1 2 3 4
Out-of-distribution Level

0

10

20

30

40

50

60

70

M
AE

Not Optimized
ActMAD (batch=1)
ActMAD (batch=4)

ActMAD (batch=16)
IT3 (batch=1)

IT3 (batch=4)
IT3 (batch=16)

Figure 11. Airfoil results on OOD shapes. Not optimized cor-
responds to a single model without TTT applied. ITTT with
[batch=1, batch=4, and batch=16] represents our method at dif-
ferent batch sizes. As the data shifts further from the training
distribution, our method degrades less compared to the Not opti-
mized and ActMAD, with larger batches preserving performance
more effectively.

other baselines, as shown in Fig. 11.

Cars. As for wings, we experimented with 3D car models
from a subset of the ShapeNet dataset (Chang et al., 2015),
which contains car meshes suitable for CFD simulations, as
depicted in Fig. 12. The experimental protocol was the same
as for the wing profiles, except we used OpenFOAM (Jasak
et al., 2007) to estimate drag coefficients and employed a
more sophisticated network to predict them from the trian-
gulated 3D car meshes.

To predict drag associated to a triangulated 3D car, we uti-
lize similar model to airfoil experiments but with increased

7

IT³: Idempotent Test-Time Training

Table 1. Qualitative result for Online IT3. Evaluation metrics for the road segmentation task (left), airfoils lift-to-drag prediction
(middle), and car drag prediction (right). Online IT3 enhances performance compared to the original model and significantly outperforms
offline IT3.

METHOD Corr Comp Quality

NOT OPTIMIZED 55.7 44.3 39.5
IT3 (BATCH=4) 55.7 49.1 46.4
IT3 (BATCH=8) 58.1 52.0 48.5
IT3 (BATCH=16) 57.3 52.7 48.7
IT3 (ONLINE) 77.5 79.8 69.8

METHOD MAE

NOT OPTIMIZED 38.2
IT3 (BATCH=1) 37.6
IT3 (BATCH=4) 37.5
IT3 (BATCH=16) 37.4
IT3 (ONLINE) 34.1

METHOD MAE

NOT OPTIMIZED 0.501
IT3 (BATCH=1) 0.446
IT3 (BATCH=2) 0.424
IT3 (BATCH=4) 0.412
IT3 (ONLINE) 0.385

Figure 12. Car Samples. The car dataset comprises many regular
vehicles (left) and a few streamlined ones (right), which we treat
as being out-of-distribution. Red and blue denote high and low
pressures respectively.

1 2 3 4
Out-of-distribution Level

0.0

0.2

0.4

0.6

0.8

M
AE

Not Optimized
ActMAD (batch=1)
ActMAD (batch=2)

ActMAD (batch=4)
IT3 (batch=1)

IT3 (batch=2)
IT3 (batch=4)

Figure 13. Car results on OOD shapes. Not optimized cor-
responds to a single model without TTT applied. ITTT with
[batch=1, batch=2, and batch=4] represents our method at dif-
ferent batch sizes. As the data shifts further from the training
distribution, our method degrades less compared to the Not op-
timized baseline and ActMAD, with larger batches preserving
performance more effectively.

capacity. Instead of twenty five GMM layers, we use thirty
five and also apply skip-connections with ELU activations.
Final model is being trained for 100 epochs with Adam
optimizer and 10−3 learning rate. As with airfoils exper-
iments, IT3 significantly improves performance on OOD
shapes and provides more accurate predictions compared to
other baselines, as shown in Fig. 13.

4.6. Online IT3

We test our proposed online variation on several tasks. As-
suming a data stream online scenario rather than the previ-
ous setup. Naturally, when the distribution remains constant
(although shifted from the training distribution) we expect

superior results w.r.t. the offline setup, as our model keeps
being trained on the new distribution. A more effective way
to test constant adaptation over time is to use a continuously
changing distribution. We test IT3 on an increasing cor-
ruption / OOD level. In all cases, the online IT3 performs
significantly better than the basic anchored variation.

