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ABSTRACT

A common assumption of general causal mechanisms is invariant across all sit-
uations in the environment, just as Newton’s laws of motion are always-valid
mechanisms. However, in reality, the causal mechanisms are often partially ac-
tivated from a partially observed mechanism under specific situations, such as the
power mechanism of a hybrid vehicle changes according to the type of energy
source available. This brings three following problems: (i) definitely, how to de-
scribe these changing mechanisms in a unified causal model, (ii) theoretically,
what conditions make the dynamic causal model identifiable, and (iii) methodol-
ogy, how to learn the model. In response to them, we novelly extend the definition
of the directed acyclic graph to the dynamic causal graph with condition labels
on edges. We provide the identification when the changing mechanisms follow a
linear latent Gaussian dynamic causal model (DynaCM). Building upon these,
we devise a five-step algorithm to recover causal mechanisms and reduce condi-
tion labels of edges, thereby identifying the dynamic causal graph. Experiments
on both synthetic and real-world data demonstrate the effectiveness of our method.

1 INTRODUCTION AND RELATED WORK

Causality seeks to uncover mechanisms that generate data, offering a structured account of how
variables influence one another beyond correlations (Pearl, 2009b; Schölkopf et al., 2021). Yet in
many systems, these mechanisms are not fixed but depend on conditions (Rubenstein et al., 2017;
Peters et al., 2017). A parallel can be found in physics: macroscopic laws like thermodynamics
appear universal, but at the microscopic level they arise from interactions that vary with states like
temperature or pressure (Chalupka et al., 2016; Beckers & Halpern, 2019). If one insists on describ-
ing both levels with a single fixed law, crucial conditional details are lost. The same problem arises
in causal mechanisms: observations collected in different contexts or at different scales may yield
seemingly inconsistent causal graphs (Rubenstein et al., 2017). This issue is particularly prevalent
in the era of large-model and complex agents decision-making scenarios, where an agent collects
data in an open-world environment under a limited observation window. In such cases, the causal
mechanisms themselves may shift as the observation window changes, leading to context-dependent
and seemingly inconsistent causal structures.

Classical discovery methods, which assume a fixed causal structure, either merge data from different
conditions, obscuring the true mechanisms, or analyze them separately, fragmenting the system.
Existing approaches fall into three categories: (i) constraint-based methods (Spirtes et al., 2000;
1995; Huang et al., 2022; Dong et al., 2023), (ii) score-based methods (Alonso-Barba et al., 2013;
Karan & Zola, 2016), and (iii) functional-based methods (Yang et al., 2021; Zhang & Hyvärinen,
2009). More detailed discussion of the related work is provided in Appendix A. While these methods
recover causal structures under their respective assumptions, they still rely on fixed mechanisms and
cannot capture condition-dependent variations. This calls for a unified framework to represent such
relations within a single graph.

Take Figure 1 as an illustrated example. (i) In the condition that Switch 1 is on, Light is caused by
Electricity and Switch 1. (ii) In the condition that Switch 1 is OFF and Switch 2 is ON, Light is
caused by Switch 2 and Electricity. (iii) In the condition that both Switch 1 and Switch 2 are OFF,
no causality exists. These changing mechanisms bring the following three problems:
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1. How to formulate the changing causal mechanisms and unknown corresponding conditions in
a unified graph model?

2. In what situations will the dynamic graph model be identifiable?
3. How to identify the dynamic graph model?

Electricity

Switch 1

Switch 2

Light

ON

OFF
	𝑆!

	𝐸

	𝑆"

	𝐿

Condition 1:
Switch 1 on

Changing Causal Mechanisms vary with conditions

	𝑆!

	𝐸

	𝑆"

	𝐿

Condition 2:
Switch 1 on
Switch 2 off

	𝑆!

	𝐸

	𝑆"

	𝐿

Condition 3:
Switch 1 off
Switch 2 off

Figure 1: A simple case (from Pearl (2009b)) of dynamic mechanisms in a circuit environment and
its three causal graphs under three conditions. Here, E denotes Electricity, L denotes Light, S1

denotes Switch 1, and S2 denotes Switch 2.

To address the first problem, we introduce the concept of a dynamic causal graph, which general-
izes the classical invariant causal graph by allowing causal edges to change under latent condition
triggers. Unlike standard Directed Acyclic Graphs (DAGs) that assume fixed mechanisms across
all contexts, the dynamic causal graph explicitly represents mechanism variations induced by latent
conditions. To solve the second problem, we theoretically analyze the identification of a dynamic
causal graph under a linear latent dynamic Gaussian causal model assumption. Building upon this,
we solve the third problem with a five-step dynamic causal discovery algorithm. We summarize our
contributions as follows:

• Conceptually, we first propose the definition of a dynamic causal graph, which describes the
changing mechanisms of reality in a general unified graph model.

• Theoretically, we proposed the identification of our dynamic causal discovery algorithm under
a very general assumption.

• Methodologically, we proposed a five-step algorithm for learning the dynamic causal graph
even if existing latent variables.

2 LINEAR LATENT GAUSSIAN DYNAMIC CAUSAL MODEL

𝑆!

𝐸

𝑆"

𝐿

𝑆! ∼ 𝒩(2, 0.5)

𝑆! ∼ 𝒩 9999,0.1 ∧ 𝑆" ∼ 𝒩 2,0.5

(𝑆! ∼ 𝒩(2,0.5)) ∨ (𝑆! ∼ 𝒩 9999,0.5 ∧ 𝑆" ∼ 𝒩 2,0.5 )

Figure 2: An example of a dynamic causal
graph in a circuit environment, each of vari-
ables is described by Gaussian distribution.

In this work, we focus on the linear latent Gaussian
dynamic causal model (DynaGCM), in which the
changing mechanisms of the causal graph are trig-
gered by latent conditions. We begin by defining a
dynamic causal graph—capturing the causal graph
skeleton of DynaGCM—based on the concept of a
DAG with graph labeling (Gallian, 2012).

