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Abstract

Chinese Spelling Correction (CSC) aims to de-
tect and correct spelling errors in given sen-
tences. Recently, multi-domain CSC has grad-
ually attracted the attention of researchers be-
cause it is more practicable. In this paper, we
focus on the key flaw of the CSC model when
adapting to multi-domain scenarios: the ten-
dency to forget previously acquired knowledge
upon learning new domain-specific knowledge
(i.e., catastrophic forgetting). To address this,
we propose a novel model-agnostic Multi-stage
Knowledge Transfer (MKT) framework with
an evolving teacher model and dynamic distil-
lation weights for knowledge transfer in each
domain, rather than focusing solely on new do-
main knowledge. It deserves to be mentioned
that we are the first to apply continual learning
methods to the multi-domain CSC task. Exper-
iments ! prove our method’s effectiveness over
traditional approaches, highlighting the impor-
tance of overcoming catastrophic forgetting to
enhance model performance.

1 Introduction

Chinese Spelling Correction (CSC) plays a criti-
cal role in detecting and correcting spelling errors
in Chinese text (Li et al., 2022c; Ma et al., 2022),
enhancing the accuracy of technologies like Opti-
cal Character Recognition (OCR) and Automatic
Speech Recognition (ASR) (Aflietal., 2016; Wang
et al., 2018). In search engines, for example, CSC
reduces human error, ensuring that users find the
information they seek accurately.

In real applications, the input text may come
from various domains, demanding that the model
contains different domain-specific knowledge. As
illustrated in Table 1, the word “5&7(Strong Foun-
dation)” is evidently common in the Chinese Ed-
ucation domain. Accurately correcting “FK(open)”
to “5H(Strong)” requires the model to have specific
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Input fhid st T 5k (zhang) ZE TR -

He passed the Open Foundation plan.
+EDU | i T 3 (qiang) 23131 -

He passed the Strong Foundation plan.
+CHEM | fthi@iid T #2(qidng) 314 -

He passed the Hydroxyl project.
Target | flifd T 3 (qidng) EitH -

He passed the Strong Foundation plan.

Table 1: Case of catastrophic forgetting in multi-domain
CSC. red represents the misspelled character and blue
represents the corrected character.

knowledge about the Chinese Education domain.
Therefore, some works have begun to focus on the
impact of domain knowledge on the performance
of CSC models (Lv et al., 2023a; Wu et al., 2023).

Previous works place greater emphasis on a
model’s ability to generalize to unseen domains,
known as zero-shot performance, leveraging shared
knowledge across different domains for general-
ization (Liu et al., 2023). However, in practical
scenarios, for different domains, text correction
needs often exist simultaneously and may evolve
and increase over time. Therefore, CSC models
must continuously learn and adapt across multiple
domains. This is not merely a problem of domain
adaptation but a challenge of sequential learning
and knowledge updating across multiple domains.
This aligns with the widely studied continual learn-
ing. Hence, in this paper, we first incorporate
the continual learning setting into CSC models.

The core challenge of the continual learning set-
ting is to minimize catastrophic forgetting of pre-
viously acquired knowledge while learning in new
domains (Wang et al., 2024). As demonstrated in
Table 1, when a CSC model learns educational-
specific knowledge, it accurately corrects the word
“5i 3 (Strong Foundation)”. However, after it con-
tinues to learn knowledge from the chemistry do-



main, it would learn the new knowledge of “¥%
#(hydroxyl)”, but forget the education word “5#
#:(Strong Foundation)”. Unfortunately, in previ-
ous multi-domain CSC studies, the challenge of this
catastrophic forgetting of domain-specific knowl-
edge has not been fully explored.

