
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INTERPOLATE: HOW RESETTING NEURONS WITH
MODEL INTERPOLATION CAN IMPROVE GENERALIZ-
ABILITY IN ONLINE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

While neural networks have shown a significant gain in performance across a wide
range of applications, they still struggle in non-stationary settings as they tend
to lose their ability to adapt to new tasks — a phenomenon known as the loss of
plasticity. The conventional approach to addressing this problem often involves
resetting the most under-utilized or dormant parts of the network, suggesting that
recycling such parameters is crucial for maintaining a model’s plasticity. In this
study, we explore whether this approach is the only way to address plasticity loss.
We introduce a resetting approach based on model merging called Interpolate and
show that contrary to previous findings, resetting even the most active parameters
using our approach can also lead to better generalization. We further show that In-
terpolate can perform similarly or better compared to traditional resetting methods,
offering a new perspective on training dynamics in non-stationary settings.

1 INTRODUCTION

Recent advancements in deep learning have significantly improved the performance of neural networks
across a wide range of tasks (Miikkulainen et al., 2024). However, as the volume of training data
continues to grow, the importance of online learning becomes increasingly evident (Dohare et al.,
2024). Unlike traditional training methods that rely on independent and identically distributed
(i.i.d.) data, online learning allows models to continuously adapt to new information, making them
more robust to the ever-changing nature of the real-world (Lyle et al., 2023; Elsayed & Mahmood,
2024). However, training neural networks in non-i.i.d. settings introduces new challenges, such as
catastrophic forgetting, where the model tends to forget past information (Goodfellow et al., 2013;
Kim & Han, 2023) and loss of plasticity, where the model’s ability to learn new tasks decreases (Ash
& Adams, 2020; Kim et al., 2023).

Numerous methods have been proposed in the literature to address plasticity loss, such as resetting
parameters based on the neuron’s activity (Dohare et al., 2021), regularizing based on parameter
norm and gradient norm (Kumar et al., 2023; Lewandowski et al., 2024a), and modifying the model
architecture (Abbas et al., 2023). However, Lyle et al. (2024) recently showed that no single method
is sufficient to fully mitigate the loss of plasticity.

Among these methods, dormancy in neurons is often correlated with loss of plasticity, but it is not
the direct cause (Lewandowski et al., 2024b). However, existing plasticity methods in deep neural
networks mainly rely on resetting the dormant parameters of the selected network using criteria such
as dormancy scores (Sokar et al., 2023). The intuition behind this approach is to recycle dormant
neurons back into an active state to recover some of the network’s capacity. However, research has
shown that dormancy does not always correlate with a loss of plasticity. While resetting dormant
neurons helps in trainability, it is still outperformed in terms of generalizability by methods like
shrink and perturb (S&P) (Ash & Adams, 2020), which involves adding noise to the parameters.
It raises the question: Can resetting the non-dormant neurons also improve plasticity? How many
parameters should be reset? Moreover, is resetting the parameters associated with dormant neurons
the only method to reactivate the model? Exploring alternative strategies could lead to more effective
ways to understand deep neural network dynamics in online learning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Our proposed model-merging approach Interpolate for resetting model parameters in
non-stationary settings. We utilize the permutation invariance property in neural networks (Entezari
et al., 2021) and merge a given base model A with its unique functionally equivalent permuted variant
model B in which green and purple hidden nodes were selected to be permuted. Next, we obtain
model C which is combination of A and B (linear interpolation) and train the model. The 2D contour
plots of Train loss and Test error surfaces illustrate the resulting trajectory for training from A and C
(Li et al., 2018). Training from C (blue) resulted in discovery of a generalizable region in the loss
surface as compared to training from A (red).

We investigate existing plasticity methods that use different utility functions to select neurons for
reset. Note that, by reset, we specifically mean re-locating the parameters on a different point in the
loss landscape. Therefore, throughout our paper, the term reset encompasses any type of modification
on model parameters and is not limited to re-randomization or re-initialization.

With the goal of improving generalizability rather than only trainability, we explore model merging
as an alternative way to reset the model parameters (Wortsman et al., 2022; Yang et al., 2024).
Our motivation comes from an extensive literature on linear mode connectivity and loss barrier
analysis which suggests a link between low-loss barriers between minima with training stability and
generalization (Frankle & Carbin, 2018). Several approaches have been proposed to improve linear
mode connectivity by reducing loss barriers between minima in order to improve generalization
through model merging techniques (Mirzadeh et al., 2020; Tatro et al., 2020). However, Entezari
et al. (2021) showed that such loss barriers between minima can be minimized cost-effectively
by exploiting the permutation invariance property of neural networks. By resetting the model on
high-barrier regions, we propose our method Interpolate which utilizes permutation invariance to
reset highly active parameters in non-stationary settings which intentionally introduces controlled
instability, acting as a regularizer. We hypothesize that training from this reset point would allow
SGD to navigate toward a more stable loss region, ultimately improving generalization. Figure 1
summarizes our overall idea on how model-merging with permutation invariance property can help in
finding generalizable regions in the loss surface which essentially challenges the prevailing narrative
in the plasticity research community that predominantly focus dormant neurons.

We summarize our contribution as follows:

• In contrast to previous findings that plasticity requires resetting inactive parameters, our
analysis reveals that resetting the most active parameters can yield similar improvements.

• We introduce a model-merging method called Interpolate, leveraging the permutation invari-
ance property in neural networks to offer a new perspective on the resetting techniques used
for addressing plasticity loss.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We provide empirical results using Interpolate across various distribution shifts on MLP and
CNN models, demonstrating that it can achieve performance comparable to, or even better
than, existing baselines.

The rest of the paper is organized as follows. We discuss the related work in section 2 and provide a
brief background on plasticity and model merging. We describe our proposed method to reset model
parameters for maintaining plasticity in section 3. This is followed by the experiments in section 4
where we provide all our results along with analysis and conclusions in section 5.

2 BACKGROUND

2.1 PLASTICITY

Plasticity refers to a neural network’s ability to adapt to new tasks when the data distribution shifts.
Several metrics have been proposed to quantify the loss of plasticity (Dohare et al., 2021; Lyle et al.,
2023; Lee et al., 2024). Following Lee et al. (2024), we measure the loss of plasticity using the test
accuracy of the model on the final task in online learning setups.

Numerous studies have explored potential causes for the loss of plasticity in deep learning models
when used in non-stationary settings. Existing approaches to mitigating this issue can be classified
into three categories: (i) reset-based methods, (ii) regularization-based methods, and (iii) architecture-
based methods. These categories are orthogonal to each other and thus can be combined to achieve
superior performance. While our focus is on reset-based methods as we study resetting active
parameters, we briefly outline all three categories in this section to provide an overview of existing
approaches.

Reset-based methods This class of methods involves selectively resetting a subset of model
parameters with the goal of reviving the model’s plasticity (Igl et al., 2020; Nikishin et al., 2022).
They usually comprise two key elements: a utility function and a reset function. While several
types of utility and reset functions have been explored in the literature, a common assumption is that
randomly reinitializing inactive neurons is essential for restoring plasticity. Two of the most popular
methods that follow this assumption are Recycling Dormant Neurons (ReDo) (Sokar et al., 2023),
which uses activation scores as its utility function, and Continual Backprop (CBP) (Dohare et al.,
2021), which uses a maturity threshold as its utility function. These methods are discussed in detail
later in section 3. In this work, we analyze different utility functions and propose a reset function that
demonstrates how resetting to active neurons of the model can also help prevent plasticity loss.