Definition 1 (Dynamic causal graph) A dynamic
causal graph G is a directed acyclic graph with
labeled directed edges. Formally, it is a 3-tuple
G = (v, e,Ce) where

• v is a list of variables in the system;
• e is a list of directed edges spanning all conditions, e.g. ei→j ∈ e means an edge from vi to vj;
• Ce is the condition set of the existence of directed edges e among the distribution of data vari-

ables, such as the condition of existance of ei→k is (vi, vj , vk) ∈ v, cei→k : (vi ∼ N (1, 3)∧vj ∼
N (5, 2)) ∈ Ce;

Figure 2 gives an example of a dynamic causal graph. Note that an 9999 means that the switch is
open. Let o and l represent the observed and latent variables, respectively. Then, their concatenation
v := o ⌢ l represents the total variables in G. Let x := xo ⌢ xl be the dataset, where xo and xl

are the samples on the observed variables and latent variables, respectively. Then the linear latent
Gaussian dynamic causal model can be defined as follows:

2
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Definition 2 (Linear Latent Gaussian Dynamic Causal Model (DynaGCM)) Suppose a dy-
namic causal graph G = (v, e,Ce), each data variable is generated by the equation:

vi =
∑

vj∈Pa(vi),fver(xo,cej→i )=1

αej→ivj + ϵi, (1)

where Pa(vi) = {vj | (vj → vi) ∈ e, 0 < Prxo

[
fver(xo, cej→i) = 1

]
} denotes the set of all

the parents nodes of vi regardless condition, and αej→i ∈ [0, 1] is the linear weight of edge ej→i.
fver(xo, cej→i) indicates whether the observed value of variables in sample x satisfy the condition
cej→i . It is defined as

fver(xo, cej→i) =

{
1, if the observed variables in sample xo satisfy cej→i ,
0, otherwise.

(2)

Moreover, each noise variable ϵ is a Gaussian distribution variable.
As shown in Figure 1, if one turns on Switch 1, it changes the state of Switch 1 and the existence of
the causal edge between Switch 2 and Light; we call this edge as Dynamic Edge defined as below.

Definition 3 (Dynamic Edge) Given a G = (v, e,Ce). An edge e ∈ e is called a dynamic edge iff
the activation is not unique across samples, i.e., 0 < Prxo

[
fver(xo, ce) = 1

]
< 1.

For constructing DynaGCM, the main challenge lies in identifying dynamic edges and their associ-
ated conditions. Essentially, this amounts to uncovering the relevant internal states: the activation of
a dynamic edge is triggered by changes in these internal states, which can be traced back to the root
causes of the variables influencing the edge and their corresponding noise terms. Consequently, we
determine the conditions of dynamic edges (in the following definition) through specific observation
values that serve as proxies for these internal states.

Definition 4 (The Condition of a Dynamic Edge) The condition of a dynamic edge is a minimal
set of multivariable Gaussian distributions on some observed variables, such that:

(i) If these multivariable Gaussian distributions hold in the environment, the dynamic edge exists.
If the dynamic edge does not exist, these multivariable Gaussian distributions must not hold.

(ii) The changes in the observed Gaussian distributions are caused by changes in their noise vari-
ables rather than the influences from other variables.

The first rule ensures that one can infer if a dynamic edge is activated from his observed observation.
The second rule ensures that inference is based on the root cause that activates the dynamic edge.
Building upon the above definitions, we conclude the problem of dynamic causal discovery as:

Definition 5 (The Problem of Linear Latent Dynamic Causal Discovery) Given the observed
data of variables xo which is generated under Equation 1, the problem of dynamic causal discovery
is to identify the tuple G = (v, e,Ce).

3 PRELIMINARY INTUITION AND PROBLEM DECOMPOSITION OF DISCOVER
DYNAGCM

In this section, we present the general idea for solving the DynaGCM discovery problem (Definition
5) to help understand what we do. The key is to construct the dynamic causal graph from multiple
linear latent Gaussian causal models (GCMs) (Dong et al., 2025), which serve as the static counter-
parts of our proposed DynaGCM. Take Figure 1 as an example. In the circuit environment, there are
three possible causal relationships. Each sample x follows one of the three conditions in Figure 1,
and its generation equation (Eq. 1) can be written as

vi =
∑

vj∈Pa(vi),fver(x,vs1=1)=1

αej→ivj + ϵ1i , (3)

vi =
∑

vj∈Pa(vi),fver(x,vs1=1∧vs2=0)=1

αej→ivj + ϵ2i , (4)

or
vi =

∑
vj∈Pa(vi),fver(x,vs1=0∧vs2=0)=1

αej→ivj + ϵ3i , (5)

3
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where the index {1, 2, 3} corresponds to Condition 1, 2, or 3, respectively. Each equation with its
DAG defines a GCM, which can be recovered by the RLCD algorithm (Dong et al., 2023) and the
parameter estimation method (Dong et al., 2025). In other words, if the assignment of each data
point to its condition group is known, existing methods already provide an identification scheme.

Given the identification of GCM, our approach proceeds in three steps: (i) assign the observed
data into groups for distinct conditions, (ii) discover a GCM within each group, and (iii) merge the
edge conditions across groups to define the dynamic edge condition. This raises two key problems:
(i) what is the identification condition for assigning samples to GCMs, and how to recover these
assignments, and (ii) how to reduce multiple GCMs into a dynamic causal graph.

For (i), the identification theory in Dong et al. (2025) shows that different GCMs lead to different
Gaussian distributions of xo, while Yakowitz & Spragins (1968) establishes identifiability for mix-
tures of multivariable Gaussian distributions. Together, they justify using mixture Gaussian learning
methods, such as the Expectation-Maximization (EM) algorithm, to recover the assignments. For
(ii), inspired by Definition 4, we infer the condition sets Ce of a dynamic causal graph G from differ-
ences among estimated GCMs: if a minimal set of noise distributions determines the existence of an
edge, then the observed distributions form a condition ce ∈ Ce for that edge. Detailed explanation
please check Appendix E. We provide a detailed related work discussion with us in Appendix A

4 DYNAMIC CAUSAL DISCOVERY ALGORITHM

Data being assigned to 
their conditions

Step 2
Identify equivalent 

classes of causal graph 
for each condition

Step 1 Find Assignment

Step 2-4 Identify causal structure and parameters
Step 3

Converting DAGs in 
equivalent class as 
same causal order 

Step 4
Learning causal 

model parameters

Reduce the 
unnecessary part of the 

graph and condition

Step 5 Reduce Graph

	𝑆!

	𝐸

	𝑆"

	𝐿

Dynamic 
Causal Graph 

with condition

Figure 3: Flowchart of Our Algorithm.

The above discussion given in Section 2 and 3 inspires our solution to the linear latent dynamic
causal discovery problem. We provided a flowchart of our algorithm in Figure 3, which can be
summarized as five steps: (i) learning sample assignments of GCMs (“find Assignments”), assign
the observed data into groups corresponding to distinct conditions (ii) identify Markov equivalent
classes of GCMs for each assignment (“identify Causal Structures”), (iii) converting each Markov
equivalent class to DAG in a same causal order (“PDAGs To DAGs”), (iv) learning parameters of
GCMs with given DAGs (“identify Causal Models”), (v) reducing the dynamic causal graph and
conditions, i.e., DynaGCM (“reduce Dynamic Causal Graph”). We propose our method in Algo-
rithm 1 and detail each step in the following subsections.

