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Abstract

Chinese Spelling Correction (CSC) aims to de-001
tect and correct spelling errors in given sen-002
tences. Recently, multi-domain CSC has grad-003
ually attracted the attention of researchers be-004
cause it is more practicable. In this paper, we005
focus on the key flaw of the CSC model when006
adapting to multi-domain scenarios: the ten-007
dency to forget previously acquired knowledge008
upon learning new domain-specific knowledge009
(i.e., catastrophic forgetting). To address this,010
we propose a novel model-agnostic Multi-stage011
Knowledge Transfer (MKT) framework with012
an evolving teacher model and dynamic distil-013
lation weights for knowledge transfer in each014
domain, rather than focusing solely on new do-015
main knowledge. It deserves to be mentioned016
that we are the first to apply continual learning017
methods to the multi-domain CSC task. Exper-018
iments 1 prove our method’s effectiveness over019
traditional approaches, highlighting the impor-020
tance of overcoming catastrophic forgetting to021
enhance model performance.022

1 Introduction023

Chinese Spelling Correction (CSC) plays a criti-024

cal role in detecting and correcting spelling errors025

in Chinese text (Li et al., 2022c; Ma et al., 2022),026

enhancing the accuracy of technologies like Opti-027

cal Character Recognition (OCR) and Automatic028

Speech Recognition (ASR) (Afli et al., 2016; Wang029

et al., 2018). In search engines, for example, CSC030

reduces human error, ensuring that users find the031

information they seek accurately.032

In real applications, the input text may come033

from various domains, demanding that the model034

contains different domain-specific knowledge. As035

illustrated in Table 1, the word “强基(Strong Foun-036

dation)” is evidently common in the Chinese Ed-037

ucation domain. Accurately correcting “张(open)”038

to “强(Strong)” requires the model to have specific039

1Our codes and data will be public after peer review.

Input 他通过了张(zhāng)基计划。
He passed the Open Foundation plan.

+EDU 他通过了强(qiáng)基计划。
He passed the Strong Foundation plan.

+CHEM 他通过了羟(qiǎng)基计划。
He passed the Hydroxyl project.

Target 他通过了强(qiáng)基计划。
He passed the Strong Foundation plan.

Table 1: Case of catastrophic forgetting in multi-domain
CSC. red represents the misspelled character and blue
represents the corrected character.

knowledge about the Chinese Education domain. 040

Therefore, some works have begun to focus on the 041

impact of domain knowledge on the performance 042

of CSC models (Lv et al., 2023a; Wu et al., 2023). 043

Previous works place greater emphasis on a 044

model’s ability to generalize to unseen domains, 045

known as zero-shot performance, leveraging shared 046

knowledge across different domains for general- 047

ization (Liu et al., 2023). However, in practical 048

scenarios, for different domains, text correction 049

needs often exist simultaneously and may evolve 050

and increase over time. Therefore, CSC models 051

must continuously learn and adapt across multiple 052

domains. This is not merely a problem of domain 053

adaptation but a challenge of sequential learning 054

and knowledge updating across multiple domains. 055

This aligns with the widely studied continual learn- 056

ing. Hence, in this paper, we first incorporate 057

the continual learning setting into CSC models. 058

The core challenge of the continual learning set- 059

ting is to minimize catastrophic forgetting of pre- 060

viously acquired knowledge while learning in new 061

domains (Wang et al., 2024). As demonstrated in 062

Table 1, when a CSC model learns educational- 063

specific knowledge, it accurately corrects the word 064

“强基(Strong Foundation)”. However, after it con- 065

tinues to learn knowledge from the chemistry do- 066
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main, it would learn the new knowledge of “羟067