In the field of Computer Vision, extensive stud-
ies are conducted on continual learning (Simon
et al., 2022). We conduct experiments using com-
mon methods such as replay and knowledge distil-
lation (Gou et al., 2021). These methods do help
mitigate catastrophic forgetting to some extent, but
there are still issues that need to be addressed,
such as data imbalance and difficulties in updat-
ing the teacher model. To further improve upon
this, we propose a novel model-agnostic Multi-
stage Knowledge Transfer framework featuring an
evolving teacher model. At each stage, the teacher
model transfers its accumulated knowledge to the
current student model, with distillation weights
dynamically adjusting based on the data ratio. Fi-
nally, through extensive experiments and analyses,
we demonstrate the effectiveness of our proposed
method. The experimental results are shown in Ta-
ble 3 and will be discussed in detail in Section 4.4.
Our contributions are summarized as follows:

1. We are the first to highlight the catastrophic
forgetting phenomenon of domain-specific
knowledge in multi-domain CSC, a key chal-
lenge that must be overcome for CSC models
to truly adapt to real multi-domain scenarios.

2. We present a model-agnostic MKT framework
with an continuously evolving teacher model
and dynamic distillation weights that effec-
tively collaborate to mitigate domain-specific
knowledge forgetting.

3. We conduct extensive experiments and thor-
ough analyses to validate the effectiveness and
competitiveness of our proposed method com-
pared to other continual learning methods.

2 Related Work
2.1 Chinese Spelling Correction

In the field of CSC, we witness significant advance-
ments in various model architectures and modules,
as evidenced by recent works (Li et al., 2022b,
2023b; Zhang et al., 2023; Ye et al., 2023b, 2022;
Ma et al., 2023; Ye et al., 2023a; Huang et al.,
2023; Li et al., 2023d). Early models such as the

Confusionset-guided Pointer Networks focus on
optimizing at the dataset level by leveraging confu-
sion sets for character generation. This technique
enhances accuracy by considering commonly con-
fused characters (Wang et al., 2019). Innovations
in embeddings, like the REALISE model, improve
model inputs by integrating semantic, phonetic,
and visual information into character embeddings,
thereby enriching the representational capacity of
the model (Xu et al., 2021). Improvements in
encoders are highlighted by models such as Soft-
Masked BERT, which employs Soft MASK tech-
niques post-detection to blend input characters with
[MASK] embeddings. This method is effective for
error prediction and has shown significant improve-
ments in performance (Zhang et al., 2020). Another
notable model, SpellGCN, constructs a character
graph and maps it to interdependent detection clas-
sifiers based on BERT-extracted representations,
showcasing innovative uses of graph neural net-
works in spelling correction (Cheng et al., 2020).

Previous research in multi-domain CSC empha-
sizes cross-domain knowledge sharing and general-
ization (Lv et al., 2023a). Typically, this involves
training models on high-quality datasets to gen-
eralize effectively to specific domains. However,
domain-specific knowledge is hard to generalize,
and fine-tuning on multiple datasets can lead to
catastrophic forgetting, where new knowledge over-
writes old knowledge. This paper addresses catas-
trophic forgetting by introducing mechanisms that
balance retaining existing knowledge with integrat-
ing new information. We propose a framework that
mitigates forgetting while ensuring robust perfor-
mance across multiple domains.

2.2 Continual Learning

In the field of continual learning, core strategies
such as replay, regularization, and parameter iso-
lation play pivotal roles (Liu et al., 2022; Li et al.,
2022a; Wang et al., 2023; Dong et al., 2023; Li
et al., 2023c). Replay methods, including tech-
niques like GEM and MER, work by retaining
training samples and using constraints or meta-
learning to align gradients effectively (Lopez-Paz
and Ranzato, 2017; Riemer et al., 2018). Regu-
larization strategies, with Elastic Weight Consol-
idation (EWC) being a prime example, focus on
preserving task-specific knowledge by emphasizing
the importance of parameters that are critical to pre-
vious tasks (Kirkpatrick et al., 2017). Knowledge



distillation is another key approach, aiming at incre-
mental training by transferring insights from larger
models to smaller ones, thereby facilitating the in-
tegration of new knowledge while retaining old
knowledge (Gou et al., 2021). Parameter isolation
techniques, such as CL-plugin, address the issue of
task interference by allocating unique parameters
to different tasks, thus reducing the likelihood of
overlap and interference (Ke et al., 2022).

Our work is pioneering in that it introduces con-
tinual learning to the multi-domain CSC task for
the first time. Our MKT framework stands out as a
model-agnostic approach, capable of being applied
across various CSC models. By leveraging the
strengths of existing continual learning strategies
and integrating them into a cohesive framework,
we aim to effectively mitigate catastrophic forget-
ting and enhance the adaptability of CSC models
in multi-domain scenarios.