4.1 STEP 1: FIND ASSIGNMENTS

We start by learning the assignments of observed data xo in this step. Given that xo is generated by
an DynaCM with dynamic causal graph G, we assume there are K different GCMs in the environ-
ment, and thereby xo follows a mixture Gaussian distribution with K components.

To identify the assignments of each sample, we begin with the identification of the mixture Gaussian
distribution. Teicher (1961) proves that a one-dimensional mixture Gaussian distribution is identi-
fiable up to label permutation. Furthermore, Yakowitz & Spragins (1968) relaxes the identifiable
theory to the multi-dimensional setting, which can be described as follows:

Theorem 1 (Identifiability of Multivariate Gaussian Mixtures (Yakowitz & Spragins, 1968))
LetNd = {N ( · | µ,Σ) : µ ∈ Rd, Σ ≻ 0} be a set of linear-independence d-dimensional Gaussian
distribution. Finite mixtures over Nd are identifiable up to label permutation; i.e., if two finite
Gaussian mixtures induce the same distribution, then after relabeling they have identical numbers
of components and matching mixing weights, means, and covariance matrices.

4
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Algorithm 1: Dynamic Causal Discovery

Require: N observed samples xo = {xon}Nn=1 on variables o
Ensure: dynamic causal graph G

1: //— K = #GCMs, hn ∈ h is assignment of xon
2: (K,h)← FINDASSIGNMENTS(xo)
3: for each k in {1:K} do
4: x̂o ← {xo

n | hn = k, 1 ≤ n ≤ N}
5: Mk ← IDENTIFYCAUSALSTRUCTURES(x̂o)
6: end for
7: D1:K ← PDAGSTODAGS(M1:K)
8: for each k in {1:K} do
9: x̂o ← {xon | hn = k, 1 ≤ n ≤ N}

10: //— parameters Θk for kth model
11: Θk ← IDENTIFYCAUSALMODELS(x̂o,Dk)
12: end for
13: G ← REDUCEDYNAMICCAUSALGRAPH(M1:K ,Θ1:K)
14: return G

Theorem 1 guarantees that the assignments are identifiable if the observed Gaussian distributions
corresponding to different GCMs are linearly independent. This leads to the central question: under
what conditions can each individual GCM be identified from the observed data?

To address this question, we introduce the concept of atomic cover (Dong et al., 2025). Let the
effective cardinality be defined as ||V|| = |(∪v∈Vv)|. Pure children (PCh) is defined as follows:

Definition 6 (Pure Children (Dong et al., 2023)) ṽ are pure children of variables v in graph D,
iff Pa(ṽ) = ∪ṽi∈ṽPa(ṽi) = v and v ∩ ṽ = ∅. We denote the pure children of v in D by PCh(v).

Definition 7 (Atomic Cover (Dong et al., 2023)) Let v̂ ∈ v denotes the variables, where nl out of
v̂ are latent, and the remaining |v̂| −nl are observed. v̂ is an atomic cover if v̂ is a single observed
variable, or if the following conditions hold:

(i) There exists a set of atomic covers A, with ||A|| ≥ nl + 1, such that ∪a∈Aa ⊆ PCh(v̂).
(ii) There exists a set of covers B with ||B|| ≥ nl+1, s.t. (∪b∈Bb)∩ (∪a∈Aa) = ∅, every element

in ∪b∈Bb is a neighbour of every element in v̂, and v d-separates B and A.
(iii) There does not exist a partition P of v, s.t., all elements in P are atomic covers.

Based on atomic cover, Dong et al. (2023) first proposes two conditions for the causal structure
identification of GCM as follows:

Condition 1 (Basic Conditions for Structure Identifiability (Dong et al., 2023)) A causal graph
D of GCM satisfies the basic graphical condition for identifiability, if every latent variable belongs
to at least one atomic cover in D and for each atomic cover with latent variables, any of its children
is not adjacent to any of its neighbours.

Condition 2 (Condition on Colliders (Dong et al., 2023)) In D, if (i) there exists sets of variables
v, v1, v2, and t such that every variable in v is a collider of two atomic covers v1, v2, and t is a
minimal set of variables that d-separates v1 from v2, and (ii) there exists at least one latent variable
in v ∪ v1 ∪ v2 ∪ t, then we must have |v|+ |t| ≥ |v1|+ |v2|.

The structure identifiability result can be summarized as follows. For a DAG D, if Condition 1
and Condition 2 hold, then the structure is asymptotically identifiable up to the Markov equiva-
lence class (MEC) of Omin(Os(D)) (see Appendix B for definitions of Omin(·) and Os(·)). In other
words, the causal structure of D can be recovered except that the orientation of some edges may
remain undetermined. Furthermore, Dong et al. (2025) show that, for any DAG in the identified
equivalence class, the parameters and noise distributions of a GCM are also identifiable from the
observed data, provided that certain trek-related conditions (Sullivant et al., 2010) are satisfied. This
result is formalized in Theorem 2.

5
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Definition 8 (Treks (Sullivant et al., 2010)) InD, a trek from vi to vj is an ordered pair of directed
paths (pi, pj) where pi has a sink vi, pj has a sink vj , and pi and pj have the same source vk, i.e.,
top(pi, pj) = vk. A Trek is simple if pi and pj have no intersection except their common source vk.

Theorem 2 (Sufficient Condition for Parameter Identifiability (Dong et al., 2025)) Assume
that D satisfies Conditions 1 and 2 and thus the structure can be asymptotically identified up to the
MEC of Omin(Os(D)). For any DAG in the equivalence class, the parameters are identifiable (up
to group sign), if both the following hold:

(i) For any atomic cover v = o ∪ l, |l| ≤ 1.
(ii) If an atomic cover v = o ∪ l satisfies |l| ̸= 0 and |o| ≥ 1, then all simple treks between l and

o do not contain any latent variables that are not in l.

With Theorem 1 and 2 together, we propose the identification of the observed mixture Gaussian
distribution generated by DynaCM as below:

Theorem 3 (Identification of Observed Mixture Gaussian Distribution) Given the observed
data generated by an DynaCM, if each decomposed GCM follows the identification in Theorem 2,
then the observed mixture Gaussian distribution is identifiable.

Based on this theorem, we propose the algorithm for step 1 with the EM algorithm and Bayesian
Information Criterion (BIC) penalty in Algorithm 2 to find the final assignment.

