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Abstract
Alignment via reinforcement learning from hu-
man feedback (RLHF) has become the dominant
paradigm for controlling the quality of outputs
from large language models (LLMs). However,
when viewed as ‘loss + regularization,’ the stan-
dard RLHF objective lacks theoretical justifica-
tion and incentivizes degenerate, deterministic so-
lutions, an issue that variants such as Direct Policy
Optimization (DPO) also inherit. In this paper,
we rethink alignment by framing it as distribution
learning from pairwise preference feedback by
explicitly modeling how information about the tar-
get language model bleeds through the preference
data. This explicit modeling leads us to propose
three principled learning objectives: preference
maximum likelihood estimation, preference distil-
lation, and reverse KL minimization. We theoreti-
cally show that all three approaches enjoy strong
non-asymptotic O(1/n) convergence to the target
language model, naturally avoiding degeneracy
and reward overfitting. Finally, we empirically
demonstrate that our distribution learning frame-
work, especially preference distillation, consis-
tently outperforms or matches the performances
of RLHF and DPO across various tasks and mod-
els.

1. Introduction
Alignment refers to the task of controlling the quality of re-
sponses (e.g., helpfulness and harmlessness) generated from
large language models (LLMs) via human preferences (Bai
et al., 2022; Ouyang et al., 2022) and has become the de
facto final step in LLM training. The first method introduced
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for alignment is Reinforcement Learning from Human Feed-
back (RLHF) (Christiano et al., 2017; Stiennon et al., 2020),
which trains a reward model R from pairwise preferences
and then optimizes a policy π (i.e., language model) that
maximizes the reward via reinforcement learning (RL):

max
π

Ex∼D,a∼π(x)

[
R(x, a)

]
− β Ex∼D

[
KL(π(x)∥π0(x))

]
(1)

where D is the prompt distribution, π(x) is the policy π’s
distribution over responses to a prompt x, KL(p∥q) is the
Kullback-Leibler divergence from p to q, β > 0 is a hyper-
parameter, and π0 is a reference LLM resulting from the
supervised fine-tuning phase.

The RLHF objective is central to various practical algo-
rithms and has fundamentally shaped how researchers
think about alignment. For example, DPO (Direct Policy
Optimization) reformulates RLHF so the objective consists
of simple likelihood terms rather than relying on on-policy
responses (Rafailov et al., 2023). ΨPO extends RLHF
by generalizing R(x, a) to a Ψ-transformation of the
preference probability (Azar et al., 2024). Even theoretical
analyses of alignment algorithms often treat the RLHF
objective or its variants as the ultimate learning-theoretic
goal, aiming to establish convergence guarantees for its solu-
tion (Xiong et al., 2024; Huang et al., 2025; Xie et al., 2025b).
Certainly, the RLHF objective has proven useful, and one
may argue that it is a sensible objective.

However, the justification of the RLHF objective remains
unclear from a learning-theoretic perspective. When viewed
as a standard machine learning objective of the form ‘loss
+ regularizer,’ the loss part is simply the negative reward.
Consequently, the loss desires to drive the language model
towards a degenerate solution, collapsing into a determinis-
tic mapping rather than a proper distribution; only the KL
regularizer is what prevents such degeneracy. In addition,
DPO, a reformulation of RLHF, also introduces an objective
whose optimal solution can be degenerate (Song et al., 2024;
Fisch et al., 2025).

Our contributions. In this paper, we depart from blindly
taking the RLHF objective as the ultimate goal and instead

1



Alignment as Distribution Learning: Your Preference Model is Explicitly a Language Model

Table 1. Summary of our proposed methods and theoretical guarantees. In each section, we draw parallels to existing approaches such as
DPO and REBEL (Gao et al., 2024).

Distribution Learning Related to
Reward
Model

Requires
RL training Objective

Theoretical
Guarantee

Preference MLE (Sec. 3) DPO Not Used No Eq. 4 Forward KL (Thm. 4)
Preference distillation (Sec. 4) REBEL Required No Eq. 11 Forward KL (Thm. 6)
Reverse KL (Sec. 5) RLHF Required Yes Eq. 16 Reverse KL (Thm. 7)

propose a fresh distribution learning perspective based on
statistical principles, which we found to be largely under-
explored in existing works. We assume that there exists a
target ‘oracle’ language model π∗ and explicitly model how
information about π∗ bleeds through preference feedback.
Specifically, we model the probability of response a being
preferred over b as follows:

P(a ≻ b | x) = π∗(a | x)γ

π∗(a | x)γ + π∗(b | x)γ
(2)

for some γ > 0, which is a Bradley-Terry model (Bradley &
Terry, 1952) with preference score proportional to tilted re-
sponse likelihood. This assumption says that the preference
model is explicitly a language model. This is in stark con-
trast to DPO which starts from the RLHF formulation and
leverages the all-policy assumption to realize that there is a
secret relationship between the reward model (or preference
model) and the language model (Rafailov et al., 2023).

This simple modeling assumption naturally leads to various
training objectives whose solutions provably converge to π∗

with respect to metrics such as KL divergence. Specifically,
we propose three algorithms summarized in Table 1 and
described as follows:

• PMLE (Preference Maximum Likelihood Estimate;
Section 3): This objective maximizes the likelihood
of the preference model (2), subject to reverse KL reg-
ularization w.r.t. a reference policy π0. Similarly to
DPO, it is relatively straightforward to optimize. We
provide a theoretical guarantee on the forward KL:
Ex[KL(π∗(x)∥π̂(x))] ≤ O(1/n) where n is the train-
ing set size.

• Preference distillation (Section 4): By directly esti-
mating the expected preference from a learned reward
model, the MLE can be rewritten as distilling the pref-
erence distribution into a language model. Unlike ex-
isting reward distillation (Fisch et al., 2025; Gao et al.,
2024), this formulation is explicitly derived from the
Bradley-Terry model (2) and also enjoys an O(1/n)
convergence guarantee on the forward KL.

• Reverse KL (Section 5): Since our goal is distribution
learning, it is natural to optimize the so-called reverse

KL divergence: Ex[KL(π̂(x)∥π∗(x)]. Although π∗ is
unknown, its unnormalized form can be estimated from
(2) with a shallow network, which amounts to learning
a reward model in RLHF. Plugging in our estimate of
π∗ in the reverse KL along with a KL regularizer ends
up being a generalization of the RLHF objective that
has an additional entropy term, effectively smoothing
the prior π0. Via an O(1/n) reverse KL error bound,
our framework offers a learning-theoretic grounding
for RLHF.

All our theoretical guarantees are non-asymptotic and first-
of-its-kind for learning a distribution from pairwise feed-
back, to the best of our knowledge (cf. Dumoulin et al.,
2023). We complement our theory with experiments show-
ing that our methods consistently outperform baseline win-
rates in TL;DR summarization and generate more preferred
responses in general chat experiments, confirming the prac-
tical utility of our distribution learning viewpoint.

We defer a detailed discussion of related work to Ap-
pendix A; however closely related work is cited and dis-
cussed throughout the main content.

2. Preliminaries
Alignment as distribution learning. Let X ,A be the set
of prompts and responses, respectively, and let D ∈ ∆(X )
be a fixed distribution over prompts. We define a language
model (LM) as a function or policy π : X → ∆(A) de-
termining a collection of conditional (i.e., contextual) dis-
tributions π(· | x), which we also denote more simply as
π(x).1 We view alignment as learning these distributions
from pairwise preference feedback, drawn from a model
explicitly depending on π∗, the ideal (target) LM we wish
to learn. Hence given a class of language models Π, our
ultimate goal is to find π̂ ∈ Π that is as close as possible to
π∗ with respect to a suitable measure of distance between
distributions, such as KL divergence.

An explicit preference model. Let µ be the LM used for
generating responses to be preference-labeled; this could

1This definition can also cover unconditional distributions by
introducing a member in X as a null prompt.
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be a reference LLM or simply an existing dataset. We
are given a preference dataset Dn = {(x, a+, a−)} of n
independent samples where x ∼ D is a prompt, a+ is a pre-
ferred response, and a− is a dispreferred response. We as-
sume that, given x, the pair (a+, a−) is sampled by drawing
a, b ∼ µ(x) independently and then sampling a preference
from P∗(a ≻ b | x) := Pπ∗(a ≻ b | x) where

Pπ(a ≻ b | x) :=
π(a | x)γ

π(a | x)γ + π(b | x)γ
, (3)

followed by setting (a+, a−) = (a, b) if a is preferred over b
and (a+, a−) = (b, a) otherwise. The value of γ determines
the extent to which differences in the response probabilities
under policy π are accentuated or attenuated. In practice, γ
is a hyperparameter typically set as 0 < γ < 1.

Theoretical setup. To present our learning-theoretic guar-
antees, we introduce the following notations. We call
Rπ(x, a) := γ lnπ(a | x) the reward induced by π ∈ Π.2

The centered reward is defined as R̄π(x, a) := Rπ(x, a)−
Ea∼µ(x)[Rπ(x, a) | x]. As with P∗, we write R∗ := Rπ∗

and R̄∗ := R̄π∗ . Finally, we denote ∆R̄π := R̄π − R̄∗.

Our main assumptions are as follows:

Assumption 1 (Realizability). π∗ ∈ Π for a finite policy
class Π.

Assumption 2 (Boundedness). There exists R > 0 such
that |R̄π(x, a)| ≤ γR for all π ∈ Π.

Since the responses (a+, a−) in the data are sampled from
µ(x) rather than π∗(x), the alignment problem is an instance
of offline learning where there is a distribution shift between
the data that we observe versus the target distribution that we
aim to have guarantees on. It is thus necessary to introduce
a coverage assumption between µ and the policy class Π,
which is well-studied in the offline reinforcement learning
literature (Agarwal et al., 2019). In particular, we use the
following generalized coverage coefficient (Xie et al., 2021;
Agarwal et al., 2025).

Definition 3 (Generalized coverage coefficient). For a pol-
icy class Π′, we denote by CΠ′ > 0 the smallest constant
satisfying for every π ∈ Π′,

Ex∼D,a∼π∗(x)

[
∆R̄π(x, a)

2
]
≤

CΠ′ Ex∼D,a∼µ(x)

[
∆R̄π(x, a)

2
]
.

The generalized coverage coefficient improves upon
the naive all-policy ℓ∞-concentrability assumption
supπ∈Π maxx,a

π(a|x)
µ(a|x) ≤ C ′ (Munos, 2003) because

2There is no actual reward in the PMLE scheme; we just call
this reward for convenience.

the former can be bounded even if the latter is infinite,
depending on D and the reward class ∆R̄.3

3. Preference Maximum Likelihood
Estimation Approach

We begin by introducing a maximum likelihood-based ob-
jective that can be directly derived from treating alignment
as distribution learning from pairwise feedback. Suppose
that we are given a dataset of n independent pairwise pref-
erences Dn = {(x, a+, a−)} as described in Section 2. We
wish to estimate π∗ by finding a policy π̂ that maximizes
the likelihood of observed pairwise preferences under the
Bradley-Terry preference assumption (3). Concretely, the
negative log-likelihood for each pair (x, a+, a−) under a
candidate policy π is:

− lnPπ(a
+ ≻ a− | x) = − ln

[
σ

(
γ ln

π(a+ | x)
π(a− | x)

)]
,

where σ(z) = 1/(1 + exp(−z)) is the logistic sigmoid.
Summing over all preference pairs yields

LPMLE(π) =
1

n

∑
(x,a+,a−)∈Dn

− ln

[
σ

(
γ ln

π(a+ | x)
π(a− | x)

)]
.

