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Abstract
We propose a novel high-level approach to an-001
alyze models in a different way: we could es-002
timate amount of information receipted by a003
model using a crafted set of control statements.004
We introduce a new metrics RIG (raw informa-005
tion gain) in order to do so. Any LLM (large006
language model) could be considered a “black007
box” of compressed information. It is hard to008
measure what amount of information is stored009
inside the model regarding any domain. The010
contrast between the size of a trained model of011
around 43GB 1 compared to 15 trillion tokens012
of training data is staggering 2. The other issue013
is to figure out where do the limits come from:014
is it an architectural constraint or is the limi-015
tation coming from the data used in training.016
So far the most common way to identify if the017
model is properly trained and contains neces-018
sary information is to put it through a list of019
benchmarks and the decision is based on either020
it’s ranking or some educated guess of a score021
threshold. Keeping in mind that the most of022
those benchmarks become part of training data023
for upcoming models we face a vicious cycle of024
never ending benchmark creation. Taken into025
account constant size growth of both language026
models and datasets we face an challenge of027
losing a track of what is efficient and what is028
not to train models as well as simple scale of029
the datasets makes them almost impossible to030
supervise at all, what is an immense obstacle031
when we need to update any language model032
according to different environments those are033
implemented at and we need to bring ethical034
issues, actuality of the human knowledge and035
controversial statements altogether.036

1 Introduction037

1.1 Related Work038

The starting point of this research was Shannon’s039

(1948) “A Mathematical Theory of Communica-040

1https://huggingface.co/nitsuai/
Meta-Llama-3-70B-Instruct-GGUF

2https://ai.meta.com/blog/meta-llama-3/

tion”. The key elements borrowed from his theory 041

are the definition of a bit of information, the gen- 042

eral communication system principles, and Shan- 043

non’s definition of entropy. The training process 044

of a language model fits the schema of general 045

communication: the training dataset acts as an in- 046

formation source, a batch of token sequences as a 047

message and the current state of the model acts as 048

a receiver. We consider an LLM to be a receiving 049

agent receiving a message and based on that its 050

state is updated. Statistical language model the- 051

ory is based on these features as well ((Croft and 052

Lafferty, 2003)), yet there is one very important 053

and unanswered question: “How much information 054

does the text message contain?” 055

So far text data was treated according to Charac- 056

ter encoding principles 3 as a sequence of charac- 057

ters which should be processed commonly through 058

tokenization ((Manning et al., 2014)), word em- 059

bedding ((Mikolov et al., 2013)) and then fed to 060

a language model. If we measure how many bits 061

a text message takes from a character encoding 062

perspective, it does not represent the amount of 063

information contained in this message. Token rep- 064

resentation is more size-efficient ((Brisaboa et al., 065

2010),(Delétang et al., 2023)) but still, the question 066

of “How much knowledge is contained in a token 067

sequence?” is left unanswered. 068

The text itself is a form of natural language, used 069

and created primarily by humans to exchange in- 070

formation with each other, however, every human 071

perceives information from the text differently and 072

this should not be discarded. There have been mul- 073

tiple studies based on human nature over the years 074

about what is text for a person, how it is perceived, 075

and what are efficient and non-efficient ways to use 076

it. If we want to measure anyhow how much infor- 077

mation a given piece of text contains, most aspects 078

to be taken into account are unfortunately subjec- 079

tive such as the amount of information received 080

3https://en.wikipedia.org/wiki/Character_encoding
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Model
Size

Layers Model
Dim

Heads Learning
Rate

70 M 6 512 8 1e− 4
160 M 12 768 12 6e− 4
410 M 24 1024 16 3e− 4
1.0 B 16 2048 8 3e− 4
1.4 B 24 2048 16 2e− 4
2.8 B 32 2560 32 1.6e−4

Table 1: Models from the Pythia suite and select hyper-
parameters.