Road segmentation. Building upon our previous road seg-
mentation experiments, we further evaluate the effectiveness
of online IT3. In the online IT3 setup, OOD samples are
ranked based on their mean squared error (MSE) loss when
passed through the vanilla network. We begin by selecting
the samples with low MSE loss, as these are closer to the
training distribution given the network’s strong performance
on them. Gradually, we introduce samples with progres-
sively higher MSE loss, smoothly shifting between distri-
butions and thereby allowing the model to adapt effectively
to a range of OOD samples. As in previous experiment, we
use DRU-Net trained on the RoadTracer dataset as vanilla
model and 890 images are sampled from Massachusetts
dataset as OOD images.

Firstly, the vanilla network is tested on the Massachusetts
dataset without any additional fine-tuning. We then ap-
ply online IT3 during inference to adapt the model to the
OOD distribution as new data is presented. We evaluate the
segmentation performance using the Correctness, Complete-
ness, and Quality metrics, as described previously. Table 1
(left) summarizes the results. The application of IT3 im-
proved the performance over the initial network and the
online IT3 method significantly outperforms the offline IT3.

Aerodynamics. We conducted online experiments for air-
foils and cars lift-to-drag prediction. We set the data stream
such that OOD shapes appear with increasing aerodynamic
properties, modeling a continuous domain shift in the data.
As with the segmentation results, the online version signifi-
cantly outperforms both the offline version and the original
network, as shown in Tabs.1 (middle and right).

4.7. ImageNet

ImageNet-C (Hendrycks & Dietterich, 2019) consists of Im-
ageNet (Krizhevsky et al., 2012) test images corrupted using
the same transformations as CIFAR-10/100C (Sec. 4.2). We

8

IT³: Idempotent Test-Time Training

1 2 3 4 5
Corruptions Level

0

10

20

30

40

50

60

Ac
cu

ra
cy

} } } } }

TE
N

T

ET
A

M
EM

O

Ac
tM

AD IT
3

Not Optimized
TENT
TENT (batch=16)
TENT (batch=32)
TENT (batch=64)
TENT (batch=128)

ETA
ETA (batch=16)
ETA (batch=32)
ETA (batch=64)
ETA (batch=128)

MEMO
MEMO (batch=16)
MEMO (batch=32)
MEMO (batch=64)
MEMO (batch=128)

ActMAD
ActMAD (batch=16)
ActMAD (batch=32)
ActMAD (batch=64)
ActMAD (batch=128)

IT3

IT3 (batch=16)
IT3 (batch=32)
IT3 (batch=64)
IT3 (batch=128)

Figure 14. Test accuracy (%) on ImageNet-C across 5 corruption levels. This plot compares our method, IT 3, with popular adaptation
approaches including TENT, ETA, MEMO, and ActMAD on the ImageNet-C dataset. IT 3 consistently outperforms all baselines across
all corruption severity levels and batch sizes, with performance further improving at higher batch sizes.

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Idempotence Error

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (
%

)

Pearson r = -0.94

1

2

3

4

5

Co
rru

pt
io

n
Le

ve
l

Figure 15. Accuracy vs Idempotence on Corrupted ImageNet:
This plot demonstrates a strong correlation between model idem-
potence and performance. Each point corresponds to one inference
batch, with accuracy and idempotence error computed per batch.
The color indicates the corruption level from ImageNet-C for the
respective batch. The Pearson correlation between idempotence
error and accuracy is −0.94, indicating a strong negative trend.

used it for large-scale classification experiments, evaluat-
ing performance across 15 corruption types and different
severity levels. For our setup, we employed a standard
ResNet-18 (He et al., 2016) and followed the Pytorch train-
ing protocol (Paszke et al., 2017). In addition to our previous
experiments, we included several widely used baselines on
this benchmark: TENT (Wang et al., 2020), ETA (Niu et al.,
2022), and MEMO (Zhang et al., 2022).

The results on ImageNet-C (each bar represents the average
accuracy across 15 corruption types) are shown in Table 14.
Our method outperforms all other approaches across all

corruption levels and batch sizes, and significantly surpasses
the original baseline model. As previously observed, larger
inference batch sizes improve performance for all methods.
These results demonstrate that our approach is also effective
in large-scale data scenarios.

Accuracy vs Idempotence. Similar to the results in Fig. 2,
Fig. 15 illustrates the correlation between model perfor-
mance and idempotence error. This supports the core idea
of our method: optimizing idempotence during inference
can improve performance. As shown, idempotence error
exhibits a strong negative correlation with accuracy. This
observation further reinforces the conclusions of (Shocher
et al., 2024) and (Durasov et al., 2024a), which highlight that
idempotence error across multiple predictions is a strong
indicator of model performance—a key motivation behind
our approach.