(4)

By minimizingLPMLE, we encourage π to place higher prob-
ability on response a+ relative to a−. Note that in practice,
we rarely learn a policy π from scratch; instead, we typically
optimize a reasonably performant pretrained and fine-tuned
model, referred to as the reference policy π0. Thus, it is
natural to introduce a KL penalty that keeps π close to π0
for alignment: β · KL(π(x)∥π0(x)). Putting everything
together, our PMLE (preference maximum likelihood esti-
mation) objective for distribution learning is

LPMLE,β(π) =
1

n

∑
(x,a+,a−)∈Dn

− ln

[
σ

(
γ ln

π(a+ | x)
π(a− | x)

)]
+ βKL(π(x)∥π0(x)). (5)

Remark. Recall that DPO (Rafailov et al., 2023) mini-
mizes the objective

LDPO(π) =

1

n

∑
(x,a+,a−)∈Dn

− ln

[
σ

(
γ ln

π(a+ | x)
π(a− | x)

− γ ln π0(a
+ | x)

π0(a− | x)

)]
.

(6)

3Leveraging pessimism (Gabbianelli et al., 2024; Huang et al.,
2025; Zhan et al., 2022) may further improve the coverage coeffi-
cient to a single concentrability coefficient that relies on π∗ rather
than the policy class Π, which is beyond the scope of our work.
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Compared to (5), the DPO objective does not have an ex-
plicit regularizer, which could lead to undesirable behaviors
if the policy class Π is sufficiently expressive. Specifically,
Fisch et al. (2025) have proven that DPO may converge to
a degenerate distribution. Furthermore, Song et al. (2024)
have shown that DPO relies on a strong coverage assump-
tion: if π0 does not fully cover the relevant distribution,
DPO can produce out-of-distribution responses, making
its reward estimates inaccurate. Unlike RLHF, which is
constrained by a KL term to stay within the support of π0,
DPO can assign non-zero probability to responses that π0
would never select, undermining performance guarantees.
In contrast, our PMLE objective (5) incorporates an explicit
KL term that effectively circumvents the aforementioned
pitfalls.

Convergence guarantee. Under the assumptions stated
in Section 2, we show the following bound on the forward
KL. Throughout the paper, constants depending only on R
are hidden.

Theorem 4. The PMLE estimate π̂ =
arg minπ∈Π LPMLE(π) satisfies with probability at
least 1− δ,

Ex∼D
[
KL(π∗(x)∥π̂(x))

]
≲
CΠ

γ2
· ln(|Π|/δ)

n
. (7)

The proof, provided in Appendix B.2, is inspired in part
by Agarwal et al. (2025, proof of Theorem 3.6), but we
leverage Schulman’s trick (Schulman, 2020) followed by
a quadratic approximation to obtain a 1/n rate rather than
1/
√
n that would be obtained when directly following their

proof. Also note that the left-hand side of (7) is equivalent
to the KL divergence between the induced joint distributions
on X ×A: KL(D(x)π∗(a | x)∥D(x)π̂(a | x)).

We assume the regularizer β = 0 here and for all theoret-
ical guarantees in the sequel for simplicity and to demon-
strate that the objective derived from purely considering
preference feedback via (3) already suffices to learn the true
distribution π∗. Nonetheless, we posit that starting from a
well-aligned π0 can result in improved convergence guaran-
tees by mitigating the dependency of constants on R, which
we leave to future work.

In the following section, we shift our focus to a distribu-
tion learning perspective on algorithms that require explicit
reward modeling.

4. Preference Distillation Approach
Since the popularization of RLHF, the use of reward model-
ing has become popular in the research community and re-
sulted in various extensions (Christiano et al., 2017). While
the main role of the reward model in the RLHF objective (1)

is to view alignment as an RL problem, recent studies have
attempted to use the reward model for supervised learning
losses, i.e., objectives that do not require RL to solve (Guo
et al., 2024; Fisch et al., 2025). These efforts can be seen as
distilling information from the reward model as pointed out
by Fisch et al. (2025). The main benefit of these methods is
that they can avoid RL algorithms, which are typically slow
to converge. While reward model training is an extra burden
to perform compared to purely likelihood-based methods
such as DPO or our PMLE, the compute cost for doing so
is typically quite low because it usually suffices to train a
shallow network on top of an existing LLM’s frozen torso.

Reward model. Due to our preference model (3), learning
a reward model R : X ×A → R is equivalent to learning a
language model π and then setting R(x, a) = γ lnπ(a | x)
up to an additive constant. Conversely, given a reward model
R(x, a), we can estimate an LM by

π(a | x) ∝ exp(γ−1R(x, a)), ∀x ∈ X . (8)

Note that this is a model from which sampling is com-
putationally intractable in general. Formally, we assume
that we are given a reward model class R of rewards
R : X ×A → R and learn:

R̂ = arg min
R∈R

1

n

∑
(x,a+,a−)∈Dn

− lnσ(R(x, a+)−R(x, a−)).

(9)

This is equivalent to the PMLE objective under (8) but with
the constraint R ∈ R. To train a reward model, we recom-
mend regularization strategies such as ℓ2 regularization or
early stopping.

Preference distillation. One popular method for distilling
rewards is the REBEL algorithm (Gao et al., 2024). Moti-
vated by the characterization of the RLHF solution under the
all-policy assumption (Rafailov et al., 2023), REBEL aims
to extract information from relative reward values of paired
responses, enforcing the condition ln π(a+|x)/π0(a

+|x)
π(a−|x)/π0(a−|x) ≈

η(R̂(x, a+) − R̂(x, a−)) by optimizing a squared loss of
the form

1

n

∑
(x,a+,a−)∈Dn

(
ln
π(a+ | x)/π0(a+ | x)
π(a− | x)/π0(a− | x)

− η(R̂(x, a+)− R̂(x, a−))
)2

(10)

where η > 0 controls the strength of the reward signals. In
our modeling assumption, the reward model can be seen as
a shifted version of γ lnπ∗(a | x), so we could optimize
(10) without the π0 terms, replacing η by γ−1. However,
the use of squared loss in (10) is not well justified from
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a statistical perspective, and it is unclear if squared loss
should be preferred over any other loss, e.g., absolute loss.

What is then the appropriate error measure? Our frame-
work tells us that learning a reward model amounts to
learning a preference model. In other words, we have
trained a preference simulator: a non-generative language
model estimate π̃(a | x) ∝ exp(γ−1R̂(x, a)) from which
preference can be sampled for any pair of responses as
y ∼ Bernoulli(Pπ̃(a ≻ b | x)). Plugging this into PMLE
would yield a natural distribution learning objective. How-
ever, this process introduces additional randomness which
can hinder optimization. Instead, observe that we can evalu-
ate the expectation of the PMLE objective and replace the
discrete label y with the expected preference

Pπ̃(a
+ ≻ a− | x) = π̃(a+ | x)γ

π̃(a+ | x)γ + π̃(a− | x)γ

= σ(R̂(x, a+)− R̂(x, a−)).

Then, minimizing the log-loss with respect to this synthetic
preference leads to:

LDistill(π)

:=
1

n

∑
(x,a+,a−)∈Dn

−Pπ̃(a
+ ≻ a− | x) lnPπ(a

+ ≻ a− | x)

− Pπ̃(a
− ≻ a+ | x) lnPπ(a

− ≻ a+ | x). (11)

This also corresponds to minimizing the summed KL
divergence between the binary preference distributions,
Bernoulli(Pπ̃(a

+ ≻ a− | x)) and Bernoulli(Pπ(a
+ ≻

a− | x)). As in the PMLE approach (Section 3), in practice
we add a KL regularizer and optimize:

LDistill,β(π) := LDistill(π) + β Ex∼D
[
KL(π(x)∥π0(x))

]
.

(12)

We remark that the data for reward model training (9)
and preference distillation (11) can come from the same
dataset or different datasets: our theoretical analysis is eas-
ily adapted to both scenarios.

Convergence guarantee. The family of (non-generative)
language models induced by the reward model class R is
defined as

Pγ(R) :=
{
π : π(a | x) ∝ exp(γ−1R(x, a)),

∀a, x ∈ X for some R ∈ R
}
.

Assumption 5. The reward-induced LM class Pγ(R) ⊆ Π.

This assumption is related to the generator-verifier gap,
which informally states that verifying whether a given an-
swer is correct or not is easier than generating a correct an-
swer (Li et al., 2024; West et al., 2024). Such a gap implies

thatR is easier to learn than Π from a learning-theoretic per-
spective (|R| ≪ |Π|), and is speculated to hold for LLMs
in practice (Swamy et al., 2025). Assumption 5 can also
be justified by the fact that the reward model is often built
on top of the supervised fined-tuned model’s (frozen) torso.
Denoting by CR := CPγ(R) the generalized coverage coef-
ficient of the induced subclass, under Assumption 5 it holds
that CR ≤ CΠ.

Theorem 6. The preference distillation estimate π̂ =
arg minπ∈Π LDistill(π) satisfies with probability at least
1− δ,

Ex∼D
[
KL(π∗(x)∥π̂(x))

]
≲
CΠ

γ2
· ln(|Π|/δ)

n
. (13)

This results in the same rate as PMLE (7). The proof is
provided in Appendix B.3.

5. Reverse KL Minimization Approach
Our two proposed methods both maximize a preference
likelihood and ultimately enjoy a guarantee on the forward
KL divergence Ex[KL(π∗(x)∥π̂(x))]. However, it is also
plausible to aim to minimize the reverse KL divergence
Ex[KL(π̂(x)∥π∗(x))] to learn the distribution π∗. Reverse
KL has the well-known ‘mode seeking’ behavior as opposed
to ‘mode covering’ behavior of the forward KL. This mode-
seeking behavior tends to find distributions that generate
realistic content in image generation and has been preferred
in image generative models (Goodfellow et al., 2014; Mao
et al., 2019).

