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Abstract

While Artificial Intelligence (AI) has lead to significant improvements in Computer-
Aided Synthesis Planning (CASP), its credibility within the chemical community is
fragile. Al retrosynthesis models frequently “hallucinate” chemically implausible
reactions, which undermines trust. To address this, we propose a framework that
integrates three orthogonal validation strategies to ensure reaction plausibility.
This key insight, combining reaction validation strategies which cover different
error patterns, was the basis of our winning solution to the [Anonymized for the
sake of blind review] Retrosynthesis Challange. Our approach combines: (1) a
novel Transformer-based model, called Reaction Prior, that estimates reaction
likelihood from large-scale experimental data, mimicking chemical reasoning (2) a
Graph Neural Network trained on a reaction dataset augmented with synthetically
generated incorrect reactions, and (3) a retrieval-based scoring system that leverages
chemical databases and grounds suggestions in known chemical literature. The
framework was validated on unseen targets through a novel human evaluation
process, successfully rejecting the most hallucinated reactions. In this evaluation,
chemical experts manually reviewed reactions within the synthetic paths, providing
a more reliable and trustworthy form of verification compared to purely automatic
methods.

1 Introduction

In chemistry, synthesis planning is the process of constructing synthetic routes - sequences of chemical
reactions - that lead to a desired target molecule. Usually, this is done through retrosynthetic analysis,
which works backward from the target, looking for suitable precursor molecules. This single-step
retrosynthesis (SSR) procedure is repeated in a recursive fashion until a satisfying synthetic route is
found from the available starting materials (building blocks) to the target.

Computer-Aided Synthesis Planning (CASP) leverages computational tools and algorithms to assist
chemists in designing synthetic routes for chemical compounds. Today, this area is undergoing a
major transformation driven by advances in Artificial Intelligence (AI) and is becoming increasingly
important in drug discovery, agrochemicals, and materials science [} |9, [7]. Unlike traditional
methods that rely heavily on expert intuition or rigid rule-based systems, Al-driven CASP aims to
automatically learn chemical knowledge from experimental datasets. This data-centric approach
addresses key limitations of previous methods, such as dependence on scarce human expertise and the
high computational costs associated with exhaustive search [15]. However, it is not without its flaws.

Modern CASP systems typically generate complete synthetic routes by iteratively applying predictions
from SSR model within a graph-based search algorithm. Consequently, the quality of the final
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synthesis plan depends on the accuracy of the underlying SSR model [32]. Despite significant
progress, a critical challenge remains: these models frequently "hallucinate" proposing chemically
nonsensical or implausible reactions [26]]. This leads to serious efficiency concerns as each wrong
prediction initiates the exploration of an invalid branch in the synthesis tree, wasting computational
resources.

Beyond computational cost, hallucinations undermine the credibility of Al-driven CASP. A synthetic
route is only as strong as its weakest link: A single flawed step can compromise the entire plan. When
suggested routes require extensive manual checking to filter out chemically implausible steps, the
systems’ credibility as a whole is undermined.

Complicating matters further, "hallucination" errors are not only frequent but also highly diverse.
These errors can range from obvious flaws, such as atoms appearing without a valid chemical origin,
to violations of stereochemical or regioselective rules. This variety makes it difficult to overcome
with any single validation strategy. One straightforward idea is to filter pathways using a high
threshold on thegenerator (SSR) score, if it is explicitly modeled. However, this approach often
discards pathways entirely rather than flagging nuanced problems. Alternative methods exist, such
as using forward-prediction models to check reversibility, but they are typically used in isolation.
Consequently, they provide only partial mitigation and remain inadequate against the full spectrum of
errors. Therefore a more robust approach is needed.

In this work, we address the challenge of identifying implausible reactions during retrosynthetic
planning. We propose a new framework that combines three complementary validation strategies
into a unified scoring mechanism (Meta-Scorer) which identifies and removes implausible reactions
generated during SSR. We show that each component of our framework specializes in different types
of errors, providing broader and more reliable coverage than any single strategy could achieve alone.

Our approach is based on the principle of ensemble learning: combining diverse models with distinct
error patterns yields a more robust and accurate assessment of reaction plausibility. The resulting
aggregated plausibility scores are designed to be directly integrated into heuristic-guided search
algorithms, such as Retro*. This enables implausible branches to be dynamically pruned from the
synthesis search tree and reaction costs to be adjusted, guiding the planner towards synthetic routes
that are trusted by chemical experts. This approach contrasts with prior efforts that have typically
relied on a single validation strategy. Our retrosynthesis systems, combining multiple validation
strategies, won the the [Anonymized for the sake of blind review] Retrosynthesis Challange, in which
the correctness of pathways judged by human experts was crucial.

