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Abstract

We propose a novel high-level approach to an-
alyze models in a different way: we could es-
timate amount of information receipted by a
model using a crafted set of control statements.
We introduce a new metrics RIG (raw informa-
tion gain) in order to do so. Any LLM (large
language model) could be considered a “black
box” of compressed information. It is hard to
measure what amount of information is stored
inside the model regarding any domain. The
contrast between the size of a trained model of
around 43GB ! compared to 15 trillion tokens
of training data is staggering >. The other issue
is to figure out where do the limits come from:
is it an architectural constraint or is the limi-
tation coming from the data used in training.
So far the most common way to identify if the
model is properly trained and contains neces-
sary information is to put it through a list of
benchmarks and the decision is based on either
it’s ranking or some educated guess of a score
threshold. Keeping in mind that the most of
those benchmarks become part of training data
for upcoming models we face a vicious cycle of
never ending benchmark creation. Taken into
account constant size growth of both language
models and datasets we face an challenge of
losing a track of what is efficient and what is
not to train models as well as simple scale of
the datasets makes them almost impossible to
supervise at all, what is an immense obstacle
when we need to update any language model
according to different environments those are
implemented at and we need to bring ethical
issues, actuality of the human knowledge and
controversial statements altogether.

1 Introduction

1.1 Related Work

The starting point of this research was Shannon’s
(1948) “A Mathematical Theory of Communica-
lh’ctps://hugging1°ace.co/nitsuai/
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tion”. The key elements borrowed from his theory
are the definition of a bit of information, the gen-
eral communication system principles, and Shan-
non’s definition of entropy. The training process
of a language model fits the schema of general
communication: the training dataset acts as an in-
formation source, a batch of token sequences as a
message and the current state of the model acts as
areceiver. We consider an LLM to be a receiving
agent receiving a message and based on that its
state is updated. Statistical language model the-
ory is based on these features as well ((Croft and
Lafferty, 2003)), yet there is one very important
and unanswered question: “How much information
does the text message contain?”

So far text data was treated according to Charac-
ter encoding principles 3 as a sequence of charac-
ters which should be processed commonly through
tokenization ((Manning et al., 2014)), word em-
bedding ((Mikolov et al., 2013)) and then fed to
a language model. If we measure how many bits
a text message takes from a character encoding
perspective, it does not represent the amount of
information contained in this message. Token rep-
resentation is more size-efficient ((Brisaboa et al.,
2010),(Delétang et al., 2023)) but still, the question
of “How much knowledge is contained in a token
sequence?” is left unanswered.

The text itself is a form of natural language, used
and created primarily by humans to exchange in-
formation with each other, however, every human
perceives information from the text differently and
this should not be discarded. There have been mul-
tiple studies based on human nature over the years
about what is text for a person, how it is perceived,
and what are efficient and non-efficient ways to use
it. If we want to measure anyhow how much infor-
mation a given piece of text contains, most aspects
to be taken into account are unfortunately subjec-
tive such as the amount of information received

3https://en.wikipedia.org/wiki/Character_encoding
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Model Layers Model Heads Learning
Size Dim Rate
70M 6 512 8 le—4
160 M 12 768 12 6e — 4
410 M 24 1024 16 3e—4
1.0B 16 2048 8 3e—4
14B 24 2048 16 2e — 4
2.8B 32 2560 32 1.6e—4

Table 1: Models from the Pythia suite and select hyper-
parameters.

by a person after hearing or reading a message is
based on the person’s prior knowledge, ability to
understand the language and the vocabulary of the
message and persons’ mental and emotional condi-
tion. Each next word contained a different amount
of information based on the prior context, and a
recipient’s knowledge, thus the expectancy of the
following word could be different. Thereby we
could not answer objectively if a given book was
resourceful or not objectively ((Galanter, 1962)).
The solution was to use some social mechanisms
to evaluate the utility of a text example based on
some majority votes or some expert evaluation.

1.2 Theoretical Approach

Whether people receive a message they approxi-
mate the upcoming word based on their knowledge
and receive an amount of novel information if the
upcoming word is unexpected, yet if the message
loses coherence the word flow starts sounding like
a random sequence with no utility value. If we
could measure a perplexity amount for each word
in a text sequence for a receiving person, we could
estimate the informational value of the given text
word by word.