Regularization-based methods These methods control the training dynamics in online learning
by regulating factors such as weight norm, gradient norm, or spectral norm (Lewandowski et al.,
2024a). Lyle et al. (2023) conducted an empirical analysis revealing that plasticity loss is closely
related to changes in the curvature of the loss landscape. Lewandowski et al. (2024b) also introduced
a regularization method to preserve curvature across different dimensions to mitigate plasticity loss.
Alternatively, Kumar et al. (2023) proposed a regularization approach similar to L2 but penalizing
with respect to the initial parameters called L2 Init.

Architecture-based methods Another class of methods focuses on modifying model components
to overcome problems that cause plasticity loss. Abbas et al. (2023) associated the plasticity loss
problem with an increase in the number of dead neurons due to the presence of ReLU activation
functions and proposed an alternate activation function called CReLU to prevent activation collapse.
Lyle et al. (2024) suggested that using layer normalization (Ba et al., 2016) with L2 regularization
to maintain low activation and weight norms improves generalization performance across several
benchmarks.

Other plasticity methods Lyle et al. (2024) also investigated how different mechanisms of plas-
ticity loss can be effectively combined and demonstrated that addressing multiple mechanisms
simultaneously, rather than focusing on a single one, leads to highly robust learning algorithms.
One example of such a method is Utility-based Perturbed Gradient Descent (UPGD) (Elsayed &
Mahmood, 2024), which applies smaller gradient updates to more useful units to preserve past

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

knowledge while applying larger updates to less useful units to increase their plasticity. Ash & Adams
(2020) proposed Shrink & Perturb where all parameters are updated by decaying weight magnitude
and adding small random noise to them. This approach is also known to improve generalizability
better compared to other methods apart from trainability. Lee et al. (2024) explored warm-starting
experiments from Ash & Adams (2020) further and introduced the Hare & Tortoise approach that
involves periodically replacing the fast weights with the slow weights.

While these methods improve both trainability and generalizability aspects of the model under
non-stationary settings, they are orthogonal to our analysis of utility and reset functions.

2.2 MODEL MERGING

Generalization performance in neural networks is significantly influenced by how optimizers navigate
the loss landscape. Sun (2019) suggested that these landscapes may possess simple, non-trivial
properties that can be leveraged to improve performance. One such property that recently gained
interest in the machine learning community is linear mode connectivity which involves linearly
interpolating two independently trained models (Lee & Lee, 2024; Vlaar & Frankle, 2022).

Several studies have demonstrated merging pre-trained models in this manner can result in a model
with greater generalization capabilities (Wortsman et al., 2022; Zhou et al., 2023). Moreover, Yang
et al. (2024) also showed that this approach can be utilized for efficient knowledge transfer between
existing large language models without training them on additional data.

Another important property of neural networks that has been explored in the context of model
merging and mode connectivity is permutation invariance (Ganju et al., 2018; Entezari et al., 2021;
Simsek et al., 2021). This property states that fully connected neural networks are invariant to the
permutation of neurons within hidden layers. In other words, permuting the weights associated
with these neurons yields a functionally equivalent network. Ainsworth et al. (2023) leveraged this
property and introduced multiple algorithms to permute neurons of a given model to align them with
a reference model with the goal of merging them in weight space.

In our work, we argue that, under non-stationary settings, model merging using permutation invariance
can serve as an effective resetting function. Unlike traditional resetting methods that often discard
older knowledge and require relearning from random noise, we argue that model merging can exhibit
better knowledge transfer for future tasks which is essential for maintaining generalizability over
time.

3 METHODOLOGY

In this section, we introduce Interpolate, a reset-based method, which consists of two key components:
(i) selecting the most active neurons and (ii) a novel reset method that uses model merging. We will
describe each of these components in detail.

3.1 HOW TO SELECT NEURONS?

Unlike previous reset-based methods, our approach focuses on selecting and resetting active neurons
within the model. We employ the dormancy score utility function proposed for ReDo (Sokar et al.,
2023): let hi(x) correspond to the activation of the neuron with index i in a layer with L neurons
when the network is given input x. For a given neuron i, its dormancy on dataset D is defined as:

di =
Ex∈D|hi(x)|

1
L

∑L
j=1 Ex∈D|hj(x)|

. (1)

In ReDo, neuron i is selected to be reset if di ≤ τ , where τ is a hyper-parameter called the dormancy
threshold.

We also compute the dormancy score for each neuron similar to ReDo. To validate our hypothesis
about resetting most active neurons, however, instead of selecting neurons with scores below a certain
threshold τ , we choose the neurons based on top k percentile of di. We denote the parameters
corresponding to the selected neurons as θ̂k.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 HOW TO RESET?

To reset the neurons selected based on the utility function, both ReDo and CBP re-initialized the
neuron’s input weights randomly (using the same distribution as the network initialization) and set
the neuron’s output weights to zero, ensuring that the new model state does not alter the output.
Although other techniques exist for resetting parameters in some specific parts of the model (Nikishin
et al., 2022), researchers tend to prefer resetting with random noise in online learning to mitigate
plasticity loss and often use ReDo and CBP as their baselines (Abbas et al., 2023; Dohare et al., 2024).
We propose a novel approach for resetting active neurons motivated by the permutation invariance
property in neural networks which has been explored previously in the deep learning literature (Ganju
et al., 2018).

Let Pθ̂k
represent the set of all valid permutations that result in functionally equivalent parameters to

network parameters θ = (θ1, θ2, ..., θd) by randomly permuting parameters in the subset θ̂k among
themselves. This allows us to define the permutation function as P : Rd × Pθ̂k

→ Rd (Entezari
et al., 2021; Simsek et al., 2021). We can thus obtain a new permuted parameter configuration
P (θ, πk) = θperm = (θπk(1), θπk(2), ..., θπk(d)) by applying permutation πk ∼ Pθ̂k

to the subset of
parameters θ̂k ⊆ θ. This θperm is functionally equivalent to θ, i.e. L(θperm) = L. Finally, to obtain
our reset network, we simply merge the models by finding the midpoint between θ and θperm:

θreset =
θperm + θ

2
(2)

This approach can be viewed as merging two equivalent models that share the same functional
properties within their local regions in the loss landscape. By combining these models, the parameters
are effectively shifted to a region with a higher loss value, as the most active neurons are reset, resulting
in the unlearning of those parameters. Therefore, when the new batch arrives, these dimensions
will be re-learned and as a result, the new gradients with higher magnitudes would perturb other
dimensions, potentially improving the overall adaptability and performance of the model. Although
this unlearning technique may appear counter-intuitive, such behavior was previously observed in
the analysis by Vlaar & Frankle (2022), which suggested that initializing a model on a higher loss
surface—obtained from the height of the barrier in the linear interpolation of models, rather than using
random initialization—led to a network achieving better test accuracy. In our experiments, we will
demonstrate that Interpolate acts as an adversarial technique, resulting in performance comparable to
or better than conventional ReDo. We provide the pseudo-code in Algorithm 1.