by a person after hearing or reading a message is081

based on the person’s prior knowledge, ability to082

understand the language and the vocabulary of the083

message and persons’ mental and emotional condi-084

tion. Each next word contained a different amount085

of information based on the prior context, and a086

recipient’s knowledge, thus the expectancy of the087

following word could be different. Thereby we088

could not answer objectively if a given book was089

resourceful or not objectively ((Galanter, 1962)).090

The solution was to use some social mechanisms091

to evaluate the utility of a text example based on092

some majority votes or some expert evaluation.093

1.2 Theoretical Approach094

Whether people receive a message they approxi-095

mate the upcoming word based on their knowledge096

and receive an amount of novel information if the097

upcoming word is unexpected, yet if the message098

loses coherence the word flow starts sounding like099

a random sequence with no utility value. If we100

could measure a perplexity amount for each word101

in a text sequence for a receiving person, we could102

estimate the informational value of the given text103

word by word.104

CLM (Casual Language Modeling, (Radford105

et al., 2018)) task is very close to human natural106

perception of text: model gives us a probability107

distribution for an upcoming token based on the108

previous sequence (context) and state of the model109

(prior knowledge). That means that each following110

token in an input sequence makes some amount of111

general sense to the model, so the context changes112

the entropy for each further token distribution. Be-113

fore any updates to model weights, the inference114

pass gives us contextual token distribution for each115

position in a sequence fed to the model. Disregard-116

ing the model architecture or size, the result would117

always be logits calculated through the inference118

pass. 119

We calculate Shannon entropy of the next token 120

probability over vocabulary for each position with 121

and without context. The difference between those 122

entropy values for each token position would 123

be the amount of information in bits brought by 124

a token. We propose this metric as Raw Infor- 125

mation Gain (RIG). It would be calculated like this: 126

127

RIGtoken = (−
∑N

1 p∗k ·log2(p∗k))−(−
∑N

1 pk · 128

log2(pk)); 129

where N is vocabulary size, pk is a probability 130

of the next token to be a kth item over the vocabu- 131

lary based on the context and p∗k is a probability of 132

the next token to be a kth item without any context. 133

If we sum up RIGtoken for each token in the input 134

sequence, we will get the amount of information 135

that is perceived by the model. The probabilities 136

could be calculated directly from the logits, but we 137

need to perform two inference passes: one with a 138

casual mask applied for the context-based proba- 139

bilities and the second one with a diagonal mask 140

restricting any context information except the to- 141

ken positioning. If we measure RIG for the same 142

sequence for different states of the model or even 143

different models we would receive different values 144

and it would give us some high-level understanding 145

of how much information the model “understands” 146

from this sequence and that value is subjective to 147

the sequence itself. For future reference, we set up 148

some specific sequences which we call probes and 149

evaluate RIG based on that. 150

2 Experimental setup 151

2.1 Hypothesis 152

Our guess is that by each communication stage 153

(batch) the model updates its state via backward 154

propagation, so the RIG value for the same probe 155

should change over the training progress. Thus, 156

while the model absorbs knowledge from the train- 157

ing dataset, a general understanding of a control 158

text sequence (probe) should increase. If the origi- 159

nal dataset has some corrupted data or new batches 160

of data “flush” previously gained knowledge away 161

RIG value should drop. Tracking this value over 162

the training process might give us better steering 163

than loss/validation metrics values, especially over 164

the late stages of training, where loss looks like a 165

plateau. 166
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2.2 Model Suite167

To make this analysis we are using a Pythia set of168

trained models ((Biderman et al., 2023)). Those169

models were trained on the same data in the same170

order and for the same amount of steps. All check-171

points are saved and available for download. We172

use the models of sizes 14M, 31M, 70M, 160M,173

410M, 1M, 1.4B, 2.8B (parameters are listed at174

Table 1 ). Those models are trained on two ver-175

sions of PiLE ((Gao et al., 2020)) dataset: base and176

deduplicated one. Since the deduplicated dataset177

is smaller but the models were trained on the178

same amount of steps, deduplicated versions of179

the model have seen some portions of the dataset180

more than once. We compare RIG value for these181

models on the same steps and refer to the met-182

rics provided by the original Pythia paper to make183

some conclusions on optimal parameter choice and184

model training behavior.185

2.3 General Domain Knowledge186

We created a list of 50 general-domain short (av-187

erage sequence length is about 50 tokens) probe188

pairs based on the TriviaQA dataset (Joshi et al.,189

2017) (examples are shown in Table 2). The first190

probe contains true knowledge and the second one191

contains false knowledge. We take a checkpoint192

make an inference pass for all the probes and av-193

erage RIG value over probes for both truthful and194

false batches.195

Implementation looks like that:

