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Abstract

While Artificial Intelligence (AI) has lead to significant improvements in Computer-1

Aided Synthesis Planning (CASP), its credibility within the chemical community is2

fragile. AI retrosynthesis models frequently “hallucinate” chemically implausible3

reactions, which undermines trust. To address this, we propose a framework that4

integrates three orthogonal validation strategies to ensure reaction plausibility.5

This key insight, combining reaction validation strategies which cover different6

error patterns, was the basis of our winning solution to the [Anonymized for the7

sake of blind review] Retrosynthesis Challange. Our approach combines: (1) a8

novel Transformer-based model, called Reaction Prior, that estimates reaction9

likelihood from large-scale experimental data, mimicking chemical reasoning (2) a10

Graph Neural Network trained on a reaction dataset augmented with synthetically11

generated incorrect reactions, and (3) a retrieval-based scoring system that leverages12

chemical databases and grounds suggestions in known chemical literature. The13

framework was validated on unseen targets through a novel human evaluation14

process, successfully rejecting the most hallucinated reactions. In this evaluation,15

chemical experts manually reviewed reactions within the synthetic paths, providing16

a more reliable and trustworthy form of verification compared to purely automatic17

methods.18

1 Introduction19

In chemistry, synthesis planning is the process of constructing synthetic routes - sequences of chemical20

reactions - that lead to a desired target molecule. Usually, this is done through retrosynthetic analysis,21

which works backward from the target, looking for suitable precursor molecules. This single-step22

retrosynthesis (SSR) procedure is repeated in a recursive fashion until a satisfying synthetic route is23

found from the available starting materials (building blocks) to the target.24

Computer-Aided Synthesis Planning (CASP) leverages computational tools and algorithms to assist25

chemists in designing synthetic routes for chemical compounds. Today, this area is undergoing a26

major transformation driven by advances in Artificial Intelligence (AI) and is becoming increasingly27

important in drug discovery, agrochemicals, and materials science [5, 9, 7]. Unlike traditional28

methods that rely heavily on expert intuition or rigid rule-based systems, AI-driven CASP aims to29

automatically learn chemical knowledge from experimental datasets. This data-centric approach30

addresses key limitations of previous methods, such as dependence on scarce human expertise and the31

high computational costs associated with exhaustive search [15]. However, it is not without its flaws.32

Modern CASP systems typically generate complete synthetic routes by iteratively applying predictions33

from SSR model within a graph-based search algorithm. Consequently, the quality of the final34
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synthesis plan depends on the accuracy of the underlying SSR model [32]. Despite significant35

progress, a critical challenge remains: these models frequently "hallucinate" proposing chemically36

nonsensical or implausible reactions [26]. This leads to serious efficiency concerns as each wrong37

prediction initiates the exploration of an invalid branch in the synthesis tree, wasting computational38

resources.39

Beyond computational cost, hallucinations undermine the credibility of AI-driven CASP. A synthetic40

route is only as strong as its weakest link: A single flawed step can compromise the entire plan. When41

suggested routes require extensive manual checking to filter out chemically implausible steps, the42

systems’ credibility as a whole is undermined.43

Complicating matters further, "hallucination" errors are not only frequent but also highly diverse.44

These errors can range from obvious flaws, such as atoms appearing without a valid chemical origin,45

to violations of stereochemical or regioselective rules. This variety makes it difficult to overcome46

with any single validation strategy. One straightforward idea is to filter pathways using a high47

threshold on thegenerator (SSR) score, if it is explicitly modeled. However, this approach often48

discards pathways entirely rather than flagging nuanced problems. Alternative methods exist, such49

as using forward-prediction models to check reversibility, but they are typically used in isolation.50

Consequently, they provide only partial mitigation and remain inadequate against the full spectrum of51

errors. Therefore a more robust approach is needed.52

In this work, we address the challenge of identifying implausible reactions during retrosynthetic53

planning. We propose a new framework that combines three complementary validation strategies54

into a unified scoring mechanism (Meta-Scorer) which identifies and removes implausible reactions55

generated during SSR. We show that each component of our framework specializes in different types56

of errors, providing broader and more reliable coverage than any single strategy could achieve alone.57