Algorithm 2: FIND ASSIGNMENTS

Require: N observed samples xo = {xon}Nn=1 on variables o
Ensure: GCMs count K, assignment h of xo

1: k ← 1, L′
0 ← −∞

2: while True do
3: //— EM on current k-component mixture
4: run EM until

∣∣L(t)
k −L

(t−1)
k

∣∣/|L(t−1)
k | < 10−6, get {pj , µj ,Σj}kj=1

5: append BIC penalty on Lk to get L′
k

6: if L′
k ≤ L′

k−1 then
7: //— no further gain
8: set K as k − 1 and {pj , µj ,Σj}Kj=1 as the parameters under k − 1
9: break

10: else
11: k ← k + 1
12: end if
13: end while
14: set hi ∈ h as the Maximum A Posteriori (MAP) assignment of xoi under {pj , µj ,Σj}Kj=1
15: return K, h

4.2 STEP 2-4: IDENTIFY CAUSAL STRUCTURES AND PARAMETERS

Based on Theorem 2, we identify the MECMk ∈ M1:K for each GCM by RLCD method, where
the RLCD algorithm is detailed in Dong et al. (2023).

Then, for each MECMk ∈M1:K we select a DAGDk, as required in Theorem 2. This corresponds
to converting a Partially Directed Acyclic Graph (PDAG) into a DAG, which can be solved by the
Dor–Tarsi method (Dor & Tarsi, 1992). The method proceeds iteratively: (i) identify a potential sink
node (a node with no outgoing edges), and (ii) orient all adjacent undirected edges toward this sink
and then remove it from the graph. However, directly applying the Dor–Tarsi method is not sufficient
in the dynamic causal discovery setting, since the choice of topological order affects the estimation
of parameters and noise distributions. For example, the Markov equivalence class vi − vj − vk can
be oriented as vi → vj → vk or vi ← vj ← vk, both consistent with the same independencies
but implying different topological orders and noise assignments (e.g., vi = ϵi vs. vi = αvj + ϵ′i).
This will bring the changes to the estimations on both parameter and noise variable distributions
when different GCMs of DynaCM are estimated under different topological orders, causing the

6
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spurious condition reduction of a dynamic edge. Fortunately, MECs from GCMs correspond to the
same dynamic causal graph, thereby they are partially activated by the same DAG, which admits a
consistent topological order. Based on this, we propose a synchronized PDAG-to-DAG procedure as
our Step 3 (Algorithm 3) that first finds a shared topological order across all MECs and then applies
the Dor–Tarsi method under this order.

Algorithm 3: SYNCHRONIZED PDAGS TO DAGS

Require: PDAGsM1:K over the same v
Ensure: shared topological order π and aligned DAGs D1:K

1: Fix a tie-breaking list σ = (v1, . . . , v|v|) covering v (e.g., lexicographic by variable name).
2: π ← [ ]; make working copies M̃1:K onM1:K

3: while |π| < |v| do
4: // Intersection of Dor–Tarsi potential sinks across all PDAGs (Dor & Tarsi, 1992)
5: S←

⋂K
i=1 POTENTIALSINKSDT(M̃i)

6: if S = ∅ then
7: backtrack or fail
8: end if
9: v ← min≺σ S

10: for i = 1 to K do
11: // one Dor–Tarsi elimination step at v (Dor & Tarsi, 1992)
12: M̃i ← DORTARSISTEP(M̃i, v)

13: remove v from M̃i

14: end for
15: append v to π
16: end while
17: // finalize: execute the fixed order on originals (Dor & Tarsi, 1992)
18: D1:K ← {DORTARSIRUNWITHORDER(Mi, π)}Ki=1
19: return (π,D1:K)

The proposed PDAG-to-DAG procedure resolves the ambiguity in topological ordering and thereby
avoids spurious changes in noise variables. With the identifiability guaranteed by Theorem 2, in
Step 4, we estimate the parameters and noise distributions using stochastic gradient descent. To this
end, we first reformulate a GCM, as given in Equation 3, as follows:

v = F⊤v + ϵ, ϵ ∼ N (µϵ,Σϵ), Q := (I− F⊤)−1, (6)

where F is the coefficient matrix to be optimized, in which elements without edges in the DAG are
masked to zero. N (µϵ,Σϵ) is the Gaussian distributions of the noise variables to be optimized.
Then, the mean and covariance of observed variables o are

µo = SQµϵ =: Aµϵ, Σo = SQΣϵQ
⊤S⊤. (7)

Given N i.i.d. samples, let x̄o be the sample mean and Σ̂o := 1
N

∑N
n=1

(
xo
n − x̄o

)(
xo
n − x̄o

)⊤
be

the centered sample covariance. The negative log-likelihood is

NLL =
N

2

[
log detΣo + tr

(
Σ−1

o Σ̂o

)
+ (x̄o −Aµϵ)

⊤Σ−1
o (x̄o −Aµϵ)

]
. (8)

4.3 STEP 5: REDUCE DYNAMIC CAUSAL GRAPH

The above steps identify all the GCMs from the DynaGCM. In this step, we reduce these GCMs to
a dynamic graph, which includes two parts: (i) reduce GCMs to build the structure of DynaGCM,
and (ii) traverse to search for all conditions for each dynamic edge. Roughly speaking, for all order
pairs among the data variables, we add an edge between them if this edge exists in some GCMs.
Further, if this edge does not exist in some GCMs, we label it as a dynamic edge. Finally, for
each dynamic edge, we traverse all possible combinations of variables from small to large, and
merge all valid combinations to build a logical expression as the condition of the dynamic edge.
Although, per Definition 4, these conditions can in principle be inferred solely from changes in the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

noise variable distributions, in this step we also require changes in the corresponding observed data
distributions. Because the optimization in Equation 8 is nonconvex, the estimated noise distributions
may be imperfect, potentially leading to erroneous conditional expressions. We provide the detailed
algorithm in Appendix D and the theory analysis for the dynamic edges in Appendix F.

5 EXPERIMENTS

5.1 SYNTHETIC DATA

We begin with the synthetic data settings. Following Dong et al. (2023), we consider three types
of causal graphs: (i) latent tree structures, (ii) latent measurement structures, and (iii) general latent
structures. The tree models require each variable to have one parent; the measurement models
allow each latent variable to have two pure children; and the general models further relax this rule.
Examples are given in Appendix C. For each type, we consider 10 different DynaGCMs and dataset
sizes {5k, 10k, 20k}. More details are provided in Appendix G.

Our method is general, allowing dynamic edges and flexible connections between latent and ob-
served variables. Since existing methods do not address dynamic causal graphs with condition-
labeled edges, there are no direct baselines, which also highlights both the novelty and validity of
our framework. Therefore, we evaluate our approach in structure learning mainly by comparison
with the ground truth. For the condition learning, to demonstrate the effectiveness of our solution,
we propose an ablation method solely to infer the conditions from the changes of noise variable
distributions in step 5, named Our-S.