In this section, we explore the reverse KL formulation for
alignment under our modeling assumption (3), which turns
out to be a generalization of the original RLHF framework
(1) (Stiennon et al., 2020; Ouyang et al., 2022). Directly
minimizing the reverse KL w.r.t. the target LM π∗ would
yield:

π̂ = arg min
π∈Π

Ex∼D
[
KL(π(x)∥π∗(x))

]
= arg min

π∈Π
Ex∼D

[
Ea∼π(x)

[
− lnπ∗(a | x)

]
+H(π(x))

]
,

(14)

where H(π(x)) is the Shannon entropy of π(x). How-
ever, this requires rewards of the form − lnπ∗, which is
the very object we are trying to estimate. To solve this
issue, we propose to find a plugin estimator from a sur-
rogate class of language models that are easier to train
but harder to sample from. Specifically, we determine
π̃ = arg minπ∈Pγ(R) LPMLE(π) (with a suitable regular-
ization), which is equivalent to obtaining R̂ via (9) followed
by setting π̃(a | x) ∝ exp(γ−1R̂(x, a)) as before. Then
we can plug in our learned π̃ to π∗ in the objective (14) to

5



Alignment as Distribution Learning: Your Preference Model is Explicitly a Language Model

arrive at

π̂ = arg min
π∈Π

Ex∼D

[
Ea∼π(x)

[
− γ−1R̂(x, a)

]
−H(π(x))

]
.

(15)

The normalization constant, which is prohibitive to com-
pute in practice, naturally disappears as we only require
relative rewards for optimization. Lastly, we again add a KL
regularizer w.r.t. π0:

LRKL,β(π) :=
1

n

∑
(x,·,·)∈Dn

−Ea∼π(x)

[
R̂(x, a)

]
− γH(π(x))

+ βKL(π(x)∥π0(x)) (16)

where β and γ take the role of hyperparameters controlling
the relative weights of the policy entropy and KL regularizer,
respectively. In practice, as in standard RLHF pipelines
(Ouyang et al., 2022; Bai et al., 2022), one first fits a reward
model R̂ to approximate the underlying true rewardR∗ from
pairwise preferences, then applies an RL algorithm (e.g.,
PPO (Schulman et al., 2017)) to maximize R̂ with a KL
penalty followed by an additional entropy regularizer.

Relation to RLHF. When γ = 0, the objective above
exactly coincides with (1), implying that our reverse KL
objective is a generalization of the RLHF objective. Con-
versely, under our preference assumption (3), RLHF itself
can be interpreted as minimizing a reverse KL term in the
population limit. In this sense, our derivation can be viewed
as providing theoretical justification for the RLHF objec-
tive (1) which has been widely as the gold standard for
alignment (Stiennon et al., 2020; Ouyang et al., 2022; Bai
et al., 2022; Rafailov et al., 2023), while also providing a
minor correction. Note that such a connection to RLHF may
not be surprising given that the max entropy RL objective
can be seen as reverse KL minimization (Ziebart, 2010).

Prior smoothing. A key distinction from the standard
RLHF objective lies in how our formulation balances re-
ward maximization with prior smoothing. For an explicit
comparison, we illustrate the effect of the additional en-
tropy term for a toy alignment problem. Consider learning
a K-categorical distribution on the simplex ∆K = {p ∈
Rd

≥0 :
∑K

k=1 pk = 1}, which can be viewed as a con-
textless language model with response length one and a
vocabulary size of K. Suppose we are given a fixed vec-
tor p0 ∈ ∆K as the reference model and a learned reward
function r̂ = (r1, · · · , rK). In the standard RLHF approach
(1) with temperature β + γ, the optimal policy is given for
all k ∈ [K] by p̂RLHF

k ∝ p0,k exp(
rk

β+γ ). In contrast, our
reverse KL objective (16) can be rearranged as

LRKL,β(p) = −p · r̂− γH(p) + βKL(p||p0)

= −p · r̂+ (β + γ)KL(p||pα
0 ) + const.

where α := β
β+γ , resulting in the policy p̂k ∝

pα0,k exp(
rk

β+γ ). The additional exponent α ∈ (0, 1) acts to
smooth the prior from p0 to pα

0 , allocating relatively more
mass to actions with low initial probability. This boosts ex-
ploration especially for actions which were unlikely under
the base policy, so that the estimated policy p̂ would not be
too close to a degenerate distribution even if p0 is.

Convergence guarantee. With the objective LRKL, we
are indeed able to obtain a convergence guarantee for the
reverse KL:

Theorem 7. The reverse KL estimate π̂ =
argminπ∈Π LRKL,0(π) with satisfies with probability
at least 1− δ,

Ex∼D
[
KL(π̂(x)∥π∗(x))

]
≲

ln(|Π|/δ)
n

+
CR

γ2
· ln(|R|/δ)

n
.

(17)

See Appendix B.4 for the proof.

Why does reverse KL attain a better bound? Note that
the reverse KL formulation results in an improved upper
bound that depends on the coverage coefficient of Pγ(R)
(17) rather than Π (13); in particular, under Assumption
5, ln |Π| and CR ln |R| may both be much smaller than
CΠ ln |Π|.

Astute readers may wonder: How can reverse KL avoid CΠ

while preference distillation does not, even though they both
leverage the reward model? The reason is not because we
bound the reverse KL instead of forward KL; we show that
the forward and reverse KL error may be compared (up to a
constant exponential inR) in Proposition 14 in the appendix.
The true reason is that the policy learning step of preference
distillation still relies on the responses (x, a+, a−) ∈ Dn

sampled from µ, unlike reverse KL which uses the responses
from µ for the lightweight reward modeling step only.

Intractability of forward KL. An alternative is to di-
rectly optimize the forward KL:

arg minπ∈Π

∑
(x,·,·)∼Dn

KL(π̃(x)∥π(x)).

Here, we are not using a+ and a−, so the dependence on
µ disappears and we will not pay for CΠ, similarly to The-
orem 7. But how do we compute the forward KL? Direct
computation is untenable due to the sheer size of A in lan-
guage models. Instead, one may attempt to sample from
π̃(x) and perform stochastic optimization; however, such a
sampling is not feasible because we only have access to the
unnormalized version exp(γ−1R̂(x, ·)). Another attempt is
to use the fact that

KL(π̃(x)∥π(x)) = Ea∼π(x)

[
π̃(a | x)
π(a | x)

ln
π̃(a | x)
π(a | x)

]
.
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While we do not have to sample from π̃(x), we now have to
evaluate the value of π̃(a | x), which, again, is intractable.

6. Experiments
In this section, we present empirical results demonstrat-
ing that alignment via distribution learning yields strong
performance in practice. Specifically, we validate our pro-
posed methods by systematically comparing them against
their well-established baselines, including DPO, RLHF, and
REBEL, on a range of language tasks.

6.1. TL;DR Summarization

We focus on the TL;DR summarization task (Stiennon et al.,
2020), largely adhering to the training procedure detailed
by Gao et al. (2024); Song et al. (2024).

Setup. We use Pythia-1.4B and Pythia-2.8B (Biderman
et al., 2023). We initially perform a single epoch of super-
vised fine-tuning (SFT), using human reference responses
as target labels. Following this, we obtain the reward model
by fine-tuning the SFT model with a regression head for one
epoch on the preference training dataset. We train DPO and
MLE on preference datasets annotated with prompt-specific
preference labels, whereas the online RL approaches use
the dataset containing only human reference responses. All
models are initialized with the SFT model prior to alignment,
and RLHF and reverse KL minimization are optimized using
PPO.

Evaluation. For each algorithm, we measure both the
reward score assigned by our learned reward model and the
KL divergence from the reference model, KL(π∥π0). To
evaluate the quality of model-generated responses, we use
GPT-4 to compare them against human reference responses,
calculating the win-rate. This win-rate is computed over 600
randomly selected samples, which corresponds to roughly
10% of the test set. We describe additional details and
experiments in Appendix C.

Results. For both Pythia-1.4B and Pythia-2.8B in Table 2,
our distribution-learning objectives – PMLE, preference dis-
tillation, and reverse KL – mostly outperform their respec-
tive baselines in terms of win-rate, which serves as the most
direct measure of language model quality on downstream
tasks. The only exception is PMLE on the 2.8B model,
where it performs slightly worse than DPO. Additionally,
since PMLE implements a KL regularizer with online data,
it achieves much lower KL divergence from π0 compared to
DPO, which solely relies on the offline dataset; this finding
aligns with the results reported by Song et al. (2024). As for
RLHF and REBEL, both methods use the same KL penalty
for each experiment, naturally leading to similar KL(π∥π0)
values. Notably, compared to REBEL, preference distilla-

tion achieves comparable RM scores and KL divergence,
while exhibiting a substantially higher win-rate. Overall, our
experiments demonstrate that the algorithms derived from
our modeling assumption (2) can match or exceed existing
methods on practical tasks.

6.2. General Chat

Prior studies (Noukhovitch et al., 2023; Lin et al., 2024) sug-
gest that aligning LLM with RLHF can incur an alignment
tax, where models forget some of their pretrained capa-
bilities, resulting in performance degradation on standard
benchmarks. We hypothesize that our distribution learning
framework mitigates this issue more effectively than con-
ventional reward maximization. To this end, we examine
the performance of our method across multiple language
tasks when trained on a more general chat dataset while
maintaining the downstream task performance. In particular,
we compare our best-performing approach from the previ-
ous section, preference distillation, against its counterpart
algorithm, REBEL.

Setup. We train LLaMA-3-8B-Instruct (Grattafiori et al.,
2024) as our base model on the UltraFeedBack dataset (Cui
et al., 2023), using Eurus-RM-7B (Yuan et al., 2024) as the
reward model. We provide further experimental details such
as hyperparameter settings in Appendix C.

Evaluation. Building on earlier work, we measure the
alignment tax, i.e., the extent of performance deteriora-
tion using the Open LLM leaderboard (Beeching et al.,
2023) as metrics, a widely adopted criteria for LLM evalua-
tion. In particular, we focus on MMLU (Hendrycks et al.,
2021), GSM8K (Cobbe et al., 2021), ARC challenge (Clark
et al., 2018), Winogrande (Sakaguchi et al., 2021), Truth-
fulQA (Lin et al., 2022), and HellaSwag (Zellers et al., 2019)
as done in Gao et al. (2024); Chen et al. (2025); Xie et al.
(2025a).

Results. Table 3 presents the results on academic bench-
marks. Preference distillation exhibits a similar alignment
tax compared to REBEL while achieving higher reward
scores (last column). This show that preference distilla-
tion can generate more preferred responses with similar
alignment tax. This finding lends further support to our pref-
erence assumption (3) in conjunction with our discussion
indicating that a learned reward model’s score can serve as
an indirect proxy for the underlying preference distribution
(Section 4). We also include evaluations on MT-Bench and
AlpacaEval 2.0 in Appendix C.

7. Conclusion
In this paper, we have explored the significance of making
clear assumptions about the target model π∗ and its rela-
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Table 2. Results on TL;DR dataset with Pythia 1.4B and 2.8B. Win-rate is evaluated by GPT-4 and reward model (RM) score evaluated
by the trained reward model. Our proposed methods mostly outperform their counterparts, while preference distillation proves the most
competitive across both models in terms of win-rate.

Model size Algorithm Win-rate (↑) RM score (↑) KL(π∥π0)(↓)

1.4B

DPO 45.0% 1.03 33.46
PMLE 46.0% 1.12 19.60

REBEL 59.5% 2.60 31.67
Preference distillation 62.5% 2.61 33.31

RLHF 60.0% 2.74 24.41
Reverse KL 61.5% 2.73 23.91

2.8B

DPO 50.6% 1.83 65.01
PMLE 48.6% 1.51 30.40

REBEL 70.1% 1.85 18.34
Preference distillation 75.8% 1.82 19.44

RLHF 74.0% 1.83 15.64
Reverse KL 74.6% 1.82 15.50

Table 3. Alignment Tax. Performance comparison across academic benchmarks.