5. Conclusions, Limitations, and Future Work
We have proposed an approach to test-time-training relying
on enforcing idempotence as new samples are being consid-
ered. This effectively handles domain shifts and method is
generic. We have demonstrated that it is effective in a wide
range of domains without requiring domain-specific knowl-
edge, which sets it apart from state-of-the-art methods.

The flip side is that IT3 lacks domain expertise. In some
cases, it is hard to apply IT3 to single instances without ad-
ditional conditions. This is most common in domains where
information within a single input is limited. Combining IT3

with domain-specific methods may remove these limitations,
which we will explore in future work.

9

IT³: Idempotent Test-Time Training

Impact Statement
This paper introduces IT3, a new approach that enables
more adaptable machine-learning models by refining their
predictions for out-of-distribution data at test time. Through
this on-the-fly adaptation, IT3 can reduce training costs, data
requirements, and model size, making advanced AI methods
more broadly accessible. The technique thus offers a step
toward more efficient, flexible deployment of deep learning
in real-world scenarios, where conditions often shift beyond
the original training domain.

References
Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. A Learn-

ing Algorithm for Boltzmann Machines. Cognitive Sci-
ence, 9(1):147–169, 1985.

Bastani, F., He, S., Alizadeh, M., Balakrishnan, H., Madden,
S., Chawla, S., Abbar, S., and Dewitt, D. Roadtracer:
Automatic Extraction of Road Networks from Aerial Im-
ages. In Conference on Computer Vision and Pattern
Recognition, 2018.

Bay, S. D., Kibler, D., Pazzani, M. J., and Smyth, P. The
UCI KDD Archive of Large Data Sets for Data Mining
Research and Experimentation. ACM SIGKDD explo-
rations newsletter, 2(2):81–85, 2000.

Berg, A., Oskarsson, M., and O’Connor, M. Deep Ordinal
Regression with Label Diversity. In International Con-
ference on Pattern Recognition, pp. 2740–2747, 2021.

Bottou, L. and Vapnik, V. Local Learning Algorithms. Neu-
ral computation, 4(6):888–900, 1992.

Cao, W., Mirjalili, V., and Raschka, S. Rank Consistent
Ordinal Regression for Neural Networks with Application
to Age Estimation. Pattern Recognition, 140:325–331,
2020.

Chang, A., Funkhouser, T., G., L., Hanrahan, P., Huang, Q.,
Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao,
J., Yi, L., and Yu, F. Shapenet: An Information-Rich 3D
Model Repository. In arXiv Preprint, 2015.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast and
Accurate Deep Network Learning by Exponential Linear
Units (ELUs). In arXiv Preprint, 2015.

Collobert, R., Sinz, F., Weston, J., Bottou, L., and Joachims,
T. Large Scale Transductive SVMS. Journal of Machine
Learning Research, 7(8), 2006.

Drela, M. XFOIL: An Analysis and Design System for
Low Reynolds Number Airfoils. In Conference on Low
Reynolds Number Aerodynamics, pp. 1–12, 1989.

Durasov, N., Bagautdinov, T., Baque, P., and Fua, P.
Masksembles for Uncertainty Estimation. In Conference
on Computer Vision and Pattern Recognition, 2021.

Durasov, N., Dorndorf, N., Le, H., and Fua, P. Zigzag:
Universal Sampling-Free Uncertainty Estimation through
Two-Step Inference. Transactions on Machine Learning
Research, 2024a.

Durasov, N., Oner, D., Le, H., Donier, J., and Fua, P. En-
abling Uncertainty Estimation in Iterative Neural Net-
works. In International Conference on Machine Learning,
2024b.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian Ap-
proximation: Representing Model Uncertainty in Deep
Learning. In International Conference on Machine Learn-
ing, pp. 1050–1059, 2016.

Gammerman, A., Vovk, V., and Vapnik, V. Learning by
Transduction, Vol Uai’98, 1998.

Gandelsman, Y., Shocher, A., and Irani, M. ” Double-Dip”:
Unsupervised Image Decomposition via Coupled Deep-
Image-Priors. In Conference on Computer Vision and
Pattern Recognition, pp. 11026–11035, 2019.