3 Our Approach

Our approach incorporates two dynamic mecha-
nisms, designed for scenarios involving continual
training across multiple domains. The primary
mechanism features an evolving teacher model that
continuously updates its knowledge base to encom-
pass the most crucial knowledge from the previ-
ously trained domains. The secondary mechanism
involves dynamic distillation weights, which better
balance the loss between the teacher and student
model. This provides a simple and effective solu-
tion for continual learning in multi-domain CSC.

3.1 Problem Formulation

The CSC task is to detect and correct spelling
errors in Chinese texts. Given a misspelled sen-
tence X = {z1, x9,..., x,} with n characters,
a CSC model takes X as input, detects possible
spelling errors at character level, and outputs a cor-
responding correct sentence Y = {y1, y2, ..., Yn}
of equal length. This task can be viewed as a con-
ditional sequence generation problem that mod-
els the probability of p(Y|X). In multi-domain
CSC tasks, assuming that there are n domains
D ={Dy, Da,..., D,}, these domains are trained
sequentially, where each domain Dy, is trained with-
out access to the data from previous domains, from
Dy to Dy_ . Furthermore, after training domain
Dy, we should consider the performance of all
domains from D; to Dj, a metric which we will
introduce in Section 4.1.

3.2 Structure of MKT framework

To tackle catastrophic forgetting, an intuitive solu-
tion is to transfer the knowledge previously ac-
quired to the most recent model. The founda-
tional idea revolves around transferring previously
acquired knowledge to the latest model iteration.
However, maintaining a distinct model for each
stage quickly becomes untenable due to escalating
storage and computational requirements with the
addition of each domain.

Using the concept of knowledge distillation, if
a fixed teacher model is used to distill knowledge
into each domain-specific student model, it remains
a challenging problem to ensure that the student
model learns the important knowledge from all
previously learned domains.

To address this challenge, our framework em-
ploys a dynamic teacher model strategy. As il-
lustrated in Figure 1, this teacher model acts as a
comprehensive knowledge repository, effectively
serving as a backup of the student model from the
previous stage to calculate the distillation loss for
the current stage’s student model. It encapsulates
all the domain-specific knowledge accumulated to
date, providing crucial guidance for the model train-
ing in the current phase. Additionally, we conduct
experiments to explore how to a priori select appro-
priate distillation weights (experimental results are
shown in Table 4), so that framework can dynami-
cally adjusted distillation weights during training
to achieve better performance.

3.3 MKT framework for Multi-domain CSC

We consider the scenario where the training is com-
prised of m stages, denoted by £k = 1,2...,m. At
k-th stage, a subset of data {a:](;), y,(;)};fpil are fed
to the model, where T}, refers to the number of
samples at k-th stage, :1:,(;) refers to ¢-th sample at
k-th stage.

Assume that u(+) is an unknown target function

that maps each :):fj) to y,(j) at stage k, i.e., y,(j) =

uk(x,(;)). Under the continual learning setting, our
goal is to train a CSC model g(- ; w) parameterized
by w, such that g(- ; w) not only fits well to ug(+),
but also fits ug_1(-) , ug—2(-), - - -, ui(-) in early
stages to alleviate catastrophic forgetting.

We need to minimize the loss function to opti-

mize the model weights:
L® =k 4+ L®) (1)

In the equation, A is a hyper-parameter that ranges



Distillation
Loss

+

%,
%,
Dynamic 4 %
%

3
%,
<

T
AN G

Distillation
Loss

(b

2

Teacher Model

fo

Student Model

fo
»
a3

Parameters Fixed

@ Parameters Updated

Figure 1: Overview of the MKT framework and the pipeline for multi-domain training.

from [0,1]. L L) is the knowledge distillation loss,
calculating cross entropy between the output prob-
abilities of teacher model g(- ; wx_1) and student
model g(- ; wg):

& . )
LE = =3 g(al; wp1) x log g(a; w).

i=1

2)

L,gk) is the cross-entropy loss between the output
of student model g(- ; wy) and ground truth y:

L(k Z y

The choice of ) is related to the ratio of domain
data and old data, S; is domain data scale and S,
is old data scale:

) x log g( 9:2); wg). (3

A="1 4)

Algorithm 1 MKT Framework

Input: Training set Dy, Student model Sy_{
Output: Student model Sy,

Copy Sk—_1 as the teacher model T,

Freeze the parameters of T},

Calculate A according to Equation4.