Algorithm 1 Interpolate to reset

Require: Input dataset D, Base model parameters θ, k percentile
Apply forward pass on model θ with D and store activation outputs of all neurons in H
d←− {}
for i = 1, 2, . . . , |H| do

Compute dormancy score di using equation 1
Append di in d

end for
K ←− list indices of top k percentile values in d
θ̂k ←− θ[K]
Sample πk from Pθ̂k

without replacement
θperm ←− P (θ, πk)
return (θperm + θ)/2

4 EXPERIMENTS

We provide a series of experiments that reveal how resetting active neurons can achieve comparable
performance, showing that recycling inactive neurons is not the only way to restore a model’s
plasticity. We use three types of distribution shifts on CIFAR10 dataset (Krizhevsky et al., 2009):
(i) Shuffled (Lewandowski et al., 2024a), where the labels are randomly flipped for each task; (ii)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Noisy (Lee et al., 2024), where each task is a subset dataset and contains decreasing levels of label
noise; (iii) Permuted (Goodfellow et al., 2013), where the input data is randomly permuted for each
task.

We start with an empirical analysis to compare utility and reset functions, including Interpolate,
by fixing the number of neurons in subsection 4.1 and subsection 4.2 on the Shuffled CIFAR10
benchmark. We also provide a brief sensitivity analysis to demonstrate the benefits of combining
Interpolate with ReDo in subsection 4.3. Finally, in subsection 4.4, we conduct an extensive hyper-
parameter search and show that interpolating active neurons can match the performance of several
state-of-the-art baselines. We use an MLP with 3 hidden layers, each consisting of 128 neurons. We
also use CNN for the hyper-parameter search experiment which consists of 2 convolutional layers
with 16 filters. All experimental results involve five random seeds.

4.1 INTERPOLATE VS RANDOM NOISE

We study how reset by Interpolate helps bring the model into an active state to mitigate the loss
of plasticity. We compare it with reset by random noise obtained using Lecun normal initializer
(Bradbury et al., 2018). We train the MLP on Shuffled CIFAR10 with up to 50 tasks and 500 epochs
per task. Next, we train this model on a new task for 100 epochs, at which point we randomly select
a given number of neurons, apply reset, and then train this updated model until convergence.

In Figure 2, we compare the best generalization performance obtained when increasing the number
of selected neurons for both strategies. On average, the performance of Interpolate is better than
random noise. Additionally, there is a slightly positive correlation between the number of interpolated
neurons and performance, suggesting that as more neurons are interpolated, the model adapts more
seamlessly to the new task without compromising prior knowledge. In contrast, random noise shows
a negative correlation with performance, as increasing the number of randomly initialized neurons
introduces instability leading to relatively worse performance. Figure 2 (right) shows the jump in
training loss which is the difference between training loss computed just before and after resetting
the parameters using Interpolate or random noise. Random noise results in a higher jump in loss as
more neurons are affected, indicating greater forgetting, whereas interpolation has a less detrimental
impact on the model’s internal representations.

20 40 60 80 100
Neuron count

51.5

52.0

52.5

53.0

53.5

54.0

Pe
rfo

rm
an

ce
 (%

)

Random
Interpolate

20 40 60 80 100
Neuron count

0.0

0.5

1.0

1.5

Ju
m

p
in

 tr
ai

ni
ng

 lo
ss

Random
Interpolate

Figure 2: Comparing generalization performance (left) and jump in training loss (right) for random
noise and Interpolate reset functions. Interpolate results in relatively more efficient adaptation to new
tasks, while random noise can introduce instability and performance loss when applied to too many
neurons.

4.2 RESETTING ACTIVE VS INACTIVE NEURONS

Next, we investigate whether selecting the most active neurons for resetting can also improve
generalization in an online learning setup. We compare ReDo and Interpolate, using top k percentile
and bottom k percentile dormancy scores as the utility functions. The goal is to understand how these
methods affect online test accuracy, dormancy, weight norm, and gradient norm over multiple tasks.
We evaluate the methods on Shuffled CIFAR10 tasks where each task is trained for 10 epochs. For

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ReDo and Interpolate, the labels in Figure 3 indicate the k% of total neurons selected for resetting,
based on their dormancy score – top-k (active) or bottom-k (inactive), where k ∈ {5%, 20%}.1 The
reset period is fixed at 5 epochs on each experiment. We also plot results obtained using CBP and
Interpolate (CBP) where we use CBP’s utility function and apply Interpolate to reset instead of
random noise.

0 20 40
Tasks

0.30

0.35

0.40

0.45

0.50

0.55

Te
st

 a
cc

ur
ac

y

0 20 40
Tasks

0.0

0.1

0.2

0.3

D
or

m
an

cy

0 20 40
Tasks

16

18

20

22

24

26

W
ei

gh
t n

or
m

0 20 40
Tasks

0

1

2

G
ra

d
no

rm

Interpolate (active: 20%)
Interpolate (active: 5%)

Interpolate (inactive: 20%)
Interpolate (inactive: 5%)

Redo (active: 20%)
Redo (active: 5%)

Redo (inactive: 20%)
Redo (inactive: 5%)

Interpolate (CBP)
CBP

0 20 40
Tasks

0.30

0.35

0.40

0.45

0.50

0.55

Te
st

 a
cc

ur
ac

y

0 20 40
Tasks

0.0

0.1

0.2

0.3

D
or

m
an

ci
es

0 20 40
Tasks

16

18

20

22

24

26

W
ei

gh
t_

no
rm

0 20 40
Tasks

0

1

2

3

4

G
ra

d_
no

rm

Figure 3: Comparing ReDo and interpolation performs with active/inactive neurons without any
hyper-parameter search on Shuffled CIFAR10 with MLP. Applying Interpolate on active neurons
results in the highest performance gain even when the dormancy is higher. On the other hand, ReDo
results in relatively worse performance even with lower dormancy and lower weight norm. Resetting
more active neurons has a catastrophic effect on the learning process as the gradient norm diminishes.

There are several interesting trends observed. While interpolating the inactive neurons i.e., both
Interpolate (inactive) and Interpolate (CBP), do not result in the best overall performance, Interpolate
(active) improves over ReDo (active), ReDo (inactive) and CBP. This contradicts the common intuition
that only resetting inactive neurons would help in utilizing the model’s capacity. In fact, these results
suggest that resetting active neurons can also lead to a competitive performance.

ReDo (inactive) also results in lower dormancy (in Figure 3 (second)), but this does not correlate
with higher performance. On the other hand, Interpolate (active) does not decrease dormancy but
still results in better performance, which again challenges the idea of reviving dormant neurons.
We further observe that ReDo, which resets neurons by setting output weights to zero, results in
a lower weight norm, unlike interpolation, which does not control the weight norm significantly
but still outperforms. However, the increasing weight norm problem in non-stationary settings has
already been addressed with L2 regularization (Ash & Adams, 2020; Dohare et al., 2021). In terms
of gradient norm, ReDo (active) leads to a significant drop as observed in Figure 3 (forth), indicating
that no meaningful learning occurs, which is detrimental to the model’s performance. Furthermore,
we observe that the gradients obtained by using Interpolate (active: 20%) have higher magnitude
as compared to say Redo (inactive: 20%) which resets most dormant neurons. This validates our
hypothesis that the resulting gradients in Interpolate perturbs all dimensions, potentially improving
the overall adaptability and performance of the model. Overall, we also conclude that while no single
metric can fully explain the performance trends, resetting inactive neurons is not the only way to
revive the model’s plasticity.

4.3 COMBINING INTERPOLATE (ACTIVE) WITH REDO (INACTIVE)

Since both strategies, ReDo (inactive) and Interpolate (active) work well individually, we now explore
how their combination would perform for a fixed number of neurons. Specifically, we investigate
how different ratios of neurons reset using these strategies impact model performance.