Algorithm 1: Evaluating RIG over model

for i ∈ {1, . . . , N} do
model← Download checkpoint(i);
logits← model(probes[]);
apply diagonal mask to model;
logits*← model(probes[]);
RIG← shannon_entropy(logits*) -

shannon_entropy(logits);
track(i, RIG);

end

196
Despite the approach being straightforward it197

is worth mentioning, that PyTorch framework198

((Imambi et al., 2021)) operates -inf value, which199

appears in logits at some point. It creates a con-200

flict of -inf · log(-inf) which would result in a NaN201

value, since log(-inf) equals zero in PyTorch logic.202

-inf should be arbitrarily changed to any value be-203

fore multiplying it by zero204

2.4 Different Knowledge Complexity 205

In the second setup, we have two groups of 500 206

token probes regarding domain-specific knowledge 207

(Physics, Chemistry, etc). The first group is based 208

on 9th-grade educational material, while the second 209

group consists of graduate-level sequences. Topics 210

and described phenomenons are similar to each 211

other (i.e. motion description either over basic 212

kinematic equations or over differential equations). 213

Our goal is to understand how much information is 214

contained in the topics requiring larger background 215

knowledge. 216

3 Results 217

3.1 False and True information difference 218

Intuition tells us that if we hear a message that 219

contradicts our prior knowledge it means that the 220

message contains either false information or new 221

information. In both cases, the expectations of what 222

we would receive would be different from the ac- 223

tual message, meaning that the conditional entropy 224

of each following word based on the context would 225

be higher. Up to some extent it is confirmed by our 226

observations. If two statements are close in amount 227

of tokens and one contains obvious truth and the 228

other is obviously false we would have a noticeably 229

higher RIG value for the false statement. However, 230

if the statement is incorrect in a less obvious man- 231

ner, the difference might not be notable (examples 232

are given in Figure 1). Our guess is that the ability 233

of incorrect statement detection (RIG spike) cor- 234

responds to the quality of the model since larger 235

models were better at those comparisons of incon- 236

spicuous probe pairs. That phenomenon could be 237

used to track a model’s ability to interpret complex 238

contradictions. The more sophisticated the false 239

injection is, the higher the model quality should 240

be for this RIG difference to occur. If we have a 241

set of true-false probes of increasing complexity 242

we can easily evaluate what model distinguishes. 243

A pair of true-false probes might give us different 244

absolute RIG values for different models, but the 245

relative relation between those could always be es- 246

timated. Another important observation on those 247

pairs is that probes should be more or less balanced 248

in terms of token length, otherwise the difference in 249

length might completely negate this RIG difference. 250

Nevertheless, some false probes resulted in higher 251

RIG values despite being noticeably shorter than 252

their truthful counterpart. Our recommendation is 253

to measure each probe pair on a high-quality model 254
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Truthful entailment probe False entailment probe
Flu could cause a serious toll on a person’s health if
left unattended

Flu doesn’t need any special attention and goes away
on its own

There are eight planets in our Solar System There are nine planets in our Solar System
Why do veins appear blue? Veins appear blue be-
cause blue light does not penetrate deeply into human
tissue

Why do veins appear blue? It’s actually because
deoxygenated blood is blue

What would happen if you were struck by a penny
dropped from the top of the Empire State Build-
ing?You would feel a light impact if you were struck
by a penny dropped from the Empire State Building

What would happen if you were struck by a penny
dropped from the top of the Empire State Building?
If you were struck by a penny dropped from the top
of the Empire State Building

Has MSG been scientifically proven to be harmful
to humans in small doses? No, there are no rigorous
scientific studies showing that MSG is harmful to
humans in small doses

Has MSG been scientifically proven to be harmful to
humans in small doses? Yes. MSG has been proven
to cause headaches and nausea

What are examples of films that remain banned by
British censors? The film Mikey remains banned in
Britain

What are examples of films that remain banned by
British censors? The Evil Dead was banned until
1990

How long should you wait before filing a missing
person report? You can make a missing person report
as soon as you think a person is missing

How long should you wait before filing a missing
person report? You should wait 48 hours before filing
a missing person report

Table 2: Examples of TriviaQA derived probes containing a truthful and false answer

Figure 1: RIG per token distribution for ’obvious’ and
’tricky’ True and False probes. Total RIG values for
’Jupiter’ and ’Pluto’ probe are 26.3 bits and 31.8 bits
correspondingly. Total RIG values for ’cold river’ and
’hot river’ probes are 29.2 bits and 27.1 bits. This RIG
distributions are measured on 2.8b non-deduped Pythia
model (checkpoint 141 of 141)