Gandelsman, Y., Sun, Y., Chen, X., and Efros, A. Test-
Time Training with Masked Autoencoders. In Advances
in Neural Information Processing Systems, pp. 29374–
29385, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. In Conference on Computer
Vision and Pattern Recognition, pp. 770–778, 2016.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R.
Masked Autoencoders Are Scalable Vision Learners. In
Conference on Computer Vision and Pattern Recognition,
pp. 16000–16009, 2022.

Hendrycks, D. and Dietterich, T. Benchmarking Neural
Network Robustness to Common Corruptions and Pertur-
bations. In International Conference on Learning Repre-
sentations, 2019.

Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F.,
Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M.,
et al. The Many Faces of Robustness: A Critical Analysis
of Out-Of-Distribution Generalization. In International
Conference on Computer Vision, pp. 8340–8349, 2021.

Jacobs, E. and Sherman, A. Airfoil section characteristics
as affected by variations of the reynolds number. Report-
National Advisory Committee for Aeronautics, 227:577–
611, 1937.

10

IT³: Idempotent Test-Time Training

Jasak, H., Jemcov, A., Tukovic, Z., et al. OpenFOAM:
A C++ Library for Complex Physics Simulations. In
International workshop on coupled methods in numerical
dynamics, 2007.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming Catastrophic
Forgetting in Neural Networks. Proceedings of the Na-
tional Academy of Sciences USA, 114(13):3521–3526,
2017.

Krizhevsky, A., Sutskever, I., and Hinton, G. ImageNet
Classification with Deep Convolutional Neural Networks.
In Advances in Neural Information Processing Systems,
pp. 1106–1114, 2012.

Krizhevsky, A., Nair, V., and Hinton, G. The CIFAR-10
Dataset. online: http://www. cs. toronto. edu/kriz/cifar.
html, 55(5), 2014.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and Scalable Predictive Uncertainty Estimation Using
Deep Ensembles. In Advances in Neural Information
Processing Systems, 2017.

Liang, J., He, R., and Tan, T. A Comprehensive Survey on
Test-Time Adaptation Under Distribution Shifts. Interna-
tional Journal of Computer Vision, pp. 1–34, 2024.

Liu, Y., Kothari, P., Van Delft, B., Bellot-Gurlet, B., Mordan,
T., and Alahi, A. Ttt++: When Does Self-Supervised Test-
Time Training Fail or Thrive? In Advances in Neural
Information Processing Systems, pp. 21808–21820, 2021.

Mirza, M., Soneira, P., Lin, W., Kozinski, M., Possegger,
H., and Bischof, H. Actmad: Activation Matching to
Align Distributions for Testtime Training. In Conference
on Computer Vision and Pattern Recognition, pp. 24152–
24161, 2023.

Mnih, V. Machine Learning for Aerial Image Labeling. PhD
thesis, University of Toronto, 2013.

Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda,
J., and Bronstein, M. M. Geometric Deep Learning on
Graphs and Manifolds Using Mixture Model CNNs. In
Conference on Computer Vision and Pattern Recognition,
pp. 5425–5434, 2017.

Niu, S., Wu, J., Zhang, Y., Chen, Y., Zheng, S., Zhao, P.,
and Tan, M. Efficient test-time model adaptation with-
out forgetting. In International conference on machine
learning, pp. 16888–16905. PMLR, 2022.

Park, H., Gupta, A., and Wong, A. Test-time adaptation
for depth completion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 20519–20529, 2024.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
Devito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic Differentiation in Pytorch. In Advances in
Neural Information Processing Systems, 2017.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do
CIFAR-10 Classifiers Generalize to CIFAR-10? In arXiv
Preprint, 2018.

Remelli, E., Lukoianov, A., Richter, S., Guillard, B., Bagaut-
dinov, T., Baque, P., and Fua, P. Meshsdf: Differentiable
Iso-Surface Extraction. In Advances in Neural Informa-
tion Processing Systems, 2020.

Shaham, T. R., Dekel, T., and Michaeli, T. Singan: Learning
a Generative Model from a Single Natural Image. In
International Conference on Computer Vision, pp. 4570–
4580, 2019.

Shocher, A., Cohen, N., and Irani, M. “zero-Shot” Super-
Resolution Using Deep Internal Learning. In Conference
on Computer Vision and Pattern Recognition, pp. 3118–
3126, 2018.