Our approach is based on the principle of ensemble learning: combining diverse models with distinct58

error patterns yields a more robust and accurate assessment of reaction plausibility. The resulting59

aggregated plausibility scores are designed to be directly integrated into heuristic-guided search60

algorithms, such as Retro*. This enables implausible branches to be dynamically pruned from the61

synthesis search tree and reaction costs to be adjusted, guiding the planner towards synthetic routes62

that are trusted by chemical experts. This approach contrasts with prior efforts that have typically63

relied on a single validation strategy. Our retrosynthesis systems, combining multiple validation64

strategies, won the the [Anonymized for the sake of blind review] Retrosynthesis Challange, in which65

the correctness of pathways judged by human experts was crucial.66

In order to evaluate our system, we employed for the first time a structured reaction plausibility67

validation protocol, in which PhD-level chemistry specialists assessed each reaction in the proposed68

retrosynthetic pathways according to a predefined labelling schema. Reactions without significant69

issues were labeled No problem, while those with errors were assigned to one of the following70

categories: Magic, Selectivity, Functional group incompatibility, Reactivity, One pot, Unstable, or71

Reactants mismatch. Based on the severity of any identified errors, each reaction was then given72

a confidence label on a four-point scale: Nonsense, Rather not, Worthwhile, or Safe bet. Then the73

overall confidence for a synthetic pathway was determined by the lowest-scoring reaction within it.74

The complete protocol is detailed in the Appendix B.75

Our key contribution is a complementary set of validation strategies that effectively eliminates most76

severe hallucinated reactions during retrosynthetic search - labeled Nonsense in our protocol - and77

significantly reduces Rather not and Worthwhile reactions within pathways. The framework is built78

around a central, best-performing scorer based on novel scoring mechanism, which we call Reaction79

Prior, supported by two additional scorers designed to be compliment it by targeting specific error80

types. The framework includes:81

1. Reaction Prior (RP): The core novel model, which estimates the intrinsic plausibility of82

reactions using large-scale experimental data. It is based on a Transformer-based architecture83

and designed to mimic how chemists think when evaluating reaction plausibility.84

2. Graph Attention Network (GAT): A model trained to distinguish valid reactions from85

synthetically inplausible negatives and specializes in Selectivity and Reactivity error types.86

3. Reaction Retrieval (RR): A mechanism that assesses the similarity of proposed reactions to87

known experimental precedents in reaction databases. It is designed to handle Reactants88

mismatch, One pot Magic error types.89
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2 Related Work90

To contextualize our proposed method, this section examines the workflow in automated retrosynthe-91

sis, covering both the generation of reactions by Single-Step Retrosynthesis (SSR) models and the92

limited work on the techniques used for their validation.93

2.1 Reaction Generation: Single-Step Retrosynthesis94

Template-Based Methods operate by matching a target molecule against a predefined library of95

reaction templates, which are abstract representations of known chemical transformations. Examples96

include RetroSim [4], NeuralSym [20], GLN [6], DualTB [24] LocalRetro [2], RetroKNN [29] and97

RetroComposer [31]. The primary advantage of these models is their ability to produce interpretable98

outputs for reactions that fall within their template library. Though often reliable, they are not immune99

to proposing implausible reactions. The construction of these template libraries is challenging and100

involves an trade-off between specificity and computational cost. This leads to trivial errors, over-101

generalizations, or missing context in the template definitions, leading to chemically incorrect reaction102

suggestions produced by these methods [5].103

Template-Free Methods aim to learn the underlying rules of chemistry directly from reaction data.104

These approaches typically employ machine learning architectures, such as sequence-to-sequence105

models [14], Transformers [12, 11], or Graph Neural Networks (GNNs) [18]. A key benefit of these106

approaches is their scalability and potential to generalize to novel chemical transformations not seen107

in template libraries [32]. However, this flexibility often comes at the cost of chemical correctness.108

The models may struggle with correct atom-mapping during generation or overlook crucial 2D and109

3D structural information [32], which lead to predictions that violate established chemical principles110

and steric constraints [33].111

Semi-Template-Based Methods seek to combine the reliability of templates with the flexibility of112

template-free generation. This category includes methods like GraphRetro [23], RetroXpert [30], and113

G2G [22]. While these hybrid approaches often improves performance by balancing constraints with114

flexibility, they do not fully eliminate the problems of generating implausible predictions.115

2.2 Reaction Validation116

To address the shortcomings of SSR models, researchers have developed various post-hoc validation117

strategies, where proposed reactions are scored and filtered to enhance the overall trustworthiness118

and reliability of the predictions.119

Learning-Based Plausibility Models are techniques such as "in-scope filter," a neural classifier120

trained to predict if a given reaction is valid [21]. The ASKCOS platform implements this idea:121

an internal “fast filter model” scores each candidate reaction’s plausibility and reactions below a122

likelihood threshold are removed. These filters are typically trained using contrastive learning on real123

vs. bad (mismatched) reaction pairs. One example includes HiCLR framework [28], which trains124

a model to distinguish between reactions sharing a common chemical superclass and those that do125

not. An alternative strategy is to use Molecular Transformer architecture as it has been shown that its126

confidence in a prediction, derived from output token probabilities, correlates well with the reaction’s127

correctness [19].128

Evidence-Based Validation via Retrieval grounds model predictions in established chemical129

knowledge through retrieval-augmented methods. This mirrors a chemist’s workflow of searching130

for literature precedents. For example, the Retrieval-Augmented RetroBridge (RARB) framework131

retrieves similar molecules from a database to guide the generation of reactants [17]. The rise of132