基(hydroxyl)”, but forget the education word “强068

基(Strong Foundation)”. Unfortunately, in previ-069

ous multi-domain CSC studies, the challenge of this070

catastrophic forgetting of domain-specific knowl-071

edge has not been fully explored.072

In the field of Computer Vision, extensive stud-073

ies are conducted on continual learning (Simon074

et al., 2022). We conduct experiments using com-075

mon methods such as replay and knowledge distil-076

lation (Gou et al., 2021). These methods do help077

mitigate catastrophic forgetting to some extent, but078

there are still issues that need to be addressed,079

such as data imbalance and difficulties in updat-080

ing the teacher model. To further improve upon081

this, we propose a novel model-agnostic Multi-082

stage Knowledge Transfer framework featuring an083

evolving teacher model. At each stage, the teacher084

model transfers its accumulated knowledge to the085

current student model, with distillation weights086

dynamically adjusting based on the data ratio. Fi-087

nally, through extensive experiments and analyses,088

we demonstrate the effectiveness of our proposed089

method. The experimental results are shown in Ta-090

ble 3 and will be discussed in detail in Section 4.4.091

Our contributions are summarized as follows:092

1. We are the first to highlight the catastrophic093

forgetting phenomenon of domain-specific094

knowledge in multi-domain CSC, a key chal-095

lenge that must be overcome for CSC models096

to truly adapt to real multi-domain scenarios.097

2. We present a model-agnostic MKT framework098

with an continuously evolving teacher model099

and dynamic distillation weights that effec-100

tively collaborate to mitigate domain-specific101

knowledge forgetting.102

3. We conduct extensive experiments and thor-103

ough analyses to validate the effectiveness and104

competitiveness of our proposed method com-105

pared to other continual learning methods.106

2 Related Work107

2.1 Chinese Spelling Correction108

In the field of CSC, we witness significant advance-109

ments in various model architectures and modules,110

as evidenced by recent works (Li et al., 2022b,111

2023b; Zhang et al., 2023; Ye et al., 2023b, 2022;112

Ma et al., 2023; Ye et al., 2023a; Huang et al.,113

2023; Li et al., 2023d). Early models such as the114

Confusionset-guided Pointer Networks focus on 115

optimizing at the dataset level by leveraging confu- 116

sion sets for character generation. This technique 117

enhances accuracy by considering commonly con- 118

fused characters (Wang et al., 2019). Innovations 119

in embeddings, like the REALISE model, improve 120

model inputs by integrating semantic, phonetic, 121

and visual information into character embeddings, 122

thereby enriching the representational capacity of 123

the model (Xu et al., 2021). Improvements in 124

encoders are highlighted by models such as Soft- 125

Masked BERT, which employs Soft MASK tech- 126

niques post-detection to blend input characters with 127

[MASK] embeddings. This method is effective for 128

error prediction and has shown significant improve- 129

ments in performance (Zhang et al., 2020). Another 130

notable model, SpellGCN, constructs a character 131

graph and maps it to interdependent detection clas- 132

sifiers based on BERT-extracted representations, 133

showcasing innovative uses of graph neural net- 134

works in spelling correction (Cheng et al., 2020). 135

Previous research in multi-domain CSC empha- 136

sizes cross-domain knowledge sharing and general- 137

ization (Lv et al., 2023a). Typically, this involves 138

training models on high-quality datasets to gen- 139

eralize effectively to specific domains. However, 140

domain-specific knowledge is hard to generalize, 141

and fine-tuning on multiple datasets can lead to 142

catastrophic forgetting, where new knowledge over- 143

writes old knowledge. This paper addresses catas- 144

trophic forgetting by introducing mechanisms that 145

balance retaining existing knowledge with integrat- 146

ing new information. We propose a framework that 147

mitigates forgetting while ensuring robust perfor- 148

mance across multiple domains. 149

2.2 Continual Learning 150

In the field of continual learning, core strategies 151

such as replay, regularization, and parameter iso- 152

lation play pivotal roles (Liu et al., 2022; Li et al., 153

2022a; Wang et al., 2023; Dong et al., 2023; Li 154

et al., 2023c). Replay methods, including tech- 155

niques like GEM and MER, work by retaining 156

training samples and using constraints or meta- 157

learning to align gradients effectively (Lopez-Paz 158

and Ranzato, 2017; Riemer et al., 2018). Regu- 159

larization strategies, with Elastic Weight Consol- 160

idation (EWC) being a prime example, focus on 161

preserving task-specific knowledge by emphasizing 162

the importance of parameters that are critical to pre- 163

vious tasks (Kirkpatrick et al., 2017). Knowledge 164
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distillation is another key approach, aiming at incre-165