CLM (Casual Language Modeling, (Radford
et al., 2018)) task is very close to human natural
perception of text: model gives us a probability
distribution for an upcoming token based on the
previous sequence (context) and state of the model
(prior knowledge). That means that each following
token in an input sequence makes some amount of
general sense to the model, so the context changes
the entropy for each further token distribution. Be-
fore any updates to model weights, the inference
pass gives us contextual token distribution for each
position in a sequence fed to the model. Disregard-
ing the model architecture or size, the result would
always be logits calculated through the inference

pass.

We calculate Shannon entropy of the next token
probability over vocabulary for each position with
and without context. The difference between those
entropy values for each token position would
be the amount of information in bits brought by
a token. We propose this metric as Raw Infor-
mation Gain (RIG). It would be calculated like this:

RIG oken = (= X7 pj-loga(p}))— (= X1 pr-
loga(pr));

where N is vocabulary size, pj, is a probability
of the next token to be a ky, item over the vocabu-
lary based on the context and pj, is a probability of
the next token to be a ky, item without any context.
If we sum up RIGyoken for each token in the input
sequence, we will get the amount of information
that is perceived by the model. The probabilities
could be calculated directly from the logits, but we
need to perform two inference passes: one with a
casual mask applied for the context-based proba-
bilities and the second one with a diagonal mask
restricting any context information except the to-
ken positioning. If we measure RIG for the same
sequence for different states of the model or even
different models we would receive different values
and it would give us some high-level understanding
of how much information the model “understands”
from this sequence and that value is subjective to
the sequence itself. For future reference, we set up
some specific sequences which we call probes and
evaluate RIG based on that.

2 Experimental setup

2.1 Hypothesis

Our guess is that by each communication stage
(batch) the model updates its state via backward
propagation, so the RIG value for the same probe
should change over the training progress. Thus,
while the model absorbs knowledge from the train-
ing dataset, a general understanding of a control
text sequence (probe) should increase. If the origi-
nal dataset has some corrupted data or new batches
of data “flush” previously gained knowledge away
RIG value should drop. Tracking this value over
the training process might give us better steering
than loss/validation metrics values, especially over
the late stages of training, where loss looks like a
plateau.



2.2 Model Suite

To make this analysis we are using a Pythia set of
trained models ((Biderman et al., 2023)). Those
models were trained on the same data in the same
order and for the same amount of steps. All check-
points are saved and available for download. We
use the models of sizes 14M, 31M, 70M, 160M,
410M, 1M, 1.4B, 2.8B (parameters are listed at
Table 1 ). Those models are trained on two ver-
sions of PiLE ((Gao et al., 2020)) dataset: base and
deduplicated one. Since the deduplicated dataset
is smaller but the models were trained on the
same amount of steps, deduplicated versions of
the model have seen some portions of the dataset
more than once. We compare RIG value for these
models on the same steps and refer to the met-
rics provided by the original Pythia paper to make
some conclusions on optimal parameter choice and
model training behavior.

2.3 General Domain Knowledge

We created a list of 50 general-domain short (av-
erage sequence length is about 50 tokens) probe
pairs based on the TriviaQA dataset (Joshi et al.,
2017) (examples are shown in Table 2). The first
probe contains true knowledge and the second one
contains false knowledge. We take a checkpoint
make an inference pass for all the probes and av-
erage RIG value over probes for both truthful and
false batches.

Implementation looks like that:

Algorithm 1: Evaluating RIG over model
forie {1,...,N}do

model <— Download checkpoint(i);

logits <— model(probes|]);

apply diagonal mask to model;

logits* <— model(probes[]);

RIG ¢ shannon_entropy(logits*) -
shannon_entropy(logits);

track(i, RIG);

end

Despite the approach being straightforward it
is worth mentioning, that PyTorch framework
((Imambi et al., 2021)) operates -inf value, which
appears in logits at some point. It creates a con-
flict of -inf-log(-inf) which would result in a NaN
value, since log(-inf) equals zero in PyTorch logic.
-inf should be arbitrarily changed to any value be-
fore multiplying it by zero

2.4 Different Knowledge Complexity

In the second setup, we have two groups of 500
token probes regarding domain-specific knowledge
(Physics, Chemistry, etc). The first group is based
on 9th-grade educational material, while the second
group consists of graduate-level sequences. Topics
and described phenomenons are similar to each
other (i.e. motion description either over basic
kinematic equations or over differential equations).
Our goal is to understand how much information is
contained in the topics requiring larger background
knowledge.

