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Abstract

As a part of an embodied agent, Large Lan-
guage Models (LLMs) are typically used for
behavior planning given natural language in-
structions from the user. However, dealing with
ambiguous instructions in real-world environ-
ments remains a challenge for LLMs. Vari-
ous methods for task ambiguity detection have
been proposed. However, it is difficult to com-
pare them because they are tested on differ-
ent datasets, and there is no universal bench-
mark. For this reason, we propose AmbiK
(Ambiguous Tasks in Kitchen Environment),
the fully textual dataset of ambiguous instruc-
tions addressed to a robot in a kitchen environ-
ment. AmbiK was collected with the assistance
of LLMs and is human-validated. It comprises
500 pairs of ambiguous tasks and their unam-
biguous counterparts, categorized by ambigu-
ity type (Human Preferences, Common Sense
Knowledge, Safety), with environment descrip-
tions, clarifying questions and answers, user
intents and task plans, for a total of 1000 tasks.

1 Introduction

Recent studies have shown that Large Language
Models (LLMs) perform well in task planning in
instruction-following task (Ahn et al., 2022; Huang
et al., 2022; Dong et al., 2024). However, it can be
challenging for an agent, as some natural language
instructions (NLI) from humans are ambiguous be-
cause of the natural language limitations in applica-
tion to real world complex environment (Pramanick
et al., 2022; Hu and Shu, 2023).

A distinct line of research focuses on developing
methods for requesting and processing user feed-
back, which is essential for handling tasks that are
ambiguous and challenging even for humans. How-
ever, such methods (Zhang and Choi, 2023; Chen
and Mueller, 2023; Su et al., 2024; Testoni and
Fernandez, 2024) are often developed for QA tasks
and do not take into account important features of
embodiment, such as grounding, task specificity,
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Figure 1: Ambiguity types in the Ambik dataset.

and interactivity. As emphasized in Madureira and
Schlangen, 2024, clarification exchanges do not
normally appear in non-interactive setting. Clar-
ifications consist about 4% of spontaneous con-
versations, in comparison with 11% in instruction-
following interactions. Therefore, advancing re-
search in ambiguity detection is of importance for
embodied agents.

To address this task, some works in robot task
planning (Ren et al., 2023; Liang et al., 2024)
formulate the next action problem as a Multiple-
Choice Question Answering task and use confor-
mal prediction (CP), as proposed by Vovk et al.,
2005, to derive from a set with multiple options
a subset. If it contains a single action, the robot
executes it; otherwise, it requests user clarification
on the action to perform.

To compare the performance of these methods
with the focus on ambiguous tasks, specialized
benchmarks are needed. Existing datasets, such as
DialFred (Gao et al., 2022) and TEACh (Padmaku-
mar et al., 2022) include some ambiguous tasks, but
these datasets lack sufficient annotation for dedi-
cated ambiguity detection research. KnowNo (Ren
et al., 2023) cannot be used as text-only bench-
marks suitable for any LL.M-based ambiguity de-
tection methods, as it contains simple instructions
with limited ambiguity types that are not consis-
tently classified. Moreover, since the human-robot



interaction pipeline typically includes many sub-
parts, it is crucial to measure the LLM performance
separately to improve the model’s ability to deal
with unclear instructions.

In our work, we propose AmbiK (Ambiguous
Tasks in Kitchen Environment), the English lan-
guage fully textual dataset for ambiguity detection
in kitchen environment. AmbiK consists of 1000
paired ambiguous and unambiguous instructions
with a description of the environment, an unam-
biguous counterpart of the task, a clarifying ques-
tion with an answer, a task plan.

Moving ahead of previous work, the types of
ambiguity in AmbiK are based on the knowl-
edge needed to resolve the ambiguity (see Fig-
ure 1). Ambiguous tasks are divided into three
categories: (HUMAN PREFERENCES, COMMON
SENSE KNOWLEDGE, and SAFETY). Depending
on the type of ambiguity, we expect an effective
model to either ask for help or refrain from doing
so0 in cases of ambiguity.

AmbiK allows for the comparison of both
prompt-only and CP-based methods of ambiguity
detection. We evaluated three methods which use
conformal prediction (KnowNo (Ren et al., 2023),
LAP (Jr. and Manocha, 2024), and LofreeCP (Su
et al., 2024)) and two baseline methods on the
proposed AmbiK dataset. The experiments are
conducted on GPT-3.5(OpenAl, 2023b), GPT-4
(OpenAl, 2023c), LLaMA-2-7B and LLaMA-3-8B
models.

The main contributions of our paper are as fol-
lows: (i) We propose AmbiK, a fully textual dataset
in English for ambiguity detection in kitchen envi-
ronment. (ii) We propose a definition of ambiguity
and classify ambiguous tasks into three types —
PREFERENCES, COMMON SENSE KNOWLEDGE,
and SAFETY — based on our expectation of when
the robot should trigger help; this classification is
considered in measuring the robot’s performance.
(iii) We evaluate four popular methods of ambigu-
ity detection on the proposed dataset using SOTA
LLMs. One of the methods was firstly used in the
embodied agent task. (iv) We demonstrate that Am-
biK presents a significant challenge for the tested
methods and that LLM logits are likely an inade-
quate approximation of uncertainty.

The full dataset, an environment list, the prompts
used in data collection are available online'.

lhttps ://anonymous. 4open.science/r/
AmbiK-dataset-8A4C/README.md

2 Related Work
2.1 Datasets with Ambiguous NLI

Clarification requests are a part of many datasets:
SIMMC?2.0 (Kottur et al., 2021), ClarQ (Kumar and
Black, 2020), ConvAlI3 (ClariQ) (Aliannejadi et al.,
2020) for general questions, but, as Madureira and
Schlangen (2024) state, clarification exchanges
more often appear in instruction-following inter-
actions (Benotti and Blackburn, 2021; Madureira
and Schlangen, 2023).

Specialized instruction-following datasets in in-
teractive environments often include comprehen-
sive and grounded sessions of interactions. How-
ever, they tend to focus primarily on task com-
pletion rather than addressing ambiguities in nat-
ural language instructions. To such datasets be-
long Minecraft Dialogue Corpus (Narayan-Chen
et al., 2019), IGLU (Kiseleva et al., 2022), Cere-
alBar (Suhr et al., 2022) and LARC (Acquaviva
et al., 2023). In DialFRED (Gao et al., 2022) and
TEACh (Padmakumar et al., 2022) datasets interac-
tions occur in simulated kitchen environments, in
CoDraw game (Kim et al., 2017) the interaction is
on the canvas for drawing. All these datasets have
the same dialogue participants: a commander who
gives instructions and an instruction follower who
executes them.

Min et al. (2024) presents the Situated Instruc-
tion Following (SIF) dataset, which embraces the
inherent underspecification of natural communi-
cation and includes ambiguous tasks. However,
this ambiguity concerns only multiple locations
for searching for objects and does not encompass
linguistically complex diverse instructions. In the
SIF dataset, ambiguous intents should be disam-
biguated through a holistic understanding of the en-
vironment and the human’s location, rather than by
triggering human assistance. Tanaka et al. (2024)
focus on ambiguity defined as the unexpressiveness
of the user’s intent (requests that are implied but
not directly stated) and should be addressed proac-
tively by the robot. Such an ambiguity differs from
ours (see Section 3.1 for our definition).

The KnowNo dataset (Ren et al., 2023) is com-
pletely textual and contains ambiguous tasks, but
they constitute a small part of the dataset (170 sam-
ples). These tasks do not come with questions to
resolve ambiguity or other hints for the model. The
tasks in KnowNo are one-step and simply formu-
lated, with only about three or four objects in the
scene. Tasks are divided into multiple subtypes,
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Table 1: Comparison of datasets with ambiguous NLI.
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but the division is not fully consistent. For instance,
along with the unambiguous type with direct ob-
ject naming, there is a separate type of naming the
objects using referential pronouns. However, in an
unambiguous setting, this is a common ability of
LLMs and can hardly be considered a separate type
alongside different ambiguous types.

Situational Awareness for Goal Classification
in Robotic Tasks (SaGC) (Park et al., 2023) is
intended to classify tasks into certain, infeasible
(regarding robot specialization), and ambiguous
tasks. However, ambiguity in their sense is just
underspecification of the task (like cook something
delicious) which can have multiple true ways of
ambiguity resolution that do not necessarily assume
communicating with a human.

When using only textual data and considering
ambiguous instructions, the existing datasets are
insufficient for comparing methods of LLM uncer-
tainty. To address this gap, we introduce AmbikK, a
dataset specifically designed for this purpose (see
Table 1 for a comparison of datasets with ambigu-
ous NLI and AmbiK).

2.2 Ambiguity Detection Methods

The majority of methods solving the problem when
to ask for clarification rely on model’s logits. In
some works (Gao et al., 2022; Chi et al., 2020)
uncertainty is measured through heuristics such
as the difference in confidence scores (entropies)
between the top 2 predictions — if it falls below
a user-defined threshold, the model should seek
clarification.

A separate line of works is devoted to applying
conformal prediction (CP) (Vovk et al., 2005) for
measuring LLM uncertainty and making decisions

2According to the SIF authors, the dataset comprises 480
tasks. Since each task can be presented in both ambiguous
and unambiguous forms, the total number of tasks can be
considered 960.

regarding clarifications. Conformal prediction is
a model-agnostic and distribution-free approach
for deriving a subset from multiple options, ensur-
ing, with a user-defined probability, that the correct
option is included in the subset.