Model MMLU
(5-shot)

GSM8K
(5-shot)

ARC
(25-shot)

WINOG
(5-shot)

TRUTH
(0-shot)

HELLA
(10-shot) Avg. RM

Score

LLaMA-3-8B-Instruct 65.8 75.3 62.0 75.5 51.7 78.7 68.1 -

REBEL-LLaMA-3 65.6 76.5 61.9 75.6 51.4 78.6 68.2 2610
Distill-LLaMA-3 65.7 76.5 62.2 75.3 51.5 78.7 68.3 2697

tionship to observed preferences, a perspective we found
underexplored in existing literature. By formulating align-
ment as distribution learning based on our explicit modeling
assumption (3), we naturally derived three novel alignment
methods: PMLE, preference distillation, and reverse KL.
We have shown that these approaches correct and generalize
existing methods in a principled manner, and demonstrated
strong convergence guarantees and empirical performance.

Our work opens several important directions for future re-
search. First, it would be interesting to compare mode-
seeking and mode-covering objectives in terms of response
quality across various domains. Second, alternative metrics
such as Jensen-Shannon divergence and Wasserstein dis-
tance warrant exploration under our framework, potentially
yielding more novel algorithms with strong theoretical guar-
antees. Finally, the constants in our upper bounds could be
improved; in particular, the exponential dependence on R
might be removed by incorporating the KL regularizer and
assuming π0 is sufficiently close to π∗.

References
Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Rein-

forcement learning: Theory and algorithms. CS Dept.,
UW Seattle, Seattle, WA, USA, Tech. Rep, 2019.

Agarwal, A., Dann, C., and Marinov, T. V. Design con-
siderations in offline preference-based rl. arXiv preprint
arXiv:2502.06861, 2025.

Amini, A., Vieira, T., and Cotterell, R. Direct preference op-
timization with an offset. CoRR, abs/2402.10571, 2024.

Azar, M. G., Guo, Z. D., Piot, B., Munos, R., Rowland, M.,
Valko, M., and Calandriello, D. A general theoretical
paradigm to understand learning from human preferences.
In International Conference on Machine Learning, 2024.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Beeching, E., Fourrier, C., Habib, N., Han, S., Lam-
bert, N., Rajani, N., Sanseviero, O., Tunstall,

8



Alignment as Distribution Learning: Your Preference Model is Explicitly a Language Model

L., and Wolf, T. Open llm leaderboard (2023-
2024). https://huggingface.co/spaces/
open-llm-leaderboard-old/open_llm_
leaderboard, 2023.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Bradley, R. A. and Terry, M. E. Rank analysis of incom-
plete block designs: I. the method of paired comparisons.
Biometrika, 39(3/4):324–345, 1952.

Cen, S., Mei, J., Goshvadi, K., Dai, H., Yang, T., Yang, S.,
Schuurmans, D., Chi, Y., and Dai, B. Value-incentivized
preference optimization: A unified approach to online and
offline RLHF. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https:
//openreview.net/forum?id=SQnitDuow6.

Chen, M., Chen, Y., Sun, W., and Zhang, X. Avoiding
exp(rmax) scaling in rlhf through preference-based explo-
ration. arXiv preprint arXiv:2502.00666, 2025.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Cui, G., Yuan, L., Ding, N., Yao, G., Zhu, W., Ni, Y., Xie, G.,
Liu, Z., and Sun, M. Ultrafeedback: Boosting language
models with high-quality feedback. CoRR, 2023.

Dubois, Y., Liang, P., and Hashimoto, T. Length-controlled
alpacaeval: A simple debiasing of automatic evaluators.
In First Conference on Language Modeling, 2024.

Dumoulin, V., Johnson, D. D., Castro, P. S., Larochelle,
H., and Dauphin, Y. A density estimation perspective on
learning from pairwise human preferences. arXiv preprint
arXiv:2311.14115, 2023.

Ethayarajh, K., Xu, W., Muennighoff, N., Jurafsky, D., and
Kiela, D. Model alignment as prospect theoretic opti-
mization. In Proceedings of the International Conference
on Machine Learning (ICML), 2024.

Fisch, A., Eisenstein, J., Zayats, V., Agarwal, A., Beirami,
A., Nagpal, C., Shaw, P., and Berant, J. Robust preference
optimization through reward model distillation. Trans-
actions on Machine Learning Research (TMLR), 2025.
ISSN 2835-8856.

Foster, D. J. and Krishnamurthy, A. Efficient first-order
contextual bandits: Prediction, allocation, and triangular
discrimination. Advances in Neural Information Process-
ing Systems (NeurIPS), pp. 18907–18919, 2021.

Foster, D. J., Mhammedi, Z., and Rohatgi, D. Is a good foun-
dation necessary for efficient reinforcement learning? the
computational role of the base model in exploration, 2025.
URL https://arxiv.org/abs/2503.07453.

Gabbianelli, G., Neu, G., and Papini, M. Importance-
weighted offline learning done right. In International
Conference on Algorithmic Learning Theory (ALT), pp.
614–634. PMLR, 2024.

Gao, Z., Chang, J., Zhan, W., Oertell, O., Swamy, G., Brant-
ley, K., Joachims, T., Bagnell, D., Lee, J. D., and Sun,
W. Rebel: Reinforcement learning via regressing relative
rewards. Advances in Neural Information Processing
Systems (NeurIPS), 2024.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2014.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Guo, S., Zhang, B., Liu, T., Liu, T., Khalman, M., Llinares,
F., Rame, A., Mesnard, T., Zhao, Y., Piot, B., et al. Direct
language model alignment from online ai feedback. arXiv
preprint arXiv:2402.04792, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=d7KBjmI3GmQ.

Hong, J., Lee, N., and Thorne, J. ORPO: monolithic prefer-
ence optimization without reference model. In Proceed-
ings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2024.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank adap-
tation of large language models. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=nZeVKeeFYf9.

9

https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://openreview.net/forum?id=SQnitDuow6
https://openreview.net/forum?id=SQnitDuow6
https://arxiv.org/abs/2503.07453
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


Alignment as Distribution Learning: Your Preference Model is Explicitly a Language Model

Huang, A., Zhan, W., Xie, T., Lee, J. D., Sun, W., Krish-
namurthy, A., and Foster, D. J. Correcting the mythos
of KL-regularization: Direct alignment without overop-
timization via chi-squared preference optimization. In
International Conference on Learning Representations,
2025.

Huang, S., Noukhovitch, M., Hosseini, A., Rasul, K., Wang,
W., and Tunstall, L. The n+ implementation details
of RLHF with PPO: A case study on TL;DR summa-
rization. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?
id=kHO2ZTa8e3.

Kaufmann, T., Weng, P., Bengs, V., and Hüllermeier,
E. A survey of reinforcement learning from human
feedback, 2024. URL https://arxiv.org/abs/
2312.14925.

Lee, K., Liu, H., Ryu, M., Watkins, O., Du, Y., Boutilier,
C., Abbeel, P., Ghavamzadeh, M., and Gu, S. S. Aligning
text-to-image models using human feedback, 2023. URL
https://arxiv.org/abs/2302.12192.

Li, X. L., Shrivastava, V., Li, S., Hashimoto, T., and Liang,
P. Benchmarking and improving generator-validator con-
sistency of language models. In The Twelfth International
Conference on Learning Representations, 2024.

Liang, Y., He, J., Li, G., Li, P., Klimovskiy, A., Carolan, N.,
Sun, J., Pont-Tuset, J., Young, S., Yang, F., Ke, J., Dvi-
jotham, K. D., Collins, K. M., Luo, Y., Li, Y., Kohlhoff,
K. J., Ramachandran, D., and Navalpakkam, V. Rich hu-
man feedback for text-to-image generation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 19401–19411, June
2024.

Lin, S., Hilton, J., and Evans, O. TruthfulQA: Measuring
how models mimic human falsehoods. In Muresan, S.,
Nakov, P., and Villavicencio, A. (eds.), Proceedings of
the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 3214–
3252, Dublin, Ireland, May 2022. Association for Com-
putational Linguistics. doi: 10.18653/v1/2022.acl-long.
229. URL https://aclanthology.org/2022.
acl-long.229/.

Lin, Y., Lin, H., Xiong, W., Diao, S., Liu, J., Zhang, J., Pan,
R., Wang, H., Hu, W., Zhang, H., Dong, H., Pi, R., Zhao,
H., Jiang, N., Ji, H., Yao, Y., and Zhang, T. Mitigating
the alignment tax of RLHF. In Al-Onaizan, Y., Bansal,
M., and Chen, Y.-N. (eds.), Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pp. 580–606, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi:

10.18653/v1/2024.emnlp-main.35. URL https://
aclanthology.org/2024.emnlp-main.35/.

Liu, J., Zhou, Z., Liu, J., Bu, X., Yang, C., Zhong, H.-
S., and Ouyang, W. Iterative length-regularized direct
preference optimization: A case study on improving 7b
language models to gpt-4 level, 2024. URL https:
//arxiv.org/abs/2406.11817.

Mao, Q., Lee, H.-Y., Tseng, H.-Y., Ma, S., and Yang, M.-
H. Mode seeking generative adversarial networks for
diverse image synthesis. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 1429–1437, 2019.

Meng, Y., Xia, M., and Chen, D. Simpo: Simple preference
optimization with a reference-free reward. Advances in
Neural Information Processing Systems (NeurIPS), 37:
124198–124235, 2024.

Munos, R. Error bounds for approximate policy iteration. In
Proceedings of the International Conference on Machine
Learning (ICML), 2003.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L.,
Kim, C., Hesse, C., Jain, S., Kosaraju, V., Saunders,
W., Jiang, X., Cobbe, K., Eloundou, T., Krueger, G.,
Button, K., Knight, M., Chess, B., and Schulman, J. We-
bGPT: Browser-assisted question-answering with human
feedback, 2022. URL https://arxiv.org/abs/
2112.09332.

Nath, A., Jung, C., Seefried, E., and Krishnaswamy, N.
Simultaneous reward distillation and preference learning:
Get you a language model who can do both, 2025. URL
https://arxiv.org/abs/2410.08458.

Noukhovitch, M., Lavoie, S., Strub, F., and Courville, A. C.
Language model alignment with elastic reset. Advances in
Neural Information Processing Systems, 36:3439–3461,
2023.

OpenAI. ChatGPT: Optimizing Language Models for Di-
alogue. https://openai.com/blog/chatgpt,
2022. Accessed: 2025-05-19.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Park, R., Rafailov, R., Ermon, S., and Finn, C. Disentangling
length from quality in direct preference optimization. In
Findings of the Association for Computational Linguistics
(ACL), 2024.