3 Results

3.1 False and True information difference

Intuition tells us that if we hear a message that
contradicts our prior knowledge it means that the
message contains either false information or new
information. In both cases, the expectations of what
we would receive would be different from the ac-
tual message, meaning that the conditional entropy
of each following word based on the context would
be higher. Up to some extent it is confirmed by our
observations. If two statements are close in amount
of tokens and one contains obvious truth and the
other is obviously false we would have a noticeably
higher RIG value for the false statement. However,
if the statement is incorrect in a less obvious man-
ner, the difference might not be notable (examples
are given in Figure 1). Our guess is that the ability
of incorrect statement detection (RIG spike) cor-
responds to the quality of the model since larger
models were better at those comparisons of incon-
spicuous probe pairs. That phenomenon could be
used to track a model’s ability to interpret complex
contradictions. The more sophisticated the false
injection is, the higher the model quality should
be for this RIG difference to occur. If we have a
set of true-false probes of increasing complexity
we can easily evaluate what model distinguishes.
A pair of true-false probes might give us different
absolute RIG values for different models, but the
relative relation between those could always be es-
timated. Another important observation on those
pairs is that probes should be more or less balanced
in terms of token length, otherwise the difference in
length might completely negate this RIG difference.
Nevertheless, some false probes resulted in higher
RIG values despite being noticeably shorter than
their truthful counterpart. Our recommendation is
to measure each probe pair on a high-quality model



Truthful entailment probe

False entailment probe

Flu could cause a serious toll on a person’s health if
left unattended

Flu doesn’t need any special attention and goes away
on its own

There are eight planets in our Solar System

There are nine planets in our Solar System

Why do veins appear blue? Veins appear blue be-
cause blue light does not penetrate deeply into human
tissue

Why do veins appear blue? It’s actually because
deoxygenated blood is blue

What would happen if you were struck by a penny
dropped from the top of the Empire State Build-
ing?You would feel a light impact if you were struck
by a penny dropped from the Empire State Building

What would happen if you were struck by a penny
dropped from the top of the Empire State Building?
If you were struck by a penny dropped from the top
of the Empire State Building

Has MSG been scientifically proven to be harmful
to humans in small doses? No, there are no rigorous
scientific studies showing that MSG is harmful to
humans in small doses

Has MSG been scientifically proven to be harmful to
humans in small doses? Yes. MSG has been proven
to cause headaches and nausea

What are examples of films that remain banned by
British censors? The film Mikey remains banned in
Britain

What are examples of films that remain banned by
British censors? The Evil Dead was banned until
1990

How long should you wait before filing a missing
person report? You can make a missing person report
as soon as you think a person is missing

How long should you wait before filing a missing
person report? You should wait 48 hours before filing

a missing person report

Table 2: Examples of TriviaQA derived probes containing a truthful and false answer

Jupiter is a planet in the solar system

2 3 4 5 6 7
Pluto is a planet in the solar system

1 2 3 4 5 6 7 8
Rivers and lakes are freezing in the winter because of low temperature

RIG, bits

o v N w

1 2 3 4 5 6 7 8 9 10 1 12

Rivers and lakes are boiling in the winter because of the heat

RIG, bits

o = N w

Figure 1: RIG per token distribution for *obvious’ and
’tricky’ True and False probes. Total RIG values for
’Jupiter’ and "Pluto’ probe are 26.3 bits and 31.8 bits
correspondingly. Total RIG values for *cold river’ and
“hot river’ probes are 29.2 bits and 27.1 bits. This RIG
distributions are measured on 2.8b non-deduped Pythia
model (checkpoint 141 of 141)

before you utilize them for training of any model.