In order to evaluate our system, we employed for the first time a structured reaction plausibility
validation protocol, in which PhD-level chemistry specialists assessed each reaction in the proposed
retrosynthetic pathways according to a predefined labelling schema. Reactions without significant
issues were labeled No problem, while those with errors were assigned to one of the following
categories: Magic, Selectivity, Functional group incompatibility, Reactivity, One pot, Unstable, or
Reactants mismatch. Based on the severity of any identified errors, each reaction was then given
a confidence label on a four-point scale: Nonsense, Rather not, Worthwhile, or Safe bet. Then the
overall confidence for a synthetic pathway was determined by the lowest-scoring reaction within it.
The complete protocol is detailed in the Appendix

Our key contribution is a complementary set of validation strategies that effectively eliminates most
severe hallucinated reactions during retrosynthetic search - labeled Nonsense in our protocol - and
significantly reduces Rather not and Worthwhile reactions within pathways. The framework is built
around a central, best-performing scorer based on novel scoring mechanism, which we call Reaction
Prior, supported by two additional scorers designed to be compliment it by targeting specific error
types. The framework includes:

1. Reaction Prior (RP): The core novel model, which estimates the intrinsic plausibility of
reactions using large-scale experimental data. It is based on a Transformer-based architecture
and designed to mimic how chemists think when evaluating reaction plausibility.

2. Graph Attention Network (GAT): A model trained to distinguish valid reactions from
synthetically inplausible negatives and specializes in Selectivity and Reactivity error types.

3. Reaction Retrieval (RR): A mechanism that assesses the similarity of proposed reactions to
known experimental precedents in reaction databases. It is designed to handle Reactants
mismatch, One pot Magic error types.
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2 Related Work

To contextualize our proposed method, this section examines the workflow in automated retrosynthe-
sis, covering both the generation of reactions by Single-Step Retrosynthesis (SSR) models and the
limited work on the techniques used for their validation.

2.1 Reaction Generation: Single-Step Retrosynthesis

Template-Based Methods operate by matching a target molecule against a predefined library of
reaction templates, which are abstract representations of known chemical transformations. Examples
include RetroSim [4]], NeuralSym [20], GLN [6]], DualTB [24] LocalRetro [2]], RetroKNN [29] and
RetroComposer [31]]. The primary advantage of these models is their ability to produce interpretable
outputs for reactions that fall within their template library. Though often reliable, they are not immune
to proposing implausible reactions. The construction of these template libraries is challenging and
involves an trade-off between specificity and computational cost. This leads to trivial errors, over-
generalizations, or missing context in the template definitions, leading to chemically incorrect reaction
suggestions produced by these methods [3].

Template-Free Methods aim to learn the underlying rules of chemistry directly from reaction data.
These approaches typically employ machine learning architectures, such as sequence-to-sequence
models [14]], Transformers [[12, [11], or Graph Neural Networks (GNNs) [18]. A key benefit of these
approaches is their scalability and potential to generalize to novel chemical transformations not seen
in template libraries [32]. However, this flexibility often comes at the cost of chemical correctness.
The models may struggle with correct atom-mapping during generation or overlook crucial 2D and
3D structural information [32]], which lead to predictions that violate established chemical principles
and steric constraints [33]].

Semi-Template-Based Methods seek to combine the reliability of templates with the flexibility of
template-free generation. This category includes methods like GraphRetro [23]], RetroXpert [30], and
G2G [22]. While these hybrid approaches often improves performance by balancing constraints with
flexibility, they do not fully eliminate the problems of generating implausible predictions.

2.2 Reaction Validation

To address the shortcomings of SSR models, researchers have developed various post-hoc validation
strategies, where proposed reactions are scored and filtered to enhance the overall trustworthiness
and reliability of the predictions.

Learning-Based Plausibility Models are techniques such as "in-scope filter," a neural classifier
trained to predict if a given reaction is valid [21]. The ASKCOS platform implements this idea:
an internal “fast filter model” scores each candidate reaction’s plausibility and reactions below a
likelihood threshold are removed. These filters are typically trained using contrastive learning on real
vs. bad (mismatched) reaction pairs. One example includes HiCLR framework [28]], which trains
a model to distinguish between reactions sharing a common chemical superclass and those that do
not. An alternative strategy is to use Molecular Transformer architecture as it has been shown that its
confidence in a prediction, derived from output token probabilities, correlates well with the reaction’s
correctness [[19]].