As in Ren et al. (2023); Liang et al. (2024), if
the conformal prediction narrows down the choice
of actions to a single one, the robot executes it; oth-
erwise, it requests user clarification of the action
to be performed. CP is compatible with various
uncertainty estimation methods (see an overview
of uncertainty estimation methods in Fadeeva et al.
(2023); Huang et al. (2024)), for instance, SoftMax
scores can be used as an uncertainty measure An-
gelopoulos and Bates (2022). The study in (Lidard
et al., 2024) suggest an improvement of KnowNo
(Ren et al., 2023) by considering the risk associated
with uncertain action selection; this framework is
also based on LLM logits.

Although a heuristic uncertainty is needed for
CP, the recent work (Su et al., 2024) proposed
LofreeCP, an approach based on CP which is com-
patible with logit-free models and outperforms
logit-based methods. In this work, we implemented
two CP-based methods originally introduced in the
robotics domain (KnowNo and LAP) and one logit-
free method (LofreeCP), marking the first applica-
tion of this method to our task. Additionally, we
implemented two simple methods, Binary and No
Help, which served baselines in the KnowNo work.

3 AmbiK Dataset
3.1 Ambiguity Definition

For the purposes of this work, we define instruction
ambiguity as follows:

An instruction is said to be ambiguous if,
given the state of the environment, at least one
step in the process of constructing a plan al-
lows for multiple possible choices. A wrong
choice at that step may lead to undesirable con-
sequences. Conversely, unambiguous instruc-
tions typically do not present such choices.

This definition is suitable for testing ambiguity
detection methods in a paired setting, as it allows
for the comparison of a model’s uncertainty be-
tween similar unambiguous and ambiguous tasks.

In this work, ambiguity is considered in a zero-
context setting, meaning we do not account for
previous interactions and context. For instance, in
a real setting, we expect no confusion if a robot



receives the task “Put the cup on the kitchen table”
after the task “Bring me the ceramic cup”, even if
multiple cups exist in the environment. In AmbiK,
the task “Put the cup on the kitchen table” would
always be ambiguous when multiple cups are in the
environment. We impose a zero-context require-
ment to allow for a fair comparison of methods and
to keep PREFERENCES consistently ambiguous.

The sentences in pairs of AmbiK tasks are lin-
guistically minimal in their differences and are
grounded in the same textual environment. Com-
pared to similar unambiguous tasks, ambiguous in-
structions offer more interpretations and are more
likely to result in a choice of next action, given the
set of objects in the environment. For example, an
instruction like “Pick up the cup” may be ambigu-
ous in one scene (with multiple cups) but not in
another (with only one cup). The same is true for
the intended action sequence, manner of action (e.
g., the sauce added to the dish either abruptly or
slowly), or other forms of ambiguity.

3.2 Ambiguity types in AmbiK

There are many ways to categorize ambiguous
tasks. For instance, the division can be based
on linguistic ambiguity (such as ambiguous refer-
ences and synonyms/hypernyms), spatial ambigu-
ity, safety ambiguity, or the degree of creativity re-
quired for the task, as seen in the Hardware Mobile
Manipulator dataset (Ren et al., 2023). However,
such classifications lack an internal system, as such
semantic and linguistic divisions do not correlate
with various action strategies of the robot receiv-
ing such tasks. For instance, spatial ambiguity is
not really different from object ambiguity in the
sense that in both cases, the robot needs clarifica-
tions. Moreover, restricting to objects and space is
not exhaustive, as we can come up with unlimited
ways of overlapping semantic classes (ambiguity
on manner of action, speed of action, final object
location, temporary location, etc.).

Thus, ambiguity types in AmbiK are aligned
with various ways the embodied agent should
act in ambiguous situations. We divide ambigu-
ous tasks into (HUMAN) PREFERENCES, COM-
MON SENSE KNOWLEDGE and SAFETY types, see
Figure 1 for the data distribution over types. This
distribution corresponds to 47.2%, 39.8%, and 13%
of the task pairs, respectively. The examples for
each type are presented in the Figure 2. For PREF-
ERENCES, the good model should ask a question in
all the cases, as the human preferences can be inher-

Kitchen Robot, please pour a glass of

Preferences milk from the milk bottle into a glass 0
and place it on the kitchen table. heds
Common Kitchen Robot, please toast the bread
until it is golden brown on both sides, aoa
Sense then take it out and spread some 2%
Knowledge mixed fruit jam on top. -
S afety Kitchen Robot, please heat the

buffalo wing in the microwave )

o

Figure 2: Examples of ambiguous tasks in AmbiK
across ambiguity types. For COMMON SENSE KNOWL-
EDGE, it can be unclear to the robot which kitchen item
to use for toasting bread (a toaster). In SAFETY — which
plate to use for buffalo wings (any microwave-safe one).

ently variable and unpredictable. For SAFETY and
COMMON SENSE KNOWLEDGE, the model should
not ask questions frequently, as humans don’t do it.
We examine safety ambiguity separately from com-
mon sense knowledge because incorrect choices in
response to ambiguous instructions are associated
with more serious risks for both humans and the
robot. It is also less undesirable for the robot to ask
obvious questions if they concern safety.

We propose this division into types, because
we assume that the humans interact with embod-
ied agents nearly as they interact with other hu-
mans and that they consider cooperative principles,
also called Grice’s maxims of conversation (Grice,
1975). Cooperative principles describe how people
achieve effective conversational communication in
common social situations and are widely used in
linguistics and sociology. According to Grice, we
are informative (maxim of quantity — content length
and depth), truthful (maxim of quality), relevant
(maxim of relation) and clear (maxim of manner),
if humans are interested in the communicative task
completion. For this reason, for example, we do
not expect LLMs to ask whether vegetables should
be washed before making a salad, as it is generally
understood that they should be. If a human prefers
unwashed vegetables, it becomes their responsibil-
ity to inform the robot of this preference.

3.3 AmbikK Structure

In total, AmbiK contains 500 pairs of tasks, cate-
gorized by ambiguity type (UNAMBIGUOUS and
three ambuiguity types). In this section, we de-
scribe the data structure using examples. See Table
4 in App. B for other details.

All tasks have the environment description in
the textual forms, such as “a ceramic mug, a glass



mug, a clean sponge, a dirty sponge, coffee, coffee
machine, milk glass, a green tea bag”.

The task in AmbiK is represented in the form
of unambiguous and ambiguous formulations. For
example, the unambiguous task “Kitchen Robot,
please make a coffee by using the coffee machine
and pour it into a ceramic mug.” has an ambigu-
ous counterpart “Kitchen Robot, please make a
coffee by using the coffee machine and pour it into
a mug”. These tasks differ at the certain point of
the instruction plan (pouring the coffee). As there
are multiple mugs in the scene, the robot can not
be sure about this point. The ambiguity type of
this task pair is PREFERENCES, because we expect
the agent to ask a clarifying question.

Each task pair is associated with a user intent
— the action assumed in the task wich can be ex-
pressed through multiple concepts and formula-
tions (see Appendix B). The ambiguity shortlist
is defined only for tasks of type PREFERENCES that
exhibit uncertainty regarding objects. It comprises
a set of objects among which we anticipate human
indecision (a glass mug, a ceramic mug). Vari-
ants are used only for methods with the calibration
stage, as they require all possible correct answers
to define the CP values.

For each task, AmbiK also includes a question-
answer pair to facilitate task disambiguation.
However, since the tested methods typically do
not offer a concrete approach for generating clari-
fication questions, we do not evaluate them based
on their ability to formulate the relevant question.

AmbiK structure enables testing different am-
biguity detection methods in task planning with
LLMs. Furthermore, AmbiK is suitable for test-
ing methods that rely on a list of objects in the
environment (such as LAP), and it supports experi-
mental settings both before and after human-robot
dialogue, where ambiguity needs to be resolved.

3.4 Data collection

The data was collected with the assistance of Chat-
GPT (OpenAl, 2023a) and Mistral (Jiang et al.,
2023) models and is human-validated.

Firstly, we manually created a list of above 320
kitchen items and food grouped by objects’ sim-
ilarity (e.g. different types of yogurt). We ran-
domly sampled from the full environment (from
2 to 5 food groups + from 2 to 5 kitchen item
groups) to get 1000 kitchen environments. From
every group, the random number of items (not less
than 3) is included in the scene. Some kitchen

Table 2: Linguistic diversity of AmbiK tasks.

Statistic Unambiguous Ambiguous
Avg. number of words | 42.38 27.19
Unique words in total 1168 862
Type-Token Ratio 0.055 0.063

items (“a fridge, an oven, a kitchen table, a mi-
crowave, a dishwasher, a sink and a tea kettle”’) are
present in every environment by design. For each
of the 1000 scenes, we generated an unambigu-
ous task using Mistral and manually selected the
best 500 without hallucinations. For every unam-
biguous task, we generated an ambiguous task and
a question-answer pair using ChatGPT. We used
three different prompts, each corresponding to one
of the three ambiguity types in AmbiK. Based on
the ambiguous task, we then manually selected the
ambiguity type which corresponds to the ambigu-
ity which could occur in real human-robot interac-
tion. Finally, we manually reviewed all answers
according to specially created annotation guide-
lines (see Appendix J). Three people from our team
were independently annotating the data, with the
inter-annotator agreement more than 95%. See Ap-
pendix G for the full prompts we used on different
data collection steps.

3.5 AmbikK Statistics

Table 2 illustrates the diversity of words within
AmbiK tasks. The Type-Token Ratio (TTR) is cal-
culated by dividing the number of distinct words
(types) by the total number of words (tokens). Am-
biK exhibits a low TTR, indicating high variability,
as, compared to KnowNo, it includes instructions
that are not limited to simple actions like pick up.
Additional statistics can be found in Appendix C.