10

https://openreview.net/forum?id=kHO2ZTa8e3
https://openreview.net/forum?id=kHO2ZTa8e3
https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2302.12192
https://aclanthology.org/2022.acl-long.229/
https://aclanthology.org/2022.acl-long.229/
https://aclanthology.org/2024.emnlp-main.35/
https://aclanthology.org/2024.emnlp-main.35/
https://arxiv.org/abs/2406.11817
https://arxiv.org/abs/2406.11817
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2410.08458
https://openai.com/blog/chatgpt


Alignment as Distribution Learning: Your Preference Model is Explicitly a Language Model

Qi, B., Li, P., Li, F., Gao, J., Zhang, K., and Zhou, B.
Online dpo: Online direct preference optimization with
fast-slow chasing, 2024. URL https://arxiv.org/
abs/2406.05534.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,
Ermon, S., and Finn, C. Direct preference optimiza-
tion: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems
(NeurIPS), 36:53728–53741, 2023.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Schulman, J., 2020. URL http://joschu.net/
blog/kl-approx.html.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Song, Y., Swamy, G., Singh, A., Bagnell, J., and Sun, W.
The importance of online data: Understanding preference
fine-tuning via coverage. Advances in Neural Information
Processing Systems (NeurIPS), 37:12243–12270, 2024.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano, P. F.
Learning to summarize with human feedback. Advances
in Neural Information Processing Systems (NeurIPS),
2020.

Swamy, G., Choudhury, S., Sun, W., Wu, Z. S., and Bag-
nell, J. A. All roads lead to likelihood: The value of
reinforcement learning in fine-tuning, 2025.

Tang, Y., Guo, Z. D., Zheng, Z., Calandriello, D., Munos, R.,
Rowland, M., Richemond, P. H., Valko, M., Avila Pires,
B., and Piot, B. Generalized preference optimization: A
unified approach to offline alignment. In Proceedings
of the International Conference on Machine Learning
(ICML), 2024.

Tunstall, L., Beeching, E. E., Lambert, N., Rajani, N., Rasul,
K., Belkada, Y., Huang, S., Werra, L. V., Fourrier, C.,
Habib, N., Sarrazin, N., Sanseviero, O., Rush, A. M., and
Wolf, T. Zephyr: Direct distillation of LM alignment. In
First Conference on Language Modeling, 2024.

van de Geer, S. Empirical Processes in M-Estimation. Cam-
bridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, 2009.

Wallace, B., Dang, M., Rafailov, R., Zhou, L., Lou, A., Pu-
rushwalkam, S., Ermon, S., Xiong, C., Joty, S., and Naik,

N. Diffusion model alignment using direct preference op-
timization, 2023. URL https://arxiv.org/abs/
2311.12908.

West, P., Lu, X., Dziri, N., Brahman, F., Li, L., Hwang, J. D.,
Jiang, L., Fisher, J., Ravichander, A., Chandu, K., et al.
The generative ai paradox:“what it can create, it may not
understand”. In The Twelfth International Conference on
Learning Representations, 2024.

Xiao, T., Yuan, Y., Zhu, H., Li, M., and Honavar, V. G.
Cal-dpo: Calibrated direct preference optimization for
language model alignment. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems
(NeurIPS), 2024.

Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agar-
wal, A. Bellman-consistent pessimism for offline rein-
forcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Xie, T., Foster, D. J., Krishnamurthy, A., Rosset, C.,
Awadallah, A. H., and Rakhlin, A. Exploratory prefer-
ence optimization: Harnessing implicit q*-approximation
for sample-efficient RLHF. In The Thirteenth In-
ternational Conference on Learning Representations,
2025a. URL https://openreview.net/forum?
id=QYigQ6gXNw.

Xie, T., Foster, D. J., Krishnamurthy, A., Rosset, C., Awadal-
lah, A. H., and Rakhlin, A. Exploratory preference op-
timization: Harnessing implicit q*-approximation for
sample-efficient RLHF. In International Conference on
Learning Representations, 2025b.

Xiong, W., Dong, H., Ye, C., Wang, Z., Zhong, H., Ji, H.,
Jiang, N., and Zhang, T. Iterative preference learning
from human feedback: Bridging theory and practice for
RLHF under KL-constraint. In Proceedings of the In-
ternational Conference on Machine Learning (ICML),
2024.

Yuan, H., Yuan, Z., Tan, C., Wang, W., Huang, S., and
Huang, F. Rrhf: Rank responses to align language models
with human feedback. Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Yuan, L., Cui, G., Wang, H., Ding, N., Wang, X., Deng,
J., Shan, B., Chen, H., Xie, R., Lin, Y., Liu, Z., Zhou,
B., Peng, H., Liu, Z., and Sun, M. Advancing LLM
reasoning generalists with preference trees. In AI for
Math Workshop @ ICML 2024, 2024. URL https:
//openreview.net/forum?id=2Y1iiCqM5y.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. HellaSwag: Can a machine really finish your sen-
tence? In Korhonen, A., Traum, D., and Màrquez,

11

https://arxiv.org/abs/2406.05534
https://arxiv.org/abs/2406.05534
http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html
https://arxiv.org/abs/2311.12908
https://arxiv.org/abs/2311.12908
https://openreview.net/forum?id=QYigQ6gXNw
https://openreview.net/forum?id=QYigQ6gXNw
https://openreview.net/forum?id=2Y1iiCqM5y
https://openreview.net/forum?id=2Y1iiCqM5y


Alignment as Distribution Learning: Your Preference Model is Explicitly a Language Model

L. (eds.), Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pp. 4791–
4800, Florence, Italy, July 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P19-1472. URL
https://aclanthology.org/P19-1472/.

Zhan, W., Huang, B., Huang, A., Jiang, N., and Lee, J. Of-
fline reinforcement learning with realizability and single-
policy concentrability. In Proceedings of the Conference
on Learning Theory (COLT), 2022.

Zhan, W., Uehara, M., Kallus, N., Lee, J. D., and Sun, W.
Provable offline preference-based reinforcement learning.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=tVMPfEGT2w.

Zhang, S., Yu, D., Sharma, H., Zhong, H., Liu, Z., Yang,
Z., Wang, S., Hassan, H., and Wang, Z. Self-exploring
language models: Active preference elicitation for online
alignment, 2024. URL https://arxiv.org/abs/
2405.19332.

Zhang, T. From ε-entropy to kl-entropy: Analysis of min-
imum information complexity density estimation. The
Annals of Statistics, 34, 2007.

Zhang, Y., Wang, L., Fang, M., Du, Y., Huang, C., Wang,
J., Lin, Q., Pechenizkiy, M., Zhang, D., Rajmohan, S.,
and Zhang, Q. Distill not only data but also rewards:
Can smaller language models surpass larger ones?, 2025.
URL https://arxiv.org/abs/2502.19557.

Zhao, Y., Joshi, R., Liu, T., Khalman, M., Saleh, M., and
Liu, P. J. Slic-hf: Sequence likelihood calibration with
human feedback. CoRR, abs/2305.10425, 2023a.

Zhao, Y., Khalman, M., Joshi, R., Narayan, S., Saleh, M.,
and Liu, P. J. Calibrating sequence likelihood improves
conditional language generation. In Proceedings of the
International Conference on Learning Representations
(ICLR), 2023b.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36:
46595–46623, 2023.

Ziebart, B. D. Modeling purposeful adaptive behavior with
the principle of maximum causal entropy. Carnegie Mel-
lon University, 2010.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

12

https://aclanthology.org/P19-1472/
https://openreview.net/forum?id=tVMPfEGT2w
https://openreview.net/forum?id=tVMPfEGT2w
https://arxiv.org/abs/2405.19332
https://arxiv.org/abs/2405.19332
https://arxiv.org/abs/2502.19557


Alignment as Distribution Learning: Your Preference Model is Explicitly a Language Model

Appendix

Table of Contents
A Related Work 22

B Theoretical Guarantees 23
B.1 Auxiliary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B.2 Proofs for Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
B.3 Proofs for Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B.4 Proofs for Section 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C Experimental Details 31
C.1 TL;DR Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
C.2 General Chat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A. Related Work
Preference optimization with RL. A widely adopted paradigm in preference optimization is Reinforcement Learning
from Human Feedback (RLHF). In this framework, one first trains a reward model–effectively serving as a classifier–on
a preference dataset collected from human annotators, and subsequently leverages the learned reward model to run RL
algorithms such as PPO (Christiano et al., 2017; Ziegler et al., 2019). RLHF and its variants have been instrumental
in training prominent LLMs such as ChatGPT (OpenAI, 2022), and have achieved remarkable success across diverse
applications such as text summarization, question answering, instruction following, and text-to-image generation (Stiennon
et al., 2020; Nakano et al., 2022; Ouyang et al., 2022; Lee et al., 2023; Liang et al., 2024). We guide the interested reader to
Kaufmann et al. (2024) for a recent dedicated survey on RLHF.

Without RL and without a reward model. Direct Preference Optimization (DPO) dispenses with an explicit reward
model by treating the log-ratio of each preference pair as a training signal and directly training the policy with a single
contrastive cross-entropy loss (Rafailov et al., 2023). Such an RL-free objective was shown to match PPO-based RLHF
without requiring a reward model, value network, or on-policy sampling, and has led to variants such as distilled DPO
(Tunstall et al., 2024), Cal-DPO (Xiao et al., 2024), diffusion DPO (Wallace et al., 2023), ΨPO (Azar et al., 2024),
SLiC/SLiC-HF (Zhao et al., 2023b;a), GPO (Tang et al., 2024), χPO (Huang et al., 2025), R-DPO (Park et al., 2024), ODPO
(Amini et al., 2024), SimPO (Meng et al., 2024), RRHF (Yuan et al., 2023), KTO (Ethayarajh et al., 2024), ORPO (Hong
et al., 2024), and many more.

At the same time, such direct optimization from preference labels has been noted to underperform along some dimensions
compared to conventional RLHF. One challenge stems from relying exclusively on an offline dataset, which can induce
out-of-distribution responses. This is likely due to insufficient on-policy interaction during training (Song et al., 2024). Some
hybrid approaches have been proposed to overcome this issue: iterative DPO performs iterative training with labeled online
preferences (Liu et al., 2024), HyPO combines offline data for preference optimization and online data for KL regularization
(Song et al., 2024), and online DPO utilizes fast and slow chasing to simulate competition (Qi et al., 2024).