LLMs has also seen the application of Retrieval-Augmented Generation (RAG), where the model’s133

output is conditioned on retrieved documents to improve factual accuracy [25].134

2.3 Integrating Validation into Synthesis Planning135

Ultimately, the goal of a plausibility score is to improve the reliability of reactions and enhance136

multi-step planning. In this context, scores are integrated into graph-based search algorithms like137
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Retro* or Monte Carlo Tree Search (MCTS) to guide the construction of the synthesis tree [5]. The138

plausibility score of a predicted invalid reaction is often used to increase the cost of a synthesis branch139

depending on the severity of predicted error, thus discouraging the search algorithm from exploring140

pathways containing that step. An effective validation method can "prune" entire branches of the141

search tree that begin with an invalid reaction, saving significant computational resources. However,142

the effectiveness of this pruning is entirely dependent on the reliability of the underlying correctness143

score. Relying on a single validation strategy, especially one with known weaknesses, limits the144

search algorithm’s ability to consistently find valid and optimal routes. This highlights the need for a145

more robust validation approach, which is the central contribution of our work.146

3 Methods147

The framework is built around a central, best-performing scorer based on novel scoring mechanism148

that mimics intuition of chemical experts, which we call Reaction Prior, supported by two additional149

scorers designed to compliment it by targeting specific error types. The final framework is aggregated150

into a Meta-Scorer that provides final, robust assesment of reaction correctness.151

3.1 Reaction Prior152

The Reaction Prior (RP) is a novel sequence model trained on SMILES-formatted reactions to153

estimate the joint likelihood of substrates and products. Its design principle is to align the model’s154

predictive biases with the chemical intuition that experienced chemists use to evaluate the correctness155

of a reaction. Reaction Prior uses a standard autoregressive, encoder-decoder BART [13] architecture,156

where substrates and products are processed by the decoder and trained to maximize the probability157

of the correct next token using a standard cross-entropy loss function. In order to produce a reaction158

score, Reaction Prior integrates multiple chemical considerations: overall feasibility, regioselectivity,159

and reactive site confidence. The final score (Sfinal) is a weighted combination of three components:160

Sfinal = Sα
RP · Sβ

Regio · S
γ
RC . Here, SRP is the Reaction Prior Score, SRegio is the Regioselectivity161

Score, and SRC is the Reaction Center Score, with α, β, and γ serving as weighting factors.162

Reaction Prior Score (SRP ) This score reflects the overall feasibility of the reaction. It is the log163

probability assigned by the transformer model to the complete reaction sequence, normalized by the164

square root of the total number of tokens (T ): SRP = 1√
T
logP (reaction).165

Regioselectivity Score (SRegio) This component quantifies reaction site specificity. It is calculated166

by comparing the probability of the desired reaction (Pdesired) to the summed probabilities of all167

alternative reactions at different potential sites (Pundesired): SRegio = log
(

Pdesired
Pundesired+ϵ

)
, where ϵ is a168

small constant to prevent division by zero.169

Reaction Center Score (SRC ) This score evaluates the model’s confidence in the identified reactive170

sites. It is the sum of log probabilities for the tokens representing atoms at the reaction’s core,171

normalized by the number of such tokens (TRC): SRC = 1
TRC

∑
i∈reaction center logP (tokeni).172

3.2 GAT-Based Plausibility Classifier173

A Graph Attention Network (GAT) [27] is trained to differentiate chemically valid reactions from174

implausible ones. Training uses positive examples from curated datasets and synthetic negative175

examples generated through forward and two-step backward template applications.176

The model processes reaction graphs where individual atoms and bonds are featurized with chemically-177

meaningful characteristics, outputting a scalar plausibility score for each reaction. The attention178

mechanism is modified to ensure that attention weights between non-connected nodes approach zero,179

preserving the chemical connectivity structure. The key difference to the original GAT is the support180

of global information exchange across the entire molecular graph, ensured by an artificial supernode181

that connects to all other nodes in the graph.182
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3.3 Reference Reaction Retrieval Scorer183

Retrieval-based approaches assess reaction plausibility by comparing candidate reactions against184

a comprehensive database of validated chemical transformations. This comparative framework185

evaluates how closely predicted reactions align with established chemical precedents.186