4 Benchmarking on AmbiK
4.1 Ambiguity Detection Methods

We implemented two basic CP-based meth-
ods of deciding whether the robot needs help,
KnowNo (Ren et al., 2023) and LAP (Jr. and
Manocha, 2024), and adapted LofreeCP (Su et al.,
2024) for the task. The methods we compared on
AmbiK differ in how initial notions of uncertainty
are calculated. We also test two simple methods
which do not use CP: Binary (Ren et al., 2023) and
No Help (Ren et al., 2023). For all ambiguity de-
tection methods, the few-shot prompting was used
for generating options by LLM, see App. H, L



KnowNo. This method was the first popular
method that used CP with LLM in embodied agents.
In KnowNo, LLM is asked to generate multiple
answer options and to choose the best option. Soft-
Max of logprobs which correspond to all option
letters are utilized as inputs for CP.

LAP. This approach is similar to KnowNo, but
the received log probabilities of generated variants
are additionally multiplied by affordance scores.
For every option, Context-Based Affordance in-
dicates whether all mentioned objects are in the
environment, Prompt-Based Affordance equals the
probability that LLM answers ’True’ to the request
if it is possible and safe to execute the action.

LofreeCP. The LofreeCP method does not re-
quire logit access. Uncertainty notions for CP are
calculated based on using both coarse-grained and
fine-grained uncertainty notions such as sample fre-
quency on multiple generations, semantic similarity
and normalized entropy. We were the first to apply
LofreeCP to tasks involving embodied agents.

Binary. Prompting LLM to give one most likely
option and asking it to label this option “Cer-
tain/Uncertain” in a few-shot setting.

No Help. Prompting LLM to give one option
and assuming the agent never asks for help.

4.2 Metrics

We evaluate the planner’s performance based on
the relevance of its clarification requests and the
quality of the method’s predictions.

Intent Coverage Rate (ICR)’: The proportion
of Total User Intents, such as keywords that should
be in the intended ground truth action, that can be
found in the CP-set of LLM predictions.

Help Rate (HR): Whether the robot asks for
help, assuming it does it when its Prediction Set
Size (after CP) is greater than 1.

Correct Help Rate (CHR): How often planner
correctly chooses whether to ask for clarifications
from user. Given that we expect the model to be-
have differently depending on the type of ambiguity
(see Figure 1), C'H R equals O for PREFERENCES
tasks and O for other types.

Set Size Correctness (SSC): The accordance
of Prediction Set and Correct Set options, calcu-
lated as their Intersection over Union. We consider

>The Help Rate is a standard metric for CP-based ap-
proaches, as it follows the idea of asking for help when the CP
set contains more than one element (Ren et al., 2023; Su et al.,
2024). The Intent Coverage Rate is inspired by Success Rate

in KnowNo, but it is calculated differently; other metrics were
proposed by us. All formulas can be found in Appendix E.

Set Size Correctness only for tasks that represent
ambiguity over objects in the PREFERENCES type.

Ambiguity Differentiation (AmbDif): Whether
the Predicted Set Sizes of CP-based methods are
larger for ambiguous tasks in comparison with their
unambiguous counterpart.

To aggregate the metrics, the mean values of all
metric scores are calculated. Except for Ambiguity
Differentiation, it is done for each of the ambiguity
types separately.

4.3 Models and experiment details

We conducted experiments on four LLMs: GPT-
3.5-Turbo (throughout the text, we refer to it as
GPT-3.5.), GPT-4* (OpenAl, 2023c), LLaMA-2-
7B> and LLaMA-3-8B® models. As an choosing
model for the experiments with methods which
require it (see Section 4), we also used the Flan T5’
model (Chung et al., 2022) for choosing between
4 options in the experiments in KnowNo and LAP
and certainty statements in Binary. All experiments
were conducted on 1 H100 GPU.

For the calibration stage of CP-based methods,
100 AmbiK examples were used, consisting of 50
unambiguous and 50 ambiguous examples, bal-
anced across different ambiguity types. Testing
was conducted on 800 examples without separating
them by ambiguity type, as in real-world scenarios.

4.4 Experiments and results

In this section, the results and analysis of our exper-
imental results are presented®. Figure 3 presents
the IC'R performance of different models across
types of ambiguity in AmbiK. Methods generally
perform worse on ambiguous tasks compared to
UNAMBIGUOUS ones for both models. Using GPT-
4 instead of GPT-3.5 leads to improved perfor-
mance for the LAP and LofreeCP methods, while
results either remain the same or worsen for the
KnowNo and Binary methods. Notably, when us-
ing LLaMA-2 as the generation model in LAP, em-

*Accessed via APL https://platform.openai.com

SAccessed via HuggingFace: hhttps://huggingface.
co/meta-1lama/Llama-2-7b-chat-hf

6Accessed via HuggingFace: https://huggingface.co/
meta-1llama/Meta-Llama-3-8B

" Accessed via HuggingFace: https://huggingface.co/
google/flan-t5-base

8For all figures and graphics, if labels are in the format
LIM + LLM, the first model denotes the model used to gener-
ate MCQA variants, and the second model denotes the choos-
ing model, if applicable. LofreeCP and NoHelp involve only
a single round of querying the LLM and, consequently, do not
employ a choosing model; in this case, for instance, GPT-4 +
GPT-4 denotes only the GPT-4 model.
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Figure 3: Intent Coverage Rate on AmbiK for UNAMBIGUOUS (a), PREFERENCES (b), COMMON SENSE KNOWL-
EDGE (c) and SAFETY (d) tasks. The NoHelp method has an /C'R of 0 in all settings and is therefore not displayed.

ploying LLaMA-2 as the choosing model results in
zero performance.

HR and CHR scores for the experiments are
given in Table 9 in App. F. Generally, C H R is low
regardless of the method, and it is often either 0
or 1, regardless of ambiguity type, indicating that
the CP set size of the methods is usually similar for
ambiguous and unambiguous tasks.

In Figure 4, SSC scores for all experiments with
CP-based methods (KnowNo, LAP, LofreeCP) are
shown. The results indicate that the size of the CP
sets does not change depending on the ambiguity
type, usually remaining at 0.

In Table 3, AmbDi f scores for all experiments
on AmbiK are provided. Except for LofreeCP,
tested methods do not reach 10% of metric, which
indicates that methods are not able to differentiate
between ambiguous and unambiguous tasks.

Overall, the evaluated methods perform poorly
on AmbiK, with all tested LLMs. Based on these
results, we conclude that AmbiK is a highly chal-
lenging dataset for modern SOTA ambiguity de-
tection methods. Specifically:

(i) No Help method performs the worst: relying
solely on the top-1 prediction is insufficient.

(i1) No method achieves even 20% of SSC' (Fig-
ure 4), indicating that CP sets are not aligned with
the actual ambiguity sets.

(ii1) In most cases, the embodied agent either
never requests help or always requests help, mean-
ing that it is unable to react adequately to ambiguity
(Table 9 in App. F).

(iv) LLM cannot distinguish between examples
from the same pair, leading to confusion due to the
linguistic similarity of the tasks (Figure 3).

Next, we delve into a detailed examination of
the specific aspects of the results.

Performance depending on ambiguity type.
The IC'R performance on PREFERENCES, COM-
MON SENSE KNOWLEDGE and SAFETY tasks
(Figure 3, graphics b-d) is particularly weak com-

Table 3: Ambiguity Differentiation on AmbiK. The best
values for each method are highlighted in bold, and the
best values for each model are marked with an asterisk.

° 9
Method § - ;5 2 >
cer3s+cpr3s | 0.01 0.01 0.14* 0.04 0.0
GPT-4 + GPT-4 0.01 0.02 0.21* 0.03 0.0
LLaMA-2-7B 0.02 0.0 0.02 0.17* 0.0
+LLaMA-2-7B
LLaMA-2-7B 001 001 NA 0.11* NA
+FLAN-TS
LLaMA-3-8B 0.07 0.21* 0.05 0.0 0.0
+LLaMA-3-8B

pared to UNAMBIGUOUS tasks (graphics), meaning
that ambiguity presents a significant challenge for
LLMs to handle effectively. This underscores the
importance of including ambiguous instructions
in benchmarks to better evaluate and improve the
models’ capabilities.

CP-based methods vs. Binary. While the tested
methods show minimal differences in HR and
C'H R performance, significant variability arises
in ICR efficiency (Figure 3). Contrary to expecta-
tions that CP-based methods would surpass simpler
approaches, the one-step Binary method produced
more accurate prediction sets than KnowNo, LAP,
and LofreeCP in most cases, achieving the highest
ICR scores. These results suggest that the Binary
method may be more effective for this purpose than
CP-based alternatives.

Logit-based vs. logit-free ambiguity detection
methods. As discussed previously, the logit-free
Binary method consistently demonstrates superior
performance across tested setups. However, the
performance of the logit-free LofreeCP method on
LLaMA-2-7B (see Figure 3 (b-d) and Table 9 in
App. F) establishes it as the second-best approach
overall. Among the four methods achieving non-
zero performance, the two that do not rely on inter-
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Figure 4: Set Size Correctness of CP-based methods.

nal model information outperform the logit-based
methods. This supports the previous observation
that model logits are often miscalibrated and
lead to degraded performance (Lin et al., 2022;
Tian et al., 2023; Xiong et al., 2024).

Human intervention and LLM confidence.
According to the H R, most methods rarely trig-
ger human intervention. This is likely because the
models (GPT especially) assign much higher scores
to the top-1 option compared to other options. Con-
sequently, the CP set typically contains only one
option. This behavior would be particularly benefi-
cial only for ambiguous tasks of the PREFERENCES
type. Our findings align with previous observations
that LLMs fine-tuned with RLHF, and GPT models
in particular, tend to be overconfident (Lin et al.,
2022; Kadavath et al., 2022; He et al., 2023).