S}, forward propagation and calculates the loss
guided by T}, according to Equation 1

5: Optimize the parameters of Sy

6: Return S},

E

As shown in Algorithm 1, during the training
of the k-th domain, we employ the model refined
from the preceding £ — 1 domains (i.e, Sk—1),
as the teacher model T}, alongside the concur-
rently trained student model Sj. The parameters

of T}, are frozen. The final loss is the dynamically
weighted summation of the knowledge distillation
loss Lgk) and the original CSC task loss L(k), with
the weights as shown in Equation 4.

4 Experiment and Result

In this section, we introduce our multi-domain
datasets and experiments, aiming to validate the
superiority of our proposed MKT framework com-
pared to other methods in mitigating catastrophic
forgetting and enhancing generalization capability.

4.1 Datasets and Metrics

Training Set Domain Sent Avg.Length Errors
Wang271K  General 271,329 42.6 381,962
SIGHANI13  General 700 41.8 343
SIGHAN14  General 3,437 49.6 5,122
SIGHANI15 General 2,338 31.1 3,037
CAR CAR 2,743 434 1,628
MED MED 3,000 502 2,260
LAW LAW 1,960 30.7 1,681
Test Set Domain Sent Avg.Length Errors
SIGHANI15 General 1,100 30.6 703
CAR CAR 500 43.7 281
MED MED 500 49.6 356
LAW LAW 500 29.7 390

Table 2: Statistics of the datasets we use.

Considering the multi-domain setting we focus
on, we set up four domains, namely General, Car,
Medical, and Legal domains. The reason for this
setting is that the differences in characteristics be-
tween these domains are the most obvious, which
brings the most serious catastrophic forgetting to
CSC models. For the general domain, as in previ-
ous work, we also use SIGHAN13/14/15 (Wu et al.,



2013; Yu and Li, 2014; Tseng et al., 2015) and
Wang271K (Wang et al., 2018) as training data and
SIGHANTS test set as our test data. For other spe-
cial domains, we utilize the data resources released
by LEMON (Wu et al., 2023) and ECSpell (Lv
et al., 2023b), and randomly take 500 samples from
the original data of each domain as the test set. The
dataset statistics are presented in the Table 2.

Our evaluation predominantly relies on the
sentence-level F1 score, a widely acknowledged
metric. This criterion is notably stringent, adjudg-
ing a sentence as accurate solely when every error
within is precisely identified and rectified, thereby
providing a more rigorous evaluation compared to
character-level metrics. In each table, Avg repre-
sents the overall performance after training on all
domains. Unlike average accuracy (AA) (Wang
et al., 2023), we use the average sentence-level F1
score, which is a more stringent metric than AA.

4.2 Baseline Methods

To validate the model-agnostic nature of MKT, we
selected three widely used CSC baselines with dif-
ferent architectures to evaluate the effectiveness of
our approach across various structures:

1. BERT (Devlin et al., 2019): Directly fine-tune
the chinese-roberta-wwm-ext model using a
series of domain-specific datasets.

2. Soft-Masked BERT (Zhang et al., 2020): In-
corporates a soft masking process after the de-
tection phase, where it calculates the weighted
sum of the input and [MASK] embeddings.

3. REALISE (Xu et al., 2021): Models seman-
tic, phonetic and visual information of input
characters, and selectively mixes information
in these modalities to predict final corrections.

To validate the effectiveness of our MKT frame-
work, we compare it with different continual learn-
ing methods on the aforementioned models to
demonstrate the superiority of our approach:

1. Joint-Training (Caruana, 1997): Mix the new
domain data with the old data for training.

2. Fine-tuning: Without using anti-forgetting
methods, the model simply fine-tune on a se-
ries of domain data.

3. Replay(random) (Chaudhry et al., 2019):
Randomly sample 1% from the old data and
combine it with the new data for training.