This analysis uses the same setup as the previous one, with default hyper-parameters but different
compute budgets. We also add the Noisy CIFAR10 dataset for our analysis. In each scenario, we vary
the percentile of neurons (k) selected for ReDo and apply Interpolate to the remaining neurons. The
reset period is fixed at 5 epochs on each experiment, and we compare performance for increasing k.

Figure 4 shows the online test accuracy observed. When training for 10 epochs per task, applying
Interpolate consistently improves performance compared to ReDo. This indicates that for both Noisy

1These values of k were chosen because they are commonly used in the literature as default. These values
have also shown competitive performance in our experiments discussed later.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

and Shuffled CIFAR10, the model benefits more from interpolating neurons rather than resetting
them.

0 2 4 6 8
Tasks

0.20

0.25

0.30

0.35

0.40

0.45

Te
st

 a
cc

ur
ac

y

MLP: Noisy (10 epochs)

0 25 50 75 100
Tasks

0.25

0.30

0.35

0.40

0.45

0.50

MLP: Shuffled (10 epochs)

0 25 50 75 100
Tasks

0.44

0.46

0.48

0.50

0.52

0.54

MLP: Shuffled (100 epochs)
REDO / INTERPOLATE

0% / 100%
10% / 90%
20% / 80%
30% / 70%
40% / 60%
50% / 50%
60% / 40%
70% / 30%
80% / 20%
90% / 10%

Figure 4: Comparing online test accuracy for resetting k% least active neurons with ReDo and
simultaneously applying Interpolate on the remaining neurons on Shuffled and Noisy CIFAR10 with
MLP. We observe that as k increases, the performance degrades indicating a clear advantage of using
Interpolate over ReDo for less compute budget. For a higher compute budget (100 epochs per task),
there is an optimal balance between Interpolate and ReDo where k lies between 30 to 40%.

For 100 epochs per task on Shuffled CIFAR10, while performance generally improves as more
neurons are interpolated rather than reset, the model underperforms when nearly all neurons are
interpolated. This suggests that there is an optimal balance between ReDo and Interpolate. The
best performance occurs when 30− 40% of neurons are reset and 60− 70% are interpolated. In all
scenarios, ReDo with 90% of neurons results in poor performance, which is expected since excessive
resetting would hurt the model’s ability to retain useful learned knowledge. Overall, while Interpolate
improves performance, finding the right balance between the number of neurons for ReDo and
Interpolate is crucial for optimal results when these methods are combined, especially in larger epoch
settings. While in these experiments reset the whole model, we also conducted experiments with an
exhaustive hyper-parameter search for varying combination of number of neurons selected for ReDo
and Interpolate in Appendix A.3.9.

4.4 COMPARING WITH BASELINES

The previous analysis indicated how Interpolate (active) can potentially achieve comparable per-
formance as ReDo which involves resetting the under-utilized and inactive parts of the model. In
this experiment, we investigate whether Interpolate can still result in a similar performance as other
plasticity baselines after an exhaustive hyper-parameter search is applied for model selection.

The experiments are conducted on Shuffled, Permuted, and Noisy CIFAR10 settings, using MLP
and CNN architectures. The models are optimized using SGD with L2 regularization. We compare
Interpolate and Interpolate+ReDo with the following plasticity baselines: CBP, ReDo and naive SGD.
We also use Reinit (Full) as an additional baselines where we re-initialize the whole model at the
beginning of each task. The optimal hyper-parameter setup is selected through a random search over
all possible configurations. For each method, the search is limited to a maximum of 20 configurations,
with the best setup selected based on the average validation accuracy observed after training on 100
tasks. Full detail about the hyper-parameter search is described in appendix A.1.

For the selected hyper-parameter configuration, we plot the highest online test accuracy achieved
for each task in Figure 5. We observe that overall, our proposed methods Interpolate and Inter-
polate+ReDo, consistently maintain competitive performance as other baselines. This shows that
resetting the active parts of the model can also lead to improved plasticity across different distribution
shifts and architectures.

On the Noisy and Permuted CIFAR10 settings, all methods result in almost identical performance
except Reinit (full). On Shuffled CIFAR10 with MLP, Interpolate (active) results in the best final
test accuracy. However, on Permuted CIFAR10 with MLP, ReDo outperforms other methods by a
small margin. Although no single approach consistently excels in every context, both Interpolate
and Interpolate+ReDo result in strong competitive performance. This highlights that resetting active
neurons can be just as useful as resetting inactive ones in maintaining plasticity in online learning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
0.44

0.46

0.48

0.50

0.52

0.54

Te
st

 a
cc

ur
ac

y

MLP: Shuffled CIFAR10

0 20 40 60 80 100

0.40

0.42

0.44

0.46

0.48

MLP: Permuted CIFAR10

1 3 5 7 9

0.350

0.375

0.400

0.425

0.450

0.475

0.500
MLP: Noisy CIFAR10

0 20 40 60 80 100
Tasks

0.575

0.600

0.625

0.650

0.675

0.700

Te
st

 a
cc

ur
ac

y

CNN: Shuffled CIFAR10

0 20 40 60 80 100
Tasks

0.46

0.48

0.50

0.52

0.54

CNN: Permuted CIFAR10

2 4 6 8 10
Tasks

0.48

0.50

0.52

0.54

0.56

0.58

0.60
CNN: Noisy CIFAR10

Interpolate CBP Interpolate+Redo Redo ReInit (FULL) SGD S&P

Figure 5: Comparing online test accuracy for different plasticity baselines with our proposed reset
function Interpolate and Interpolate+ReDo. The best setup were obtained after an exhaustive hyper-
parameter search. Overall, Interpolate and Interpolate+ReDo, consistently maintain competitive
performance suggesting that resetting active neurons can also help maintain plasticity contrary to
earlier assumptions.

4.5 LIMITATIONS

Our experiments have shown that resetting the active neurons using Interpolate can address plasticity
loss in MLP and CNN with a fixed compute budget for each task. However, it raises interesting
questions on its applicability to larger architectures such as Transformers (Vaswani et al., 2017).
While research on plasticity in large language models is still limited, model merging has shown great
promise in improving generalization in such models (Lawson & Qureshi, 2024; Verma & Elbayad,
2024; Ye et al., 2023), which suggests that resetting functions like Interpolate could be useful in this
context.

While we primarily focused on CIFAR10, following existing works that have explored plasticity
loss (Lyle et al., 2024; Lewandowski et al., 2024b), we have evaluated our method and baselines on
different distribution shifts. This encourages further investigation into the effectiveness of our method
on more realistic datasets with natural distribution shifts, such as CLoc (Cai et al., 2021).

5 CONCLUSION

This study provides an empirical analysis of reset-based techniques with various utility functions to
address plasticity loss. Our findings challenge previous assumptions by demonstrating that resetting
active neurons can also improve generalization. Moreover, by leveraging properties of the loss
landscape, specifically linear mode connectivity and permutation invariance, we introduce a new
model merging method called Interpolate, which can act as a reset function in online learning.
We conduct a comprehensive hyper-parameter search on our proposed method as well as existing
baselines under various distribution shifts, demonstrating that resetting active neurons with Interpolate
yields comparable generalization performance to existing baselines that focus on resetting inactive
neurons.

In future work, we plan to evaluate Interpolate on more complex models such as ResNet and
Transformers to explore whether resetting active neurons can also help reduce plasticity loss in
these architectures. Furthermore, we are interested in exploring the combination of Interpolate with
regularization- and architecture-based methods, particularly in the context of continual learning and
reinforcement learning, to evaluate its potential in addressing the specific challenges of these settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
in continual deep reinforcement learning. In Conference on Lifelong Learning Agents, 2023.