Without RL but with a reward model. Another prominent method of preference optimization is reward distillation. This
line of work aims to distill information on a reward model’s preferences directly into the policy. As discussed in Section 4,
the REBEL objective (Gao et al., 2024) regresses the log-ratio of the likelihoods of two responses on the reward difference
using a simple squared-loss objective, which is repeated with batches of on-policy responses. Reward distillation from
Fisch et al. (2025) can be seen as a simplified version of REBEL where we only use the responses from the preference
dataset. DRDO learns a reward model and policy in one pass by jointly matching oracle rewards while also learning human
preferences (Nath et al., 2025). Finally, Zhang et al. (2025) develops an LLM distillation pipeline to distill both data and
rewards.
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Theoretical analyses of preference optimization. Zhan et al. (2024) studies offline preference-based RL with an MLE-
based reward model similar to ours, but only obtains guarantees in terms of maximizing the policy value. Xie et al.
(2025a) proposes an exploratory version of DPO which is shown to achieves Õ(

√
T ) regret with a favorable coverage

parameter. Zhang et al. (2024) proposes an online direct alignment algorithm which also attains Õ(
√
T ) regret. Xiong

et al. (2024) derives regret bounds for online and offline versions of RLHF under a linearly parametrized reward model; see
also Foster et al. (2025) for a theoretical analysis of RL with linear-softmax policies. Cen et al. (2025) introduces VPO, a
value-regularized DPO-type objective for both online and offline RLHF, and also prove regret bounds under linear rewards.
The χPO algorithm is shown to attain optimal sample complexity, also in terms of regret, under a weaker single-policy
concentrability (Huang et al., 2025).

The work of Agarwal et al. (2025) is most relevant to our paper, especially PMLE (Section 3): they develop a theoretical
analysis of offline RLHF variants that minimize DPO-type objectives, and show a forward KL bound w.r.t. an optimal
policy π∗. However, this formulation is not due to a distribution learning viewpoint but merely a byproduct of their strong
realizability assumption (Assumption 3.2). Moreover, their upper bound has a square-root dependence on the excess risk
ε = L(π) − L(π∗), which when applied to our framework yields a statistical rate of 1/

√
n. In contrast, we obtain an

improved rate of 1/n with a more careful analysis in Appendix B.

B. Theoretical Guarantees
B.1. Auxiliary Lemmas

We require the following basic results.

Lemma 8. For all a, b ∈ R it holds that |σ(a)− σ(b)| ≥ 1
2e

−(|a|∨|b|)|a− b|.

Proof. Recall that σ(z) = 1/(1 + exp(−z)) is the logistic sigmoid. σ′ is symmetric, so that

σ′(z) = σ′(|z|) = 1

1 + e|z|
1

1 + e−|z| ≥
1

1 + e|z|
≥ 1

2
e−|z|.

It suffices to assume b > a due to symmetry. Then,

σ(b)− σ(a) =
∫ b

a

σ′(z) dz ≥
∫ b

a

1

2
e−|z| dz ≥ 1

2
e−(|a|∨|b|)(b− a)

as desired.

The next two lemmas will allow us to convert between the expectation of the log ratio (i.e., KL divergence) and squared log
ratio. Let us define the auxiliary function

ψ(z) :=
z − 1− ln z

(ln z)2
.

Lemma 9. For rmax > 1, it holds for all r ∈ (0, rmax] that

r − 1− ln r ≤ (
1

2
∨ ψ(rmax))(ln r)

2 ≤ rmax

(ln rmax)2
(ln r)2.

Proof. Define the auxiliary function

f(r) :=
1

2
(ln r)2 − (r − 1− ln r).

For r ∈ (0, 1), it holds that f(1) = 0 and f ′(r) = ln r−r+1
r < 0. Thus, f(r) > 0 which implies

r − 1− ln r ≤ 1

2
(ln r)2.
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For r ∈ [1, rmax], it is easily checked that ψ is nondecreasing on (1,∞) and thus

r − 1− ln r

(ln r)2
= ψ(r) ≤ ψ(rmax) ≤

rmax

(ln rmax)2
,

as was to be shown.

Lemma 10. For rmin > 0, it holds for all r ∈ [rmin,∞) that

r − 1− ln r ≥ 1

e(ln r−1
min ∨ 1)

(ln r)2.

Proof. The function ψ defined in Lemma 9 extends to a nondecreasing continuous function on (0,∞) by setting ψ(1) := 1
2 .

When r ≥ e−1, it follows that ψ(r) ≥ ψ(e−1) = e−1.

When rmin ≤ r < e−1, we use the fact that ln r ≤ 1
1−e−1 (r − 1) to bound

ψ(r) ≥ (1− e−1) ln r − ln r

(ln r)2
=

1

e ln r−1
≥ 1

e ln r−1
min

.

Lemma 11 (Symmetrization inequality). Let Dn, D̃n be two datasets of n i.i.d. samples, C(π,Dn) be any functional of a
policy π and dataset Dn, and π̂ := π̂(Dn) be any estimator computed from Dn. Then with probability 1− δ, it holds that

− logED̃n
[exp(C(π̂, D̃n))] ≤ −C(π̂, Dn) + ln(|Π|/δ).

Proof. This is shown for example in the proof of Theorem 6 in Foster & Krishnamurthy (2021).

B.2. Proofs for Section 3

The following convergence bound for maximum likelihood estimators is mostly classical (Zhang, 2007; van de Geer, 2009);
for completeness, we provide a brief proof following Theorem 6 of Foster & Krishnamurthy (2021).

Proposition 12. Let π̂ = arg minπ∈Π LPMLE(π) with β = 0. Then, with probability at least 1− δ,

Ex∼D,a,b∼µ(x)

[
(Pπ̂(a ≻ b | x)− P∗(a ≻ b | x))2

]
≤ 4 ln(|Π|/δ)

n
.

Proof. Recall that each preference pair (x, a+, a−) is collected by first sampling a, b independently from µ(x) and
setting (a+, a−) = (a, b) with probability P∗(a ≻ b | x). In other words, for the indicator y = 1{a+=a} such that
P(y = 1) = P∗(a ≻ b | x), we can write

LPMLE(π) =
1

n

∑
(x,a,b)∈Dn

−y lnPπ(a ≻ b | x)− (1− y) lnPπ(b ≻ a | x),

where we have abused notation to write the sum over (x, a, b) corresponding to each (x, a+, a−) as a sum over (x, a, b) ∈ Dn.
Define the quantity

C(π,Dn) =
1

2

∑
(x,a,b)∈Dn

y ln
Pπ(a ≻ b | x)
P∗(a ≻ b | x)

+ (1− y) ln Pπ(b ≻ a | x)
P∗(b ≻ a | x)

=
n

2
(LPMLE(π

∗)− LPMLE(π))

and π̂ as the minimizer of LPMLE(π) for π ∈ Π. It follows from Lemma 11 that

− logED̃n
[exp(C(π̂, D̃n))] ≤ −C(π̂, Dn) + ln(|Π|/δ) ≤ ln(|Π|/δ)
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and

− logED̃n
[exp(C(π̂, D̃n))]

= −n logEx∼D,a,b∼µ(x) Ey|a,b,x

[(
Pπ(a ≻ b | x)
P∗(a ≻ b | x)

)y/2(Pπ(b ≻ a | x)
P∗(b ≻ a | x)

)(1−y)/2
]

= −n logEx∼D,a,b∼µ(x)

[√
Pπ(a ≻ b | x)P∗(a ≻ b | x) +

√
Pπ(b ≻ a | x)P∗(b ≻ a | x)

]
.

Writing pπ = Pπ(a ≻ b | x) and p∗ = P∗(a ≻ b | x) for simplicity, we further have

− logE
[√

pπp∗ +
√
(1− pπ)(1− p∗)

]
≥ 1− E

[√
pπp∗ +

√
(1− pπ)(1− p∗)

]
= E

[
1

2
(
√
pπ −

√
p∗)

2 +
1

2
(
√

1− pπ −
√
1− p∗)2

]
= E

[
(pπ − p∗)2

2(
√
pπ +

√
p∗)2

+
(pπ − p∗)2

2(
√
1− pπ +

√
1− p∗)2

]

≥ 1

4
E
[
(pπ − p∗)2

]
,

which yields the desired bound.

Proof of Theorem 4. Our proof is partly inspired by Agarwal et al. (2025, proof of Theorem 3.6). The key difference is that
their theorem relies on an assumption that the population loss of π̂ is not too far away from that of π∗, which is rather strong.
In contrast, our theorem provides an end-to-end guarantee. Furthermore, naively applying their theorem would result in
an 1/

√
n rate rather than 1/n. We obtain an improvement by applying Schulman’s trick (Schulman, 2020) followed by

Lemma 9. We elaborate more this later in Remark 13.

Using Lemma 8 with the fact ∣∣∣∣γ ln π(a | x)π(b | x)

∣∣∣∣ = ∣∣R̄(x, a)− R̄(x, b)∣∣ ≤ 2γR ,

we can lower bound

Ex∼D,a,b∼µ(x)

[
(Pπ̂(a ≻ b | x)− P∗(a ≻ b | x))2

]
≥ e−4γR

4
Ex∼D,a,b∼µ(x)

[(
γ ln

π̂(a | x)
π̂(b | x)

− γ ln π
∗(a | x)
π∗(b | x)

)2]
=
e−4γR

4
Ex∼D,a,b∼µ(x)

[
(∆R̄π̂(x, a)−∆R̄π̂(x, b))

2
]

=
e−4γR

2
Ex∼D,a,b∼µ(x)

[
∆R̄π̂(x, a)

2
]

where the last inequality is due to E[(X − Y )2] = 2E[(X − E[X])2] when X and Y and i.i.d. Thus, using Proposition 12,
the difference in centered reward satisfies

Ex∼D,a,b∼µ(x)

[
∆R̄π̂(x, a)

2
]
≤ 8e4γR · ln(|Π|/δ)

n
. (18)

Define the normalizing factor

Zπ(x) :=
∑
a∈A

exp

(
1

γ
R̄π(x, a)

)
= exp

(
− 1

γ
Ea∼µ(x)[Rπ(x, a) | x]

)
, Z∗ := Zπ∗

so that π(a | x) = Zπ(x)
−1 exp(γ−1R̄π(x, a)). Due to Assumption 2, for all π ∈ Π, x ∈ X it holds that |A|e−R ≤

Zπ(x) ≤ |A|eR, so that

0 <
π̂(a | x)
π∗(a | x)

=
Z∗(x)

Zπ̂(x)
exp

(
1

γ
∆R̄π̂(x, a)

)
≤ e4R. (19)
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Then, we bound the KL divergence between π∗, π̂ using Schulman’s trick (Schulman, 2020) followed by Lemma 9:

Ex∼D
[
KL(π∗(x)∥π̂(x))

]
= Ex∼D,a∼π∗(x)

[
ln
π∗(a | x)
π̂(a | x)

]
= Ex∼D,a∼π∗(x)

[
π̂(a | x)
π∗(a | x)

− 1− ln
π̂(a | x)
π∗(a | x)

]
≤ (

1

2
∨ ψ(e4R))Ex∼D,a∼π∗(x)

[(
ln

π̂(a | x)
π∗(a | x)

)2]
. (20)

Extracting the normalization constants, we further have that

Ex∼D,a∼π∗(x)

[(
ln

π̂(a | x)
π∗(a | x)

)2]
≤ Ex∼D,a∼π∗(x)

[
2

(
ln

π̂(a | x)Zπ̂(x)

π∗(a | x)Z∗(x)

)2

+ 2

(
ln
Z∗(x)

Zπ̂(x)

)2 ]
=

2

γ2
Ex∼D,a∼π∗(x)

[
∆R̄π̂(x, a)

2
]
+ 2Ex∼D

[(
ln
Z∗(x)

Zπ̂(x)

)2 ]
.