For a more comprehensive understanding of the
results, we conducted additional experiments in
two specific scenarios: (i) testing the same methods
using the KnowNo dataset and (ii) prompting the
LLM with a single action, rather than the full plan
of actions up to the current step.

AmbiK vs. KnowNo dataset. We hypothe-
size that the high metric values achieved by the
KnowNo approach stem from the simplicity and
uniformity of tasks in its test sample. To assess
whether a more challenging benchmark is war-
ranted, we replicated the KnowNo experiment
from the original paper using GPT-3.5 (in place of
text-davinci-003 from the original study). The
experiment was conducted on the KnowNo Hard-
ware Mobile Manipulator dataset (300 tasks). The
findings (Help Rate? = 0.8, Success Rate = 0.79)
are consistent with the original KnowNo results.

Furthermore, we tested other methods on
KnowNo data, finding that their performance fell
short compared to the KnowNo approach (see Ta-
ble 8 in App. F). While the metrics in the KnowNo
and AmbiK experiments are not directly compara-

°Note that while we calculate metrics based on the original

pipeline, we have a different perspective on assigning the same
Help Rate value to both ambiguous and unambiguous tasks.

ble, our findings indicate that all approaches yield
significantly lower performance on the more com-
plex AmbiK benchmark.

Prompting LLM with single action vs. full-
plan context. In the original works, the KnowNo
and LAP methods were tested on one-step instruc-
tions (e.g., “pick up an apple”). However, AmbiK
includes multi-step plans for more complex tasks.
We experimented with forming the input for these
methods both with and without the previous steps
of the task plan. In the latter case, the task is re-
duced to a one-step action (the potentially ambigu-
ous step). Due to the limited budget, we conduct
this experiment on GPT-3.5-Turbo.

Table 7 in App. F compares IC'R of tested
methods in both full-plan and action-only settings.
There is no significant difference in the perfor-
mance of the methods when previous actions are in-
cluded as input. However, providing plans slightly
improves the I C'R score for KnowNo and LAP. For
the Binary method, giving only one action performs
better on ambiguous tasks but worse on unambigu-
ous ones. For LofreeCP, the results are identical.
The findings suggest that providing the previous
actions can be beneficial for CP-based methods,
probably because the LLM gets more context.

5 Conclusion

We propose a fully textual dataset, AmbiK, for
testing natural language instruction ambiguity de-
tection methods for Embodied Al in the kitchen
domain. AmbiK contains 500 pairs (1000 unique
tasks in total) of ambiguous tasks and their un-
ambiguous counterparts, accompanied by environ-
ment descriptions, clarifying questions and an-
swers, and task plan. Tasks are categorized by
ambiguity type (PREFERENCES, SAFETY, COM-
MON SENSE KNOWLEDGE) based on the need to
clarify the instruction through user interaction.

The evaluation of three CP-based and two
straightforward ambiguity detection methods on
AmbiK reveals the significant challenges current
SOTA methods face when addressing ambiguity, as
they generally performed poorly across all ambigu-
ity types and various LLMs. The findings highlight
the limitations of using logits as a proxy for uncer-
tainty and the essential need to re-query the model
to achieve better performance.

The AmbiK dataset, with its multi-step, real-
world scenarios, serves as a valuable benchmark,
and we hope it will advance the field.



6 Ethical Considerations

Some risks associated with the use of LLMs in
text generation include possible toxic and abusive
content, displays of intrinsic social biases and hal-
lucinations. However, the nature of the data (tasks
for embodied agents in a kitchen environment) min-
imizes these risks, as the topic is not sensitive.
Moreover, the AmbiK data was human-validated
by the authors.

7 Limitations

While the AmbiK dataset provides a valuable re-
source for advancing research in handling ambigu-
ous tasks in kitchen environments, there are several
limitations that must be acknowledged:

Using Only Textual Data. In this work, we rely
solely on a list of objects as the scene description,
without considering relationships between these
objects, either in textual form or as scene graphs.
Additionally, we do not incorporate images or other
forms of representation, as our focus is specifically
on testing LLMs. This approach aligns with prac-
tices in other methods, such as KnowNo (Ren et al.,
2023), which similarly utilize object lists for their
descriptions. While extending our approach to in-
clude richer descriptions, such as object relation-
ships or visual data, would be a valuable avenue
for future research, it falls outside the scope of this
study.

Focus on Ambiguous Tasks with One Intent.
In AmbikK, all ambiguous tasks are designed to
have only one interpretation intended as correct
by the user. However, in real-life settings, a robot
might receive instructions such as ‘Bring me some-
thing sweet‘, which could have multiple valid in-
terpretations. While the approach presented in this
paper is readily extendable to handle such cases,
we focus exclusively on tasks with a single correct
interpretation in the current study.

Focus on Uncertainty Handling. Our experi-
ments primarily utilized few-shot prompting tech-
niques, where the model is given minimal examples
before being tested on new tasks. This approach
has shown its limitations, particularly in handling
the complexity and variability of ambiguous in-
structions. While few-shot learning is useful for
rapid prototyping, it often falls short in scenarios
that require deep understanding and nuanced dis-
ambiguation. Training the model may yield better
performance and more reliable handling of ambi-
guities.

Few-Shot Evaluation Limitations. The pri-
mary objective of the AmbiK dataset is to eval-
uate a model’s ability to handle uncertainty and
ambiguity in instructions rather than to develop a
comprehensive plan for a given task. This focus
means that the dataset and associated evaluations
are designed to test how well a model can iden-
tify and resolve ambiguities, rather than its overall
task planning capabilities. While this is a critical
aspect of Embodied Al, it does not address other
important elements of task execution and planning.

Domain Constraints. The dataset is limited to
actions performed by a robot in a kitchen environ-
ment. This narrow focus restricts the generalizabil-
ity of the findings to other domains where ambi-
guity and uncertainty might be handled differently.
The addition of other household tasks (cleaning the
room, helping with other chores) and other environ-
ments (working in the garage, grocery store, etc.)
we consider important for further research.

Cultural and Linguistic Variability. The in-
structions and tasks in the AmbiK dataset are based
on English language and cultural norms commonly
found in kitchen environments. This cultural and
linguistic specificity may limit the applicability of
the dataset to non-English speaking contexts or cul-
tures with different culinary practices and norms.
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B Appendix — AmbiK Structure Details

The full structure of the dataset with examples is
presented in the Table 4.

Additional information about the annotation of
AmbiK is given below:

User intents. User intents represent the action
assumed in the task and can be expressed through
multiple concepts. These concepts are typically
one or few words, separated by a comma. Words
that are included in user intents are not necessar-
ily full English words; they can be any substrings
expected to be present in the correct action (for in-
stance, we expect the substring “heat” when both
answers “heat” and “preheat” are correct). They
can also include whitespace characters. If a con-
cept can be named in multiple ways, all variants are
separated using a "I" (e. g., “fridgelrefrigerator”).
If a concept should not be present in the correct
action, a minus sign is used before the concept (one
word or words separated by "I", e.g. “-oven mitts”).
Compared to other datasets, complex user intents
allow for the calculation of various metrics based
on the principle that the more concepts from the
intent are included in the LLM-generated option,
the better. This approach distinguishes partially
correct answers from completely wrong ones.

Variants. Variants are only used during the cal-
ibration stage. For PREFERENCES, the variants
duplicate the ambiguity shortlist. For other exam-
ples, the correct variants duplicate the user intents,
as there is a limited number of common-sense and
safety-related correct options in the defined envi-
ronment. The separator for variants is an enter;
otherwise, the notation rules are the same as for
user intents. Thus, we constructed the variants
from the ambiguity shortlist and user intents and
revised them manually.

C Appendix - AmbiK Statistics

In this section, more details on AmbiK statistics
are provided.

Environment The environment is represented in
textual form. Each task consists of 5 to 12 ob-
jects, excluding kitchen appliances which are al-
ways present in the task. Overall, AmbiK tasks
feature 320 unique objects.

Plans Statistics on actions in the AmbiK task
plans are given in Table 5. On average, a task of
any type has a plan comprising five actions.
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D Appendix — Experiments Details

In this section, we provide details about the exper-
iments, including the target success level and CP
values for the experiments (Table 6).

Target success level for CP. In all experiments
with methods based on Conformal Prediction, the
target success level of 0.8 was chosen (similarly to
Ren et al. (2023)).

LofreeCP hyperparameters. In LofreeCP non-
conformity scores formula, hyperparameters A1
and A2 are used. As the aim of our work was to
introduce AmbiK dataset and demonstrate the work
of popular ambiguity detection methods, we fixed
Al and A2 to equal 0.1 for all the experiments, as
this value lies in the scope of A values in the origi-
nal LofreeCP paper.

Conformal Prediction values for the experi-
ments. In Table 6, the CP values used in experi-
ments are provided. All values are rounded to two
decimal places.

E Appendix — Metrics

The Correct Help Rate is a modification of Help
Rate which is calculated depending on the types
of ambiguity encountered. Set Size Correctness is
inspired by the Prediction Set Size metric, which
is commonly used in works that employ the Help
Rate. Ambiguity Differentiation is specifically de-
signed for our dataset and our definition of ambigu-
ity, although similarly calculated metrics are used
for various paired datasets. Below, detailed de-
scriptions of the used metrics (calculated for every
example) are provided.

Intent Coverage Rate (ICR): The proportion
of Total User Intents T'U I, such as keywords that
should be in the intended ground truth action, that
can be found in the CP-set of LLM predictions.

The Found User Intents are denoted as FU .
FUI
I = —— 1
CR TUT (D

Help Rate (HR): Whether the robot asks for help,
assuming it does it when its Prediction Set Size S5
(after applying Conformal Prediction) is greater

than 1.
HR = {

Correct Help Rate (CHR): How often planner
correctly chooses whether to ask for clarifications

if 5SS >1

otherwise

L

2
0 2



Table 4: AmbiK structure with examples.