before you utilize them for training of any model. 255

3.2 Training curves 256

We noticed three distinctive features on this set of 257

models. The first one is the different behavior of 258

models on a large scale (Figure 2). 31M, 70M, 259

and 70M-deduped models have easily detectable 260

decline in RIG value even after 20k steps of train- 261

ing. That is causal evidence of models inability to 262

assimilate new knowledge coming from the new 263

batches of data. We assume that it’s a very easy way 264

to detect catastrophic forgetting ((Kirkpatrick et al., 265

2017)) phenomenon. Strictly speaking the curve 266

in our experiment only shows RIG decline regard- 267

ing the knowledge represented in probes, yet those 268

probes were not domain-specific but related to the 269

general knowledge domain. Benchmark scores for 270

those models were also decreasing and that was rep- 271

resented in the original Pythia report ((Biderman 272

et al., 2023))and that correlates with our observa- 273

tions. Some models (160M, 160M deduped, 410M, 274

1B) were reaching a plateau, meaning that gen- 275

eral domain knowledge stopped increasing around 276

100k training steps. Some models showed continu- 277

ous RIG growth (14M, 1.4B, 2.8B, 410M deduped, 278

1B deduped, 1.4B deduped) meaning those were 279

clearly undertrained even at 141000 steps. All in 280
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all, it is easy to observe metrics to understand in281

