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Abstract

The Open EPPI corpus comprises 151 full-text
papers annotated by domain experts for entity
mentions, protein-protein interactions (PPIs),
and normalisation of entities to publicly avail-
able ontologies. The corpus is publicly avail-
able at [ANON]. We benchmark recent nested
NER and relation extraction models. Results
show that, although existing nested NER mod-
els achieve good performance on outermost
and innermost entity mentions, they struggle
with other types of nested mentions. Bench-
mark results for relation extraction show sub-
stantial room for improvement with precision
under 70 and recall around 40 to 52.

1 Introduction

The increasing rate of biomedical publishing leads
to a vicious cycle in which information over-
load can reduce the impact of the new knowl-
edge (Aviv-Reuven and Rosenfeld, 2021). For ex-
ample, within August 2021 alone, there were more
than five hundred papers published at PubMed,’
searching with the keyword “protein-protein in-
teractions[Abstract]”. Automatically extracting
structured information—such as biomedical con-
cepts, attributes, events, and their relations—from
unstructured text can be a useful first step for re-
searchers to find relevant information (Ananiadou
and McNaught, 2006; Jiang, 2012).

Although impressive benchmark results have
been observed in many Information Extraction (IE)
datasets in the generic domain, such as ACE and
OntoNotes corpora (Yamada et al., 2020; Wang
et al., 2020; Zhong and Chen, 2021), reduced per-
formance is usually reported when methods are
applied to biomedical text (Leaman et al., 2015;
Wei et al., 2016). There are several challenges
associated with biomedical IE, due to the special
subject matter of the content being discussed and
the variety of language used in scholarly articles:
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* Biomedical names may contain complex struc-
ture (e.g., nested) which cannot be easily
recognised using standard NER models (Kim
et al., 2003; Ju et al., 2018);

» Researchers tend to write long text to make
the description more comprehensible and less
confused, which requires the model to capture
long-range contexts; and,

* The training of models usually requires suffi-
cient amount of labelled data, which are usu-
ally difficult to obtain in the biomedical do-
main.

To facilitate ongoing research on biomedical IE,
we introduce Open EPPI—a large-scale dataset
for biomedical entity recognition, relation extrac-
tion and concept normalisation. The corpus con-
tains a large portion of nested entity annotations—
16.3% sentences contain nested mentions—and is
therefore a suitable testbed for nested NER models.
24.7% PPIs in the corpus are inter-sentence rela-
tions, which requires the model to make use of long-
range contexts to recognise them. The large size of
the corpus—151 full text articles—also enables the
development of more sophisticated document-level
IE models. In the following sections, we describe
first the corpus and then our benchmarking results
using existing methods.

2 The Open EPPI corpus

The Open EPPI corpus contains 151 full-text arti-
cles under non-copyrighted license. The average
number of sentences per article is 309.4, and the
average number of words per sentence is 25.1. The
units of annotation consist of entity mentions, rela-
tions and concept normalisations. The descriptive
statistics are listed in Table 1.

The mentions annotated are either PROTEINS
and other related entities involved in PPI re-
lations, i.e., COMPLEX, FUSION, FRAGMENT



and MUTANT, or attributes of PPI relations, i.e.,
CELLLINE, DRUGCOMPOUND, EXPERIMENTAL-
METHOD, MODIFICATION. Annotators were able
to nest mentions, however, mentions were not al-
lowed to cross or to be discontinuous.? There are
in total 22, 609 sentences containing at least one
entity mention; 3,681 (16.3%) sentences contain
nested entity mentions. Note that there are also
2, 332 multi-type entity mentions (Dai, 2018). That
is, one biomedical name may have multiple entity
types. For example, one mention may be classified
as both PROTEIN and DRUGCOMPOUND, indicat-
ing that the protein is used to affect the function of
an organism, cell or biological process.

Two types of relations were annotated: PPI (in-
teractions between two PROTEINS) and Frag (con-
nect MUTANTS and FRAGMENTS with their parent
PROTEINS). Annotators were permitted to mark
relations between entities in the same sentence
(intra-sentential) and in different sentences (inter-
sentential). There are 2,796 out of 11, 309 rela-
tions (24.7%) that link entity mentions located in
different sentences; 713 even cross different para-
graphs. Both positive and negative PPI relations,
i.e., statements asserting that an interaction did or
did not occur, were marked with properties used to
distinguish between them.

Annotation was performed by nine biologists, all
qualified to PhD level in biology. Fifty-one articles
were annotated by two annotators, and twenty-five
articles were annotated by three annotators. We
refer readers to [ANON]? for more details regard-
ing document selection, annotation process and
inter-annotator agreement analysis.

3 Evaluating NER models

We evaluate several existing NER models on
the corpus: (1) the standard sequence tagging
model which can handle only flat entity men-
tions; (2) a span-based nested NER model (Zhong
and Chen, 2021); (3) a CRF-based nested NER
model (Shibuya and Hovy, 2020); (4) a layered
nested NER model (Wang et al., 2020); and, (5) a
hypergraph based nested NER model (Wang and
Lu, 2018).