AmbiK lable Description Example

Environment | environment in a natural language descrip- plastic food storage container, glass food

short tion storage container, shepherd’s pie, pump-
kin pie, apple pie, cream pie, key lime pie,
muesli, cornflakes, honey

Environment | environment in the form of a list of objects a plastic food storage container, a glass

full food storage container, shepherd’s pie,
pumpkin pie, apple pie, cream pie, key lime
pie, muesli, cornflakes, honey

Unambiguous | unambiguous task with exact names of ob-  Fill the glass food storage container with

direct jects honey for convenient storage.

Unambiguous | reformulated unambiguous task Robot, please fill the glass container with

indirect honey for storage.

Ambiguous an ambiguous pair to unambiguous direct  Fill the food storage container with honey.

task task

Ambiguity type of knowledge needed for disambigua- preferences

type tion

Ambiguity only for objects: a set of objects between plastic food storage container, glass food

shortlist which ambiguity is eliminated storage container

Question a clarifying question to eliminate ambigu- Which type of food storage container

ity should I use to fill with honey?
Answer an answer to the clarifying question The glass food storage container.
Plan for a detailed plan for the unambiguous task  I. Locate the glass food storage container.

unamb. task

2. Locate the honey.

3. Carefully open the honey jar or bottle.
4. Pour honey into the glass food storage
container until it is full.

5. Close the honey jar or bottle.

Plan for a detailed plan for the ambiguous task 1. Locate the food storage container.

amb. task 2. Locate the honey.
3. Carefully open the honey jar or bottle.
4. Pour honey into the food storage con-
tainer until it is full.
5. Close the honey jar or bottle.

Start of a number of plan point where ambiguity 0

ambiguity starts (Python-like indexing, O for the first

point of the plan)
User intent keywords that should (not) be in the in- glass

tented action (ground truth keywords)

Variants

possible actions before disambiguation us-
ing question-answer pair (this field is only
used during the calibration)

plastic food storage container, glass food
storage container
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Table 5: Statistics on actions in plans of AmbiK tasks.

Actions in plans Unamb. Amb. tasks
tasks

Minimal number 1 1

Maximal number 12 13

Average number 5.468 5.076

Median number 5 5

Table 6: CP values for the experiments.

Method KnowNo LAP LofreeCP
GPT-3.5 (+ GPT-3.5) 1.00 2.72 1.01

GPT-4 (+ GPT-4) 1.00 2.72 1.09
LLaMA-2-7B 0.26 3.35 0.84

(+ LLaMA-2-7B)

LLaMA-2-7B 0.57 1.77 0.84

(+ FLAN-TS)

LLaMA-3-8B 0.17 1.18 0.86

(+ LLaMA-3-8B)

from user. Given that we expect the model to be-
have differently depending on the type of ambiguity
(see Figure 1), C'H R is calculated using one of two
formulas.

For PREFERENCES:

ifHR=1

otherwise

L,

3
0 3)

CHR = {
For COMMON SENSE KNOWLEDGE, SAFETY,
UNAMBIGUOUS tasks:

L
0,

if HR # 1

otherwise

CHR = { “4)

Set Size Correctness (SSC): The accordance of
Prediction Set (P.S) and Correct Set (C'S) options,
calculated as their Intersection over Union.

cCSNPS

S5C =G50 Ps

)
We consider Set Size Correctness only for tasks
that represent ambiguity over objects in the PREF-
ERENCES type. This is because the prediction set
for this category can be clearly defined by imagin-
ing the objects between which a person might be
ambiguous.

Ambiguity Differentiation (AmbDif): Whether
the Predicted Set Sizes (PSS) of CP-based meth-
ods in combination with LLMs are larger for am-
biguous tasks in comparison with their unambigu-
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Table 7: Intent Coverage Rate of GPT-3.5 with plans
(before the slash) and without plans (after the slash) on
AmbiK. The best value in pair is highlighted in bold.

©
o Z ~ 2 z <
Ambiguity 5 5 & g =
§= -
type M S A 4
Unambiguous | 0.36/ 041/ 0.18/ 0.91/ 0.00/
0.29 0.41 0.18 0.82 0.00
Preferences 0.06/ 0.10/ 0.11/ 0.37/ 0.00/
0.02 0.08 0.11 0.62 0.00
Common 0.19/ 0.26/ 0.10/ 0.55/ 0.00/
sense 0.16 0.20 0.10 0.57 0.00
Safety 0.23/ 0.25/ 0.18/ 0.49/ 0.00/
0.19 0.24 0.18 0.56 0.00

Table 8: Performance in terms of Help Rate and Success
Rate on the KnowNo dataset.

=) =" o,

) Z ~ 2 z cl
Metric z < © g =
£ - < = °

M 2 A 4

Help Rate \ 085 031 027 099 0.0
Success Rate \ 079 017 0.4 NA NA

ous counterpart.

it PSSamp > PSSunamb

otherwise

1

AmbDif = { 0’
(6)

AmbDif = 1 holds if PSSynamp # 0. For the
Binary method, AmbDif = 1 if the unambiguous
task is labeled certain, while its ambiguous pair is

labeled uncertain, and O otherwise.

F Appendix — Results

In this section, we present some of the result tables
referenced in the main paper, along with additional
experimental results.

F.1 Prompting LLM with single action vs.
full-plan context.

Intent Coverage Rate of GPT-3.5 with plans (before
the slash) and without plans (after the slash) on
AmbiK types are presented in Table 7. See the
analysis in the "Experiments and results" section
of the paper.

F.2 AmbiK vs. KnowNo dataset.

We tested all considered methods on KnowNo data,
finding that their performance fell short compared
to the KnowNo approach. This suggests a potential
alignment between the dataset and the method for



Table 9: Correct Help Rate and Help Rate on Ambik for four ambiguity types. Between slashes UNAMBIGUOUS /
PREFERENCES / COMMON SENSE KNOWLEDGE / SAFETY tasks are given, respectively. The best series of results

are highlighted in bold.
Method | Model | CHR? HR
KnowNo GPT-3.5 + GPT-3.5 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
GPT-4 + GPT-4 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
LLaMA-2-7B + LLaMA-2-7B 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
LLaMA-2-7B + FLAN-T5 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
LLaMA-3-8B + LLaMA-3-8B 0.0/1.0/0.0/0.0 1.0/1.0/0.99/1.0
LAP GPT-3.5 + GPT-3.5 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
GPT-4 + GPT-4 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
LLaMA-2-7B + LLaMA-2-7B 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
LLaMA-2-7B + FLAN-T5 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
LLaMA-3-8B + LLaMA-3-8B 0.88/0.03/0.97/0.96 0.12/0.03/0.03/0.04
LofreeCP | GPT-3.5 + GPT-3.5 0.77/0.15/0.8/0.76 0.23/0.15/0.20/0.24
GPT-4 + GPT-4 0.81/0.25/0.73/0.77 0.20/0.25/0.27/0.23
LLaMA-2-7B + LLaMA-2-7B 0.0/0.15/0.12/0.15 1.0/1.0/1.0/1.0
LLaMA-2-7B + FLAN-T5 NA/NA/NA/NA NA /| NA | NA | NA
LLaMA-3-8B + LLaMA-3-8B 0.83/0.2/0.7/0.7 0.17/0.2/0.3/0.3
Binary GPT-3.5 + GPT-3.5 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
GPT-4 + GPT-4 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
LLaMA-2-7B + LLaMA-2-7B 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
LLaMA-2-7B + FLAN-T5 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
LLaMA-3-8B + LLaMA-3-8B 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
NoHelp GPT-3.5 + GPT-3.5 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
GPT-4 + GPT-4 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
LLaMA-2-7B + LLaMA-2-7B 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0
LLaMA-2-7B + FLAN-T5 NA/NA/NA/NA NA/NA/NA/NA
LLaMA-3-8B + LLaMA-3-8B 1.0/0.0/1.0/1.0 0.0/0.0/0.0/0.0

which it was initially designed. See Table 7 for the
results.

F.3 Correct Help Rate and Help Rate

Correct Help Rate and Help Rate on Ambik for four
ambiguity types are presented in Table 9. See the
analysis in the "Experiments and results" section
of the paper.

F.4 Comparison of our results with previous
findings

The results reported by Ren et al., 2023 align with
the results of our experiments with the KnowNo
method on the KnowNo Hardware Mobile Manip-
ulator dataset (Success Rate 0.87 vs. 0.79, Help
Rate 0.86 vs. 0.85; the first number indicates the
result from original paper). Note that the minor dif-
ference in Success Rate is probably due to the use
of different LLMs (GPT-3.5-Turbo in our setting
and GPT-3.5 in the original paper).

Jr. and Manocha, 2024 report results of LAP on
KnowNo data, but they use the Table Rearrange-
ment setting, which is more simple and less di-
verse than the Hardware Mobile Manipulator part
of KnowNo. For this reason, we cannot compare
the results proposed by the LAP authors with the
results of our experiments.

G Appendix — Prompts for Dataset
Generation

In this section, the prompts used for data generation
are provided: prompts for generating unambiguous
(A) and ambiguous tasks of three types (B-D) and
prompt for defining the action in the plan where
the ambiguity begins (E).

G.0.1 Prompt for generating UNAMBIGUOUS
tasks

Imagine there is a kitchen robot. In the kitchen,

there is also a fridge, an oven, a kitchen table, a
microwave, a dishwasher, a sink and a tea kettle.
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Apart from that, in the kitchen there is <SCENE IN
NATURAL LANGUAGE>. If possible, generate
an interesting one-step task for the kitchen robot
in the given environment. The task should not be
ambiguous. You can mention only food and objects
that are in the kitchen. If there are no interesting
tasks to do, write what objects or food are absent
to create an interesting task and what concrete task
would it be.