We developed a structured retrieval pipeline that extracts chemical precedent information through187

a two-tiered reaction clustering framework based on bond change patterns. First Coarse-grained188

clustering extracts connected components of the reaction center and applies atom mapping to identify189

the underlying transformation pattern. Reactions belong to the same cluster if their transformation190

patterns are identical. Then Fine-grained clustering extends the coarse-grained approach by incorpo-191

rating chemically significant substructures such as aromatic systems and conjugated double bonds -192

into the cluster classification.193

Our Reference Reaction Retrieval Scorer (RR) quantifies reaction plausibility through a logarithmic194

transformation of the unique reference reaction count within the candidate reaction’s coarse-grained195

cluster and fine-grained cluster:196

p(reaction) = log(nref (reaction) + 1) (1)

where nref (reaction) represents the unique number of reference reactions in the coarse-grained and197

fine-grained clusters containing reaction.198

3.4 Meta-Scorer Aggregation199

To improve reaction filtering, our Meta-Scorer integrates scores from Reaction Prior (RP) and200

GAT models, and empirical precedents (nref > 0) retrieved via the pipeline in Sec. 3.3. This hybrid201

approach mitigates the weaknesses of purely data-driven or precedent-based methods. The continuous202

score is described by equation scoreMETA = max(scoreGAT, scoreRP) if nref > 0 (0 otherwise).203

For binary classification tasks and search, reactions are filtered using predefined thresholds, selected204

through grid search to balance the recall and precision:205

scoreMETA =

{
1 if scoreGAT > 0.85 and scoreRP > 0.75 and nref > 0

0 otherwise
(2)

By synthesizing diverse evidence types Meta-Scorer enables more reliable reaction filtering for206

multi-step synthesis planning. This integrated approach mitigates individual weaknesses of purely207

data-driven or precedent-based methods, yielding improved performance.208

3.5 Integration with Search (Retro*)209

The calibrated Meta-Scorer is used during multi-step retrosynthesis search to improve the quality210

of predicted pathways. We integrate it into the Retro* [1] search framework as a reaction filtering211

mechanism. Reactions are pruned from the search tree before any further expansion if the scoreMETA212

in 2 is equal to 0. This eliminated low-quality reactions early, reducing the search space and213

improving overall plausibility. This integration made our system more robust to hallucinations from214

the underlying SSR model and helped produce more correct, trustworthy synthesis plans.215

4 Human Evaluation216

We curated a dataset of over 4,500 reactions generated by our SSR models. Each reaction was217

evaluated and labeled by PhD-level chemists into one of the expert-defined categories, creating the218

first comprehensive dataset of its kind. This resource provided a robust way to evaluate the error219

patterns of our reaction plausibility scorers.220

Reaction Evaluation Protocol was designed to systematically evaluate predicted reactions based221

on expert-defined heuristics. Reactions were rated using a four-point confidence scale: Nonsense,222

Rather Not, Worthwhile, and Safe Bet. For the system to be reliable, the paths must consist primarily223

of reactions that the experts consider to be "safe bets". On the other hand, Nonsense and Rather224

Not reactions can undermine user confidence and trust. Reactions that do not pass evaluation at a225
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certain stage receive an additional label specifying the cause of their incorrectness, out of Reactants226

mismatch, Unstable, Magic, One pot, Reactivity, Functional group incompatibility, and Selectivity.227

Otherwise, a reaction is assigned a No Problem label with Safe Bet confidence. A detailed description228

of the evaluation framework is provided in Appendix B.229

5 Experiments230

5.1 Reaction-Level Plausibility Prediction231

We compared the ability of each individual scorer (RP, GAT and RR) and the Meta-Scorer to232

distinguish correct from incorrect reactions. All models were evaluated on a held-out dataset of233

reactions derived from retrosynthesis paths for unseen molecular targets. In order to improve the234

alignment of the scores with probabilities of a reaction being correct, GAT and RP were calibrated235

using isotonic regression on a sample of representative data. Ground truth labels were established236

through expert chemist evaluations descibed in Section 4.237

Model performance was assessed using precision-recall (PR) and receiver operating characteristic238

(ROC) curves, with area under the curve metrics (PR-AUC and ROC-AUC) reported for each method.239

Reactions with confidence rating Safe Bet or Worthwhile were treated as positive examples, while240

all others were labeled as negatives. We also conducted additional analysis across specific failure241

categories: Magic, Selectivity, Functional group incompatibility, Reactivity, One pot, Unstable, and242