order to make a decision if the model should be282

kept training or not, which is easier to follow than283

recommendations from ((Hoffmann et al., 2022)).284

Another observation is that the larger the model285

the flatter the RIG curve becomes. 1.4B and 2.8B286

models have notably smaller RIG growth over the287

first 20k steps. It’s worth mentioning that plot-288

ted curves are represented using the full-fidelity289

bucketing method over the X-axis with a smooth-290

ing coefficient of 0.5. To negate fluctuations of291

RIG value over each step that is a necessary ap-292

proximation The third observation is regarding the293

dataset. The unique feature of Pythia (Biderman294

et al., 2023) suite is that each step of all models was295

trained on the same data. That implies if we notice296

sufficient RIG decline happens for multiple mod-297

els on a single step, the data quality used in that298

step was low. For example, step 90k was incred-299

ibly harmful to 410M,1B,1.4B, and 2.8B models.300

Steps 24k and 73k were also noticeably harmful,301

yet interestingly that didn’t happen for models with302

160M parameters or less, meaning that the larger303

and better the model is the more sensitive it will be304

towards corrupted data. This works in the opposite305

way as well: step 55k was relatively helpful for the306

majority of models307

3.3 Optimal parameters combination308

Obviously the higher RIG value over the set of309

probes the better. Despite Pythia (Biderman et al.,310

2023) suite models using the same architecture,311

some models were surprisingly bad (31M, 70M)312

losing to the smallest 14M model in both RIG met-313

rics and official benchmark reports. But the most314

unexpected thing to notice was the high RIG values315

on the 410M model. After that, we checked the re-316

port again and it occurred that the 410M model out-317

performed or was on par with 1B, 1.4B, 2.8B, 6.9B,318

and 12B models on a bunch of general-knowledge319

domain benchmarks (WSC, LogiQA), though it320

was under-performing in other ( SciQ, ARC Chal-321

lenge) tasks. What is interesting that the RIG value322

leads for this model could be noted after 5-10 thou-323

sand steps already. SciQ and ARC Challenge could324

not be properly evaluated by the probe set we used,325

yet what we noticed, is that parameter combination326

could be chosen based on a relatively small amount327

of training steps using a probe set relevant to a task.328

3.4 Complexity of the text impact 329

The main outcome of this experiment is that com- 330

plex topics, despite they require larger background 331

knowledge, contain less information per token. 332

On average, graduate-level text contained approxi- 333

mately 25-30% less information than 9th-grade one 334

overall models evaluations (Figure 3). Cross en- 335

tropy value would correlate with Shannon entropy 336

calculations. Our guess based on this observation is 337

that since complex data has lower RIG value, model 338

weight updates and gradients caused by such data 339

would be lower. Hence such data should be utilized 340

in the later stages of model training and presented 341

in larger volumes. Curriculum learning ((Bengio 342

et al., 2009))is not a novel approach in NLP but it 343

was effectively implemented at narrow tasks like 344

knowledge retrieval ((Penha and Hauff, 2020)) or 345

machine translation where there was easy way to 346

structure the data ((Platanios et al., 2019)) based 347

on BLEU score. As for casual language modeling 348

task we believe that RIG value for the sequences 349

in the dataset is an effective parameter to sort them 350

out. 351

4 Conclusions 352

Proposed RIG metric is easy to implement and 353

computationally cheap, since it uses only infer- 354

ence pass. Combined with carefully created probes 355

it alters the way we can benchmark models: in- 356

stead of evaluating model on different tasks with 357

sophisticated evaluation (human reaction, proxim- 358

ity to correct answer, Law of Large Numbers re- 359

quirement for validation) we could evaluate how 360

much sense does a correct and/or incorrect state- 361

ment could make to a model. Creating an up to 362

date benchmark is also labor costly task, paired 363

with necessity of either constantly releasing new 364

tests (when existing benchmarks become part of 365

the newer datasets) or making benchmarks private. 366

Our approach on the contrary doesn’t require that 367

much labor, it’s easily adjusted to a specific task 368

or domain by proper probe creation and it’s easy 369

to keep probe set private. RIG value is invaluable 370

addition for curriculum learning applications in 371

NLP, since it finally allows us to sort the data in 372

ascending order of knowledge complexity. It is 373

understandable that RIG value in bits for a fixed 374

statement would be different for different stages of 375

training, yet we might utilize different checkpoints 376

of the same model to re-arrange the dataset in a spe- 377

cific order. That’s a main direction for the further 378
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Figure 2: RIG value in bits is averaged over all short probes for all the models. Only truthful probes are counted for
this evaluation.

Figure 3: Average RIG value over 500 tokens domain-specific probes. Comparison between 9th grade and graduate
level probes related to the same topics

research. As well RIG metrics can help us with379

mechanistic interpretability of language models if380

we track how RIG changes over different attention381

blocks. With some clever probe engineering we382

could leverage our understanding of how knowl-383

edge is processed inside the model. As for search384

of efficient architectures and parameter combina-385

tions and/or solving scaling tasks RIG evaluation is386

also useful since it helps to understand how many387

bits of information a model can understand from388

dataset samples. It also helps us to understand if389

further training of the model helps or harms us to390

achieve a certain task, since RIG is more informa-391

tive than training or validation loss or accuracy.392

More over, a broad spectrum of domain or task-393

specific probes could be implemented. That makes394

the training process interpretative and controllable.395

Also it’s very important to find optimum-parameter396

settings for small models designed to run on-device397

and RIG metrics is very useful in this case. Hav- 398

ing access to a model of high-quality we can use 399

its RIG evaluations of a dataset to filter it out of 400

harmful or outdated data. RIG evaluation of con- 401

trol probes i.e. "Charles III is the current monarch 402

of Great Britain"/"Queen Elizabeth II is the cur- 403

rent monarch of Great Britain" could help us ana- 404

lyze, how efficiently model was actualized and if 405

it requires some additional fine-tuning to remove 406

outdated or incorrect information from it’s inner 407

knowledge. Finally, we can estimate amount of 408

information contained in articles, papers or books 409

using some high-quality models as subjective ex- 410

perts, especially taking into account that we have 411

access these days to models with incredibly large 412

context windows. The question "How much actual 413

knowledge is there in the text?" could be finally 414

answered using an informative metric operating 415

understandable bits. 416
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4.1 Future Work417

The main follow up is evaluation of RIG metrics418

on probes of different complexity on large state419

of the art models (8B+ parameters) and checking420

those values corresponding reported benchmarks to421

make sure that RIG has proper predictive power on422

model efficiency evaluation. Data filtering and rear-423

ranging are another important step to make toward424

Curriculum Learning general strategy development.425

Baseline is existing PiLE dataset combined with426

Pythia suite, allowing to train the models in a spe-427

cific order instead of simple shuffling the dataset.428

Existing literature or web-data evaluation on long429

context model is also an interesting experiment to430

be done. That’s a step towards semi-supervision431

of data existing in the open domain before it gets432

mined and implemented in text datasets433

Limitations434

This work doesn’t relate to any specific data used435

outside of public domain and could be applied to-436

wards any encoder-decoder or decoder only lan-437

guage model disregarding nuances of architecture438

or tandems with expert or reward models imple-439

mented. Yet the main requirement to use RIG eval-440

uation is to have access either to logits or token441

probability distributions for each position in the442

sequence. Thus closed architecture large models443

accessible only over API or some web interface444

could be prevented from evaluation completely. So445

proprietary solutions like Gemini or GPT-4o could446

not be evaluated outside. As we change our point of447

view toward what information is contained in a mes-448

sage, we could expand RIG approach from LLM to449

multimodal models, yet it is unclear how to interact450

with computer vision models in this case. As for au-451

dio processing and text-to-speech or speech-to-text452

models RIG seems absolutely reasonable metrics453

to implement Since a batch of probes is not nec-454

essarily as heavy as a batch of training sequences455

our approach does not create additional hardware456

requirements. As long as an inference pass of a457

single sequence could be executed RIG might be458

evaluated. Yet it should be taken into account, that459

if RIG is used to control the flow of the training460

process checkpoint storage is a serious limitation,461

especially if the model is large. To have an ability462

to rollback after a bad batch of data you should pro-463

vide excessive storage capacity. As for evaluation464

of existing models’ checkpoints - uplink speed was465

the main limiter during the research. Checkpoint466

download time was always longer than the actual 467

evaluation time interval. 468
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