Shocher, A., Bagon, S., Isola, P., and Irani, M. Ingan: Cap-
turing and Retargeting The” Dna” of a Natural Image. In
International Conference on Computer Vision, pp. 4492–
4501, 2019.

Shocher, A., Dravid, A. V., Gandelsman, Y., Mosseri, I.,
Rubinstein, M., and Efros, A. A. Idempotent Generative
Network. In The Twelfth International Conference on
Learning Representations, 2024.

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., and Hardt,
M. Test-Time Training with Self-Supervision for Gen-
eralization Under Distribution Shifts. In International
Conference on Machine Learning, pp. 9229–9248, 2020.

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., and Darrell,
T. Tent: Fully test-time adaptation by entropy minimiza-
tion. arXiv preprint arXiv:2006.10726, 2020.

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., and Dar-
rell, T. Tent: Fully Test-Time Adaptation by Entropy
Minimization. In International Conference on Learning
Representations, 2021.

Wang, W., Yu, K., Hugonot, J., Fua, P., and Salzmann, M.
Recurrent U-Net for Resource-Constrained Segmentation.
In International Conference on Computer Vision, 2019.

Wen, Y., Tran, D., and Ba, J. Batchensemble: An Alternative
Approach to Efficient Ensemble and Lifelong Learning.
In International Conference on Learning Representations,
2020.

11

IT³: Idempotent Test-Time Training

Wiedemann, C., Heipke, C., Mayer, H., and Jamet, O. Em-
pirical Evaluation of Automatically Extracted Road Axes.
In Empirical Evaluation Techniques in Computer Vision,
pp. 172–187, 1998.

Yao, H., Choi, C., Cao, B., Lee, Y., Koh, P. W., and Finn, C.
Wild-Time: A Benchmark of In-The-Wild Distribution
Shift over Time. In Advances in Neural Information
Processing Systems, 2022.

Yu, F., Wang, D., Shelhamer, E., and Darrell, T. Deep Layer
Aggregation. In Conference on Computer Vision and
Pattern Recognition, pp. 2403–2412, 2018.

Zhang, M., Levine, S., and Finn, C. Memo: Test time
robustness via adaptation and augmentation. Advances in
neural information processing systems, 35:38629–38642,
2022.

Zhang, Z., Song, Y., , and Qi, H. Age Progression/regression
by Conditional Adversarial Autoencoder. In Conference
on Computer Vision and Pattern Recognition, 2017.

12

IT³: Idempotent Test-Time Training

A. Inference Time Comparison
Our method typically requires only 1–3 optimization steps, keeping the overall cost comparable to other well-known TTT
methods. Below, we provide a comparison of inference times on out-of-distribution data for three approaches: the base
model without optimization, the state-of-the-art TTT method ActMAD, and IT3. As shown, while our method introduces no
significant overhead compared to ActMAD, it remains computationally efficient while achieving substantial improvements
in performance. A similar observation can be made about memory consumption, as reported in Tab. 5 for the case of batch
size 128 on ImageNet-C, showing peak memory reserved (in GB) using torch.cuda.max memory reserved().

Table 2. Inference Time Comparison (OOD Airfoils)

Method Base Model ActMAD IT3

Inference Time (↓) 1× 3× 4×

Table 3. Inference Time Comparison (OOD Cars)

Method Base Model ActMAD IT3

Inference Time (↓) 1× 4× 5×

Table 4. Inference Time Comparison (OOD Roads)

Method BASE ActMAD IT3

Inference Time (↓) 1× 4.5× 6×

Table 5. Memory Consumption (OOD ImagetNet), GPU Gb

Method BASE TENT MEMO ETA ActMAD IT3

Memory (↓) 4.5 4.8 13.5 4.9 7.2 7.4

B. Extended Discussion: Relating IT3 to IGN
In this section, we elaborate on how IT3 generalizes the projection principle of Idempotent Generative Networks (IGN)
to a supervised test-time training setting. We show that both approaches use idempotence—repeated applications of the
network function should yield the same result—as a way to “project” off-manifold inputs onto a learned manifold of valid
data. While IGN enforces idempotence directly on all possible inputs, IT3 enforces it primarily on training data but adapts
on-the-fly at test time to handle out-of-distribution (OOD) samples.