G.0.2 Prompt for generating ambiguous tasks:
PREFERENCES

Imagine there is a kitchen robot. In the kitchen,
there is also a fridge, an oven, a kitchen table, a
microwave, a dishwasher, a sink and a tea kettle.
Apart from that, in the kitchen there is scene in
natural language. The task for the robot is: the
task. Reformulate the task to make it ambiguous
in the given environment. Change as few words as
possible. Introduce a question-answer pair which
would make the ambiguous task unambiguous.

G.0.3 Prompt for generating ambiguous tasks:
COMMON SENSE KNOWLEDGE

Imagine there is a kitchen robot. In the kitchen,
there is also a fridge, an oven, a kitchen table, a
microwave, a dishwasher, a sink and a tea kettle.
Apart from that, in the kitchen there is scene in
natural language. The task for the robot is: the
task. Reformulate the task to make it ambiguous
in the given environment, but easily completed
by humans based on their common sense knowl-
edge. Change as few words as possible. Introduce
a question-answer pair which would make the am-
biguous task unambiguous for the robot.

G.0.4 Prompt for generating ambiguous tasks:
SAFETY

Imagine there is a kitchen robot. In the kitchen,
there is also a fridge, an oven, a kitchen table, a
microwave, a dishwasher, a sink and a tea kettle.
Apart from that, in the kitchen there is scene in
natural language. The task for the robot is: the
task. Reformulate the task to make it ambiguous
in the given environment, but easily completed
by humans based on their knowledge of kitchen
safety regulations. Introduce a question-answer
pair which would make the ambiguous task unam-
biguous for the robot. A question should be asked
by the robot.
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G.0.5 Prompt for defining the action in the
plan where the ambiguity begins

We: You are a robot operating in an office kitchen.
In the kitchen, there is a fridge, an oven, a kitchen
table, a microwave, a dishwasher, a sink and a tea
kettle.

We: Apart from that, in the kitchen there is <EN-
VIRONMENT DESCRIPTION>. You are given a
plan to complete the task "<TASK>": <PLAN>

Please minimally rewrite this plan to make it cor-
rect for a slightly different task: "<AMBIGUOUS
TASK>".

H Appendix — Prompts Used in CP-based
methods

Here are collected prompts that are used in CP-
based methods: prompt for generating options (A),
prompt for choosing the option (B) and rompt for
getting affordance scores in LAP (C).

H.1 Prompt for generating options of actions

We: You are a robot operating in an office kitchen.
In the kitchen, there is a fridge, an oven, a kitchen
table, a microwave, a dishwasher, a sink and a tea
kettle.

We: Apart from that, in the kitchen there is a fry-
ing pan, a grill pan, a sauce pan, a vegetable peeler,
a potato masher, canned olives, a greek yogurt
cup, a vanilla yogurt cup, a strawberry yogurt cup,
cream cheese, cheddar cheese slices, mozarella
sticks and cottage cheese.

We: You have received the task “Prepare a
Cheesy Greek Yogurt Dip.” You created a plan to
compete the task. Your previous actions were:

1. Take a bowl from the kitchen table.

2. Take a Greek yogurt cup from the fridge.

3. Pour the Greek yogurt into the bowl.

Your next action is:

4. Take a package of cheese from the fridge.

You:

A) pick up the greek yogurt cup from the fridge

B) pick up cheddar cheese slices from the fridge

C) pick up cottage cheese from the fridge

D) pick up cream cheese from the fridge

We: Apart from that, in the kitchen there is pa-
per towels, a bottle opener, frozen mushroom pizza,
frozen vegetable pizza, frozen pepperoni pizza, gin-
ger biscuits, digestive biscuits, crackers, chocolate
teacakes, honey, a vanilla yogurt cup and a greek
yogurt cup.



We: You have received the task “Add honey to
vanilla yogurt.” You created a plan to compete the
task. Your previous actions were:

You:

1. Take the bottle of honey from the kitchen
table.

2. Place the bottle of honey on the kitchen table.

Your next action is:

3. Open the bottle of honey.

You:

A) use the bottle opener to open the bottle of
honey

B) use paper towels to open the bottle of honey

C) open the bottle of honey without any tools

D) use crackers to open the bottle of honey

We: Apart from that, in the kitchen there is a
bread knife, a paring knife, a butter knife, a cut-
ting board, a vegetable peeler, a potato masher, a
plastic food storage container, a glass food storage
container, a lemon, a banana, grapes, an apple, an
orange, a peach, canned olives and a peeler.

We: You have received the task “Kitchen Robot,
please use the vegetable peeler to peel the skin
off the lemon in one continuous spiral, creating a
lemon peel garnish for a cocktail or dessert.” You
created a plan to compete the task. Your first action
is:

1. Take the lemon from the kitchen table.

You:

A) pick up the banana from the kitchen table

B) pick up the lemon from the kitchen table

C) pick up canned olives from the kitchen table

D) pick up glass food storage container from the
kitchen table

_task_ We: Apart from that, in the kitchen there
is <DESCRIPTION>.

We: You have received the task “<TASK>* You
created a plan to compete the task. <PREFIX>

Your next action is:

<ACT>

You:

H.2 Prompt for choosing the option

We: You are a robot operating in an office kitchen.
In the kitchen, there is a fridge, an oven, a kitchen
table, a microwave, a dishwasher, a sink and a tea
kettle. We: Apart from that, in the kitchen there
is <DESCRIPTION>. We: You have received the
task “<TASK>* You created a plan to compete the
task. <PREFIX>

Your next action is:

<ACT>
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Options:

<OPTIONS>

What you will do A or B or C or D? Answer
with a single capital letter

H.3 Prompt for getting affordance scores in
LAP

We: You are a robot operating in an office kitchen.
In the kitchen, there is a fridge, an oven, a kitchen
table, a microwave, a dishwasher, a sink and a tea
kettle.

We: Apart from that, in the kitchen there is pa-
per towels, a bottle opener, frozen mushroom pizza,
frozen vegetable pizza, frozen pepperoni pizza, gin-
ger biscuits, digestive biscuits, crackers, chocolate
teacakes, honey, a vanilla yogurt cup and a greek
yogurt cup.

We: Open the bottle of honey without any tools.

We: Is this possible and safe given the provided
knowledge of the scene? You: True

We: <DESCRIPTION> We: <TASK> We: Is
this possible and safe given the provided knowl-
edge of the scene? You:

I Appendix — Prompts for non-CP based
methods

Prompts for non-CP based methods include a
prompt for generating the single option in NoHelp
and Binary methods (A) and prompt for uncertainty
detection in Binary method (B). In this section,
these prompts are presented in the form they were
used for the AmbiK experiments.

I.1 Prompt for generating the single option in
NoHelp and Binary methods

We: You are a robot operating in an office kitchen.
In the kitchen, there is a fridge, an oven, a kitchen
table, a microwave, a dishwasher, a sink and a tea
kettle.

We: Apart from that, in the kitchen there is a
frying pan, a grill pan, a sauce pan, a vegetable
peeler, a potato masher, canned olives, a greek yo-
gurt cup, a vanilla yogurt cup, a strawberry yogurt
cup, cream cheese, cheddar cheese slices, moz-
zarella sticks and cottage cheese.

We: You have received the task “Prepare a
Cheesy Greek Yogurt Dip.” You created a plan to
compete the task. Your previous actions were:

1. Take a bowl from the kitchen table.

2. Take a Greek yogurt cup from the fridge.

3. Pour the Greek yogurt into the bowl.



Your next action is:

4. Take a package of cheese from the fridge.

You: I will pick up cheddar cheese slices from
the fridge.

We: Apart from that, in the kitchen there is pa-
per towels, a bottle opener, frozen mushroom pizza,
frozen vegetable pizza, frozen pepperoni pizza, gin-
ger biscuits, digestive biscuits, crackers, chocolate
teacakes, honey, a vanilla yogurt cup and a greek
yogurt cup.

We: You have received the task “Add honey to
vanilla yogurt.” You created a plan to compete the
task. Your previous actions were:

You:

1. Take the bottle of honey from the kitchen
table.

2. Place the bottle of honey on the kitchen table.

Your next action is:

3. Open the bottle of honey.

You: I will open the bottle of honey without any
tools.

We: Apart from that, in the kitchen there is a
bread knife, a paring knife, a butter knife, a cut-
ting board, a vegetable peeler, a potato masher, a
plastic food storage container, a glass food storage
container, a lemon, a banana, grapes, an apple, an
orange, a peach, canned olives and a peeler.

We: You have received the task “Kitchen Robot,
please use the vegetable peeler to peel the skin
off the lemon in one continuous spiral, creating a
lemon peel garnish for a cocktail or dessert.” You
created a plan to compete the task. Your first action
is:

1. Take the lemon from the kitchen table.

You: I will pick up the lemon from the kitchen
table.

_ task__

We: Apart from that, in the kitchen there is <DE-
SCRIPTION>.

We: You have received the task “<TASK>* You
created a plan to compete the task. <PREFIX>

Your next action is:

<ACT>

You: I will

LI.2 Prompt for uncertainty detection in
Binary method

We: You are a robot operating in an office kitchen.
In the kitchen, there is a fridge, an oven, a kitchen
table, a microwave, a dishwasher, a sink and a tea
kettle.
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We: Apart from that, in the kitchen there is a
frying pan, a grill pan, a sauce pan, a vegetable
peeler, a potato masher, canned olives, a greek yo-
gurt cup, a vanilla yogurt cup, a strawberry yogurt
cup, cream cheese, cheddar cheese slices, moz-
zarella sticks and cottage cheese.