mental training by transferring insights from larger166

models to smaller ones, thereby facilitating the in-167

tegration of new knowledge while retaining old168

knowledge (Gou et al., 2021). Parameter isolation169

techniques, such as CL-plugin, address the issue of170

task interference by allocating unique parameters171

to different tasks, thus reducing the likelihood of172

overlap and interference (Ke et al., 2022).173

Our work is pioneering in that it introduces con-174

tinual learning to the multi-domain CSC task for175

the first time. Our MKT framework stands out as a176

model-agnostic approach, capable of being applied177

across various CSC models. By leveraging the178

strengths of existing continual learning strategies179

and integrating them into a cohesive framework,180

we aim to effectively mitigate catastrophic forget-181

ting and enhance the adaptability of CSC models182

in multi-domain scenarios.183

3 Our Approach184

Our approach incorporates two dynamic mecha-185

nisms, designed for scenarios involving continual186

training across multiple domains. The primary187

mechanism features an evolving teacher model that188

continuously updates its knowledge base to encom-189

pass the most crucial knowledge from the previ-190

ously trained domains. The secondary mechanism191

involves dynamic distillation weights, which better192

balance the loss between the teacher and student193

model. This provides a simple and effective solu-194

tion for continual learning in multi-domain CSC.195

3.1 Problem Formulation196

The CSC task is to detect and correct spelling197

errors in Chinese texts. Given a misspelled sen-198

tence X = {x1, x2, ..., xn} with n characters,199

a CSC model takes X as input, detects possible200

spelling errors at character level, and outputs a cor-201

responding correct sentence Y = {y1, y2, ..., yn}202

of equal length. This task can be viewed as a con-203

ditional sequence generation problem that mod-204

els the probability of p(Y |X). In multi-domain205

CSC tasks, assuming that there are n domains206

D = {D1, D2, ..., Dn}, these domains are trained207

sequentially, where each domain Dk is trained with-208

out access to the data from previous domains, from209

D1 to Dk−1. Furthermore, after training domain210

Dk, we should consider the performance of all211

domains from D1 to Dk, a metric which we will212

introduce in Section 4.1.213

3.2 Structure of MKT framework 214

To tackle catastrophic forgetting, an intuitive solu- 215

tion is to transfer the knowledge previously ac- 216

quired to the most recent model. The founda- 217

tional idea revolves around transferring previously 218

acquired knowledge to the latest model iteration. 219

However, maintaining a distinct model for each 220

stage quickly becomes untenable due to escalating 221

storage and computational requirements with the 222

addition of each domain. 223

Using the concept of knowledge distillation, if 224

a fixed teacher model is used to distill knowledge 225

into each domain-specific student model, it remains 226

a challenging problem to ensure that the student 227

model learns the important knowledge from all 228

previously learned domains. 229

To address this challenge, our framework em- 230

ploys a dynamic teacher model strategy. As il- 231

lustrated in Figure 1, this teacher model acts as a 232

comprehensive knowledge repository, effectively 233

serving as a backup of the student model from the 234

previous stage to calculate the distillation loss for 235

the current stage’s student model. It encapsulates 236