Evidence-Based Validation via Retrieval grounds model predictions in established chemical
knowledge through retrieval-augmented methods. This mirrors a chemist’s workflow of searching
for literature precedents. For example, the Retrieval-Augmented RetroBridge (RARB) framework
retrieves similar molecules from a database to guide the generation of reactants [[17)]. The rise of
LLMs has also seen the application of Retrieval-Augmented Generation (RAG), where the model’s
output is conditioned on retrieved documents to improve factual accuracy [25].

2.3 Integrating Validation into Synthesis Planning

Ultimately, the goal of a plausibility score is to improve the reliability of reactions and enhance
multi-step planning. In this context, scores are integrated into graph-based search algorithms like
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Retro* or Monte Carlo Tree Search (MCTS) to guide the construction of the synthesis tree [5]. The
plausibility score of a predicted invalid reaction is often used to increase the cost of a synthesis branch
depending on the severity of predicted error, thus discouraging the search algorithm from exploring
pathways containing that step. An effective validation method can "prune" entire branches of the
search tree that begin with an invalid reaction, saving significant computational resources. However,
the effectiveness of this pruning is entirely dependent on the reliability of the underlying correctness
score. Relying on a single validation strategy, especially one with known weaknesses, limits the
search algorithm’s ability to consistently find valid and optimal routes. This highlights the need for a
more robust validation approach, which is the central contribution of our work.

3 Methods

The framework is built around a central, best-performing scorer based on novel scoring mechanism
that mimics intuition of chemical experts, which we call Reaction Prior, supported by two additional
scorers designed to compliment it by targeting specific error types. The final framework is aggregated
into a Meta-Scorer that provides final, robust assesment of reaction correctness.

3.1 Reaction Prior

The Reaction Prior (RP) is a novel sequence model trained on SMILES-formatted reactions to
estimate the joint likelihood of substrates and products. Its design principle is to align the model’s
predictive biases with the chemical intuition that experienced chemists use to evaluate the correctness
of a reaction. Reaction Prior uses a standard autoregressive, encoder-decoder BART [[13]] architecture,
where substrates and products are processed by the decoder and trained to maximize the probability
of the correct next token using a standard cross-entropy loss function. In order to produce a reaction
score, Reaction Prior integrates multiple chemical considerations: overall feasibility, regioselectivity,
and reactive site confidence. The final score (Sfinq:) is a weighted combination of three components:

Stinal = Sip - Sge gio S}QC. Here, Sgrp is the Reaction Prior Score, Sgegio 1S the Regioselectivity

Score, and Src is the Reaction Center Score, with «, 3, and v serving as weighting factors.

Reaction Prior Score (Szp) This score reflects the overall feasibility of the reaction. It is the log
probability assigned by the transformer model to the complete reaction sequence, normalized by the
square root of the total number of tokens (T'): Sgp = ﬁ log P(reaction).

Regioselectivity Score (Sgreqi,) This component quantifies reaction site specificity. It is calculated
by comparing the probability of the desired reaction (Pyesired) to the summed probabilities of all

alternative reactions at different potential sites (Pindesired): SRegio = 10g ( %), where € is a
undesire

small constant to prevent division by zero.

Reaction Center Score (Srpc) This score evaluates the model’s confidence in the identified reactive
sites. It is the sum of log probabilities for the tokens representing atoms at the reaction’s core,

normalized by the number of such tokens (Tr¢c): Src = ﬁ > icreaction center 108 P (token; ).

3.2 GAT-Based Plausibility Classifier

A Graph Attention Network (GAT) [27] is trained to differentiate chemically valid reactions from
implausible ones. Training uses positive examples from curated datasets and synthetic negative
examples generated through forward and two-step backward template applications.

The model processes reaction graphs where individual atoms and bonds are featurized with chemically-
meaningful characteristics, outputting a scalar plausibility score for each reaction. The attention
mechanism is modified to ensure that attention weights between non-connected nodes approach zero,
preserving the chemical connectivity structure. The key difference to the original GAT is the support
of global information exchange across the entire molecular graph, ensured by an artificial supernode
that connects to all other nodes in the graph.
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3.3 Reference Reaction Retrieval Scorer

Retrieval-based approaches assess reaction plausibility by comparing candidate reactions against
a comprehensive database of validated chemical transformations. This comparative framework
evaluates how closely predicted reactions align with established chemical precedents.

We developed a structured retrieval pipeline that extracts chemical precedent information through
a two-tiered reaction clustering framework based on bond change patterns. First Coarse-grained
clustering extracts connected components of the reaction center and applies atom mapping to identify
the underlying transformation pattern. Reactions belong to the same cluster if their transformation
patterns are identical. Then Fine-grained clustering extends the coarse-grained approach by incorpo-
rating chemically significant substructures such as aromatic systems and conjugated double bonds -
into the cluster classification.