Structure learning/identification We use the F1 score to evaluate the performance of our method
on the structure learning. In detail, F1 is the harmonic mean of precision and recall, i.e., F1 =
2×Precision×Recall

Precision+Recall . Precision measures the fraction of correctly identified edges among the edges re-
trieved by the algorithm. Recall measures the fraction of true edges that were successfully identified.
The performances on structure learning are provided in Table 1. The high F1 scores across all set-
tings show the effectiveness of our method. Our method achieves slightly lower scores on general
models than both tree models and measurement models, demonstrating the robustness of our method
on complicated scenarios. Among different sizes of data, our method still achieves comparable per-
formance, which means our method can identify the structure even under a small data size.

Condition learning We use the Accuracy (Acc) to evaluate the performance on condition learning.
Following Dong et al. (2025), we rely on 30 random starts and choose the noise variable distribu-
tions with the best likelihood, because of the nonconvexness of Equation 8. The results on the
condition learning are provided in Table 2. It shows that Acc for condition learning and F1 for struc-
ture learning follow the same trend, implying that error is dominated by structure learning rather
than parameter learning in our method. Although the Acc on tree models > measurement models
> general models, our method remains robust, effectively learning the conditioning variables of dy-
namic edges under complex settings. Moreover, our method achieves better Acc compared to Our-S,
showing the effectiveness of considering changes on observed data variable distributions in Step 5.

Table 1: F1 on the structure learning.

Data Settings Our
5k 0.96-(0.03)

Latent+tree 10k 0.97-(0.01)
20k 0.99-(0.00)
5k 0.88-(0.09)

Latent+measm 10k 0.91-(0.05)
20k 0.95-(0.04)
5k 0.79-(0.12)

Latent+general 10k 0.83-(0.10)
20k 0.91-(0.05)

Table 2: Acc on the condition learning.

Data Settings Our Our-S
5k 0.74-(0.15) 0.66-(0.12)

Latent+tree 10k 0.79-(0.10) 0.75-(0.13)
20k 0.85-(0.09) 0.78-(0.10)
5k 0.66-(0.13) 0.52-(0.16)

Latent+measm 10k 0.70-(0.12) 0.65-(0.14)
20k 0.73-(0.07) 0.68-(0.11)
5k 0.51-(0.19) 0.40-(0.18)

Latent+general 10k 0.53-(0.13) 0.44-(0.17)
20k 0.57-(0.15) 0.49-(0.11)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 REAL-WORLD DATA

Openness

Conscientiousness

L4

L2

L5

L6

[O1] I have a 
rich vocabulary.

[O2] I have difficulty 
understanding abstract 

ideas.

[O8] I use difficult 
words.

[O4] I am not interested 
in abstract ideas.

[O3] I have a vivid 
imagination.

[O6] I do not have 
a good imagination.

[O5] I have 
excellent ideas.

[O10] I am full of 
ideas.

[O7] I am quick to 
understand things.

[O9] I spend time 
reflecting on things.

[C1] I am always 
prepared.

[C10] I am 
exacting in my work.

[C7] I like order.

[C4] I make a 
mess of things.

[C8] I shirk my duties.

[C5] I get chores 
done right away.

[C2] I leave my 
belongings around.

[C3] I pay attention to details.

[C9] I follow a schedule.

[C6] I often forget to put things 
back in their proper place.

[A10] I make 
people feel at ease.

[A3] I insult people.

Neuroticism[N1] I get 
stressed out easily.

[N4] I seldom 
feel blue.

[N2] I am relaxed 
most of the time.[N10] I 

often feel blue.

[N8] I have 
frequent 
mood swings.

[N7] I change 
my mood a lot.

[N9] I get 
irritated easily.

[N3] I worry 
about things.

[N5] I am 
easily disturbed.

[N6] I get 
upset easily.

Extraversion

L3
[E1] I am the life 
of the party.

[E5] I start 
conversations.

[E4] I keep in the 
background.

[E6] I have little to say.

[E8] I don't like to draw 
attention to myself.

[E9] I don't mind being 
the center of attention.

[E10] I am quiet 
around strangers.

[E2] I don't talk a lot.

[E7] I talk to a lot of 
different people at parties.

[E3] I feel comfortable 
around people.

Agreeableness

L1

[A1] I feel little 
concern for others.

[A4] I sympathize 
with others' feelings.

[A5] I am not interested in 
other people's problems.

[A7] I am not really 
interested in others.

[A6] I have a 
soft heart.

[A8] I take time 
out for others.

[A9] I feel others' 
emotions.

[A2] I am 
interested in people.

[N10] ~ 𝒩(2.19, 0.662) ∧ [N8] ~ 𝒩(2.07, 0.672)

[A4] ~ 𝒩(4.33, 0.422) ∨ [A6] ~ 𝒩(4.42, 0.562)

Figure 4: Estimated dynamic causal graph on real-world data.

In personality psychology research, the Big Five personality trait model, with the acronym OCEAN
(Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism), is the most common
scientific model for measuring and describing human personality traits. To measure these traits, the
factor analysis technique (Wright, 2017) is employed, which treats these five traits as latent variables
that cause their factors, and thereby utilizes factor markers as a proxy to reconstruct the five traits
(Goldberg, 1992). Another perspective is network theory (Cramer et al., 2012), which proposes
that the five traits emerge from the causal structure of these factor markers. Note that Cramer et al.
(2012) argues that these causal networks are dynamic among individuals, which also aligns with the
dynamic causal graph of our methodology.

In this work, we adopt the Big Five dataset https://openpsychometrics.org/
_rawdata/, which contains 19719 samples on 50 factor variables. Each personality trait has
10 factors with values in {1, 2, 3, 4, 5}, indicating the degree of the trait. Following Dong et al.
(2023; 2025), we preprocess the data to unit variance and use GIN (Xie et al., 2020) to determine
the remaining directions of the output MEC.

The results are shown in Figure 4. The 50 factors mainly group into 5 sub-groups, consistent with
factor analysis (Goldberg, 1992). Moreover, factors for Openness, Neuroticism, and Agreeableness
form networks, in line with network theory (Cramer et al., 2012). We also identify two dynamic
edges in the results: one linking Neuroticism and Openness, and another linking Extraversion and
Agreeableness. These edges show that reflection is more likely under higher neurotic states, and that
conversations become more comforting when individuals show empathy. Detailed conditions and
discussions are provided in Appendix G.2.