all the domain-specific knowledge accumulated to 237

date, providing crucial guidance for the model train- 238

ing in the current phase. Additionally, we conduct 239

experiments to explore how to a priori select appro- 240

priate distillation weights (experimental results are 241

shown in Table 4), so that framework can dynami- 242

cally adjusted distillation weights during training 243

to achieve better performance. 244

3.3 MKT framework for Multi-domain CSC 245

We consider the scenario where the training is com- 246

prised of m stages, denoted by k = 1, 2...,m. At 247

k-th stage, a subset of data {x(i)k , y
(i)
k }Tk

i=1 are fed 248

to the model, where Tk refers to the number of 249

samples at k-th stage, x(i)k refers to i-th sample at 250

k-th stage. 251

Assume that uk(·) is an unknown target function 252

that maps each x
(i)
k to y

(i)
k at stage k, i.e., y(i)k = 253

uk(x
(i)
k ). Under the continual learning setting, our 254

goal is to train a CSC model g(· ;w) parameterized 255

by w, such that g(· ;w) not only fits well to uk(·), 256

but also fits uk−1(·) , uk−2(·), · · · , u1(·) in early 257

stages to alleviate catastrophic forgetting. 258

We need to minimize the loss function to opti- 259

mize the model weights: 260

L(k) = λL(k)
s + L

(k)
h . (1) 261

In the equation, λ is a hyper-parameter that ranges 262
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Figure 1: Overview of the MKT framework and the pipeline for multi-domain training.

from [0, 1]. L(k)
s is the knowledge distillation loss,263

calculating cross entropy between the output prob-264

abilities of teacher model g(· ;wk−1) and student265

model g(· ;wk):266

L(k)
s = −

Tk∑
i=1

g(x
(i)
k ; ωk−1)× log g(x

(i)
k ; ωk).

(2)267

L
(k)
h is the cross-entropy loss between the output268

of student model g(· ;wk) and ground truth yk:269

L
(k)
h = −

Tk∑
i=1

y
(i)
k × log g(x

(i)
k ; ωk). (3)270

The choice of λ is related to the ratio of domain271

data and old data, Sd is domain data scale and So272

is old data scale:273

λ =
Sd

So
(4)274

Algorithm 1 MKT Framework
Input: Training set Dk, Student model Sk−1

Output: Student model Sk

1: Copy Sk−1 as the teacher model Tk

2: Freeze the parameters of Tk

3: Calculate λ according to Equation4.
4: Sk forward propagation and calculates the loss

guided by Tk according to Equation 1
5: Optimize the parameters of Sk

6: Return Sk

As shown in Algorithm 1, during the training275

of the k-th domain, we employ the model refined276

from the preceding k − 1 domains (i.e, Sk−1),277

as the teacher model Tk, alongside the concur-278

rently trained student model Sk. The parameters279

of Tk are frozen. The final loss is the dynamically 280

weighted summation of the knowledge distillation 281

loss L(k)
s and the original CSC task loss L(k)

h , with 282

the weights as shown in Equation 4. 283

4 Experiment and Result 284

In this section, we introduce our multi-domain 285

datasets and experiments, aiming to validate the 286

superiority of our proposed MKT framework com- 287

pared to other methods in mitigating catastrophic 288

forgetting and enhancing generalization capability. 289

4.1 Datasets and Metrics 290

Training Set Domain Sent Avg.Length Errors

Wang271K General 271,329 42.6 381,962
SIGHAN13 General 700 41.8 343
SIGHAN14 General 3,437 49.6 5,122
SIGHAN15 General 2,338 31.1 3,037
CAR CAR 2,743 43.4 1,628
MED MED 3,000 50.2 2,260
LAW LAW 1,960 30.7 1,681

Test Set Domain Sent Avg.Length Errors

SIGHAN15 General 1,100 30.6 703
CAR CAR 500 43.7 281
MED MED 500 49.6 356
LAW LAW 500 29.7 390

Table 2: Statistics of the datasets we use.