The Projection Principle in IGN.

IGN (Shocher et al., 2024) learns gθ : Z → X , mapping from a source distribution Pz (e.g. Gaussian noise) to a target
distribution Px ⊂ X (e.g. natural images). It imposes:

gθ
(
gθ(z)

)
= gθ(z) ∀ z ∈ Z,

so a second application of gθ makes no change. This idempotence implies that once an off-manifold z is mapped to gθ(z),
it must already lie on the manifold {x : gθ(x) = x}. In effect,

z 7→ gθ(z) ∈
{
x : gθ(x) = x

}
.

One can interpret this as a projection: a drift or energy measure δθ(x)=∥ gθ(x)− x ∥ vanishes (δθ(x) = 0) if and only if
x already lies on that manifold. Enforcing gθ(gθ(z)) = gθ(z) ensures δθ(gθ(z)) = 0. Hence, after one forward pass, the
corrupted or noisy input is “pulled” onto the learned data manifold, and repeated applications do not alter it further.

Idempotence in IT3: Pairwise Function.

IT3 deals with a supervised model
fθ : X × Y → Y,

where x ∈ X is an input and y ∈ Y its desired output. The training set {(xi,yi)} spans an in-distribution Px,y. During
training, IT3 enforces:

1. fθ(x,y) = y for training pairs (x,y). Thus, each real pair is a fixed point.

13

IT³: Idempotent Test-Time Training

2. fθ(x,0) ≈ y, using a “neutral” label 0 to predict y.

Combining these yields:

fθ

(
x, fθ(x,0)

)
= fθ(x,0),

an idempotence condition parallel to IGN’s gθ(gθ(z)) = gθ(z). One may define a drift-like measure

∆θ(x) =
∥∥∥ fθ(x, fθ(x,0)) − fθ(x,0)

∥∥∥.
When x is in-distribution, training makes ∆θ(x) = 0. If x is OOD, ∆θ(x) > 0 initially. Test-time adaptation then updates
θ on-the-fly to push ∆θ(x) closer to zero, thereby restoring idempotence.

Subtlety: Internal Representations Projection

A natural question arises: If the OOD variable x itself stays fixed, how can (x,y) become “on distribution”? The answer is
that, inside the network layers, x and y jointly produce hidden representations. Although x does not physically change, the
way x participates in the representation does change once y and the model parameters θ are updated. Thus, even if x is not
from the training distribution, the pair

(
x, ŷ

)
can enter a region of representation space that matches valid training pairs.

Formally, each layer of fθ has activations that depend on both x and y. By adjusting θ (but freezing the outer function call)
so that

fθ

(
x, fθ(x,0)

)
= fθ(x,0),

we effectively project
(
x,0

)
into the manifold

{
(x,y) : fθ(x,y) = y} within the network’s internal representation. Hence,

even though x remains the same, the final pair (x, ŷ) is “valid” in the sense that repeated applications are stable.

Conclusion: IT3 Also “Projects” Off-Manifold Pairs.

In IGN, once trained, any input z ∈ Z maps to gθ(z) on the real-image manifold (gθ(x) = x). In IT3, a new OOD pair (x,0)
is adapted so that

(
x, fθ(x,0)

)
belongs to the set {(x,y) : fθ(x,y) = y}. From an internal representation viewpoint, this

pulls the OOD pair onto the manifold of valid (x,y) relations. Thus, IT3 extends IGN’s core idea of “learned idempotent
projection” to a supervised test-time training paradigm. Despite leaving x intact, the final output indeed corresponds to a
consistent (x,y)-pair on the model’s manifold, much like IGN pulls corrupted noise into the real-data manifold.

Appendix C: Detailed Elaboration: Relation between Adaptation and Idempotence
In this appendix, we provide a detailed explanation of the rationale behind the idempotence loss used in IT3. Our aim is to
demonstrate how the discrepancy between recursive model outputs quantifies the out-of-distribution (OOD) uncertainty and
why actively minimizing this discrepancy drives the model toward idempotence with respect to its auxiliary input.

1. Training via the ZigZag Approach

Following (Durasov et al., 2024a), the network is modified to accept an auxiliary input. During training, for each training
pair (x, y), the model f is trained to satisfy:

f(x, 0) ≈ y and f(x, y) ≈ y. (8)

This is achieved by minimizing a composite loss:

Ltrain = ∥f(x, 0)− y∥+ ∥f(x, y)− y∥. (9)

This training strategy ensures that incorporating the auxiliary input (either the true label or a “don’t know” signal) does not
hurt the primary task performance while establishing a consistency property in the network.