Reactants mismatch reporting false positive rates and ROC-AUC scores.243

To evaluate model complementarity, we analyzed the overlap in false positive predictions across244

individual scorers, calculated as:245

overlap =

∣∣∣⋂scorer∈{GAT,RP,RR} FPscorer

∣∣∣
minscorer∈{GAT,RP,RR} |FPscorer|

, (3)

where FP is a set of false positives produced by a given scorer.246

5.2 Path-Level Plausibility Evaluation247

In addition to evaluating individual reactions, we assess the plausibility of entire retrosynthetic paths.248

We evaluated a set of top-1 paths generated for selected 32 targets (can be found in C) by various249

retrosynthesis systems, both with and without our reaction filtering mechanism. Paths are assigned250

the same four-tier confidence score as reactions (Safe Bet, Worthwhile, Rather Not, Nonsense),251

determined by the lowest-scoring reaction in the path. This conservative scoring reflects the intuition252

that a single implausible step can invalidate an otherwise promising synthesis. Paths marked as Safe253

Bet represent routes where experts have confidence in every reaction step - increasing their proportion,254

along with eliminating Nonsense and decreasing number of Rather Not constitutes a fundamental255

requirement for reliable retrosynthesis systems.256

6 Results257

6.1 Reaction-Level Plausibility Evaluation258

Our results show that the Meta-Scorer outperforms individual scorers in both precision and recall,259

demonstrating effective integration of complementary signals. Figure 1 presents the ROC and260

precision-recall curves, with the Meta-Scorer achieving consistently higher area under the curve261

(AUC) values across both metrics. Similar curves broken down by reaction failure category can be262

found in Appendix D.263

Figure 2 shows ROC-AUC values for each scorer broken down into different failure categories, illus-264

trating that individual scorers demonstrate proficiency in filtering out reactions deemed implausible265

under different evaluation criteria. GAT achieves the best performance on Selectivity and Reactivity266

errors. RR is most capable of detecting fundamental structural issues such as Reactant mismatches267

and Magic, in addition to One pot errors. RP shows a balanced profile, which explains its overall268

superior performance compared to GAT and RR in Figure 1. By leveraging the unique strengths of269
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Figure 1: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer. The meta-scorer achieve higher AUC values for both ROC
and PR curves, indicating better discrimination between plausible and implausible reactions. Among
the individual scorers, RP shows the best performance.

each individual scorer, the Meta-Scorer maintains robust predictive performance across all failure270

categories.271

We also analyze the overlap between false positives that each scorer fails to filter, as shown in272

Figure 3. The results show distinct complementarity: while RR and RP exhibit high overlap in most273

categories, it is notably reduced for One-pot, Magic, and Reactant mismatch failure modes — the274

categories where Figure 2 demonstrates RR’s superior performance. GAT and RP show consistently275

low overlap across all failure categories, indicating that these scorers capture different aspects of276

reaction implausibility. Importantly, when considering all three scorers jointly, the overlap drops to277

very low levels across all categories, providing strong evidence that each scorer contributes unique278

discriminative value essential for building a robust Meta-Scorer.279

Figure 2: ROC-AUC performance of individual
scorers across different failure categories, with
sample sizes indicated for each category. The
results reveal complementary strengths among
scorers: GAT demonstrates superior perfor-
mance for Selectivity and Reactivity errors, RR
excels at detecting Reactant mismatches, One
pot errors, and Magic reactions, while RP shows
the highest performance for Unstable reactions
and maintains consistent generalist performance
across other failure types.

Figure 3: Overlap between individual pairs of
scorers and triple of all scorers across different
failure categories, with sample sizes indicated for
each category. RR and RP show high overlap ex-
cept in One-pot, Magic, and Reactant mismatch
categories. GAT and RP exhibit low overlap
across all categories. The joint overlap of all
three scorers remains minimal, confirming that
each contributes unique discriminative capabili-
ties to the Meta-Scorer.

6.2 Path-Level Plausibility Evaluation280

Figure 4 presents the evaluation results comparing our Retro* systems across different configurations:281

the baseline system (without any scorer), individual scorers (GAT, RR, and RP), and the Meta-Scorer.282

We benchmarked these against two publicly available retrosynthetic planning systems, IBM RXN283

and AiZynthFinder [8], as well as the open-source generator LocalRetro [3], using the same Retro*284

search algorithm.285
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Figure 4: Comparison of our retrosynthesis systems against IBM RXN, AiZynthFinder and Local-
Retro. AiZynthFinder, IBM RXN and LocalRetro fail on many targets. Our generator when used
without any reaction scorer (indicated as "Our generator w/o scorer") finds pathways for all targets
but includes unreliable routes. Introduction of individual scorers trades coverage for reliability, with
RP eliminating all Nonsense pathways. The search system backed by the Meta-Scorer produces most
trustworthy results.