Considering the multi-domain setting we focus 291

on, we set up four domains, namely General, Car, 292

Medical, and Legal domains. The reason for this 293

setting is that the differences in characteristics be- 294

tween these domains are the most obvious, which 295

brings the most serious catastrophic forgetting to 296

CSC models. For the general domain, as in previ- 297

ous work, we also use SIGHAN13/14/15 (Wu et al., 298
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2013; Yu and Li, 2014; Tseng et al., 2015) and299

Wang271K (Wang et al., 2018) as training data and300

SIGHAN15 test set as our test data. For other spe-301

cial domains, we utilize the data resources released302

by LEMON (Wu et al., 2023) and ECSpell (Lv303

et al., 2023b), and randomly take 500 samples from304

the original data of each domain as the test set. The305

dataset statistics are presented in the Table 2.306

Our evaluation predominantly relies on the307

sentence-level F1 score, a widely acknowledged308

metric. This criterion is notably stringent, adjudg-309

ing a sentence as accurate solely when every error310

within is precisely identified and rectified, thereby311

providing a more rigorous evaluation compared to312

character-level metrics. In each table, Avg repre-313

sents the overall performance after training on all314

domains. Unlike average accuracy (AA) (Wang315

et al., 2023), we use the average sentence-level F1316

score, which is a more stringent metric than AA.317

4.2 Baseline Methods318

To validate the model-agnostic nature of MKT, we319

selected three widely used CSC baselines with dif-320

ferent architectures to evaluate the effectiveness of321

our approach across various structures:322

1. BERT (Devlin et al., 2019): Directly fine-tune323

the chinese-roberta-wwm-ext model using a324

series of domain-specific datasets.325

2. Soft-Masked BERT (Zhang et al., 2020): In-326

corporates a soft masking process after the de-327

tection phase, where it calculates the weighted328

sum of the input and [MASK] embeddings.329

3. REALISE (Xu et al., 2021): Models seman-330

tic, phonetic and visual information of input331

characters, and selectively mixes information332

in these modalities to predict final corrections.333

To validate the effectiveness of our MKT frame-334

work, we compare it with different continual learn-335

ing methods on the aforementioned models to336

demonstrate the superiority of our approach:337

1. Joint-Training (Caruana, 1997): Mix the new338

domain data with the old data for training.339

2. Fine-tuning: Without using anti-forgetting340

methods, the model simply fine-tune on a se-341

ries of domain data.342

3. Replay(random) (Chaudhry et al., 2019):343

Randomly sample 1% from the old data and344

combine it with the new data for training.345

4. Replay(RAP) (Li et al., 2024): Replay 346

According imPortance RAP selects 10% of 347

the old data based on importance (i.e., the loss 348

of the old data on the old model) and mixes it 349

with the new domain data for training. 350

4.3 Implementation Details 351

In the main experiment, we initially train the 352

models on General dataset, which consists of 353

Wang271K combined with double the amount of 354

SIGHAN data. This is followed by training on the 355

CAR, MED, and LAW datasets using various con- 356

tinual learning methods, including Joint-Training, 357

fine-tuning, replay (random), and replay (RAP). 358

Upon completion of training, we evaluate the per- 359

formance of the final model across all domain- 360

specific datasets to gauge its effectiveness. 361

Additionally, auxiliary experiments are con- 362

ducted using our top-performing REALISE model. 363

These experiments investigate several factors such 364

as determining the optimal λ, assessing the appro- 365

priate buffer size, examining the effects of different 366

training orders, and performing ablation studies to 367

understand the contribution of each component. 368

For all experiments, we train the aforementioned 369

datasets for 10 epochs with a batch size of 64. The 370

learning rates are 5e-5 for REALISE and BERT 371

models, and 1e-4 for the Soft-Masked BERT model. 372

Our approach incorporates a knowledge transfer 373

process at each domain, where the λ between Lh 374

and Ls is updated prior to training each domain 375

according to Equation 4. The hyper parameter set- 376

tings for the auxiliary experiments remain consis- 377

tent with those used in our main experiments. 378

4.4 Results and Analyses 379

Main Results From Table 3, we see that after 380

the optimization of our MKT, whether it is BERT, 381

Soft-Masked BERT specially designed for CSC, or 382

REALISE that integrates multi-modal information, 383

their performance improves in all domains. This 384

reflects the effectiveness and the model-agnostic 385

characteristic of our proposed MKT framework. 386

Regarding the comparison between MKT and 387

other continual learning methods, it can be ob- 388

served that Joint-Training, due to the General 389

dataset being much larger than the specific domain 390

datasets, can effectively mitigate forgetting in the 391

General dataset but fails to adequately learn the 392

new dataset’s knowledge. Fine-tuning, without any 393

measures against forgetting, results in significant 394

loss of previously acquired knowledge. Randomly 395
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Model Method General CAR MED LAW Avg