4. Replay(RAP) (Li et al., 2024): Replay
According imPortance RAP selects 10% of
the old data based on importance (i.e., the loss
of the old data on the old model) and mixes it
with the new domain data for training.

4.3 Implementation Details

In the main experiment, we initially train the
models on General dataset, which consists of
Wang271K combined with double the amount of
SIGHAN data. This is followed by training on the
CAR, MED, and LAW datasets using various con-
tinual learning methods, including Joint-Training,
fine-tuning, replay (random), and replay (RAP).
Upon completion of training, we evaluate the per-
formance of the final model across all domain-
specific datasets to gauge its effectiveness.

Additionally, auxiliary experiments are con-
ducted using our top-performing REALISE model.
These experiments investigate several factors such
as determining the optimal ), assessing the appro-
priate buffer size, examining the effects of different
training orders, and performing ablation studies to
understand the contribution of each component.

For all experiments, we train the aforementioned
datasets for 10 epochs with a batch size of 64. The
learning rates are Se-5 for REALISE and BERT
models, and 1e-4 for the Soft-Masked BERT model.
Our approach incorporates a knowledge transfer
process at each domain, where the A between L,
and L is updated prior to training each domain
according to Equation 4. The hyper parameter set-
tings for the auxiliary experiments remain consis-
tent with those used in our main experiments.

4.4 Results and Analyses

Main Results From Table 3, we see that after
the optimization of our MKT, whether it is BERT,
Soft-Masked BERT specially designed for CSC, or
REALISE that integrates multi-modal information,
their performance improves in all domains. This
reflects the effectiveness and the model-agnostic
characteristic of our proposed MKT framework.
Regarding the comparison between MKT and
other continual learning methods, it can be ob-
served that Joint-Training, due to the General
dataset being much larger than the specific domain
datasets, can effectively mitigate forgetting in the
General dataset but fails to adequately learn the
new dataset’s knowledge. Fine-tuning, without any
measures against forgetting, results in significant
loss of previously acquired knowledge. Randomly



Model Method | General CAR MED LAW  Avg
Joint-Training 7150 3175 4258 6041 5156

Fine-tuning 67.41 33.50 42.86 62.35 51.53

BERT +Replay(random) | 70.07 3487 4133 5951 5145
+Replay(RAP) 7009 3622 4300 5825  51.89

| +MKT(Ours) | 6858 3618 4356 6247 52707

Joint-Training 60.96 2667 4000 5819  46.46

Fine-tuning 54.22 30.73 43.88 68.54 49.34

Soft-Masked BERT | +Replay(random) | 47.45 2388 3951 6430  43.79
+Replay(RAP) 5448 2286 4652 6059  46.11

| +MKT(Ours) | 6090 3564 5221 7040  54.79"

Joint-Training 7677 2681 5072 6872 5576

Fine-tuning 7078 2748 5333 7059 5555

REALISE +Replay(random) | 7578 2783 5381 6925  56.67
+Replay(RAP) 76.10 3151 5033 69.76  56.93

| +MKT(Ours) | 7384 3125 541 7018  57.34"

Table 3: Performance on the test set of each domain after training on all datasets.

selecting old data to train together with the new
data shows relatively good performance when the
data is more balanced. Selecting old data based on
importance and training it together with new do-
main data achieve better results compared to other
methods. It performs only slightly worse than our
MKT framework. However, its training time is ten
times longer than our method.

Parameter Study To explore the impact of the
key parameter A\, we conduct experiments with dif-
ferent A values on REALISE + MKT under varying
ratios of new domain and old data. As shown in
Table 4, we perform experiments on the General
dataset and the subsequent three specific domain
datasets, selecting a portion of the data from the
General dataset as the old dataset. The size of the
old dataset was set to be 50, 20, and 10 times that
of the corresponding specific domain data. When
A was set to 0.5, 1, and 2 times the ratio of the
domain dataset size to the old dataset size, the re-
sults generally showed stable improvements over
the baseline (i.e., A = 0). In particular, when A
matched the ratio of the domain data to the old data,
it perform best across all domains.