We ran AiZynthFinder in its default configuration from the official repository, with the only modifica-286

tion being an increased time limit of 15 minutes. IBM RXN was used through its free web application287

[10]. For LocalRetro, we relied on the implementation available in the open-source framework288

Syntheseus [16]. For all these runs, we used the same starting materials database, eMolecules.289

AiZynthFinder demonstrates significant limitations, failing to identify viable pathways for significant290

number of the target molecules while generating a substantial proportion of unreliable routes classified291

as Nonsense and Rather Not. IBM RXN shows improved performance by increasing the number of292

reliable pathways and reducing hallucinated predictions, yet fails to produce valid synthetic routes293

for a considerable fraction of target compounds.294

Our baseline model (SSR generator without any filtering mechanism) significantly improves number295

of pathways found, providing solutions for all targets. However, confidence in its results is undermined296

by the significant presence of unreliable Nonsenense and Rather Not paths. Introducing individual297

scorers increases the fraction of targets for which no paths are found, a trade-off that can be desirable298

for the trustworthiness of the system — rejecting some targets is preferable to mixing reliable and299

unreliable pathways, as long as the remaining routes are correct. While GAT and RR scorers reduce300

number of unreliable paths only modestly, our RP scorer demonstrates its value as a primary filter by301

eliminating all Nonsense reactions, though this comes at the cost of fewer Safe Bet and Worthwhile302

pathways. Finally, the Meta-Scorer delivers substantial improvements in reliability: significantly303

increasing Safe Bet paths, maintaining zero Nonsense results, and reducing Rather Not pathways.304

7 Conclusions305

We introduced a novel framework for mitigating hallucinations in automated retrosynthesis. Unlike306

previous approaches, our system was evaluated for the first time under a structured validation protocol307

with Ph.D.-level chemists, focusing on very novel targets. The framework combines a chemist-like308

primary scorer with two complementary auxiliary scorers, which together form a Meta-Scorer that309

reliably evaluates the quality of pathways proposed by retrosynthesis models. The scorers exhibit310

distinct error patterns and, when combined, successfully eliminate chemically unsound reactions.311

Importantly, our system achieved zero most severe hallucinations, classified as Nonsense reactions, in312

expert evaluation, performing better in this regard than the comparison baselines.313

By substantially reducing the number of intermediate-quality reactions (Rather not and Worthwhile)314

while increasing the proportion of high-confidence Safe Bet reactions, the framework enhances both315

the efficiency and trustworthiness of retrosynthetic planning. This ability to provide chemists with316

reliable and validated reaction proposals addresses a central barrier to adoption: the impracticality317

of assessing large numbers of candidates when unreliable reactions are present. Consequently, our318

framework not only improves computational retrosynthesis but also makes it more practical and319

usable in real-world discovery pipelines.320
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A Examples of reaction pathways456

Safe bet

Safe bet Worthwhile

Safe bet

Worthwhile Safe bet Safe bet

Figure 5: Example of a pathway with Safe Bet and Worthwhile reactions

Safe bet Rather not

Safe bet

Safe bet

Safe bet

Safe betSafe betSafe bet

Figure 6: Example of a pathway with a Rather Not reaction

Safe bet

Safe bet

Safe bet

Worthwhile

Worthwhile Safe bet

Safe bet

Nonsense

Safe bet

Figure 7: Example of a pathway with a Nonsense reaction
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B Reaction Evaluation Protocol457

Each candidate reaction is assessed sequentially along the following dimensions. Unless specified458

otherwise, in each of them the reaction is scored on a four-level confidence scale: Nonsense, Rather459

Not, Worthwhile, and Safe Bet, indicating the plausibility of the reaction. Every reaction that is not a460

safe bet is assigned an additional label explaining the reason for its incorrectness.461

1. Reactant-Product Consistency: Structural alignment between reactants and product is462

verified. Reactions in which the product contains a large fragment that is neither present in463

the substrate nor originates from a commonly used reagent, or in which no clear relationship464

between the atoms of the product and the substrates can be established, are marked as465

Nonsense, with the reason for incorrectness labeled as Reactants mismatch.466

2. Stability: Reactions producing products or including substrates that are not isolable under467

the typically achievable conditions are marked as Nonsense, with the reason for inplausibility468

labeled as Unstable.469

3. Mechanistic Plausibility: Reactions lacking a plausible mechanism are classified as Non-470

sense or Rather Not due to Magic, covering transformations requiring unknown or highly471

implausible reactivity. Transformations that would require more than two non-trivial steps472

are also placed in this category.473

4. Multistep Feasibility and One-Pot Potential: Reactions not achievable in a single step are474

assessed for decomposability into two coherent steps. If they pass this test, feasibility in a475

one-pot setting is scored on a four-level scale and failing reactions are marked as One pot.476