Joint-Training 71.50 31.75 42.58 60.41 51.56
Fine-tuning 67.41 33.50 42.86 62.35 51.53

BERT +Replay(random) 70.07 34.87 41.33 59.51 51.45
+Replay(RAP) 70.09 36.22 43.00 58.25 51.89

+MKT(Ours) 68.58 36.18 43.56 62.47 52.70↑

Joint-Training 60.96 26.67 40.00 58.19 46.46
Fine-tuning 54.22 30.73 43.88 68.54 49.34

Soft-Masked BERT +Replay(random) 47.45 23.88 39.51 64.30 43.79
+Replay(RAP) 54.48 22.86 46.52 60.59 46.11

+MKT(Ours) 60.90 35.64 52.21 70.40 54.79↑

Joint-Training 76.77 26.81 50.72 68.72 55.76
Fine-tuning 70.78 27.48 53.33 70.59 55.55

REALISE +Replay(random) 75.78 27.83 53.81 69.25 56.67
+Replay(RAP) 76.10 31.51 50.33 69.76 56.93

+MKT(Ours) 73.84 31.25 54.1 70.18 57.34↑

Table 3: Performance on the test set of each domain after training on all datasets.

selecting old data to train together with the new396

data shows relatively good performance when the397

data is more balanced. Selecting old data based on398

importance and training it together with new do-399

main data achieve better results compared to other400

methods. It performs only slightly worse than our401

MKT framework. However, its training time is ten402

times longer than our method.403

Parameter Study To explore the impact of the404

key parameter λ, we conduct experiments with dif-405

ferent λ values on REALISE + MKT under varying406

ratios of new domain and old data. As shown in407

Table 4, we perform experiments on the General408

dataset and the subsequent three specific domain409

datasets, selecting a portion of the data from the410

General dataset as the old dataset. The size of the411

old dataset was set to be 50, 20, and 10 times that412

of the corresponding specific domain data. When413

λ was set to 0.5, 1, and 2 times the ratio of the414

domain dataset size to the old dataset size, the re-415

sults generally showed stable improvements over416

the baseline (i.e., λ = 0). In particular, when λ417

matched the ratio of the domain data to the old data,418

it perform best across all domains.419

Therefore, intuitively, for MKT, it can choose the420

appropriate λ based on the ratio of the new domain421

data to the old data to achieve optimal performance.422

Buffer study Due to the severe imbalance in the 423

scale of new domain and old data in the Joint- 424

Training method, we explore the optimal buffer 425

size for the replay method by conducting a series 426

of experiments on REALISE. As shown in Table 427

5, when randomly selecting the buffer, the best per- 428

formance is achieved by choosing 1% of the old 429

data as the buffer size, because the size of the new 430

and old data is relatively balanced. However, when 431

selecting the buffer based on sample importance, 432

choosing 10% of the old data as the buffer size 433

yields the best results, even though it consumes a 434

significant amount of training time. This is because 435

selecting important samples for training allows for 436

better learning of the most critical knowledge from 437

both the new and old data. 438

Catastrophic Forgetting The above analysis 439

convincingly demonstrate that the MKT framework 440

outperforms other continual learning methods in 441

overall performance after training across all do- 442

mains. To better observe the forgetting at each 443

stage when training on subsequent domain datasets, 444

we selecte the best-performing model from Table 445

3 (i.e., REALISE) and examine its performance 446

loss (i.e., catastrophic forgetting) on the General 447

dataset after incremental training with data from 448

other domains, as shown in Figure 2. 449

The performance loss of REALISE on the Gen- 450
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Sd
So