Using Definition 3 and (18), the first term is bounded as

2

γ2
Ex∼D,a∼π∗(x)

[
∆R̄π̂(x, a)

2
]
≤ 2CΠ

γ2
Ex∼D,a∼µ(x)

[
∆R̄π̂(x, a)

2
]
≤ 16CΠe

4γR

γ2
· ln(|Π|/δ)

n
.

For the second term, we first characterize an upper and lower bound on ln Zπ̂(x)
Z∗(x)

. Using

1 = Ea∼π∗(x)

[
π̂(a | x)
π∗(a | x)

]
=
Z∗(x)

Zπ̂(x)
Ea∼π∗(x)

[
exp

(
1

γ
∆R̄π̂(x, a)

)]
,

we have

ln
Zπ̂(x)

Z∗(x)
= lnEa∼π∗(x)

[
exp

(
1

γ
∆R̄π̂(x, a)

)]
≥ 1

γ
Ea∼π∗(x)[∆R̄π̂(x, a)]

where the last inequality is by Jensen’s inequality. Moreover, using the inequality ex ≤ 1 + x + eA

2 x
2 valid for all

x ∈ (−∞, A], we have

ln
Zπ̂(x)

Z∗(x)
= lnEa∼π∗(x)

[
exp

(
1

γ
∆R̄π̂(x, a)

)]
≤ Ea∼π∗(x)

[
exp

(
1

γ
∆R̄π̂(x, a)

)]
− 1

≤ 1

γ
Ea∼π∗(x)

[
∆R̄π̂(x, a)

]
+
e2R

2γ2
Ea∼π∗(x)

[
∆R̄π̂(x, a)

2
]
.

Thus, we have ∣∣∣∣ln Zπ̂(x)

Z∗(x)

∣∣∣∣ ≤ ∣∣∣∣ 1γ Ea∼π∗(x)[∆R̄π̂(x, a)]

∣∣∣∣+ e2R

2γ2
Ea∼π∗(x)

[
∆R̄π̂(x, a)

2
]
,

which implies, using ∀x, y ∈ R, (x+ y)2 ≤ 2x2 + 2y2,

Ex∼D

[(
ln
Z∗(x)

Zπ̂(x)

)2 ]
≤ 2

γ2
Ex∼D

[(
Ea∼π∗(x)

[
∆R̄π̂(x, a)

])2 ]
+
e4R

2γ4
Ex∼D

[(
Ea∼π∗(x)

[
∆R̄π̂(x, a)

2
])2 ]
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≤ 2R2e4R + 2

γ2
Ex∼D,a∼π∗(x)

[
∆R̄π̂(x, a)

2
]

(Jensen’s inequality; Assumption 2)

≤ 16CΠ(R
2e4R + 1)e4γR

γ2
· ln(|Π|/δ)

n
. (by (18))

Putting everything together, we conclude:

Ex∼D
[
KL(π∗(x)∥π̂(x))

]
≤ (

1

2
∨ ψ(e4R))

(
16CΠe

4γR

γ2
· ln(|Π|/δ)

n
+

32CΠ(R
2e4R + 1)e4γR

γ2
· ln(|Π|/δ)

n

)

= (
1

2
∨ ψ(e4R))16(2R

2e4R + 3)CΠe
4γR

γ2
· ln(|Π|/δ)

n
.

We remark that by Lemma 9, the 1
2 ∨ ψ(e

4R) term is further bounded above by e4R

16R2 .

Remark 13. One of our key novelty is (20). In Agarwal et al. (2025), they use Cauchy-Schwarz to derive

Ex∼D,a∼π∗(x)

[
ln
π∗(a | x)
π̂(a | x)

]
≤

√
Ex∼D,a∼π∗(x)

[(
ln
π∗(a | x)
π̂(a | x)

)2]
,

which introduces an extra square root compared to our derivation. Following their derivation naively would lead to a 1/
√
n

rate instead of 1/n.

B.3. Proofs for Section 4

Proof of Theorem 6. Up to constants, our distillation objective is equivalent to minimizing

1

n

∑
(x,a+,a−)∈Dn

KL
(
Bern(Pπ̃(a

+ ≻ a− | x))∥Bern(Pπ(a
+ ≻ a− | x))

)
,

which can achieve zero loss since π̃ ∈ Pγ(R) ⊆ Π is a valid solution. Thus, the solution π̂ must satisfy

Pπ̃(a ≻ b | x) = Pπ̂(a ≻ b | x), ∀(x, a, b) ∈ Dn

(recall that we use (a, b) to denote the independent unlabeled responses). Defining the set

K :=
{
(π1, π2) ∈ Pγ(R)×Π : Ex∼D,a,b∼µ(x)

[
|Pπ1

(a ≻ b | x)− Pπ2
(a ≻ b | x)|

]
> ε
}
,

it follows that

P
(
(π̃, π̂) ∈ K

)
=

∑
(π1,π2)∈K

P(π̃ = π1, π̂ = π2)

≤
∑

(π1,π2)∈K

P
(
Pπ1

(a ≻ b | x) = Pπ2
(a ≻ b | x), ∀(x, a, b) ∈ Dn

)
=

∑
(π1,π2)∈K

P
(
Pπ1

(a ≻ b | x) = Pπ2
(a ≻ b | x)

)n
≤

∑
(π1,π2)∈K

(
1− E

[
|Pπ1(a ≻ b | x)− Pπ2(a ≻ b | x)|

])n
≤

∑
(π1,π2)∈K

(1− ε)n

≤ |K|2 exp(−εn).
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Therefore P
(
(π̃, π̂) ∈ K

)
≤ |Π|2 exp(−εn), i.e.,

Ex∼D,a,b∼µ(x)

[
|Pπ̃(a ≻ b | x)− Pπ̂(a ≻ b | x)|

]
≤ 2 ln(|Π|/δ)

n

with probability at least 1− δ, and so

Ex∼D,a,b∼µ(x)

[
(Pπ̃(a ≻ b | x)− Pπ̂(a ≻ b | x))2

]
≤ 2 ln(|Π|/δ)

n

as well. On the other hand, applying Proposition 12 to Pγ(R), we have

Ex∼D,a,b∼µ(x)

[
(Pπ̃(a ≻ b | x)− P∗(a ≻ b | x))2

]
≤ 4 ln(|R|/δ)

n

with probability at least 1− δ. Hence by a union bound, it holds that, with probability at least 1− δ.

Ex∼D,a,b∼µ(x)

[
(Pπ̂(a ≻ b | x)− P∗(a ≻ b | x))2

]
≤ 4 ln(2|Π|/δ) + 8 ln(2|R|/δ)

n
.

Furthermore, by Lemma 8 it holds that

∣∣Pπ̂(a ≻ b | x)− P∗(a ≻ b | x)
∣∣ = ∣∣∣∣∣σ

(
γ ln

π̂(a | x)
π̂(b | x)

)
− σ

(
γ ln

π∗(a | x)
π∗(b | x)

)∣∣∣∣∣
≥ γe−2γR

2

∣∣∣∣ln π̂(a | x)π̂(b | x)
− ln

π∗(a | x)
π∗(b | x)

∣∣∣∣
=
e−2γR

2

∣∣∆R̄π̂(x, a)−∆R̄π̂(x, b)
∣∣ ,

which implies that

Ex∼D,a∼µ(x)

[
(∆R̄π̂(x, a))

2
]
=

1

2
Ex∼D,a,b∼µ(x)

[
(∆R̄π̂(x, a)−∆R̄π̂(x, b))

2
]

≤ 4e4γR · 4 ln(2|Π|/δ) + 8 ln(2|R|/δ)
n

. (21)

Finally as in the proof of Theorem 4, we combine the bounds

Ex∼D,a∼π∗(x)

[(
ln

π̂(a | x)
π∗(a | x)

)2]
≤ 2

γ2
Ex∼D,a∼π∗(x)

[
∆R̄π̂(x, a)

2
]
+ 2Ex∼D

[(
ln
Z∗(x)

Zπ̂(x)

)2 ]
and

Ex∼D

[(
ln
Z∗(x)

Zπ̂(x)

)2 ]
≤ 2R2e4R + 2

γ2
Ex∼D,a∼π∗(x)

[
∆R̄π̂(x, a)

2
]

along with (21) to conclude that

Ex∼D
[
KL(π∗(x)∥π̂(x))

]
≤ (

1

2
∨ ψ(e4R))32(2R

2e4R + 3)CΠe
4γR

γ2
· ln(2|Π|/δ) + 2 ln(2|R|/δ)

n
.
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B.4. Proofs for Section 5

Proof of Theorem 7. The first step of the argument is similar to the proof of Theorem 6. Up to constants, the reverse KL
objective is equivalent to

π̂ = arg min
π∈Π

1

n

∑
(x,·,·)∈Dn

KL(π(x)∥π̃(x)),

which achieves zero loss due to Assumption 5. Defining the set

K :=
{
(π1, π2) ∈ Π× Pγ(R) : Ex∼D

[
KL(π1(x)∥π2(x))

]
> ε
}
,

it follows that

P
(
Ex∼D

[
KL(π̂(x)∥π̃(x))

]
> ε
)
=

∑
(π1,π2)∈K

P(π̂ = π1, π̃ = π2)

≤
∑

(π1,π2)∈K

P(π1(x) = π2(x)), ∀x ∈ Dn)

=
∑

(π1,π2)∈K

Px∼D(π1(x) = π2(x))
n.

Note that for any (π1, π2) ∈ K, it holds that π1(a | x)/π2(a | x) ≤ e4R as in the proof of Theorem 4, so that

KL(π1(x)∥π2(x)) ≤ sup
a∈A

ln
π1(a | x)
π2(a | x)

≤ 4R · 1{π1(x)̸=π2(x)}, ∀x ∈ X .

This implies

Px∼D(π1(x) = π2(x)) = 1− Ex∼D[1{π1(x) ̸=π2(x)}]

≤ 1− Ex∼D

[
KL(π1(x)∥π2(x))

4R

]
≤ 1− ε

4R
,

and hence

P
(
Ex∼D

[
KL(π̂(x)∥π̃(x))

]
> ε
)
≤ |K|

(
1− ε

4R

)n

≤ |Π|2 exp
(
− εn
4R

)
.

We now convert the reverse KL divergence involving π̃, to that of π∗. By Lemma 9 it again holds

Ex∼D
[
KL(π̂(x)∥π∗(x))

]
≤ (

1

2
∨ ψ(e4R))Ex∼D,a∼π̂(x)

[(
ln

π̂(a | x)
π∗(a | x)

)2]
.

We then bound each term of

Ex∼D,a∼π̂(x)

[(
ln

π̂(a | x)
π∗(a | x)

)2]
≤ 2Ex∼D,a∼π̂(x)

[(
ln
π̂(a | x)
π̃(a | x)

)2]
+ 2Ex∼D,a∼π̂(x)

[(
ln

π̃(a | x)
π∗(a | x)

)2]
.