14

IT³: Idempotent Test-Time Training

2. Test-Time Recursive Inference and Uncertainty Measurement

At test time, the network is applied recursively:

y0 = f(x, 0), (10)
y1 = f(x, y0). (11)

We define the uncertainty loss as:
LIT3(x) = ∥y1 − y0∥. (12)

The rationale is as follows:

1. If x is in-distribution, then y0 ≈ y, and since the network is trained so that f(x, y) ≈ y, we have y1 ≈ y0. Therefore,
LIT3(x) is small.

2. If x is OOD, then y0 is unlikely to approximate the true label. In this case, the pair (x, y0) is not a valid input as per
training, leading y1 to be unpredictable and significantly different from y0, resulting in a large LIT3(x).

Thus, the magnitude of ∥y1 − y0∥ serves as a proxy for prediction certainty.

3. From Uncertainty to Idempotence

We now elaborate on how the uncertainty loss translates into enforcing idempotence of f(x, ·) for a given x. Recall that a
function is idempotent if

f(f(x)) = f(x). (13)

For our setting, consider the function g(y) = f(x, y). The desired idempotence condition becomes:

g(g(0)) = g(0), (14)

or equivalently,
f(x, f(x, 0)) = f(x, 0). (15)

Thus, we can rewrite the uncertainty loss as:

LIT3(x) = ∥f(x, f(x, 0))− f(x, 0)∥. (16)

Minimizing LIT3(x) drives the network toward the condition that repeated application of f(x, ·) does not change the output.
When LIT3(x) = 0, the function f(x, ·) is idempotent given the input x. This self-consistency indicates that the network’s
output is aligned with the in-distribution manifold.

4. Addressing Optimization Challenges

Minimizing the idempotence loss is not trivial. Naively reducing LIT3 can lead to pitfalls such as reinforcing an erroneous
prediction y0. As discussed in (Shocher et al., 2024), directly optimizing the idempotence loss induces two gradient
pathways:

1. A desirable pathway that updates f(x, 0) toward the correct in-distribution manifold.

2. An undesirable pathway that may cause the manifold to expand, thereby including an incorrect f(x, 0).

To counteract the latter, our method avoids passing gradients through the second application of f by using a frozen copy of
the network (or updating it via an exponential moving average). Specifically, we compute:

y1 = F (x, f(x, 0)), (17)

and redefine the loss as:
LIT3 = ∥F (x, f(x, 0))− f(x, 0)∥. (18)

This decoupling ensures that only the first prediction y0 is adapted during test-time training, thus preventing error reinforce-
ment and ensuring that the minimization of the loss indeed pulls f(x, ·) toward idempotence.

15

IT³: Idempotent Test-Time Training

Image TTT (batch=16)
Qual=30.08

ActMAD (batch=16)
Qual=31.22

IT3 (batch=16)
Qual=39.23

Label

Qual=30.63 Qual=31.66 Qual=55.79

Qual=16.98 Qual=16.11 Qual=40.64

Qual=19.03 Qual=26.47 Qual=59.27

Qual=63.34 Qual=69.84 Qual=77.66

Qual=53.72 Qual=50.39 Qual=77.17

Figure 16. Comparison of different Test-Time Training methods on segmentation tasks. This plot shows the predictions of various
TTT methods on an aerial segmentation task. As can be seen, our approach consistently enhances prediction quality and outperforms
other methods.

16

IT³: Idempotent Test-Time Training

5. Summary

By minimizing the loss
LIT3 = ∥F (x, f(x, 0))− f(x, 0)∥, (19)

we enforce the condition
f(x, f(x, 0)) ≈ f(x, 0), (20)

i.e., f(x, ·) becomes idempotent given the input x. This idempotence is a critical indicator that the input is aligned with the
training distribution. When LIT3 is small, the prediction is self-consistent and reliable; when it is large, it signals that the
input is likely OOD. Consequently, actively minimizing this loss through test-time training refines the network’s prediction
and enhances its robustness to distribution shifts.

For further details on related projection perspectives, please refer to Appendix B.

17