5. Reactivity of Substrates: Feasibility of the reaction, given the reactivity of the substrates477

(e.g., electron deficiency), is verified. Reactions that cannot be reasonably expected to occur478

are marked as implausible, with the reason for incorrectness labeled as Reactivity.479

6. Functional Group Compatibility: Molecules are screened for other functional groups480

that can undergo a reaction. If other groups are more probable to react first, the reaction is481

marked with problem Functional group incompatibility.482

7. Selectivity: Selectivity of the reaction is verified, including competition between functional483

groups of the same type, regioisomeric outcomes (e.g., in electrophilic aromatic substitution),484

or other cases where multiple plausible products can arise. Reactions that fail this evaluation485

are marked as Selectivity.486

B.1 Implausibility Annotation Examples487

B.1.1 Reactants mismatch488

Figure 8: Nonsense: No clear relationship between atoms in the product and the substrate can be
confidently proposed
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Figure 9: Nonsense: The pyridyl fragment require an additional substrate, that is missing

B.1.2 Unstable489

Figure 10: Nonsense: The carbon atom with amine and chlorine is not something seen in literature

Figure 11: Nonsense: The second substrate would tautomerize to phenol instantly

Figure 12: Nonsense: The substrate is unstable, it would tautomerize to imine
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B.1.3 Magic490

Figure 13: Nonsense: Changing length of the alkyl chain, no known precedent of such variant of
carbon alkylation

Figure 14: Nonsense: An alkyl chain acting as a leaving group and bond formation by an unactviated
amine carbon. No such reactivity ever demonstrated in literature

B.1.4 One pot491

Figure 15: Rather not: 2 steps required – Boc deprotection and acylation

Figure 16: Rather not: 2 steps required - Cbz deprotection and Boc protection
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B.1.5 Reactivity492

Figure 17: Rather not: Most of the references for this reaction are around electron-deficient heterocy-
cles, only one example with pyrazole in literature

Figure 18: Rather not: High likelihood of steric hindrance

B.1.6 Functional group incompatibility493

Figure 19: Rather not: No literature references where a bromine is located in alpha to the ester
position. The alkyl bromine would most likely react more readily than the ester.

Figure 20: Nonsense: No conditions allow to cleave a methyl ether in a way that wouldn’t affect the
sulfonyl chloride
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B.1.7 Selectivity494

Figure 21: Rather not: There is a considerable risk that achieving the disubstituted product at a
satisfactory yield would be very difficult (especially accounting for the presence of amine in the
structure).

Figure 22: Rather not: There are 3 equivalent hydroxyl groups, so in bromination we expect triple
substitution rather than this scenario

C Retrosynthesis Targets495

C.1 SMILES496

497

Clc1ccc(-c2c(N(CC)CC)c(c(nc2C)C)CC(=O)NCC)cc1498

499

O(c1cc(c([N+](=O)[O-])cc1)COC1CN(C(=O)[C@@H]2C[C@]3(NC(OC3)=O)C2)C1)C1CCCC1500

501

FC1(F)C(N2N=CC(=C2C)c2cc(ccc2)C#Cc2c(OC)cc(nc2)C(=O)O)C1502

503

O(C(C)(C)C)[C@H](C(=O)Nc1nc2[C@](O)(CCc2cc1)CC)c1c(nc(cc1)C)C504

505

FC1(F)Oc2c(O1)cc(nc2)C(=O)NC1=NN2C(C(=O)N[C@@H]3[C@H]2CCC3)=C1506

507

Clc1c(N2CCC(F)(F)CC2)c(Cl)cc(NC(=O)CC[C@]2(NC(=O)NC2=O)C2CC2)c1508

509

S(=O)(=O)(Nc1nc2N(N(C(=O)c2cn1)CC=C)C)c1ccc([C@@H](C2=Nc3c(N2)cccc3)CCO)cc1510

511

Fc1cc(F)cc(N2[C@H](CN(CC(=O)Nc3ncnc4N(C(C)C)C=C(F)c34)CC2)C)c1512

513

Fc1c(nc2c(c(F)ccc2)c1)Nc1cc2C(OC(=O)c2cc1)(C)C514

515

O1C(=NN=C1)c1c(ncnc1)NC1C[C@H](O)[C@@H](O)C1516

517

Fc1cc2c(OB(O)[C@@H](NC(=O)C3CC3)C2)cc1518

519
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S(C=1NN=NC1C(=O)NCCOCCNC(=O)C=1N=C(SC1)N1N=CC(=C1)C)c1ccccc1520