λ
CAR MED LAW

General Domain Avg General Domain Avg General Domain Avg

0.02

0 66.73 30.42 48.58 65.65 47.17 56.41 66.07 59.45 62.76
0.01 66.97 30.25 48.61 65.78 47.60 56.69 66.9 58.27 62.59
0.02 67.26 30.96 49.11↑ 66.67 47.27 56.97↑ 66.91 59.01 62.96↑

0.04 67.51 30.19 48.85 67.17 45.16 56.17 66.84 58.38 62.61

0.05

0 62.25 29.85 46.05 62.36 42.44 52.40 61.27 58.5 59.89
0.025 64.10 29.42 46.76 61.84 43.89 52.87 61.87 59.84 60.86
0.05 65.80 30.17 47.99↑ 63.82 41.96 52.89↑ 62.30 60.63 61.47↑

0.1 64.85 30.17 47.51 62.94 41.27 52.11 63.00 57.82 60.41

0.1

0 55.07 27.44 41.26 57.69 40.18 48.94 53.68 54.94 54.31
0.05 58.46 28.03 43.25 57.48 41.91 49.70 54.53 55.62 55.08
0.1 59.13 28.51 43.82↑ 58.81 41.38 50.10↑ 55.66 55.20 55.43↑

0.2 57.47 25.70 41.59 58.96 35.70 47.33 55.60 54.22 54.91

Table 4: Selection of optimal distillation weights (λ) under different domain(Sd) and old(So) data ratios.

Model Method Buffer size General CAR MED LAW Avg

REALISE

0.001 74.14 27.56 54.07 67.88 55.91
Replay(random) 0.01 75.78 27.83 53.81 69.25 56.67↑

0.1 74.44 30.33 51.94 67.87 56.15

0.001 74.31 26.77 49.37 67.88 54.58
Replay(RAP) 0.01 75.48 31.51 48.75 68.67 56.10

0.1 76.10 31.51 50.33 69.76 56.93↑

Table 5: Performance of different replay methods and various buffer sizes.

General + Car + Med + Law
Domain

70

72

74

76

78

80

F1
 S

co
re

Fine-Tuning
MKT

Figure 2: The phenomenon of model forgetting General-
domain knowledge during incremental domain training.

eral dataset is much smoother when optimized with451

MKT, indicating that MKT framework effectively452

mitigates catastrophic forgetting at each stage.453

Training Order To investigate whether our MKT454

framework can mitigate catastrophic forgetting455

across different training orders, we also experiment456

with alternative sequences. For instance, we choose457

the best-performing model, REALISE, from Table 458

3 and conduct training on it according to the new 459

sequence, which is the reverse of the main exper- 460

iment’s order. As shown in Table 6, the table 461

headers represent the training order of the domains, 462

despite varying degrees of forgetting, MKT frame- 463

work effectively mitigates catastrophic forgetting. 464

4.5 Ablation Study 465

MKT differs from knowledge distillation in two 466

key aspects: a continuously evolving teacher model 467

and distillation weights that dynamically change 468

with the ratio of new and old data. To validate the 469

effectiveness of these two mechanisms, we conduct 470

ablation experiments on REALISE without these 471

optimizations. As shown in Table 7, the two dy- 472

namic mechanisms of MKT effectively mitigate 473

catastrophic forgetting, with the performance im- 474

provement brought by the dynamically evolving 475

teacher being more significant. 476

In knowledge distillation, the teacher model is 477

fixed. Although it contains extensive knowledge 478

from the General dataset, it cannot be continually 479

updated with subsequent domain knowledge. Con- 480
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Model Method General CAR MED LAW Avg

REALISE Knowledge distillation 74.23 29.69 52.68 67.61 56.05
MKT(Ours) 73.84 31.25 54.10 70.18 57.34↑

Model Method General LAW MED CAR Avg

REALISE Knowledge distillation 74.54 61.64 44.91 30.37 52.87
MKT(Ours) 74.29 64.07 48.99 28.81 54.04↑

Table 6: The impact of training order on MKT Performance.