Therefore, intuitively, for MKT, it can choose the
appropriate A based on the ratio of the new domain
data to the old data to achieve optimal performance.

Buffer study

Due to the severe imbalance in the

scale of new domain and old data in the Joint-
Training method, we explore the optimal buffer
size for the replay method by conducting a series
of experiments on REALISE. As shown in Table
5, when randomly selecting the buffer, the best per-
formance is achieved by choosing 1% of the old
data as the buffer size, because the size of the new
and old data is relatively balanced. However, when
selecting the buffer based on sample importance,
choosing 10% of the old data as the buffer size
yields the best results, even though it consumes a
significant amount of training time. This is because
selecting important samples for training allows for
better learning of the most critical knowledge from
both the new and old data.

Catastrophic Forgetting The above analysis
convincingly demonstrate that the MKT framework
outperforms other continual learning methods in
overall performance after training across all do-
mains. To better observe the forgetting at each
stage when training on subsequent domain datasets,
we selecte the best-performing model from Table
3 (i.e., REALISE) and examine its performance
loss (i.e., catastrophic forgetting) on the General
dataset after incremental training with data from
other domains, as shown in Figure 2.

The performance loss of REALISE on the Gen-



Sa N CAR MED LAW
5o General Domain Avg General Domain Avg General Domain Avg
0 66.73 3042 4858 65.65 47.17 56.41 66.07 5945 6276
0.01 66.97 3025 4861 65.78 4760  56.69 66.9 5827 6259
0021 502 67.26 3096 49117 | 66.67 4727  5697" | 66.91 59.01  62.96"
0.04 67.51 30.19 4885 67.17 4516 56.17 66.84 5838 6261
0 62.25 29.85  46.05 62.36 4244 5240 61.27 58.5 59.89
0.025 | 64.10 2042 46.76 61.84 4389 5287 61.87 59.84  60.86
0051 .05 65.80 30.17 47997 | 63.82 4196  52.89T | 62.30 60.63  61.47"
0.1 64.85 30.17  47.51 62.94 41.27 52.11 63.00 5782  60.41
0 55.07 2744 4126 57.69 40.18 4894 53.68 5494 5431
0.05 58.46 28.03 4325 57.48 41.91 49.70 54.53 5562  55.08
01 0.1 59.13 2851  43.82" | 5881 4138  50.10" | 55.66 5520  55.43"
0.2 57.47 2570 4159 58.96 3570 4733 55.60 5422 5491

Table 4: Selection of optimal distillation weights () under different domain(Sy) and old(S,) data ratios.

Model | Method | Buffersize | General CAR MED LAW Avg
0.001 74.14 27.56 54.07 67.88 55.91

Replay(random) 0.01 75.78 27.83 53.81 69.25 56.67"

0.1 74.44 30.33 51.94 67.87 56.15

REALISE 0.001 74.31 26.77 49.37 67.88 54.58
Replay(RAP) 0.01 75.48 31.51 48.75 68.67 56.10

0.1 76.10 31.51 50.33 69.76 56.93"

Table 5: Performance of different replay methods and various buffer sizes.
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Figure 2: The phenomenon of model forgetting General-
domain knowledge during incremental domain training.

eral dataset is much smoother when optimized with
MKT, indicating that MKT framework effectively
mitigates catastrophic forgetting at each stage.

Training Order To investigate whether our MKT
framework can mitigate catastrophic forgetting
across different training orders, we also experiment
with alternative sequences. For instance, we choose

the best-performing model, REALISE, from Table
3 and conduct training on it according to the new
sequence, which is the reverse of the main exper-
iment’s order. As shown in Table 6, the table
headers represent the training order of the domains,
despite varying degrees of forgetting, MKT frame-
work effectively mitigates catastrophic forgetting.

4.5 Ablation Study

MKT differs from knowledge distillation in two
key aspects: a continuously evolving teacher model
and distillation weights that dynamically change
with the ratio of new and old data. To validate the
effectiveness of these two mechanisms, we conduct
ablation experiments on REALISE without these
optimizations. As shown in Table 7, the two dy-
namic mechanisms of MKT effectively mitigate
catastrophic forgetting, with the performance im-
provement brought by the dynamically evolving
teacher being more significant.