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. In International Conference on Learning Representations, 2023.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in neural
information processing systems, 33:3884–3894, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization, July 2016.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: Composable transformations of Python+NumPy programs, 2018.

Zhipeng Cai, Ozan Sener, and Vladlen Koltun. Online continual learning with natural distribution
shifts: An empirical study with visual data. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8281–8290, 2021.

Shibhansh Dohare, Richard S. Sutton, , and A. Rupam Mahmood. Continual backprop: Stochastic
gradient descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
mood, and Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768–774, 2024.

Mohamed Elsayed and A Rupam Mahmood. Addressing loss of plasticity and catastrophic forgetting
in continual learning. arXiv preprint arXiv:2404.00781, 2024.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296, 2021.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov. Property inference attacks on
fully connected neural networks using permutation invariant representations. In Proceedings of the
2018 ACM SIGSAC conference on computer and communications security, pp. 619–633, 2018.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. arXiv preprint
arXiv:2006.05826, 2020.

Dongwan Kim and Bohyung Han. On the stability-plasticity dilemma of class-incremental learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20196–20204, 2023.

Sanghwan Kim, Lorenzo Noci, Antonio Orvieto, and Thomas Hofmann. Achieving a better stability-
plasticity trade-off via auxiliary networks in continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11930–11939, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity in continual
learning via regenerative regularization. arXiv preprint arXiv:2308.11958, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Daniel Lawson and Ahmed H Qureshi. Merging decision transformers: Weight averaging for forming
multi-task policies. In 2024 IEEE International Conference on Robotics and Automation (ICRA),
pp. 12942–12948. IEEE, 2024.

Hojoon Lee, Hyeonseo Cho, Hyunseung Kim, Donghu Kim, Dugki Min, Jaegul Choo, and Clare
Lyle. Slow and steady wins the race: Maintaining plasticity with hare and tortoise networks. In
International Conference on Machine Learning, 2024.

Jiwoon Lee and Jaeho Lee. Semi-ensemble: A simple approach over-parameterize model interpolation.
In Proceedings of UniReps: the First Workshop on Unifying Representations in Neural Models, pp.
182–193. PMLR, 2024.

Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, and Marlos C Machado. Directions of
curvature as an explanation for loss of plasticity. arXiv preprint arXiv:2312.00246v3, 2024a.

Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, and Marlos C. Machado. Directions of
curvature as an explanation for loss of plasticity, 2024b. URL https://arxiv.org/abs/
2312.00246.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. Advances in neural information processing systems, 31, 2018.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In International Conference on Machine Learning,
pp. 23190–23211. PMLR, 2023.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens,
and Will Dabney. Disentangling the causes of plasticity loss in neural networks. arXiv preprint
arXiv:2402.18762, 2024.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Francon, Bala
Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving deep neural networks. In
Artificial intelligence in the age of neural networks and brain computing, pp. 269–287. Elsevier,
2024.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan Ghasemzadeh.
Linear mode connectivity in multitask and continual learning. arXiv preprint arXiv:2010.04495,
2020.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning,
2022.

Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerstner,
and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks: Symme-
tries and invariances. In International Conference on Machine Learning, pp. 9722–9732. PMLR,
2021.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning,
2023.

Ruoyu Sun. Optimization for deep learning: theory and algorithms. arXiv preprint arXiv:1912.08957,
2019.

Norman Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai. Optimizing
mode connectivity via neuron alignment. Advances in Neural Information Processing Systems, 33:
15300–15311, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. advances in neural information processing
systems. Advances in neural information processing systems, 30(2017), 2017.

11

https://arxiv.org/abs/2312.00246
https://arxiv.org/abs/2312.00246

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Neha Verma and Maha Elbayad. Merging text transformer models from different initializations.
arXiv preprint arXiv:2403.00986, 2024.

Tiffany J Vlaar and Jonathan Frankle. What can linear interpolation of neural network loss landscapes
tell us? In International Conference on Machine Learning, 2022.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
arXiv preprint arXiv:2408.07666, 2024.

Peng Ye, Chenyu Huang, Mingzhu Shen, Tao Chen, Yongqi Huang, Yuning Zhang, and Wanli Ouyang.
Merging vision transformers from different tasks and domains. arXiv preprint arXiv:2312.16240,
2023.

Zhanpeng Zhou, Yongyi Yang, Xiaojiang Yang, Junchi Yan, and Wei Hu. Going beyond linear
mode connectivity: The layerwise linear feature connectivity. Advances in Neural Information
Processing Systems, 36:60853–60877, 2023.

A APPENDIX

In this section, we provide additional details and extend the results of the main paper. We describe the
implementation details including hyper-parameters values used in our experiments in section A.1. All
experiments were executed on an NVIDIA A100 Tensor Core GPUs machine with 40 GB memory.

In all our experiments, we generate a sequence of CIFAR10 datasets split into 40,000 training
examples and 10,000 validation examples. The validation set is used to select the best-performing
configuration for each baseline. Unless specified in the experiment description, the default learning
rate for analyses in Figure 2, Figure 3 and Figure 4 is set to 0.01 for SGD, with no L2 regularization.

For all experiments on MLP and CNN, we used batch size of 128. Each seed ran a different randomly
generated task sequence. All experiments were run in JAX (Bradbury et al., 2018), parallelized over
seeds.

A.1 TRAINING SETUP AND HYPER-PARAMETERS DETAILS

Table 1: Dataset details

Dataset Train set Validation set

CIFAR10 40K 10K
CIFAR100 40K 10K

In Table 1 and Table 2, we provide a summary of datasets and models used in our experiments. We
do not use any type of normalization layer in our MLP and CNN experiments.

Table 2: Model details

Model Number of parameters

MLP 0.4M
CNN 39K

ResNet18 11M

The 2D contour plots in Figure 1 was obtained using loss surface visualization tool from Li et al.
(2018). We compute loss by taking an average over 40 batches (40× 128/40k training samples) for

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

the loss function and computed on 100× 100 models. The surface corresponds to seed 1 of Task 2 in
Shuffled CIFAR10 with MLP such that Init is the location of model parameters on Task 2 surface
after training on Task 1. After training for few epochs with SGD optimizer, once the model reaches
state A, we create two copies of the model. We apply Interpolate on the second copy to obtain new
location C and resume training on both copies until convergence. Additional contour plots of Test
error surfaces on single task of CIFAR10 dataset are shown in Figure 6 again indicating that training
from Interpolated point can result in discovery of a better generalizable region.

Task 2
Train Loss (seed=1) Train Loss (seed=2) Train Loss (seed=3) Train Loss (seed=4) Train Loss (seed=5)

Test Error (seed=1) Test Error (seed=2) Test Error (seed=3) Test Error (seed=4) Test Error (seed=5)

Start Online Before jump Interpolated Permuted Interpolate

Task 2
Train Loss (seed=1) Train Loss (seed=2) Train Loss (seed=3) Train Loss (seed=4) Train Loss (seed=5)

Test Error (seed=1) Test Error (seed=2) Test Error (seed=3) Test Error (seed=4) Test Error (seed=5)

Start Online Before jump Interpolated Permuted Interpolate

Figure 6: The 2D contour plots of Test error surfaces for 5 seeds on single task of CIFAR10 dataset
on training MLP. The resulting trajectory for training from Interpolate reset (Li et al., 2018). Training
from Interpolated point resulted in discovery of a better generalizable region.