Our Reference Reaction Retrieval Scorer (RR) quantifies reaction plausibility through a logarithmic
transformation of the unique reference reaction count within the candidate reaction’s coarse-grained
cluster and fine-grained cluster:

p(reaction) = log(nreyf(reaction) + 1) e

where n,. s (reaction) represents the unique number of reference reactions in the coarse-grained and
fine-grained clusters containing reaction.

3.4 Meta-Scorer Aggregation

To improve reaction filtering, our Meta-Scorer integrates scores from Reaction Prior (RP) and
GAT models, and empirical precedents (n.s > 0) retrieved via the pipeline in Sec.[3.3] This hybrid
approach mitigates the weaknesses of purely data-driven or precedent-based methods. The continuous
score is described by equation scorempra = max(scoregar, scorerp) if ner > 0 (0 otherwise).

For binary classification tasks and search, reactions are filtered using predefined thresholds, selected
through grid search to balance the recall and precision:

1 if scoregar > 0.85 and scoregp > 0.75 and ner > 0
0 otherwise

@

SCOIeMETA — {

By synthesizing diverse evidence types Meta-Scorer enables more reliable reaction filtering for
multi-step synthesis planning. This integrated approach mitigates individual weaknesses of purely
data-driven or precedent-based methods, yielding improved performance.

3.5 Integration with Search (Retro*)

The calibrated Meta-Scorer is used during multi-step retrosynthesis search to improve the quality
of predicted pathways. We integrate it into the Retro* [1]] search framework as a reaction filtering
mechanism. Reactions are pruned from the search tree before any further expansion if the scoreppra
in 2] is equal to 0. This eliminated low-quality reactions early, reducing the search space and
improving overall plausibility. This integration made our system more robust to hallucinations from
the underlying SSR model and helped produce more correct, trustworthy synthesis plans.

4 Human Evaluation

We curated a dataset of over 4,500 reactions generated by our SSR models. Each reaction was
evaluated and labeled by PhD-level chemists into one of the expert-defined categories, creating the
first comprehensive dataset of its kind. This resource provided a robust way to evaluate the error
patterns of our reaction plausibility scorers.

Reaction Evaluation Protocol was designed to systematically evaluate predicted reactions based
on expert-defined heuristics. Reactions were rated using a four-point confidence scale: Nonsense,
Rather Not, Worthwhile, and Safe Bet. For the system to be reliable, the paths must consist primarily
of reactions that the experts consider to be "safe bets". On the other hand, Nonsense and Rather
Not reactions can undermine user confidence and trust. Reactions that do not pass evaluation at a



226
227
228
229

230

231

232
233
234

236
237

239
240
241
242
243

244
245

246

247

248
249
250
251
252
253
254

256

257

258

259
260
261
262
263

264
265
266
267
268
269

certain stage receive an additional label specifying the cause of their incorrectness, out of Reactants
mismatch, Unstable, Magic, One pot, Reactivity, Functional group incompatibility, and Selectivity.
Otherwise, a reaction is assigned a No Problem label with Safe Bet confidence. A detailed description
of the evaluation framework is provided in Appendix [B]

S Experiments

5.1 Reaction-Level Plausibility Prediction

We compared the ability of each individual scorer (RP, GAT and RR) and the Meta-Scorer to
distinguish correct from incorrect reactions. All models were evaluated on a held-out dataset of
reactions derived from retrosynthesis paths for unseen molecular targets. In order to improve the
alignment of the scores with probabilities of a reaction being correct, GAT and RP were calibrated
using isotonic regression on a sample of representative data. Ground truth labels were established
through expert chemist evaluations descibed in Section ]

Model performance was assessed using precision-recall (PR) and receiver operating characteristic
(ROC) curves, with area under the curve metrics (PR-AUC and ROC-AUC) reported for each method.
Reactions with confidence rating Safe Bet or Worthwhile were treated as positive examples, while
all others were labeled as negatives. We also conducted additional analysis across specific failure
categories: Magic, Selectivity, Functional group incompatibility, Reactivity, One pot, Unstable, and
Reactants mismatch reporting false positive rates and ROC-AUC scores.

To evaluate model complementarity, we analyzed the overlap in false positive predictions across
individual scorers, calculated as:

mscorere {GAT,RP,RR} FPgcorer

overlap =

3

. )
MMgcorere { GAT,RP,RR } | FPycorer |

where FP is a set of false positives produced by a given scorer.