In knowledge distillation, the teacher model is
fixed. Although it contains extensive knowledge
from the General dataset, it cannot be continually
updated with subsequent domain knowledge. Con-



Model | Method | General CAR MED LAW Avg
REALISE Knowledge distillation 74.23 29.69 52.68 67.61 56.05
MKT(Ours) 73.84 31.25 54.10 70.18 57.34"
Model | Method | General LAW MED CAR Avg
REALISE Knowledge distillation 74.54 61.64 4491 30.37 52.87
MKT(Ours) 74.29 64.07 48.99 28.81 54.04"
Table 6: The impact of training order on MKT Performance.

Model | Method | General CAR MED LAW Avg
Knowledge distillation 74.23 29.69 52.68 67.61 56.05
+ evolving teacher 72.74 29.25 55.28 70.85 57.03

REALISE .
+ dynamic A 74.13 30.30 53.74 67.34 56.38
MKT(Ours) ‘ 73.84 31.25 54.10 70.18 57.34"

Table 7: The impact of dynamic distillation weights (\) and the evolving teacher model on performance.

sequently, while it effectively reduces forgetting in
the General dataset, significant forgetting of previ-
ously learned domain knowledge still occurs after
training on all domains.

A continuously evolving teacher model can in-
corporate the most important knowledge previously
learned, effectively reducing the student’s forget-
ting of prior knowledge. For dynamic distillation
weights, we provided experimental results in Table
4. MKT’s adaptation to the ratio of domain and
old data allows it to better learn the most important
knowledge from domain and old data. Using dy-
namic distillation weights alone can only provide
limited performance improvement.

Our MKT combines these two dynamic mecha-
nisms. While forgetting on the General dataset is
slightly greater than with the fixed teacher method,
overall anti-forgetting performance in subsequent
domain learning significantly improves.

4.6 Case Study

To further verify the effectiveness of our MKT in
mitigating catastrophic forgetting in multi-domain
CSC, we present some cases in Table 8. For a test
sentence in the CAR domain, REALISE accurately
corrects errors after fine-tuning on CAR. However,
after further fine-tuning on the MED domain, it
can no longer correct successfully and instead pre-
dicts “%l(cyanide)” related to the medical domain.
This is a typical catastrophic forgetting case where
old domain knowledge is washed away by new
domain knowledge. It can be seen that with the

Circumventing Catastrophic Forgetting
FRARFRZNITRSUV
AR RRITRSUV

Input

+CAR(Fine-tuning)

+CAR(+MKT) FR AR ERITRSUV
+MED(Fine-tuning) FER AT ERITURESUV
+MED(+MKT) FEE AR ERIURSUV
Target FRANRENITRSUV

Table 8: Cases from the CAR test set, conducted on
the REALISE model, show that the MKT framework
mitigates over-correction and catastrophic forgetting.

optimization of MKT, REALISE effectively avoids
the occurrence of catastrophic forgetting.

5 Conclusion

This paper demonstrates through experimentation
that existing CSC models, when adapting to multi-
domain scenarios, tend to forget previously ac-
quired domain-specific knowledge, a phenomenon
known as catastrophic forgetting. Consequently,
we propose an effective, model-agnostic MKT
framework with an evolving teacher model and
dynamic distillation weights to balance retaining
existing knowledge with integrating new informa-
tion, effectively mitigating catastrophic forgetting.
Extensive experiments and detailed analyses high-
light the significance of addressing catastrophic
forgetting, proving the superiority of our method
over other continual learning approaches.



Limitations

Our method specifically focuses on the Chinese lan-
guage. However, other languages, such as English,
could also benefit from our approach, and we plan
to conduct related research on English contexts
in the future. Additionally, we did not compare
our proposed method with large language models
(LLMs) commonly used in experiments. The pri-
mary reason is that representative LLMs still lag
behind traditional fine-tuned smaller models in the
CSC task, as has been demonstrated by some re-
lated works (Li et al., 2023a).

Of course, our main contribution is proposing a
model-agnostic framework to mitigate catastrophic
forgetting. We believe that combining the MKT
framework with current LLMs could be a highly
practical direction for future work.
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