6 CONCLUSION & LIMITATION & FUTURE WORKS

In this work, we proposed a dynamic causal discovery method for identifying a linear latent Gaussian
dynamic causal model (DynaGCM). Our method provides a novel paradigm for modeling chang-
ing mechanisms and supports decision-making in complex real-world scenarios. Specifically, we
generalized the classic directed acyclic graph into a dynamic causal graph and employed observed
distributions as conditions, allowing dynamic edges to be explicitly activated or deactivated. We
further established identifiability results to ensure the correct recovery of the dynamic causal graph.
Empirical results on the Big Five dataset demonstrated the effectiveness of our approach. Limitation
and future works are discussed in Appendix H.
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ETHICS STATEMENT

This work investigates causal discovery using a publicly available Big Five personality questionnaire
dataset (public URL provided in the paper). The data are fully anonymized and were originally
collected with notice that responses may be used for research. We do not collect any new data or
interact with participants, and we make no attempt at re-identification. Analyses are reported at
aggregate levels and we avoid any claims that could stigmatize individuals or groups. According
to our institution’s policy, secondary analysis of publicly available anonymized data is typically
exempt from human-subjects review; documentation will be provided upon request. We comply with
the dataset’s terms of use and release only code and derived artifacts necessary for reproducibility,
without redistributing raw personal data. This research complies with the ICLR Code of Ethics, and
all authors have read and acknowledged the Code.

REPRODUCIBILITY STATEMENT

We have taken extensive steps to ensure the reproducibility of our work. Our dynamic causal
discovery algorithm is detailed in Sections 4, and experiments are provided in Section 5. We
further detail the hyperparameters, settings, datasets, and implementation details in Appendix
G. Randomness in all experiments is controlled through the setting of seeds. The real-world
experiment is based on a publicly available Big Five dataset, where the available link is pro-
vided in Section 5. To further support reproducibility, we provide anonymous source code in
https://anonymous.4open.science/r/dynamiccausaldiscovery-7065/
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A RELATED WORK

Our work aims to identify changing causal mechanisms with the dynamic causal graph, which re-
lates to the following two fields: (i) causal discovery, (ii) parameter identification, as well as (iii)
dynamic and condition-based causal discovery. First, causal discovery helps in discerning whether
one variable influences another and thereby recovers the structure of the dynamic causal graph. Sec-
ond, parameter identification helps in evaluating the extent of causal effects and states of variables,
thereby helping in reducing the conditions in the dynamic causal graph. Last, we discuss current
causal discovery methods in dynamic and condition-based settings.

Causal Discovery Existing causal discovery methods (Zanga et al., 2022; Wang et al., 2024)
mainly fall into three categories: constraint-based, score-based, and functional-based methods. (i)
The constraint-based methods utilized tools, like the independence test and the rank deficiency, to
determine the existence of latent variables and MEC, which usually adopt Meek rules (Meek, 1995)
further to determine the directions of undirected edges in MEC. Typical independence test-based
methods include PC (Spirtes et al., 2000), FCI (Spirtes et al., 1995), PCMCI (Runge et al., 2019b),
tsFCI (Entner & Hoyer, 2010), and so on. The rank deficiency-based methods (Dong et al., 2023)
use the rank test to replace the independence test, which provides more statistical information from
observed data, and thereby these methods could identify causal graphs from more general environ-
ments. For instance, Huang et al. (2022) discovers latent hierarchical causal structure with the rank
constraints. (ii) The score-based methods utilize score functions -such as BIC score (Schwarz, 1978),
BDeu score (Heckerman et al., 1995), generalized score functions (Huang et al., 2018), and so on-
to evaluate the score of a given structure and search for the best MEC. Typical methods include GES
(Alonso-Barba et al., 2013), ExactSearch (Karan & Zola, 2016), and so on. (iii) The functional-
based methods utilize an assumed function to describe the data generation process, where the causal
structure is set as the parameters of this function. Building upon this, one can solve the function to
learn the causal relationships. Typical methods include PNL (Zhang & Hyvärinen, 2009), LiNGAM
(Shimizu et al., 2006), ANM (Peters et al., 2014), and so on.

Compared to score-based methods and functional-based methods, the constraint-based methods
show excellent capacity in complicated real-world scenarios with latent variables. Though the
functional-based methods also could discover causal structure with latent variables, they make strong
assumptions about the data generation process, which is usually violated in reality. As a result of it,
our method solves the dynamic causal discovery problem with the constraint-based method and the
rank deficiency test.

Parameter Identification To estimate the parameters and the noise variable distributions with the
existence of latent variables, lots of methods are devised. For instance, one approach is to utilize
the factor analysis technique, which describes a given set of observed variables by identifying la-
tent variables and parameters. Typical methods includes Reiersøl (1950), Williams (2020), and so
on. Furthermore, some approaches introduce the Overcomplete Independent Components Analysis
(OICA) technique to solve this identification problem, such as Adams et al. (2021b), Salehkaley-
bar et al. (2020), Hoyer et al. (2008), and so on. In addition, there are also solutions to identify
the parameters with causal inference techniques (Pearl, 2009a), which estimate the parameters as
causal effects with do-calculus, instrumental variables, and so on. Typical methods include Tian &
Pearl (2002), Jung et al. (2020), and so on. Conversely, some research first converts the DAG to
its variants-such as Ancestral Graph (AG) (Richardson & Spirtes, 2002), Acyclic Directed Mixed
Graph (ADMG) (Pearl, 2009b), and so on-then solves the identification problem with graph criteria
like half-trek (Foygel et al., 2012; Barber et al., 2022), G-criterion (Brito & Pearl, 2002a), and so
on. Typical methods includes Drton et al. (2011), Brito & Pearl (2002b), and so on. Since our
dynamic causal discovery method requires identifying not only the parameters and noise variable
distributions, but also the causal structure in general cases, we follow this approach.

Dynamic and Condition-based Causal Discovery. A growing line of work studies causal dis-
covery under changing mechanisms. CD-NOD (Zhang et al., 2017) and its follow-ups (Huang et al.,
2020) leverage heterogeneity or nonstationarity across domains/time to recover skeletons and ori-
entations by exploiting independent changes in causal modules, often using an observed or inferred
domain index to summarize mechanism shifts. In partially observed settings, recent identifiability
results give graphical conditions under non-Gaussian or heterogeneous errors, but do not provide

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

a unified representation of when an edge is active versus inactive across conditions (Adams et al.,
2021a). Time-series approaches (e.g., PCMCI and variants) embed dynamics into lags to detect
contemporaneous and lagged links; extensions to semi-stationary or periodic regimes inherit this
temporal framing (Runge et al., 2019a; Runge, 2020). By contrast, we target a single dynamic
causal graph whose edges carry explicit condition labels, aiming to capture compact, time-agnostic
physical rules: mechanisms are switched by conditions rather than by time indices. Moreover,
while many heterogeneous or multi-view methods assume known environment labels or a fixed
number/structure of regimes, our framework infers both the assignments and the number of regimes
from data and then reduces them to condition-labeled edges in one graph.