Model Method General CAR MED LAW Avg

REALISE

Knowledge distillation 74.23 29.69 52.68 67.61 56.05
+ evolving teacher 72.74 29.25 55.28 70.85 57.03
+ dynamic λ 74.13 30.30 53.74 67.34 56.38

MKT(Ours) 73.84 31.25 54.10 70.18 57.34↑

Table 7: The impact of dynamic distillation weights (λ) and the evolving teacher model on performance.

sequently, while it effectively reduces forgetting in481

the General dataset, significant forgetting of previ-482

ously learned domain knowledge still occurs after483

training on all domains.484

A continuously evolving teacher model can in-485

corporate the most important knowledge previously486

learned, effectively reducing the student’s forget-487

ting of prior knowledge. For dynamic distillation488

weights, we provided experimental results in Table489

4. MKT’s adaptation to the ratio of domain and490

old data allows it to better learn the most important491

knowledge from domain and old data. Using dy-492

namic distillation weights alone can only provide493

limited performance improvement.494

Our MKT combines these two dynamic mecha-495

nisms. While forgetting on the General dataset is496

slightly greater than with the fixed teacher method,497

overall anti-forgetting performance in subsequent498

domain learning significantly improves.499

4.6 Case Study500

To further verify the effectiveness of our MKT in501

mitigating catastrophic forgetting in multi-domain502

CSC, we present some cases in Table 8. For a test503

sentence in the CAR domain, REALISE accurately504

corrects errors after fine-tuning on CAR. However,505

after further fine-tuning on the MED domain, it506

can no longer correct successfully and instead pre-507

dicts “氰(cyanide)” related to the medical domain.508

This is a typical catastrophic forgetting case where509

old domain knowledge is washed away by new510

domain knowledge. It can be seen that with the511

Circumventing Catastrophic Forgetting

Input 年轻人的青量级玩乐SUV

+CAR(Fine-tuning) 年轻人的轻量级玩乐SUV
+CAR(+MKT) 年轻人的轻量级玩乐SUV
+MED(Fine-tuning) 年轻人的氰量级玩乐SUV
+MED(+MKT) 年轻人的轻量级玩乐SUV

Target 年轻人的轻量级玩乐SUV

Table 8: Cases from the CAR test set, conducted on
the REALISE model, show that the MKT framework
mitigates over-correction and catastrophic forgetting.

optimization of MKT, REALISE effectively avoids 512

the occurrence of catastrophic forgetting. 513

5 Conclusion 514

This paper demonstrates through experimentation 515

that existing CSC models, when adapting to multi- 516

domain scenarios, tend to forget previously ac- 517

quired domain-specific knowledge, a phenomenon 518

known as catastrophic forgetting. Consequently, 519

we propose an effective, model-agnostic MKT 520

framework with an evolving teacher model and 521

dynamic distillation weights to balance retaining 522

existing knowledge with integrating new informa- 523

tion, effectively mitigating catastrophic forgetting. 524

Extensive experiments and detailed analyses high- 525

light the significance of addressing catastrophic 526

forgetting, proving the superiority of our method 527

over other continual learning approaches. 528
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Limitations529

Our method specifically focuses on the Chinese lan-530

guage. However, other languages, such as English,531

could also benefit from our approach, and we plan532

to conduct related research on English contexts533

in the future. Additionally, we did not compare534

our proposed method with large language models535

(LLMs) commonly used in experiments. The pri-536

mary reason is that representative LLMs still lag537

behind traditional fine-tuned smaller models in the538

CSC task, as has been demonstrated by some re-539

lated works (Li et al., 2023a).540

Of course, our main contribution is proposing a541

model-agnostic framework to mitigate catastrophic542

forgetting. We believe that combining the MKT543

framework with current LLMs could be a highly544

practical direction for future work.545
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