3.2 Training curves

We noticed three distinctive features on this set of
models. The first one is the different behavior of
models on a large scale (Figure 2). 31M, 70M,
and 70M-deduped models have easily detectable
decline in RIG value even after 20k steps of train-
ing. That is causal evidence of models inability to
assimilate new knowledge coming from the new
batches of data. We assume that it’s a very easy way
to detect catastrophic forgetting ((Kirkpatrick et al.,
2017)) phenomenon. Strictly speaking the curve
in our experiment only shows RIG decline regard-
ing the knowledge represented in probes, yet those
probes were not domain-specific but related to the
general knowledge domain. Benchmark scores for
those models were also decreasing and that was rep-
resented in the original Pythia report ((Biderman
et al., 2023))and that correlates with our observa-
tions. Some models (160M, 160M deduped, 410M,
1B) were reaching a plateau, meaning that gen-
eral domain knowledge stopped increasing around
100k training steps. Some models showed continu-
ous RIG growth (14M, 1.4B, 2.8B, 410M deduped,
1B deduped, 1.4B deduped) meaning those were
clearly undertrained even at 141000 steps. All in



all, it is easy to observe metrics to understand in
order to make a decision if the model should be
kept training or not, which is easier to follow than
recommendations from ((Hoffmann et al., 2022)).

Another observation is that the larger the model
the flatter the RIG curve becomes. 1.4B and 2.8B
models have notably smaller RIG growth over the
first 20k steps. It’s worth mentioning that plot-
ted curves are represented using the full-fidelity
bucketing method over the X-axis with a smooth-
ing coefficient of 0.5. To negate fluctuations of
RIG value over each step that is a necessary ap-
proximation The third observation is regarding the
dataset. The unique feature of Pythia (Biderman
et al., 2023) suite is that each step of all models was
trained on the same data. That implies if we notice
sufficient RIG decline happens for multiple mod-
els on a single step, the data quality used in that
step was low. For example, step 90k was incred-
ibly harmful to 410M,1B,1.4B, and 2.8B models.
Steps 24k and 73k were also noticeably harmful,
yet interestingly that didn’t happen for models with
160M parameters or less, meaning that the larger
and better the model is the more sensitive it will be
towards corrupted data. This works in the opposite
way as well: step 55k was relatively helpful for the
majority of models

3.3 Optimal parameters combination

Obviously the higher RIG value over the set of
probes the better. Despite Pythia (Biderman et al.,
2023) suite models using the same architecture,
some models were surprisingly bad (31M, 70M)
losing to the smallest 14M model in both RIG met-
rics and official benchmark reports. But the most
unexpected thing to notice was the high RIG values
on the 410M model. After that, we checked the re-
port again and it occurred that the 410M model out-
performed or was on par with 1B, 1.4B, 2.8B, 6.9B,
and 12B models on a bunch of general-knowledge
domain benchmarks (WSC, LogiQA), though it
was under-performing in other ( SciQ, ARC Chal-
lenge) tasks. What is interesting that the RIG value
leads for this model could be noted after 5-10 thou-
sand steps already. SciQ and ARC Challenge could
not be properly evaluated by the probe set we used,
yet what we noticed, is that parameter combination
could be chosen based on a relatively small amount
of training steps using a probe set relevant to a task.

3.4 Complexity of the text impact

The main outcome of this experiment is that com-
plex topics, despite they require larger background
knowledge, contain less information per token.
On average, graduate-level text contained approxi-
mately 25-30% less information than 9th-grade one
overall models evaluations (Figure 3). Cross en-
tropy value would correlate with Shannon entropy
calculations. Our guess based on this observation is
that since complex data has lower RIG value, model
weight updates and gradients caused by such data
would be lower. Hence such data should be utilized
in the later stages of model training and presented
in larger volumes. Curriculum learning ((Bengio
et al., 2009))is not a novel approach in NLP but it
was effectively implemented at narrow tasks like
knowledge retrieval ((Penha and Hauff, 2020)) or
machine translation where there was easy way to
structure the data ((Platanios et al., 2019)) based
on BLEU score. As for casual language modeling
task we believe that RIG value for the sequences
in the dataset is an effective parameter to sort them
out.