We describe the hyper-parameter grids utilized in the random search to identify the optimal configura-
tion. All hyper-parameter searches involve exploring the best optimization setup outlined in Table 3.
Additionally, we also incorporate extra hyper-parameter grids introduced by individual plasticity
methods (Table 4).

Table 3: Hyper-parameter grid search for base optimizer

Method Parameter Values

SGD
L2 Weight 0.0, 0.01, 0.0001

Learning Rate 0.1, 0.01, 0.001, 0.0001

β1 0.9, 0.0

Adam
L2 Weight 0.0, 0.01, 0.0001

Learning Rate 0.1, 0.01, 0.001, 0.0001, 0.00001

β2 0.99, 0.999, 0.9999

A.2 BEST-PERFORMING SETUP

For our experiments in subsection 4.4, we provide the best hyper-parameter settings for all experiments
in Table 5.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 4: Hyper-parameter grid search for plasticity methods

Method Parameter Values

Reinit (full) Reset Period 1, 5, 10, 20

CBP
Decay Rate 0.9, 0.99, 0.999

Maturity Threshold 100, 1000, 10000

Replacement Rate 1e− 3, 1e− 4, 1e− 5, 1e− 6

ReDo Reset Period 1, 5, 10, 20

Dormancy Threshold 0.05, 0.1, 0.25, 0.5

Interpolate Reset Period 1, 5, 10, 20

k 5%, 10%, 25%, 50%

Interpolate+ReDo
Reset Period 1, 5, 10, 20

k (Interpolate) 5%, 10%, 25%, 50%

Dormancy Threshold (ReDo) 0.05, 0.1, 0.25, 0.5

S&P
Noise Scale 0.001, 0.01, 0.1, 1.0

Shrink Weight 0.0, 0.2, 0.4, 0.6, 0.8, 1.0

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Best learning setup obtained from hyper-parameter search experiment. Unline MLP and
CNN, ResNet18 experiment involved search across both SGDM and Adam optimizers. ∗ indicates
best results were obtained using Adam and corresponding value of β2 and Lr are reported.

Model Data Method L2 Dormancy threshold k Reset period β Lr Noise scale Shrink weight Decay rate Maturity threshold Replacement rate

MLP Noisy CIFAR10 CBP 0 0.9 0.01 0.999 100 0.0001
MLP Noisy CIFAR10 Interpolate 0 0 0.5 2000 0 0.01
MLP Noisy CIFAR10 Interpolate+Redo 0 0.5 0.05 4000 0 0.01
MLP Noisy CIFAR10 ReInit 0 0 0.1
MLP Noisy CIFAR10 Redo 0 0.05 0 1000 0 0.01
MLP Noisy CIFAR10 SGD 0 0.9 0.1
MLP Noisy CIFAR10 S&P 0 0 0.01 0.001 0.2
MLP Permuted CIFAR10 CBP 0.01 0 0.01 0.9 100 1e-06
MLP Permuted CIFAR10 Interpolate 0.0001 0 0.1 2000 0 0.01
MLP Permuted CIFAR10 Interpolate+Redo 0.01 0.05 0.05 1000 0.9 0.01
MLP Permuted CIFAR10 ReInit 0.01 0.9 0.1
MLP Permuted CIFAR10 Redo 0 0.1 0 200 0 0.01
MLP Permuted CIFAR10 SGD 0.0001 0 0.01
MLP Permuted CIFAR10 S&P 0 0 0.01 0.1 0.2
MLP Shuffled CIFAR10 CBP 0.0001 0 0.1 0.999 10000 1e-06
MLP Shuffled CIFAR10 Interpolate 0.0001 0 0.25 1000 0 0.1
MLP Shuffled CIFAR10 Interpolate+Redo 0 0.1 0.5 1000 0.9 0.1
MLP Shuffled CIFAR10 ReInit 0.0001 0.9 0.1
MLP Shuffled CIFAR10 Redo 0.01 0.1 0 1000 0 0.1
MLP Shuffled CIFAR10 SGD 0 0.9 0.1
MLP Shuffled CIFAR10 S&P 0 0 0.1 0.1 0.2
CNN Noisy CIFAR10 Interpolate 0.0001 0 0.1 2000 0.9 0.1
CNN Noisy CIFAR10 Interpolate+Redo 0.01 0.5 0.25 4000 0.9 0.1
CNN Noisy CIFAR10 CBP 0.0001 0.9 0.1 0.999 10000 0.000001
CNN Noisy CIFAR10 ReInit 0 0.9 0.1
CNN Noisy CIFAR10 Redo 0.01 0.05 0 200 0 0.1
CNN Noisy CIFAR10 SGD 0 0.9 0.1
CNN Noisy CIFAR10 S&P 0 0.9 0.1 0.01 0.6
CNN Permuted CIFAR10 CBP 0.01 0.9 0.1 0.99 1000 0.001
CNN Permuted CIFAR10 Interpolate 0.0001 0 0.5 4000 0.9 0.1
CNN Permuted CIFAR10 Interpolate+Redo 0 0.25 0.05 2000 0 0.1
CNN Permuted CIFAR10 ReInit 0.01 0 0.1
CNN Permuted CIFAR10 Redo 0.0001 0.1 0 200 0 0.1
CNN Permuted CIFAR10 SGD 0 0 0.1
CNN Permuted CIFAR10 S&P 0 0 0.1 0.01 0.4
CNN Shuffled CIFAR10 CBP 0.01 0.9 0.1 0.999 100 0.000001
CNN Shuffled CIFAR10 Interpolate 0 0 0.05 1000 0.9 0.1
CNN Shuffled CIFAR10 Interpolate+Redo 0.01 0.05 0.05 1000 0.9 0.1
CNN Shuffled CIFAR10 ReInit 0.0001 0.9 0.1
CNN Shuffled CIFAR10 Redo 0 0.1 0 1000 0.9 0.1
CNN Shuffled CIFAR10 SGD 0.0001 0 0.1
CNN Shuffled CIFAR10 S&P 0 0 0.1 1 0.2
ResNet18 Noisy CIFAR100 CBP 0.0001 0.999 0.0001∗ 0.999 10000 0.000001
ResNet18 Noisy CIFAR100 Interpolate 0.0001 0 0.1 10000 0 0.1
ResNet18 Noisy CIFAR100 Interpolate+Redo 0.0001 0.02 0.2 2000 0.99 0.001∗
ResNet18 Noisy CIFAR100 ReInit 0.0 0.999 0.001∗
ResNet18 Noisy CIFAR100 Redo 0.001 0.02 400 0.999 0.001∗
ResNet18 Noisy CIFAR100 SGD 0.0001 0.999 0.0001∗
ResNet18 Permuted CIFAR100 CBP 0.01 0.9 0.1 0.99 1000 0.001
ResNet18 Permuted CIFAR100 Interpolate 0.01 0 0.05 10000 0.9 0.1
ResNet18 Permuted CIFAR100 Interpolate+Redo 0 0.05 0.02 2000 0.9 0.1
ResNet18 Permuted CIFAR100 ReInit 0.0 0.999 0.001∗
ResNet18 Permuted CIFAR100 SGD 0.01 0.9 0.01
ResNet18 Permuted CIFAR100 Redo 0.01 0.5 200 0.9 0.1
ResNet18 Shuffled CIFAR100 CBP 0.01 0.9 0.1 0.999 100 0.000001
ResNet18 Shuffled CIFAR100 Interpolate 0.01 0 0.1 1000 0.9 0.1
ResNet18 Shuffled CIFAR100 Interpolate+Redo 0.01 0.05 0.1 10000 0.9 0.1
ResNet18 Shuffled CIFAR100 ReInit 0.0001 0.9999 0.001∗
ResNet18 Shuffled CIFAR100 Redo 0.01 0.1 10000 0.9 0.1
ResNet18 Shuffled CIFAR100 SGD 0.01 0.9 0.1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 ADDITIONAL RESULTS

A.3.1 COMPARING WITH BASELINES ON RESNET

For ResNet-18 (He et al., 2016), each task consisted of 20,000 gradient steps also with batch size
256. We conduct a hyper-parameter search for training ResNet18 on all three types of non-stationary
setting similar to subsection 4.4. We use CIFAR100 dataset. In Figure 7, we observe that either
Interpolate or Interpolate+ReDo, exhibit competitive/better performance suggesting that resetting
active neurons can also help maintain plasticity.