5.2 Path-Level Plausibility Evaluation

In addition to evaluating individual reactions, we assess the plausibility of entire retrosynthetic paths.
We evaluated a set of top-1 paths generated for selected 32 targets (can be found in[C)) by various
retrosynthesis systems, both with and without our reaction filtering mechanism. Paths are assigned
the same four-tier confidence score as reactions (Safe Bet, Worthwhile, Rather Not, Nonsense),
determined by the lowest-scoring reaction in the path. This conservative scoring reflects the intuition
that a single implausible step can invalidate an otherwise promising synthesis. Paths marked as Safe
Bet represent routes where experts have confidence in every reaction step - increasing their proportion,
along with eliminating Nonsense and decreasing number of Rather Not constitutes a fundamental
requirement for reliable retrosynthesis systems.

6 Results

6.1 Reaction-Level Plausibility Evaluation

Our results show that the Meta-Scorer outperforms individual scorers in both precision and recall,
demonstrating effective integration of complementary signals. Figure (1| presents the ROC and
precision-recall curves, with the Meta-Scorer achieving consistently higher area under the curve
(AUC) values across both metrics. Similar curves broken down by reaction failure category can be
found in Appendix [D]

Figure [2] shows ROC-AUC values for each scorer broken down into different failure categories, illus-
trating that individual scorers demonstrate proficiency in filtering out reactions deemed implausible
under different evaluation criteria. GAT achieves the best performance on Selectivity and Reactivity
errors. RR is most capable of detecting fundamental structural issues such as Reactant mismatches
and Magic, in addition to One pot errors. RP shows a balanced profile, which explains its overall
superior performance compared to GAT and RR in Figure[I] By leveraging the unique strengths of
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Figure 1: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer. The meta-scorer achieve higher AUC values for both ROC
and PR curves, indicating better discrimination between plausible and implausible reactions. Among
the individual scorers, RP shows the best performance.

each individual scorer, the Meta-Scorer maintains robust predictive performance across all failure
categories.

We also analyze the overlap between false positives that each scorer fails to filter, as shown in
Figure[3] The results show distinct complementarity: while RR and RP exhibit high overlap in most
categories, it is notably reduced for One-pot, Magic, and Reactant mismatch failure modes — the
categories where Figure 2] demonstrates RR’s superior performance. GAT and RP show consistently
low overlap across all failure categories, indicating that these scorers capture different aspects of
reaction implausibility. Importantly, when considering all three scorers jointly, the overlap drops to
very low levels across all categories, providing strong evidence that each scorer contributes unique
discriminative value essential for building a robust Meta-Scorer.

ROC AUC

05-

FP Overlap (%)
*
e
| ,

; ;
% L
2 = H
y N
t

Robustness Tests Model Combinations

Figure 2: ROC-AUC performance of individual =~ Figure 3: Overlap between individual pairs of
scorers across different failure categories, with  scorers and triple of all scorers across different
sample sizes indicated for each category. The  failure categories, with sample sizes indicated for
results reveal complementary strengths among  each category. RR and RP show high overlap ex-
scorers: GAT demonstrates superior perfor- cept in One-pot, Magic, and Reactant mismatch
mance for Selectivity and Reactivity errors, RR  categories. GAT and RP exhibit low overlap
excels at detecting Reactant mismatches, One  across all categories. The joint overlap of all
pot errors, and Magic reactions, while RP shows three scorers remains minimal, confirming that
the highest performance for Unstable reactions  each contributes unique discriminative capabili-
and maintains consistent generalist performance  ties to the Meta-Scorer.

across other failure types.

6.2 Path-Level Plausibility Evaluation

Figure ] presents the evaluation results comparing our Retro* systems across different configurations:
the baseline system (without any scorer), individual scorers (GAT, RR, and RP), and the Meta-Scorer.
We benchmarked these against two publicly available retrosynthetic planning systems, IBM RXN
and AiZynthFinder [8]], as well as the open-source generator LocalRetro [3], using the same Retro*
search algorithm.
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Figure 4: Comparison of our retrosynthesis systems against IBM RXN, AiZynthFinder and Local-
Retro. AiZynthFinder, IBM RXN and LocalRetro fail on many targets. Our generator when used
without any reaction scorer (indicated as "Our generator w/o scorer") finds pathways for all targets
but includes unreliable routes. Introduction of individual scorers trades coverage for reliability, with
RP eliminating all Nonsense pathways. The search system backed by the Meta-Scorer produces most
trustworthy results.

We ran AiZynthFinder in its default configuration from the official repository, with the only modifica-
tion being an increased time limit of 15 minutes. IBM RXN was used through its free web application
[10]. For LocalRetro, we relied on the implementation available in the open-source framework
Syntheseus [[16]. For all these runs, we used the same starting materials database, eMolecules.