4 Conclusions

Proposed RIG metric is easy to implement and
computationally cheap, since it uses only infer-
ence pass. Combined with carefully created probes
it alters the way we can benchmark models: in-
stead of evaluating model on different tasks with
sophisticated evaluation (human reaction, proxim-
ity to correct answer, Law of Large Numbers re-
quirement for validation) we could evaluate how
much sense does a correct and/or incorrect state-
ment could make to a model. Creating an up to
date benchmark is also labor costly task, paired
with necessity of either constantly releasing new
tests (when existing benchmarks become part of
the newer datasets) or making benchmarks private.
Our approach on the contrary doesn’t require that
much labor, it’s easily adjusted to a specific task
or domain by proper probe creation and it’s easy
to keep probe set private. RIG value is invaluable
addition for curriculum learning applications in
NLP, since it finally allows us to sort the data in
ascending order of knowledge complexity. It is
understandable that RIG value in bits for a fixed
statement would be different for different stages of
training, yet we might utilize different checkpoints
of the same model to re-arrange the dataset in a spe-
cific order. That’s a main direction for the further
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research. As well RIG metrics can help us with
mechanistic interpretability of language models if
we track how RIG changes over different attention
blocks. With some clever probe engineering we
could leverage our understanding of how knowl-
edge is processed inside the model. As for search
of efficient architectures and parameter combina-
tions and/or solving scaling tasks RIG evaluation is
also useful since it helps to understand how many
bits of information a model can understand from
dataset samples. It also helps us to understand if
further training of the model helps or harms us to
achieve a certain task, since RIG is more informa-
tive than training or validation loss or accuracy.
More over, a broad spectrum of domain or task-
specific probes could be implemented. That makes
the training process interpretative and controllable.
Also it’s very important to find optimum-parameter
settings for small models designed to run on-device

and RIG metrics is very useful in this case. Hav-
ing access to a model of high-quality we can use
its RIG evaluations of a dataset to filter it out of
harmful or outdated data. RIG evaluation of con-
trol probes i.e. "Charles IIl is the current monarch
of Great Britain"/"Queen Elizabeth Il is the cur-
rent monarch of Great Britain" could help us ana-
lyze, how efficiently model was actualized and if
it requires some additional fine-tuning to remove
outdated or incorrect information from it’s inner
knowledge. Finally, we can estimate amount of
information contained in articles, papers or books
using some high-quality models as subjective ex-
perts, especially taking into account that we have
access these days to models with incredibly large
context windows. The question "How much actual
knowledge is there in the text?" could be finally
answered using an informative metric operating
understandable bits.



4.1 Future Work

The main follow up is evaluation of RIG metrics
on probes of different complexity on large state
of the art models (8 B+ parameters) and checking
those values corresponding reported benchmarks to
make sure that RIG has proper predictive power on
model efficiency evaluation. Data filtering and rear-
ranging are another important step to make toward
Curriculum Learning general strategy development.
Baseline is existing PiLE dataset combined with
Pythia suite, allowing to train the models in a spe-
cific order instead of simple shuffling the dataset.
Existing literature or web-data evaluation on long
context model is also an interesting experiment to
be done. That’s a step towards semi-supervision
of data existing in the open domain before it gets
mined and implemented in text datasets

Limitations

This work doesn’t relate to any specific data used
outside of public domain and could be applied to-
wards any encoder-decoder or decoder only lan-
guage model disregarding nuances of architecture
or tandems with expert or reward models imple-
mented. Yet the main requirement to use RIG eval-
uation is to have access either to logits or token
probability distributions for each position in the
sequence. Thus closed architecture large models
accessible only over API or some web interface
could be prevented from evaluation completely. So
proprietary solutions like Gemini or GPT-40 could
not be evaluated outside. As we change our point of
view toward what information is contained in a mes-
sage, we could expand RIG approach from LLM to
multimodal models, yet it is unclear how to interact
with computer vision models in this case. As for au-
dio processing and text-to-speech or speech-to-text
models RIG seems absolutely reasonable metrics
to implement Since a batch of probes is not nec-
essarily as heavy as a batch of training sequences
our approach does not create additional hardware
requirements. As long as an inference pass of a
single sequence could be executed RIG might be
evaluated. Yet it should be taken into account, that
if RIG is used to control the flow of the training
process checkpoint storage is a serious limitation,
especially if the model is large. To have an ability
to rollback after a bad batch of data you should pro-
vide excessive storage capacity. As for evaluation
of existing models’ checkpoints - uplink speed was
the main limiter during the research. Checkpoint

download time was always longer than the actual
evaluation time interval.
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