0 10 20 30
Tasks

0.38

0.40

0.42

0.44

0.46

Te
st

 A
cc

ur
ac

y

ResNet18: Shuffled CIFAR100

0 10 20 30
Tasks

0.18

0.20

0.22

0.24

0.26

ResNet18: Permuted CIFAR100

2 4 6 8 10
Tasks

0.15

0.20

0.25

0.30

0.35
ResNet18: Noisy CIFAR100

Interpolate+Redo Interpolate REINIT (FULL) CBP Redo SGD

Figure 7: Comparing online test accuracy for different plasticity baselines with Interpolate and Inter-
polate+ReDo on training ResNet18 using CIFAR100 dataset. The best setup were obtained after an
exhaustive hyper-parameter search. Either Interpolate or Interpolate+ReDo, exhibit competitive/better
performance suggesting that resetting active neurons can also help maintain plasticity.

A.3.2 LARGER NUMBER OF TASKS

In Figure 8, we compare online test accuracy of Interpolate and Interpolate+ReDo with baselines for
training on larger number of tasks (400) on Permuted CIFAR10 and Permuted MNIST. In both cases,
Interpolate and Interpolate+ReDo consistently maintained similar performance as Redo.

0 100 200 300 400
Tasks

40

42

44

46

48

Be
st

 te
st

 a
cc

ur
ac

y

MLP: Permuted CIFAR10

Interpolate
Interpolate+Redo
Online
Redo

0 100 200 300 400
Tasks

92

94

96

Be
st

 te
st

 a
cc

ur
ac

y

MLP: Permuted MNIST

Interpolate
Interpolate+Redo
Online
Redo

Figure 8: Evaluating online test accuracy of Interpolate and Interpolate+ReDo for larger number
of tasks on Permuted CIFAR10 and Permuted MNIST. Overall, Interpolate and Interpolate+ReDo,
consistently maintain similar performance as Redo again suggesting that resetting active neurons can
also help maintain plasticity contrary to earlier assumptions.

A.3.3 WITH ADAM OPTIMIZER

In Figure 9, we conduct an ablation study and evaluate Interpolate and Interpolate+ReDo using Adam
as base optimizer. Details for the hyper-parameter search is given in Table 3. Interpolate performs
best on Noisy CIFAR10 and maintain similar performance as Redo on Shuffled CIFAR10.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 2 4 6 8
Tasks

40.0

42.5

45.0

47.5

50.0

Be
st

 te
st

 a
cc

ur
ac

y

MLP: Noisy CIFAR10

Interpolate
Interpolate+Redo
Online
Redo

0 20 40 60 80 100
Tasks

44

46

48

50

52

Be
st

 te
st

 a
cc

ur
ac

y

MLP: Shuffled CIFAR10

Interpolate
Interpolate+Redo
Online
Redo

Figure 9: Evaluating online test accuracy of Interpolate and Interpolate+ReDo with Adam optimizer.
Interpolate performs best on Noisy CIFAR10 and maintain similar performance as Redo on Shuffled
CIFAR10.

A.3.4 HIGHER COMPUTE BUDGET PER TASK

In Figure 10, we compare online test accuracy of Interpolate and Interpolate+ReDo with baselines for
training on larger number of epochs per task (100) on Permuted CIFAR10 and Shuffled CIFAR100.
While Redo slightly performs better on Permuted CIFAR10, Interpolate performs better on Shuffled
CIFAR10.

0 20 40 60 80 100
Tasks

42.5

45.0

47.5

50.0

52.5

Be
st

 te
st

 a
cc

ur
ac

y

MLP: Permuted CIFAR10

Interpolate (active)
Interpolate+Redo
Online
Redo

0 20 40 60 80 100
Tasks

40.0

42.5

45.0

47.5

50.0

Be
st

 te
st

 a
cc

ur
ac

y

MLP: Shuffled CIFAR10

Interpolate (active)
Interpolate+Redo
Online
Redo

Figure 10: Evaluating online test accuracy of Interpolate and Interpolate+ReDo for larger number of
epochs (100) per task on Permuted CIFAR10 and Shuffled CIFAR10. While Redo slightly performs
better on Permuted CIFAR10, Interpolate clearly performs best on Shuffled CIFAR10.

A.3.5 CONVEX COMBINATIONS

Here, we define θreset as convex combination of θperm and θ:

θreset = wθperm + (1− w)θ ,

where w is the interpolate weight. We vary w and train an MLP on Shuffled CIFAR10 for 100 tasks.
We plot the results in Figure 11 and observe that while with larger learning rate, varying w has
minimal effect on overall performance, with smaller learning rate, w = 0.6 works best in maintain
plasticity and w = 0.9 diverges on later tasks.

A.3.6 MULTIPLE PERMUTATIONS

Here, we define θreset as average across multiple θperm generated, i.e.,

θreset =
1

t+ 1
(θ +

t∑
i=1

θperm−i) .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Tasks

46

48

50

52

54

Be
st

 te
st

 a
cc

ur
ac

y

MLP: Shuffled CIFAR10
0.1
0.2
0.4
0.5

0.6
0.8
0.9

0 20 40 60 80 100
Tasks

10

20

30

40

50

Be
st

 te
st

 a
cc

ur
ac

y

MLP: Shuffled CIFAR10

0.1
0.2
0.4
0.5

0.6
0.8
0.9

Figure 11: Evaluating online test accuracy of Interpolate on Shuffled CIFAR10 across different
interpolate weights with learning rates: (i) 0.1 (ii) 0.01. We observe that while with larger learning
rate, varying w has minimal effect on overall performance, with smaller learning rate, w = 0.6 works
best in maintain plasticity and w = 0.9 diverges on later tasks.

We vary n and train an MLP on Shuffled CIFAR10 for 100 tasks. We plot the results in Figure 12
(left) and observe that n has minimal impact on overall performance.

0 10 20 30 40 50 60
Tasks

46

48

50

52

54

Be
st

 te
st

 a
cc

ur
ac

y

MLP: Shuffled CIFAR10

1
2
4

8
16

0 10 20 30 40 50 60
Tasks

40.0

42.5

45.0

47.5

50.0

52.5

55.0

Be
st

 te
st

 a
cc

ur
ac

y

MLP: Shuffled CIFAR10

Interpolate (random)
Re-init (active)
Interpolate (active)
Redo (random)
Add Noise

Figure 12: Evaluating online test accuracy of Interpolate on Shuffled CIFAR10: (i) across different
number of permutations where, we observe that it has minimal impact on overall performance;
(ii) with additional baselines involving random selection of neurons, re-initialization, adding noise.
Interpolate with both active and random neurons selection perform similar. Redo with random
neurons selection also results in competitive performance on later tasks whereas both re-initializing
active neurons and adding noise exhibit worse performance.