AiZynthFinder demonstrates significant limitations, failing to identify viable pathways for significant
number of the target molecules while generating a substantial proportion of unreliable routes classified
as Nonsense and Rather Not. IBM RXN shows improved performance by increasing the number of
reliable pathways and reducing hallucinated predictions, yet fails to produce valid synthetic routes
for a considerable fraction of target compounds.

Our baseline model (SSR generator without any filtering mechanism) significantly improves number
of pathways found, providing solutions for all targets. However, confidence in its results is undermined
by the significant presence of unreliable Nonsenense and Rather Not paths. Introducing individual
scorers increases the fraction of targets for which no paths are found, a trade-off that can be desirable
for the trustworthiness of the system — rejecting some targets is preferable to mixing reliable and
unreliable pathways, as long as the remaining routes are correct. While GAT and RR scorers reduce
number of unreliable paths only modestly, our RP scorer demonstrates its value as a primary filter by
eliminating all Nonsense reactions, though this comes at the cost of fewer Safe Bet and Worthwhile
pathways. Finally, the Meta-Scorer delivers substantial improvements in reliability: significantly
increasing Safe Bet paths, maintaining zero Nonsense results, and reducing Rather Not pathways.

7 Conclusions

We introduced a novel framework for mitigating hallucinations in automated retrosynthesis. Unlike
previous approaches, our system was evaluated for the first time under a structured validation protocol
with Ph.D.-level chemists, focusing on very novel targets. The framework combines a chemist-like
primary scorer with two complementary auxiliary scorers, which together form a Meta-Scorer that
reliably evaluates the quality of pathways proposed by retrosynthesis models. The scorers exhibit
distinct error patterns and, when combined, successfully eliminate chemically unsound reactions.
Importantly, our system achieved zero most severe hallucinations, classified as Nonsense reactions, in
expert evaluation, performing better in this regard than the comparison baselines.

By substantially reducing the number of intermediate-quality reactions (Rather not and Worthwhile)
while increasing the proportion of high-confidence Safe Bet reactions, the framework enhances both
the efficiency and trustworthiness of retrosynthetic planning. This ability to provide chemists with
reliable and validated reaction proposals addresses a central barrier to adoption: the impracticality
of assessing large numbers of candidates when unreliable reactions are present. Consequently, our
framework not only improves computational retrosynthesis but also makes it more practical and
usable in real-world discovery pipelines.
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6 A Examples of reaction pathways
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Figure 5: Example of a pathway with Safe Bet and Worthwhile reactions
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Figure 6: Example of a pathway with a Rather Not reaction
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Figure 7: Example of a pathway with a Nonsense reaction
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B Reaction Evaluation Protocol

Each candidate reaction is assessed sequentially along the following dimensions. Unless specified
otherwise, in each of them the reaction is scored on a four-level confidence scale: Nonsense, Rather
Not, Worthwhile, and Safe Bet, indicating the plausibility of the reaction. Every reaction that is not a
safe bet is assigned an additional label explaining the reason for its incorrectness.

1. Reactant-Product Consistency: Structural alignment between reactants and product is
verified. Reactions in which the product contains a large fragment that is neither present in
the substrate nor originates from a commonly used reagent, or in which no clear relationship
between the atoms of the product and the substrates can be established, are marked as
Nonsense, with the reason for incorrectness labeled as Reactants mismatch.

2. Stability: Reactions producing products or including substrates that are not isolable under
the typically achievable conditions are marked as Nonsense, with the reason for inplausibility
labeled as Unstable.

3. Mechanistic Plausibility: Reactions lacking a plausible mechanism are classified as Non-
sense or Rather Not due to Magic, covering transformations requiring unknown or highly
implausible reactivity. Transformations that would require more than two non-trivial steps
are also placed in this category.

4. Multistep Feasibility and One-Pot Potential: Reactions not achievable in a single step are
assessed for decomposability into two coherent steps. If they pass this test, feasibility in a
one-pot setting is scored on a four-level scale and failing reactions are marked as One pot.

5. Reactivity of Substrates: Feasibility of the reaction, given the reactivity of the substrates
(e.g., electron deficiency), is verified. Reactions that cannot be reasonably expected to occur
are marked as implausible, with the reason for incorrectness labeled as Reactivity.

6. Functional Group Compatibility: Molecules are screened for other functional groups
that can undergo a reaction. If other groups are more probable to react first, the reaction is
marked with problem Functional group incompatibility.

7. Selectivity: Selectivity of the reaction is verified, including competition between functional
groups of the same type, regioisomeric outcomes (e.g., in electrophilic aromatic substitution),
or other cases where multiple plausible products can arise. Reactions that fail this evaluation
are marked as Selectivity.