The first term can be bounded using Lemma 10:

Ex∼D,a∼π̂(x)

[(
ln
π̂(a | x)
π̃(a | x)

)2]
≤ e(4R ∨ 1)Ex∼D,a∼π̂(x)

[
π̃(a | x)
π̂(a | x)

− 1− ln
π̃(a | x)
π̂(a | x)

]
= e(4R ∨ 1)Ex∼D

[
KL(π̂(x)∥π̃(x))

]
.
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Furthermore, for the second term, using the same argument as (19),

Ex∼D,a∼π̂(x)

[(
ln

π̃(a | x)
π∗(a | x)

)2]
≤ e4R Ex∼D,a∼π∗(x)

[(
ln

π̃(a | x)
π∗(a | x)

)2]
≤ 16(2R2e4R + 3)CRe

(4γ+4)R

γ2
· ln(|R|/δ)

n
,

where the last inequality is repeating the derivation of Theorem 4 for Pγ(R) instead of Π. Putting everything together, we
conclude:

Ex∼D
[
KL(π̂(x)∥π∗(x))

]
≤ (

1

2
∨ ψ(e4R))

(
16eR(4R ∨ 1) · ln(2|Π|/δ)

n
+

32(2R2e4R + 3)CRe
(4γ+4)R

γ2
· ln(|R|/δ)

n

)
.

Proposition 14. It holds that

Ex[KL(π̂(x)∥π∗(x))] ≤ (4R ∨ 1)e8R+1

R2
Ex[KL(π∗(x)∥π̂(x))].

Proof of Proposition 14. Denote the ratio r = π∗(a|x)
π̂(a|x) for brevity. Using the same argument as (19), we have r ∈

[e−4R, e4R]. Then, we have

r − 1− ln r
(a)

≤ e4R

R2
(ln r)2 =

e4R

R2

(
ln

1

r

)2 (b)

≤ e4R

R2
e(4R ∨ 1)

(
1

r
− 1− ln

1

r

)
,

where (a) is by Lemma 9 and (b) is by Lemma 10 with r replaced by 1/r. Thus,

KL(π̂(x)∥π∗(x)) = Ea∼π̂(x)[r − 1− ln r]

≤ e4R

R2
e(4R ∨ 1)Ea∼π̂(x)

[
1

r
− 1− ln

1

r

]
≤ e4R

R2
e(4R ∨ 1)e4R Ea∼π∗(x)

[
1

r
− 1− ln

1

r

]
=
e4R

R2
e(4R ∨ 1)e4R KL(π∗(x)∥π̂(x)).
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C. Experiment Details
In Section C.1, we provide implementation details on model card, hyperparameters, and compute resources on training and
evaluating on the TL;DR dataset. In Section C.2, we provide details on our general chat experiments from Section 6 and
also show additional results on MT-Bench and AlpacaEval 2.0.

C.1. TL;DR Summarization

Dataset. We use the TL;DR dataset that is widely used in related literature (Gao et al., 2024; Song et al., 2024; Huang
et al., 2024), publicly available4. We summarize the dataset statistics in Table 4. Note that DPO and PMLE are trained on
the preference dataset which has preference labels, and other algorithms evaluate the policy based on human references
since they utilize the online responses.

Table 4. TL;DR dataset statistics.

Dataset Train Valid Test

Human Reference 117K 64.5K 6.55K
Preference 92.9K 83.8K N/A

Models. We use Pythia-1.4B5 and Pythia-2.8B6 (Biderman et al., 2023) as our pretrained models, using maximum context
length 512 and maximum generation length up to 53 tokens. In order for training efficiency, we use LoRA (Low-Rank
Adapter, Hu et al. (2022)) for alignment after full-parameter tuning the SFT model.

Implementations. We implement our three approaches (PMLE, reverse KL, preference distillation) on the top of a publicly
available codebase7; preference distillation in particular is based on another publicly available code baseline8. For PMLE
(Section 3), we implement the KL regularizer in (5) using the online responses described in Song et al. (2024). The DPO
baseline takes about 3 hours and PMLE requires about 6 hours with 4 A100 40GB GPUs. Also, reverse KL and preference
distillation, as well as their corresponding baselines RLHF and REBEL, takes about 2.5 days with 4 A100 40GB GPUs.
Lastly, the win-rate is judged by GPT-4 using the gpt-4 checkpoint (as of May 23rd, 2025).

Algorithm 1 Preference Distillation (Sec. 4)

1: Input: (Learned) reward R̂, policy class Π, data distribution µ, learning rate η, training dataset of prompts {xi}ni=1.
2: Initialize:
3: for t = 0, 1, . . . , T − 1 do
4: Sample two responses from a1, a2 ∼ µ(· | x) for a given prompt x ∼ D for all x ∈ {xi}ni=1.
5: Compute the probabilities with preference simulator by

Pπ̃(a1 ≻ a2 | x) := σ
(
R̂(x, a1)− R̂(x, a2)

)
Pπ̃(a2 ≻ a1 | x) := σ

(
R̂(x, a2)− R̂(x, a1)

)
6: Compute the preference distillation loss LDistill,β(π) using (11) and (12).
7: πt+1← πt − η∇LDistill,β(πt)
8: end for

Pseudocode. Since the implementations of PMLE and reverse KL are straightforward from the corresponding DPO and
RLHF baseline, we present the pseudocode for preference distillation for better understanding. As noted in Gao et al. (2024),
the base distribution µ can also be πt in our pseudocode (Algorithm 1). Following the baseline code implementations of
REBEL, we also sample online responses from the distribution πt.

4https://github.com/openai/summarize-from-feedback
5https://huggingface.co/EleutherAI/pythia-1.4b-deduped
6https://huggingface.co/EleutherAI/pythia-2.8b-deduped
7https://github.com/vwxyzjn/summarize_from_feedback_details
8https://github.com/ZhaolinGao/REBEL
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Table 5. Hyperparameter configurations for TL;DR summarization tasks.

Setting Parameters

SFT & RM batch size: 64
learning rate: 3e-6

schedule: cosine decay
train epochs: 1

DPO batch size: 64
learning rate: 3e-6
schedule: linear decay

train epochs: 1
β: 0.05

PMLE batch size: 512
learning rate: 1e-6
schedule: linear decay

train epochs: 1
β: 1e-5
γ: 1e-2

REBEL batch size: 512
learning rate: 3e-6
schedule: linear decay
total episodes: 1e6

num epochs: 4
η: 1.0
kl coefficient: 0.05

Preference Distillation batch size: 512
learning rate: 3e-6
schedule: linear decay
total episodes: 1e6

num epochs: 4
γ: 0.1
kl coefficient: 0.05

RLHF (via PPO) batch size: 512
learning rate: 3e-6
schedule: linear decay
total episodes: 1e6
num epochs: 4

discount factor: 1
gae λ: 0.95
clip ratio: 0.2
value function coeff: 0.1
kl coefficient: 0.05

Reverse KL (Sec. 5) batch size: 512
learning rate: 3e-6
schedule: linear decay

total episodes: 1e6
kl coefficient: 0.05
entropy coefficient: 0.01 or 0.001

LoRA Adapter
Config

r: 1024
α: 2048

dropout: 0.0
bias: False

Generation
Config

sampling: true
top k: 0.0
top p: 1.0

min length: 53
max new tokens: 53
temperature: 0.01 (for DPO and PMLE) or 0.7
(others)

Hyperparameters. We adopt almost the same hyperparameters used in several studies (Huang et al., 2024; Gao et al.,
2024; Song et al., 2024). For completeness, we summarize the hyperparameters used in our experiments in Table 5. Note
that Gao et al. (2024) trains only a single epoch for RLHF and REBEL, but we cannot reproduce their results with just
one epoch. Rather, following the implementation details (Huang et al., 2024), we consider the total episodes 106 which
corresponds to roughly about 8.5 epochs. In this setting, we could reproduce the baseline results or obtain better results.
Hence, reverse KL and preference distillation are also evaluated under this setup.

C.2. General Chat

Dataset and Models. In this experiment, we use the UltraFeedBack dataset (Cui et al., 2023), which is used in various
baselines. We use LLaMA-3-8B-Instruct9 as our base model and Eurus-RM-7B10 as the reward model. One can use other
public base models and reward models as well. Following Gao et al. (2024), we apply a length penalty Γ (for responses
exceeding maximum response length) with a KL regularizer to the reward function: r(x, a) = R̂(x, y) − ζ

(
lnπθt(a |

x)− lnπ0(a | x)
)
.

9https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
10https://huggingface.co/openbmb/Eurus-RM-7b
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Implementations. As in the TL;DR experiments, our implementation for preference distillation is based on Gao et al.
(2024), which is publicly available. The total training time for LLaMA-3-8B-Instruct takes around 7 days on 4 A100 GPUs.
In order to evaluate the model quality using MT-bench (Zheng et al., 2023) and AlpacaEval 2.0 (Dubois et al., 2024), we use
the public GitHub repositories.1112

Hyperparameters. Similar to TL;DR experiments, we adopt the hyperparemeter configurations of Gao et al. (2024); for
completeness, the full specification is presented in Table 6. Note that, due to the scale of experiments, we choose the best
hyperparameter γ used in TL;DR experiments. Consequently, the reported performance of preference distillation might be
conservative, as more fine-grained hyperparameter tuning could yield further performance gains.

Table 6. Hyperparameter configurations for general chat experiments.

Setting Parameters

REBEL batch size: 32
learning rate: 1e-7
schedule: linear decay
train epochs: 1
num epochs: 4
η: 1.0
ζ: 0.5
Γ : −4

Preference distillation batch size: 32
learning rate: 1e-7
schedule: linear decay
train epochs: 1
num epochs: 4
β: 0.05
γ: 0.1
Γ: -4

Generation
Config

sampling: true
top k: 0.0
top p: 1.0

min length: 1024
max new tokens: 1024
temperature: 0.5

Table 7. Quality analysis for general chat experiments.

Models
MT-Bench
Average

AlpacaEval 2.0
LC Win-rate

AlpacaEval 2.0
Win-rate

LLaMA-3-8B-Instruct 8.10 30.50 30.50

LLaMA-3-8B-REBEL 7.89 31.25 31.68
LLaMA-3-8B-Distill 7.79 32.59 33.04

Additional Results. In addition to alignment tax in Section 6, we also include the general benchmark for evaluating
LLMs: (i) MT-Bench (Zheng et al., 2023) and (ii) AlpacaEval 2.0 (Dubois et al., 2024) for quality analysis in Table 7. In
Table 7, the MT-bench score of REBEL is slightly higher than that of preference distillation, but are very similar to each
other. However, note that preference distillation is much better than REBEL baseline in terms of AlpacaEval 2.0 win-rate
(including LC win-rate), which is known to have a higher Spearman correlation with Chatbot Arena (Dubois et al., 2024)
than MT-bench. Taken together, these findings demonstrate the substantial promise of our preference distillation approach.

11https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
12https://github.com/tatsu-lab/alpaca_eval
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