521

O1C(Oc2c1c(ccc2C)C)([C@@H]1CC[C@@H](NC(=O)c2ncc(cc2)C#N)CC1)C522

523

S(C1=C(C(=O)NC(=C1)C)CN(c1c2c(nccc2)c(cc1)C#N)C)C524

525

O(CC(=O)NC1CC2N(C(C1)CC2)C)CCN1c2c3N(C(=O)C1=O)CCCc3ccc2526

527

FC(F)(F)c1cc(C2=CN(C(=O)C(NC(=O)C3=NN(c4c3cccc4)C)=C2)C)ccc1528

529

Fc1cc(F)cc(C(=O)NC23CC([C@@H](C(=O)N[C@H]4c5c(OC4)ccc(-c4c(OC)ccc(c4)C)c5)C)(C2)C3)c1530

531

O1c2c(cc(C3=CN4N=C(N=C4N=C3)c3cnc(C(=O)C)cc3)cc2)CCC1532

533

S1C(N(C(=O)C2C(OCC)C=CCC2)C)=C(C2=C1CC1(N(C2)CC2CC2)CCCC1)C#N534

535

S(=O)(=O)(N[C@@H]([C@@H]1CC[C@H](c2cnccc2)CC1)C)c1cc(F)cc(-c2ncccc2)c1536

537

FC(F)(F)[C@@H](N1CCC2(C(=O)N(Cc3c4OC=C(c4cc(OC(C)C)c3)C)CC2)CC1)CC1[C@@H](O)[C@@H](O)CC1538

539

FC(F)(F)[C@@H]([C@H](C(=O)N[C@@H]([C@@](O)(N)CC)C)c1cc(OC)cc(OC)c1)C540

541

FC(F)(F)c1ncc(-c2ncc(C(F)(F)F)c(c2)CNC(c2cc(C3=NOC(=C3CO)CC)ccc2)C2CC2)cn1542

543

O1c2c(nc(N3C(=CC=C3C)C)nc2CCC1)NC1CCC(CO)CC1544

545

O(c1ccc([N+](=O)[O-])cc1)CC[C@@](N)(CCN(C(=O)c1c2c(C(=O)c3c(C2=O)cccc3)ccc1)C)C546

547

S(=O)(c1ccccc1)CCNC(=O)CN(c1ncnc([C@@H]2C[C@@H](O)C2)c1)C548

549

Fc1c(C=2OC(=NN2)C=2Oc3c(cc4NC(Oc4c3)=O)C2)cc(F)cc1550

551

O=C(N1C2C(Nc3ncc(-c4cnccc4)cn3)CC1CC2)C1C(O)C(O)CC1552

553

S1[C@]2(C(=O)N3CC4[C@@H](NC5=NN(C=N5)CC(F)(F)F)[C@H](C3)CC4)[C@H]([C@](N=C1N)(c1ccccc1)C)C2554

555

P(=O)(O)(O)CO[C@H]1C(C=2N(N=CC2)C/C=C/c2ccccc2)CCCC1556

557

FC(F)(F)C(Nc1cncc(C(CO)C)c1)c1c(F)cc(OC2CN(C2)CCCF)cc1558

559

O=C(N1CC(N2C(=O)CNC(C2)C)C1)N[C@H]1C(=O)NC[C@@H]1c1ccc(N2C[C@@H](O)CC2)cc1560
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C.2 Visualization561

Figure 23: 32 molecules that have been used as targets for retrosynthesis.
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D ROC And Precision-Recall Curves By Failure Category562

D.1 Magic563

Figure 24: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer on Magic and No Problem reactions.

D.2 Selectivity564

Figure 25: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer on Selectivity and No Problem reactions.
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D.3 Functional group incompatibility565

Figure 26: ROC (on the left) and precision-recall (on the right) curves comparing the performance
of individual scorers versus the Meta-Scorer on Functional group incompatibility and No Problem
reactions.

D.4 Reactivity566

Figure 27: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer on Reactivity and No Problem reactions.
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D.5 One pot567

Figure 28: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer on One pot and No Problem reactions.

D.6 Unstable568

Figure 29: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer on Unstable and No Problem reactions.
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D.7 Reactants mismatch569

Figure 30: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer on Reactants mismatch and No Problem reactions.

E False Positives Counts By Failure Category570

Figure 31: Counts of false positives produced by individual scorers versus the Meta-Scorer across
different failure categories, with sample sizes indicated for each category.
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F True Negatives Counts By Failure Category571

Figure 32: Counts of true negatives produced by individual scorers versus the Meta-Scorer across
different failure categories, with sample sizes indicated for each category.
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