B.1 Implausibility Annotation Examples

B.1.1 Reactants mismatch

H H
o} o
HO
HO -
O=
o=

o} o
A H

Figure 8: Nonsense: No clear relationship between atoms in the product and the substrate can be
confidently proposed
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NH
Br

Iz

Figure 9: Nonsense: The pyridyl fragment require an additional substrate, that is missing

489 B.1.2 Unstable

o_
o= N
\ 0=
Ox + cl — -
\( cl
N
H

Figure 10: Nonsense: The carbon atom with amine and chlorine is not something seen in literature

ZT

Iz

O/ o) 5
S S
(o]

Figure 11: Nonsense: The second substrate would tautomerize to phenol instantly

Ox
RS

0 0
H 7 H 7
N- N-
(X B X
r
+ v -
N\ / N\ /
N N

Figure 12: Nonsense: The substrate is unstable, it would tautomerize to imine
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490 B.1.3 Magic

Figure 13: Nonsense: Changing length of the alkyl chain, no known precedent of such variant of
carbon alkylation

Figure 14: Nonsense: An alkyl chain acting as a leaving group and bond formation by an unactviated
amine carbon. No such reactivity ever demonstrated in literature

491 B.1.4 One pot

-

o+
o) o
0
Figure 16: Rather not: 2 steps required - Cbz deprotection and Boc protection

15



42 B.1.5 Reactivity

N4 N4
N

Figure 17: Rather not: Most of the references for this reaction are around electron-deficient heterocy-
cles, only one example with pyrazole in literature

O

e

Figure 18: Rather not: High likelihood of steric hindrance

N
4§:\§B,
N _
AQ*B' — BF  NH
o=
Br H 4<

493 B.1.6 Functional group incompatibility

N
o N-_ _Br N—
J / N—C |
N HN— —N
o/g/\o + Nj\l/ O:§:/N
Br H

Figure 19: Rather not: No literature references where a bromine is located in alpha to the ester
position. The alkyl bromine would most likely react more readily than the ester.

O\
oxT

Figure 20: Nonsense: No conditions allow to cleave a methyl ether in a way that wouldn’t affect the
sulfonyl chloride
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B.1.7 Selectivity

OH OH
H,N— HN—

HO 0] HO

Figure 21: Rather not: There is a considerable risk that achieving the disubstituted product at a
satisfactory yield would be very difficult (especially accounting for the presence of amine in the
structure).

Br
OH Br

oxT

H,N
OH OH

Figure 22: Rather not: There are 3 equivalent hydroxyl groups, so in bromination we expect triple
substitution rather than this scenario

C Retrosynthesis Targets

C.1 SMILES

Clclcce(-c2c(N(CC)CC) c(c(nc2C)C)CC(=0)NCC) ccl

0(clcc(c([N+] (=0) [0-]1)cc1)COCICN (C(=0) [CeeH]2C[C@]3(NC(0C3)=0)C2)C1)C1CCCCL
FC1 (F)C(N2N=CC(=C2C) c2cc (ccc2) C#Cc2c (0C) cc(nc2) C(=0)0) C1

0(C(C) (C)C) [CeH] (C(=0)Ncinc2[Ce] (0) (CCc2cc1)CC)clc(nc(ccl)C)C
FC1(F)0c2c(01) cc(nc2)C(=0)NC1=NN2C (C(=0) N [Ce@H] 3 [C@H] 2CCC3)=C1

Clclc (N2CCC(F) (F)CC2) c(C1) cc(NC(=0)CC[Ce]2(NC(=0)NC2=0)C2CC2) c1

S(=0) (=0) (Nc1nc2N(N(C(=0) c2cn1) CC=C)C) ciccc ([COOH] (C2=Nc3c (N2) ccce3)CCO) ccl
Fclcc(F) cc(N2[COH] (CN(CC(=0)Nc3ncncaN(C(C)C)C=C(F)c34)CC2)C)cl
Fclc(nec2c(c(F)cecec2)c1)Nelee2C(0C(=0)c2ccl) (C)C
01C(=NN=C1)clc(ncnc1)NC1C[CeH] (0) [CeeH] (0)C1

Fclcc2c(0B(0) [CeeH] (NC(=0)C3CC3)C2)ccl
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S(C=1NN=NC1C(=0)NCCOCCNC(=0) C=1N=C(SC1)N1N=CC(=C1)C)clcccccl
01C(0c2clc(ccec2C)C) ([C@@H] 1CC [CO@H] (NC(=0) c2ncc(cc2) C#N)CC1)C
S(C1=C(C(=0)NC(=C1)C)CN(clc2c(nccc2)c(ccl)CHN)C)C
0(CC(=0)NC1CC2N(C(C1)CC2)C)CCN1c2c3N(C(=0)C1=0)CCCc3ccc2