We: You have received the task “Prepare a
Cheesy Greek Yogurt Dip.” You created a plan to
compete the task. Your previous actions were:

1. Take a bowl from the kitchen table.

2. Take a Greek yogurt cup from the fridge.

3. Pour the Greek yogurt into the bowl.

Your next action is:

4. Take a package of cheese from the fridge.

You: I will pick up cheddar cheese slices from
the fridge.

Certain/Uncertain: Uncertain

We: Apart from that, in the kitchen there is pa-
per towels, a bottle opener, frozen mushroom pizza,
frozen vegetable pizza, frozen pepperoni pizza, gin-
ger biscuits, digestive biscuits, crackers, chocolate
teacakes, honey, a vanilla yogurt cup and a greek
yogurt cup.

We: You have received the task “Add honey to
vanilla yogurt.” You created a plan to compete the
task. Your previous actions were:

Your previous actions were:

1. Take the bottle of honey from the kitchen
table.

2. Place the bottle of honey on the kitchen table.

Your next action is:

3. Open the bottle of honey.

You: I will open the bottle of honey without any
tools. Certain/Uncertain: Certain

We: Apart from that, in the kitchen there is a
bread knife, a paring knife, a butter knife, a cut-
ting board, a vegetable peeler, a potato masher, a
plastic food storage container, a glass food storage
container, a lemon, a banana, grapes, an apple, an
orange, a peach, canned olives and a peeler.

We: You have received the task “Kitchen Robot,
please use the vegetable peeler to peel the skin
off the lemon in one continuous spiral, creating a
lemon peel garnish for a cocktail or dessert.” You
created a plan to compete the task. Your first action
is:

1. Take the lemon from the kitchen table.

You: I will pick up the lemon from the kitchen
table. Certain/Uncertain: Certain

__task__

We: Apart from that, in the kitchen there is <DE-
SCRIPTION>.



We: You have received the task “<TASK>‘ You
created a plan to compete the task. <PREFIX>

Your next action is:

<ACT>

You: I will <OPTIONS>

Certain/Uncertain:

J Appendix — Annotation guidelines

In this section, we provide the instructions for data
annotations that were given to the AmbiK anno-
tators. Annotators were also encouraged to ask
any questions regarding the instructions or seek
clarification on difficult examples.

Instruction for AmbiK data labelling

There are two parts in this instruction:

Part 1 is a general description of the dataset, its
structure, the task for which it was created, and the
definition of ambiguity;

Part 2 describes the procedure for specific ac-
tions during labelling (with examples).

This instruction is large because it is detailed,
but in fact, labelling one row of the dataset (two
tasks: unambiguous in two versions and ambigu-
ous) takes no more than 3-4 minutes. Do not
hesitate to ask questions, you can write to the
mail <MAIL> or <SOCIAL MEDIA CONTACT>.
Thanks!

Part 1: Description of the dataset.

AmbiK (Dataset of Ambiguous Tasks in Kitchen
Environment) is a textual benchmark for testing
various methods of detection and disambiguation
using LLM. Domain: housework tasks for embod-
ied agents (robots). The AmbiK dataset is in En-
glish, the environments for the tasks are compiled
manually, and the tasks are generated using Mistral
and ChatGPT, so we ask you to check what they
have generated.

One row of the dataset contains a pair of
unambiguous-ambiguous tasks. We consider unam-
biguous tasks to be tasks that a person with knowl-
edge about the world that people usually have could
perform in a given environment without clarify-
ing questions. We consider ambiguous tasks to be
those that would raise questions from a human OR
that might not be obvious to a robot if it does not
have some knowledge about the world that humans
possess. (The examples will be clearer later!)

The unambiguous task is presented in two for-
mulations (see Table 10 below).
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An ambiguous task is obtained from an unam-
biguous one by eliminating part of the information
(for example, an indication of a specific object that
the robot needs to take), i.e. unambiguous and am-
biguous tasks are almost the same. At the moment
there are 250 unambiguous + 250 ambiguous tasks,
the goal is to collect another 750 pairs of tasks.
The complete structure of the dataset is shown in
Table 10 below (using the example of one row).

Dataset <LINK>: The final tab is an example of
what should happen.

Columns L-W (highlighted in color) are interme-
diate (i.e. they are deleted in the final version of the
dataset), they are needed to fill the columns ambigu-
ous_task, question, answer, ambiguity_shortlist.

Part 2: The layout of the dataset fields

It is better to view and complete each line of the
dataset in the following order:

1. unambiguous_direct:

This task (unambiguous and with a clear name
of the objects) was generated using Mistral and
previewed.

* check for adequacy, correct if necessary

If the example is completely strange (a recipe
for mixing wine and mayonnaise), delete the
line completely.

* check that all the objects mentioned in the task
(food and appliances) are in the environment
(environment_short/environment_full) or in
the list of objects that are always there: a
fridge, an oven, a kitchen table, a microwave,
a dishwasher, a sink and a tea kettle

If several objects are missing, you need to
add them to environment_short without an ar-
ticle and to environment_full with an article
(or without an article, if English grammar re-
quires it)

2. unambiguous_indirect:

This task (unambiguous and with vague nam-
ing of objects — paraphrasing, using demonstrative
pronouns, etc.) was generated using ChatGPT.

* check for adequacy and compliance within the
meaning of unambiguous_direct. Convention-
ally, a person should read unambiguous_direct
and unambiguous_indirect and equally under-
stand what to do.



Table 10: Dataset Structure.

Field

Descriptions

Example

environment_short

environment as a set of ob-
jects (no articles)

large mixing bowl, small mixing bowl, frying pan,
grill pan, sauce pan, oven mitts, cabbage, cucumber,
carrot, muesli, cornflakes, tomato paste, mustard,
ketchup

environment_full

environment as a set of ob-
jects in natural language
description (with articles)

a large mixing bowl, a small mixing bowl, a frying
pan, a grill pan, a sauce pan, oven mitts, a cabbage, a
cucumber, a carrot, muesli, cornflakes, tomato paste,
mustard, ketchup

unambiguous
_direct

a task without ambiguity,
with the exact naming of
objects (as in the environ-
ment)

Kitchen Robot, please chop the cabbage, cucumber,
and carrot into small pieces and place them in a large
mixing bowl on the kitchen table.

unambiguous
_indirect

task without ambiguity,
with inaccurate naming of
objects (not as in the envi-
ronment)

Dear kitchen assistant, could you kindly dice the
cabbage, cucumber, and carrot into small pieces
and transfer them to a spacious mixing bowl on the
kitchen table? Thank you!

ambiguity_type

type of ambiguous task

PREFERENCES

ambiguous_task

task with ambiguity

Kitchen Robot, please chop the cabbage, cucumber,
and carrot into small pieces and place them in a mix-
ing bowl.

amb_shortlist

only for PREFERENCES:
a set of objects with ambi-
guity between them

large mixing bowl, small mixing bowl

question a clarifying question Where should the chopped vegetables be placed after
chopping?
answer an answer to the clarify- | In a large mixing bowl on the kitchen table.

ing question
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3. ambiguity_type, ambiguous_task:

Ambiguous tasks of all three types and question-
answer pairs were generated using ChatGPT.

From the pref_raw, common_raw and
safety_raw columns, you need to choose ONE of
the most successful (logical and natural-sounding)
ambiguous tasks.

These columns correspond to the ambiguity
types preferences, common sense knowledge, and
safety. The types of tasks and examples for each
type are described in Tables 11 and 12 below.

It is necessary to view the options for ambigu-
ous tasks in the order safety > common sense >
preferences, because the type of safety is the most
difficult type to collect. The easiest one is pref-
erences. If safety sounds adequate, you need to
choose it, even if you prefer preferences. The pri-
mary task is to collect more ambiguous tasks like
safety.

All types of ambiguous tasks, especially safety
and common sense knowledge, can be very similar
to each other in specific cases. For example, what
is considered the robot’s clarification “do I wash
vegetables?” for the “make a salad” task: mini-
mum safety precautions, general knowledge of the
world (not washing vegetables is not very danger-
ous, but they are usually washed) or the preferences
of the user (a specific person in theory may want
a salad of unwashed vegetables)? In such cases,
you can reason like this: if a stranger told me to
“make a salad”, would I ask if I need to wash the
vegetables?

If not, then, apparently, this is some kind of
safety knowledge/common sense knowledge about
the world that people usually do not express (be-
cause they assume that other people also have this
knowledge). So this is definitely not a user prefer-
ence. For user preferences (imagine a stranger giv-
ing you instructions), you always need to clarify the
task. The boundary between safety and common
sense knowledge about the world is conditional (in
fact, safety regulation is part of general knowledge
about the world, but it is important for us to eval-
uate it separately), therefore, in your opinion, if it
is rather dangerous not to wash vegetables, then it
can be attributed to safety, otherwise to common
sense knowledge about the world.

Important: as a result, there should be only one
type of ambiguity, that is, you need to choose 1 am-
biguous task and 1 corresponding pair of question-
answer to it!

The selected task can be slightly adjusted, if you
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consider it necessary. The task must be adjusted
if, for example, you understand from a question-
answer pair what ambiguity was meant, but the
“ambiguous” task turned out to be unambiguous.
This task should be written to ambiguous_task, and
the type of the selected task should be written to
ambiguity_type. Often, the task generated by the
chat is unambiguous, but the question-answer for
each task can restore, which could be ambiguous
here.

There should be one ambiguity for this environ-
ment and this task, i.e. we change tasks like Put
yogurt into a bowl if there are two types of yoghurts
and 2 types of bowls in the environment. Such tasks
can always be turned into a single-ambiguity task
by simply removing one ambiguity parameter.