B ADDITIONAL INFORMATION

Definition 9 (Minimal-Graph Operator (Huang et al., 2022)) Given two atomic covers A,B in
D, we can merge A to B if the following conditions hold: (i) A is the pure children of B, (ii) all
elements of A and B are latent and |A| = |B|, and (iii) the pure children of A form a single atomic
cover, or the siblings of A form a single atomic cover. We denote such an operator as minimal-graph
operator Omin(D).

Definition 10 (Skeleton Operator (Huang et al., 2022)) Given an atomic covers A in a graph D,
for all vi ∈ A, vi is latent, and all vj ∈ PCh(A), such that vi and vj are not adjacent in D, we can
draw an edge from vi to vj . We denote such an operator as skeleton operator Os(D).

C GRAPH EXAMPLES

C.1 GRAPH EXAMPLES FOR LATENT TREE GRAPH STRUCTURES

Please refer to Figure 5.
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(b) Example 2

Figure 5: Examples of Latent Tree Graph Structures

C.2 GRAPH EXAMPLES FOR LATENT MEASUREMENT GRAPH STRUCTURES

Please refer to Figure 6.

C.3 GRAPH EXAMPLES FOR GENERAL LATENT GRAPH STRUCTURES

Please refer to Figure 7.

D PSEUDOCODE OF STEP 5

Please refer to Algorithm 4.
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Figure 6: Examples of Latent Measurement Graph Structures
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Figure 7: Examples of General Latent Graph Structures

E DETAILS ON IDENTIFICATION AND REDUCTION

Detailed explanation of Figure 1. In the circuit example, the observed data x can only follow
three distinct causal structures. Formally, we start from Equation 1, and substitute the condition-
specific indicators fver(·). This leads to the following generation rules:

(i) If vs1 = 1, the edge es1→L is active and Equation 3 holds. (ii) If vs1 = 1 ∧ vs2 = 0, then
Equation 4 applies. (iii) If vs1 = 0 ∧ vs2 = 0, then Equation 5 applies.

Each observed sample x is generated under exactly one of the three conditions in the circuit envi-
ronment: Condition 1 (vs1 = 1), Condition 2 (vs1 = 1, vs2 = 0), or Condition 3 (vs1 = 0, vs2 = 0).
This mapping ensures that every instance can be uniquely aligned with one of the three DAGs. Thus,
each assignment of conditions corresponds to a specific GCM.

Connection to GCM discovery. Each of the three equations, together with its DAG, forms a
linear Gaussian causal model (GCM). To recover these GCMs from data, we apply the RLCD al-
gorithm (Dong et al., 2023), which identifies the Markov equivalence class from rank-based con-
straints, and then use the parameter estimation method in Dong et al. (2025) to recover coefficients
and noise terms.

Identification of assignments. In the main text, we state that different GCMs induce different
Gaussian distributions over the observed variables xo. Here we provide more details. According to
Dong et al. (2025), if a set of GCMs is identifiable, then their corresponding observed distributions
must differ. This implies that data generated under different latent conditions can, in principle, be
separated. In addition, Yakowitz & Spragins (1968) proves that mixtures of multivariable Gaussian
distributions are identifiable (up to label permutation). Combining these results, the assignment of
samples to GCMs is guaranteed to be identifiable under our assumptions. In practice, we adopt the
Expectation-Maximization (EM) algorithm to estimate the parameters of the mixture model and to
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Algorithm 4: REDUCEDYNAMICCAUSALGRAPH

Require: DAGs D = {D1:K} on variables v, where the observed variables is o and the latent
variables is l, the observed variable distributions N 1:K

o computing by the estimated
edge–coefficient matrices {Fk}Kk=1 and noise variable distributions N 1:K

ϵ
Ensure: dynamic causal graph G

1: create a dynamic causal graph G among v with empty edge
2: for all (vi, vj) ∈ v, i ̸= j do
3: if ∃k ∈ {1, · · · ,K},∃e ∈ ek : fSk(e) = i ∧ fTk(e) = j then
4: // — add an edge to the dynamic causal graph
5: add an edge e, a map e→ i, and a map e→ j into the e,S,T of G, resprectively
6: if ∃k′ ∈ {1, · · · ,K}, ̸ ∃e ∈ ek : fSk(e) = i ∧ fTk(e) = j then
7: // — this edge is dynamic, create an empty condition to this edge
8: add condition variable ce with empty condition into Ce, add maps vj → ce into Le

9: let De be the DAG set that exists the edge e
10: s← 1
11: while s ≤ |o| − 1 do
12: for all s observed variable distributions N k

o except the target variable N k
oj from one

of DAGs D that has the edge e do
13: if (i) in the remaining D\{Dk}, both these s observed variable distributions and

their noise variable distributions hold, then these must be the edge e exists. (ii) in
addition, if the edge e not exists, both these s observed variable distributions and
their noise variable distributions must not hold. (iii) no true subset of these s
observed variable distributions satisfies both the (i) and (ii) requirement. then

14: reduce these s observed variable distributions in logical and relationship ∧
equation, and put this equation into the condition ce with a logical or
relationship ∨

15: end if
16: end for
17: s← s+ 1
18: end while
19: end if
20: end if
21: end for
22: return G

recover the assignment of each sample. The Bayesian Information Criterion (BIC) can be further
used to select the optimal number of mixture components.

Reduction to a dynamic causal graph. Once the assignments and individual GCMs are identi-
fied, the next step is to merge them into a unified dynamic causal graph. Inspired by Definition 4, we
interpret the differences among the estimated GCMs as evidence for dynamic edges. Specifically,
if the existence of an edge depends on a minimal set of distributions of noise variables, then the
observed distributions of these variables define a condition ce ∈ Ce. Formally, for each pair of
variables, we traverse the estimated GCMs: if the edge appears in some GCMs but not in others,
we label it as dynamic and record the corresponding conditions. By merging across all groups, we
obtain the final dynamic causal graph G with condition-labeled edges.

F THEORY ANALYSIS FOR DYNAMIC EDGES OF DYNAMIC CAUSAL GRAPH

Definition 11 (hard-intervention (Pearl, 2009b)) For the DynaGCM in Definition 2, a hard inter-
vention on vk that sets it to xk, denoted do(vk = xk), constructs the intervened model by replacing
the structural equation of vk with the constant vk := xk, i.e., removing all incoming arrows into vk;
all other equations for other variables and the noise variable distributions remain unchanged.