FC(F) (F)c1cc(C2=CN(C(=0)C(NC(=0)C3=NN(c4c3cccc4)C)=C2)C)cccl
Fclcc(F)cc(C(=0)NC23CC([CeoH] (C(=0)N[C@H]4c5c(0C4) ccc(-c4c(0C)ccc(c4)C)c5)C) (C2)C3)cl
01c2c (cc(C3=CN4N=C(N=C4N=C3) c3cnc(C(=0)C)cc3)cc2)CCC1
S1C(N(C(=0)C2C(0CC)C=CCC2)C)=C(C2=C1CC1 (N(C2)CC2CC2)CCCC1)CH#N

S(=0) (=0) (N[C@eH] ([C@@H] 1CC[C@H] (c2cnccc2)CC1)C)clcc(F)cc(-c2ncecce2)cl

FC(F) (F) [CeeH] (N1CCC2(C(=0)N(Cc3c40C=C(c4cc(0C(C)C)c3)C)CC2)CC1)CC1[CeeH] (0) [CeeH] (0)CC1
FC(F) (F) [CeeH] ( [CeH] (C(=0)N[CeeH] ([Cee] (0) (N)CC)C)clcc(0C)cc(0C)c1)C

FC(F) (F) cincc(-c2ncc(C(F) (F)F) c(c2)CNC(c2cc(C3=NOC(=C3C0)CC) ccc2)C2CC2) cnl
01c2c(nc(N3C(=CC=C3C)C)nc2CCC1)NCICCC(CO)CCl

0(clccc([N+] (=0) [0-])cc1)CC[Cee] (N) (CCN(C(=0)c1c2c(C(=0)c3c(C2=0)cccc3)cccl)C)C

S(=0) (clccceecl)CCNC(=0)CN(clnenc ([C@@H] 2C [C@E@H] (0)C2)c1)C

Fc1c(C=20C(=NN2)C=20c3c (cc4NC(0c4c3)=0)C2)cc(F)ccl

0=C(N1C2C(Nc3ncc (-c4cncec4d)cn3)CC1CC2)C1C(0)C(0)CCL

S1[C@]2(C(=0)N3CC4 [C@@H] (NC5=NN(C=N5)CC(F) (F)F) [C@H] (C3)CC4) [CeH] ([Ce] (N=C1N) (clcccccl)C)C2
P(=0) (0) (0)CO[C@H] 1C(C=2N(N=CC2)C/C=C/c2ccccc2)CCCCl

FC(F) (F)C(Nclcncc(C(CO)C)cl)clc(F)cc(0C2CN(C2)CCCF)ccl

0=C(N1CC(N2C(=0)CNC(C2)C)C1)N[CeH] 1C(=0)NC[CQ@H] 1clccc(N2C[CQGH] (0)CC2)ccl

18



s61  C.2 Visualization

o odb  Lu§ b

Figure 23: 32 molecules that have been used as targets for retrosynthesis.
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s2. D ROC And Precision-Recall Curves By Failure Category
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Figure 24: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer on Magic and No Problem reactions.

se4 D.2  Selectivity
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Figure 25: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer on Selectivity and No Problem reactions.
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s6s D.3 Functional group incompatibility
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Figure 26: ROC (on the left) and precision-recall (on the right) curves comparing the performance
of individual scorers versus the Meta-Scorer on Functional group incompatibility and No Problem
reactions.
s66 D.4 Reactivity
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Figure 27: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer on Reactivity and No Problem reactions.
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s67 D.5  One pot
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Figure 28: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer on One pot and No Problem reactions.

s6s  D.6 Unstable
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Figure 29: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer on Unstable and No Problem reactions.
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s69  D.7 Reactants mismatch
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Figure 30: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the Meta-Scorer on Reactants mismatch and No Problem reactions.

s70 K False Positives Counts By Failure Category
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Figure 31: Counts of false positives produced by individual scorers versus the Meta-Scorer across
different failure categories, with sample sizes indicated for each category.
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True Negatives Count

300 -

250 -

N

o

o
'

o

ul

o
'

=

o

o
'

50 -

F True Negatives Counts By Failure Category

296

242
225

5 55
111
91
84 80
69
53
14 2 15
i ] 0 0
C Q N &
O ST > <o
0 S O )
N 0 220 £
5 P& & N

Robustness Tests

Model
m GAT
. RP
W RR
B meta-scorer
57
49
4339 3936
27 2529
1024
7
" " "
S NA &
Q> P AN
¢ s 4 N
SN o' .
N S RaSe
©
,o(‘
&
&

Figure 32: Counts of true negatives produced by individual scorers versus the Meta-Scorer across
different failure categories, with sample sizes indicated for each category.
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