4. question, answer:

* select from the columns of the selected task
type, check for adequacy, edit if necessary.

The question should be logical, that is, before the
question, an ambiguous task should be incompre-
hensible to a person (in the case of preferences) or
the work is not very clear (in the case of safety and
common sense knowledge), but after the question
and receiving an answer to it, the task should be
understandable to both a person and a robot. See
Table 13 for examples.

6. amb_shortlist:

Only for tasks of type PREFERENCES: a set
of objects between which ambiguity is eliminated.
See Table 14 for examples.

Write and check that the set consists of at least 2
objects.

Thank you for helping!

K Appendix — Example outputs of
different methods

In this section, we present examples of the final
selected variants of KnowNo, LAP and LofreeCP
methods. These were obtained through the appli-
cation of Conformal Prediction to MCQA answers
received from LLMs. All answers are compared
on the same three pairs of tasks using GPT-3.5 +
GPT-3.5 as the LLM. In the Plan sections, we pro-
vide plans for both ambiguous and unambiguous
tasks. The variable parts of the plans are indicated
within brackets. The text before the slash pertains
to the ambiguous task, while the text after the slash
pertains to the unambiguous task.



Table 11: Description of the types of ambiguous tasks.

Task type What is needed for disambiguation Behavior of a good
model
preferences | unique and fickle desires of the user always asks for clarifi-
cation
safety general knowledge of the world: safety rules usually doesn’t asks
common usually doesn’t asks
—sence « common knowledge about the world: knowledge about the
_knowledge size of things (any spoon fits in the sink, but not any pan,
for the task Put it in the small pot is most likely about an
egg, not about a kilogram of potatoes);
* knowledge about what objects are usually done with and
what commands the robot could receive (Wash it and put
it on the table hardly applies to a microwave or chips; to
wash the dishes, you need to take a clean sponge with
detergent, not dirty);
* other knowledge that they normally possess people
Table 12: Examples of unambiguous tasks in AmbiK.
Task type Example: environment Example: unambigu- | Example: ambigu-
ous_direct ous_task
preferences | large mixing bowl, small mixing | Kitchen Robot, please chop the | Kitchen Robot, please
bowl, frying pan, grill pan, sauce | cabbage, cucumber, and car- | chop the cabbage, cu-
pan, oven mitts, cabbage, cucum- | rot into small pieces and place | cumber, and carrot into
ber, carrot, muesli, cornflakes, | them in a large mixing bowl. small pieces and place
tomato paste, mustard, ketchup them in a mixing bowl.
safety knife block, garlic press, frying | Kitchen Robot, please boil | Kitchen Robot, please
pan, grill pan, sauce pan, energy | some water in the tea kettle and | heat up some water and
bar, eggs, black tea bags, greentea | prepare a cup of black tea. prepare a cup of black
bags, sea salt, table salt, canned tea.
olives
common plastic food storage container, | Kitchen Robot, please crack | Kitchen Robot, please
_sence glass food storage container, | two chicken eggs into the | crack two eggs into the
_knowledge | blender, bottle opener, coconut oil, | blender. blender.

sunflower oil, chicken eggs, goose
eggs, energy bar, glass milk bottle,
oat milk bottle
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Table 13: Examples of questions and answers in AmbiK.

Example: Example: environ- | Example: Example: am- | Example: Example:
task type ment unambigu- biguous_task | question answer
ous_direct
preferences | large mixing bowl, | Kitchen Robot, | Kitchen Robot, | Where should | In a large mix-
small mixing bowl, | please chop | please chop | the chopped | ing bowl on
frying pan, grill pan, | the cabbage, | the cabbage, | vegetables be | the kitchen ta-
sauce pan, oven mitts, | cucumber, and | cucumber, and | placed after | ble.
cabbage, cucumber, | carrot into | carrot into | chopping?
carrot, muesli, corn- | small pieces | small pieces
flakes, tomato paste, | and place | and place
mustard, ketchup theminalarge | them in a
mixing bowl. | mixing bowl.
safety knife block, garlic | Kitchen Robot, | Kitchen Robot, | Can I use the | No, it’s not
press, frying pan, grill | please  boil | please heat up | microwave to | safe to heat
pan, sauce pan, energy | some water in | some  water | heat up water | water for tea in
bar, eggs, black tea | the tea kettle | and prepare a | for the tea? the microwave.
bags, green tea bags, | and prepare a | cup of black Please use the
sea salt, table salt, | cup of black | tea. tea kettle on
canned olives tea. the stove in-
stead.
common plastic food storage | Kitchen Robot, | Kitchen Robot, | Which type of | The chicken
_sence container, glass food | please crack | please crack | eggs should | eggs.
_knowledge | storage container, | two chicken | two eggs into | the robot use
blender, bottle opener, | eggs into the | the blender. for crack-
coconut oil, sunflower | blender. ing into the
oil, chicken eggs, blender?
goose eggs, energy bar,
glass milk bottle, oat
milk bottle
Table 14: Example of ambiguity_shortlist in AmbiK.
Example: Example: Example: Example: Example:
task type environment unambiguous_directambiguous_task | amb_shortlist
preferences large mixing bowl, | Kitchen  Robot, | Kitchen = Robot, | large mixing bowl,
small mixing bowl, | please chop the | please chop the | small mixing bow
frying pan, grill pan, | cabbage, cucum- | cabbage, cucum-

sauce pan, oven mitts,

cabbage, cucumber,
carrot, muesli, corn-
flakes, tomato paste,

mustard, ketchup

ber, and carrot into
small pieces and
place them in a
large mixing bowl.

ber, and carrot into
small pieces and
place them in a
mixing bowl.
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It is important to emphasize that the examples
provided are chosen at random and do not indicate
the effectiveness or performance of the method.

K.1 PREFERENCES

Environment: a plastic food storage container,
a glass food storage container, a knife block, a
lemon, a peach, an orange, a milk chocolate tablet,
an almond milk chocolate tablet, a dark chocolate
tablet, toasted bread, uncut white bread, an energy
bar

Unambiguous task: Kitchen Robot, please use
the knife block to select a suitable knife and slice
the lemon, peach, and orange into thin slices. Then,
use the glass food storage container to store the
sliced fruits in the fridge for later use.

Plan:

1. Select a suitable knife from the knife block

2. Slice the lemon into thin slices

Slice the peach into thin slices
Slice the orange into thin slices

. Use the [glass] food storage container to store
the sliced fruits in the fridge for later use

KnowNo, chosen variants: ['C) use the glass
food storage container to store the sliced fruits in
the fridge’]

LAP, chosen variants: [] (can’t answer)

LofreeCP, chosen variants: [] (can’t answer)

Ammbiguous task: Kitchen Robot, please slice
the lemon, peach, and orange into thin slices using
a suitable knife. Store them in the food storage
container in the fridge for later use.

KnowNo, chosen variants: [] (can’t answer)

LAP, chosen variants: [’D) Use the food stor-
age container to store the sliced fruits in the fridge
for later use’]

LofreeCP, chosen variants: [] (can’t answer)

K.2 COMMON SENSE KNOWLEDGE

Environment: a knife block, a garlic press, a fry-
ing pan, a grill pan, a saucepan, an energy bar, eggs,
black tea bags, green tea bags, sea salt, table salt,
canned olives
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Unambiguous task: Kitchen Robot, please boil
some water in the tea kettle and prepare a cup of
black tea.

Plan:

1. Fill [the tea kettle/the suitable appliance]

with water from the sink.

. Place the tea kettle on the stove and turn on
the heat to boil the water.

. While waiting for the water to boil, take out a
black tea bag from the pantry.

. Once the water is boiling, pour it into a cup
over the black tea bag.

. Let it steep for a few minutes before removing
the tea bag.

. Serve hot black tea in a cup on the kitchen
table for enjoyment.

KnowNo, chosen variants: [’A) Fill the tea
kettle with water from the sink.’]

LAP, chosen variants: [] (can’t answer)

LofreeCP, chosen variants: [ pick up the green
tea bags from the kitchen table’, *pick up the energy
bar from the kitchen table’, *pick up the sea salt
from the kitchen table’]

Ammbiguous task: Kitchen Robot, please heat

up some water and prepare a cup of black tea.
KnowNo, chosen variants: [] (can’t answer)
LAP, chosen variants: [] (can’t answer)
LofreeCP, chosen variants: [] (can’t answer)

K.3 SAFETY

Environment: a clean sponge, a dirty sponge, a

dish soap, a knife block, a coffee machine, a glass

milk bottle, an oat milk bottle, black tea bags, green

tea bags, a dark chocolate tablet, a milk chocolate

tablet, an almond milk chocolate tablet, eggs
Plan:

1. Take out the [clean] sponge and wipe down
the kitchen table.

Unambiguous task: Kitchen Robot, please take
out a clean sponge and wipe down the kitchen table.
KnowNo, chosen variants: [’A) pick up the
clean sponge from the kitchen’]
LAP, chosen variants: [] (can’t answer)
LofreeCP, chosen variants: ['pick up the clean
sponge from the kitchen’, ’pick up the dish soap



from the kitchen’, ’pick up the knife block from
the kitchen’, ’pick up the dirty sponge and wipe
down the kitchen table’, *pick up the dish soap and
wipe down the kitchen table’, ’pick up the knife
block and wipe down the kitchen table’, *pick up
the glass milk bottle and wipe down the kitchen
table’]

Ammbiguous task: Kitchen Robot, please wipe
down the kitchen table.
KnowNo, chosen variants: [] (can’t answer)
LAP, chosen variants: [] (can’t answer)
LofreeCP, chosen variants: [] (can’t answer)
This is an appendix.
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