Definition 12 (Non-condition) Given xo, generated in the environment with changing mechanisms,
existed a dynamic edge ei→j with a condition cei→j , which is according to Equation 1. For all the
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original sample values xo
1 , . . . , xoj , · · · , xo|v| ∈ xo obeyed the cei→j , let x̂oj represent the differ sample

values corresponding to xoj . Similarly, let xo1
′, . . . , xoj

′, · · · , xo|v|
′ ∈ xo, x̂o

j
′, and xoi

′ be the values
with respect to the case not obeyed the cej→i .

We can determine the non-condition of cei→j with respect to dynamic edge ei→j , if the following
condition holds: (i) for all xo1 , . . . , xoj , · · · , xo|v|, hard-intervent xoj to x̂oj in the environment, then the

value of vi is still the same with xoi ; (ii) for all xo1
′, . . . , xoj

′, · · · , xo|v|
′, hard-intervent xoj

′ to x̂oj
′ in

the environment, then the value of vi sometimes be identical or different with xoi
′.

That is, (i) the sample values of vi are invariant to vj with hard-intervention in Equation 1 under
cei→j ; (ii) the sample values of vi sometimes be identical or different with hard-intervention in
Equation 1 when cei→j is not met.

Proposition 1 (Identificaiton on Condition of DynaGCM) Given the dynamic causal graph G =
(v, e,Ce), which has a dynamic edge ei→j , assuming that data generation process adheres to Equa-
tion 1, we can deduce that cei→j /∈ Ce if and only if: across all xo ∈ xo, when hard-intervent to vj
with Equation 1, (i) the sample values of vi are always invariant with fver(xo, cej→i) = 1 and (ii)
the samples value of vi are not always invarient with fver(xo, cej→i) = 0.

Proof: Let xo1 , . . . , xo
j , · · · , xo|v| and x̂o

j represent the original sample values and hard-intervent

sample values under condition cei→j in Definition 12, respectively. Let xo
i and x̂o

i be the sample
values on vo

i of Equation 1 with the above original and intervention values, respectively. Similarly,
for the case not obeyed cej→i , let xo

1
′, . . . , xoj

′, · · · , xo|v|
′ and x̂oj

′ represent the original sample values

and hard-intervent sample values, respectively. Let xoi
′ and x̂oi

′ be the values of vi .

=⇒: If cei→j /∈ Ce, then according to Definition 12 and Equation 1, it necessitates that (i) xo
i = x̂oi

and (ii) xo
i
′ sometimes be identical or different. Conversely, according to Equation 1, if (i) the sample

values of vi are sometimes changing with fver(xo, cej→i) = 1, then the the causal effect from vo
j

may influence the sample value of vo
i under Equation 1 in sometimes, (i.e., xo

i ̸= x̂oi ), leading to a
contradiction; (ii) the sample values of vi are always invariant with fver(xo, cej→i) = 0, then the
the causal effect from vo

j
′ will always not influence the sample values of voi under Equation 1, (i.e.,

xoi
′ = x̂oi

′), leading to a contradiction. Hence, if cei→j /∈ Ce, it logically follows that there must be:
(i) the sample values of vi are always invariant with fver(xo, cej→i) = 1 and (ii) the sample values
of vi are not always invarient with fver(xo, cej→i) = 0.

⇐=: If (i) the sample values of vi are always invariant with fver(xo, cej→i) = 1, then xoi and x̂oi will
yield identical values, as corresponding to Equation 1, (ii) the sample values of vi are not always
invarient with fver(xo, cej→i) = 0, then xo

i
′ sometimes be identical or different with x̂oi

′. This
implies considering cei→j in Equation 1, we still can not determine the mechanism that generates vi,
allowing us to infer cei→j /∈ Ce. □

This proposition inspires a methodology to identify the conditions of a dynamic edge of the dynamic
causal graph from the data generation by DynaGCMs with Equation 1, by traversing all combina-
tions of data variables and discerning whether this combination is non-condition with the identified
parameters and noise variable distributions from the previous steps of our algorithm. We provide the
pseudocode in Algorithm 4.

G EXPERIMENT DETAILS

G.1 SYNTHETIC DATASET

The average generated parameters of Equation 1 are set to: 15 observed variables and 2 latent
variables; 2 GCMs and each of them has 1 different dynamic edge; 2 conditions for a dynamic edge;
[−2.5, 2.5] causal strength for each edge; Gaussian distribution with [−100, 100] mean and [1, 5]
variance for each noise variable. We use 10 random seeds to generate the data for each setting and
report the mean performance as well as standard deviation.
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Structure Learning. In the experiments on synthetic data verifying the structure learning, to align
the latent variables in the output graph of GCMs with the latent variables in the ground truth graph,
similar to Dong et al. (2023), combinations and permutations of latent variables are considered. In
detail, we first pad each result by adding latents that have no edge to any other variables to match the
number of latents in the ground truth graph. Then, if the number of latents is more than that of the
ground truth, all different combinations will be tried. Finally, we try all the different permutations
of latent variables to test the F1 score.

Condition learning. In condition learning experiments, if the relative error between the parameter
values of two distributions does not exceed 10%, we consider them to be equal, as it is difficult for
a floating-point number obtained through optimization to perfectly match the desired value.

G.2 DETAILS OF DYNAMIC EDGES IN REAL-WORLD DATA

The first dynamic edge is between “[N10] I often feel blue.” and “[O9] I spend time reflecting on
things.” with condition [N10] ∼ N (2.19, 0.662) ∧ [N8] ∼ N (2.07, 0.672). Since 2.19 and 2.07
are relatively high values in the dataset, this implies that individuals reflect more when in a higher
state of neuroticism.

The second dynamic edge is between “[E5] I start conversations.” and “[A10] I make people feel at
ease.” with condition [A4] ∼ N (4.33, 0.422) ∨ [A6] ∼ N (4.42, 0.562). This indicates that when
individuals care about or empathize with others, the conversations they initiate are more comforting,
which aligns with common expectations.

H LIMITATION AND FUTURE WORKS

Our current study has several limitations. First, the theoretical results are developed under linear
Gaussian assumptions, which may not fully capture more complex causal mechanisms in practice.
Second, the algorithm may face higher computational cost when the number of variables and condi-
tions increases. Third, the evaluation is still limited in scope, and further tests on broader real-world
datasets are needed.

In future work, we aim to relax the current assumptions and develop more flexible and powerful
solutions. In particular, we are interested in applying our framework to challenging settings such
as the cold-start problem in world model construction for reinforcement learning, where dynamic
causal discovery could provide a principled way to bootstrap model-based agents in open-ended
environments.

USE OF LLMS

We employed large language models (LLMs) solely to polish the writing of this paper, such as
improving grammar, clarity, and readability. The models were not used for generating original idea-
sexperiments, analyses, or results. All scientific contributions, methods, and conclusions presented
in the paper are entirely the work of the authors.
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