A.3.7 RANDOM SELECTION

In this experiment, we add more baselines: (i) random selection of neurons, (ii) re-initialization, (iii)
adding noise. Figure 12 (right) shows that Interpolate with both active and random neurons selection
results in similar performance. Redo with random neurons selection also results in competitive
performance on later tasks whereas both re-initializing active neurons and adding noise exhibit worse
performance.

A.3.8 JUMP IN TRAINING LOSS VS ACTIVATION SCORE

Similar to Figure 2, we compare generalization performance and jump in training loss for random
noise and Interpolate reset functions with increasing total activation score of randomly selected
neurons. In Figure 13, we observe that Interpolate results in relatively more efficient adaptation to
new tasks, while random noise can introduce instability and performance loss when applied to more
active neurons.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 25 50 75 100
Activation score

51.5

52.0

52.5

53.0

53.5

54.0

Pe
rfo

rm
an

ce
 (%

)

Random
Interpolate

0 25 50 75 100
Activation score

0.0

0.5

1.0

1.5

Ju
m

p
in

 tr
ai

ni
ng

 lo
ss

Random
Interpolate

Figure 13: Comparing generalization performance (left) and jump in training loss (right) for random
noise and Interpolate reset functions for increasing total activation score of randomly selected neurons.
Similar to Figure 2, Interpolate results in relatively more efficient adaptation to new tasks, while
random noise can introduce instability and performance loss when applied to more active neurons.

0 10 20 30 40 50 60
Tasks

40

42

44

46

48

Be
st

 te
st

 a
cc

ur
ac

y

MLP: Permuted CIFAR10

Interpolate (random)
Interpolate (active)

Figure 14: Evaluating online test accuracy of Interpolate on Permuted CIFAR10 for comparing
Interpolate with random selection of neurons on Permuted CIFAR10. Interpolate with both active
and random neurons selection perform worse.

A.3.9 SENSITIVITY ANALYSIS

In this section, we provide a brief sensitivity analysis of Interpolate and Interpolate+ReDo for
different values of k and dormancy threshold on training CNN using Permuted CIFAR10 and Shuffled
CIFAR10 dataset. Figure 15 shows that in case of Inteprolate, a higher value of k works better in
terms of overall performance. While there’s no clear trend in case of Interpolate+Redo as different
combinations work well, a higher dormancy threshold results in worse performance.

A.3.10 OTHER METRICS OBSERVED USING BEST PERFORMING SETUP

In this section we plot other metrics including final train accuracy and weight norm obtained for the
best performing hyperparmeter configurations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
10

20

30

40

50
Be

st
 te

st
 a

cc
ur

ac
y

CNN: Permuted CIFAR10

Interpolate (active)
(0.05, 0.0)
(0.1, 0.0)
(0.25, 0.0)
(0.5, 0.0)

0 20 40 60 80 100
10

20

30

40

50

CNN: Permuted CIFAR10

Interpolate+Redo
(0.05, 0.05)
(0.05, 0.25)
(0.1, 0.05)
(0.1, 0.5)
(0.25, 0.25)
(0.25, 0.5)
(0.5, 0.5)

0 20 40 60 80 100
Tasks

10

20

30

40

50

60

70

Be
st

 te
st

 a
cc

ur
ac

y

CNN: Shuffled CIFAR10

Interpolate (active)
(0.1, 0.0)
(0.25, 0.0)
(0.5, 0.0)

0 20 40 60 80 100
Tasks

10

20

30

40

50

60

70
CNN: Shuffled CIFAR10

Interpolate+Redo
(0.1, 0.1)
(0.1, 0.5)
(0.25, 0.05)
(0.25, 0.25)
(0.5, 0.1)
(0.5, 0.25)
(0.5, 0.5)

Figure 15: Comparing online test accuracy for different values of k with Interpolate and (k, dormancy
threshold) with Interpolate+ReDo on training CNN using Permuted CIFAR10 and Shuffled CIFAR10
dataset after the hyper-parameter search. Higher value of k works better for Interpolate. While there’s
no clear trend in case of Interpolate+Redo as different combinations work well for both benchmarks,
a higher dormancy threshold results in worse performance.

0 20 40 60 80 100

0.5

0.6

0.7

0.8

0.9

Fi
na

l t
ra

in
 a

cc
ur

ac
y

MLP: Shuffled CIFAR10

0 20 40 60 80 100

0.40

0.42

0.44

0.46

0.48

MLP: Permuted CIFAR10

2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

MLP: Noisy CIFAR10

0 20 40 60 80 100
Tasks

0.65

0.70

0.75

0.80

Fi
na

l t
ra

in
 a

cc
ur

ac
y

CNN: Shuffled CIFAR10

0 20 40 60 80 100
Tasks

0.48

0.50

0.52

0.54

0.56

0.58

CNN: Permuted CIFAR10

2 4 6 8 10
Tasks

0.4

0.5

0.6

0.7

0.8

0.9

1.0
CNN: Noisy CIFAR10

ReInit (full) SGD CBP Redo Interpolate Interpolate + Redo

Figure 16: Comparing online train accuracy for different plasticity baselines with our proposed reset
function Interpolate and Interpolate+ReDo after the hyper-parameter search. Overall, Interpolate and
Interpolate+ReDo, consistently maintain similar performance on all settings except CNN+Shuffled
CIFAR10 where ReDo performs best.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

20

40

60

80

100

W
ei

gh
tn

or
m

MLP: Shuffled CIFAR10

0 20 40 60 80 100

18

20

22

24

26

28

30
MLP: Permuted CIFAR10

2 4 6 8 10

20

21

22

23

24

MLP: Noisy CIFAR10

0 20 40 60 80 100
Tasks

20

30

40

50

W
ei

gh
tn

or
m

CNN: Shuffled CIFAR10

0 20 40 60 80 100
Tasks

15

20

25

30

35

40

CNN: Permuted CIFAR10

2 4 6 8 10
Tasks

15

20

25

30

CNN: Noisy CIFAR10

ReInit (full) SGD CBP Redo Interpolate Interpolate + Redo

Figure 17: Comparing weight norm for different plasticity baselines with our proposed reset function
Interpolate and Interpolate+ReDo after the hyper-parameter search. While all palsticity methods result
in similar increase in the weight norm, the only exception occurs with MLP+Permuted CIFAR10
where ReDo and Interpolate+ReDo maintains a smaller weight norm under their best configurations.

21

	Introduction
	Background
	Plasticity
	Model Merging

	Methodology
	How to Select Neurons?
	How to reset?

	Experiments
	Interpolate vs Random Noise
	Resetting Active vs Inactive Neurons
	Combining Interpolate (Active) with ReDo (Inactive)
	Comparing with Baselines
	Limitations

	Conclusion
	Appendix
	Training setup and Hyper-parameters details
	Best-performing setup
	Additional results
	Comparing with baselines on ResNet
	Larger number of tasks
	With Adam optimizer
	Higher Compute Budget per Task
	Convex combinations
	Multiple permutations
	Random selection
	Jump in training loss vs Activation score
	Sensitivity analysis
	Other Metrics Observed Using Best Performing Setup