“Discontinuous coordinations such as ‘A and B cells’ were
annotated as two nesting entities ‘A and B cells’ and ‘B cells’.
This annotation strategy was also used in the GENIA cor-
pus (Kim et al., 2003).

3In [ANON], lessons learned from annotating two corpora
in the [ANON] project are discussed. The Open EPPI corpus
is a non-copyrighted license subset of corpora annotated in
the project.

Train Dev Test

# Documents 114 15 22
# Sentences 35,520 4,724 6,468
# Tokens 892,836 116,043 164,353

# Mentions 51,247 7,058 8,765

# Relations 8,935 811 1,577

Table 1: The descriptive statistics of the corpus.

Since the standard sequence tagger cannot han-
dle nested mentions directly, we follow the ap-
proach proposed by Ringland et al. (2019). That
is, we train two flat NER models, using either the
outermost (Flat Outermost in Table 2) or the in-
nermost mentions (Flat Innermost in Table 2) for
training. We also combine the outputs from these
two flat NER models and denote the results as Flat
Combined. Note that instead of the BILSTM en-
coder used in (Ringland et al., 2019), we use SciB-
ERT # (Beltagy et al., 2019) encoder due to its
superiority. We refer readers to the aforementioned
papers for more details of other nested NER mod-
els.

Evaluation metric We frame the task as a
sentence-level NER task and use the mention-level
micro F score—requiring an exact match of men-
tion start, end and entity type—as the main metric
to evaluate the effectiveness of the model. The
model checkpoint which is most effective on the
development set, measured using the 7} score, is
used to evaluate the test set.

To evaluate the effectiveness of different models
on recognising nested mentions, we also construct
several subsets of the test set: (1) a subset where
only sentences with nested mentions are included;
(2) a subset where only multi-type entity mentions
are considered; (3) a subset where only outermost
mentions are considered; (4) a subset where only
innermost mentions are considered; and, (5) a sub-
set where only middle mentions are considered. To
evaluate whether a model can recognised nested
mentions simultaneously, we employ a new metric
that calculates ] score over outer-inner mention
pairs. For example, if there are four mentions:
ABC (outermost), AB (contained by ABC and con-

*In our preliminary experiments, we find scibert-scivocab-
uncased performs better than other pre-trained models, in-
cluding those of larger size (e.g., bert-large-uncased). There-
fore, we use this version of SciBERT in all experiments, ex-
cept (Wang and Lu, 2018), which is based on GloVe embed-
dings and BiLSTM encoder.



Single Mention

All Sent w. nest Multi type Outermost Innermost Middle

8,765 2,233 184 7,745 8,116 232 1,088

Flat Outermost 74.3 56.9 0.0 78.8 76.0 0.0 0.0

Flat Innermost 76.9 66.3 0.0 78.9 79.8 0.0 0.0

Flat Combined 77.5 70.2 28.8 79.9 80.0 25.6 25.6

(Wang and Lu, 2018) 58.5 59.2 62.3 59.0 58.9 56.0 36.3
(Wadden et al., 2019) 74.9 69.0 0.0 77.1 76.7 12.5 354

(Wang et al., 2020) 78.9 77.4 67.7 80.0 79.6 61.5 54.0

(Shibuya and Hovy, 2020) 78.8 76.9 65.5 80.6 79.8 60.7 45.4
(Zhong and Chen, 2021) 78.9 76.2 0.0 80.5 80.3 14.2 42.6
(Zhong and Chen, 2021) (LC) 80.3 76.4 0.0 81.6 81.8 2.5 454

Table 2: NER results on Open EPPI using different methods. The number of gold mentions belonging to each set
and the number of nested mention pairs are listed in the table header. We frame the task as sentence-level NER,
except in the LC (Larger Context) row, where sentences in the same paragraph are used to build contextual hidden

representations.

taining B), B (innermost), and C (innermost), we
want the model to recognise all outer-inner mention
pairs: ABC-AB, ABC-B, ABC-C, AB-B, because
these nested structure usually contain useful infor-
mation (Ringland et al., 2019).

Main results > Table 2 shows the effectiveness
of different NER models. First, we observe a de-
crease (ranging from 1.5 to 17.4) of effectiveness of
all models—except (Wang and Lu, 2018)—when
evaluated on subset of sentences containing nested
mentions comparing to all sentences in the test set.
Additionally, all models achieve low F} when eval-
uated on outer-inner mention pairs. This scenario
demonstrates the difficulty of recognising nested
mentions simultaneously. Secondly, sequence tag-
ging based flat NER models achieve decent perfor-
mance when evaluated on the complete test set. Flat
Combined outperforms two nested NER models
due to its superiority of recognising outermost and
innermost entity mentions. The best performing
model—(Zhong and Chen, 2021)—performs well
on outermost and innermost mentions, but fails to
deal with multi-type and middle layer mentions.
Last but not least, several nested NER models
achieve encouraging results on multi-type, which is
comparatively less studied, and middle layer men-
tions.

Can larger context improve model effective-
ness? Scholarly articles are usually well organ-

5The evaluation scripts and predicted outputs from differ-
ent models can be found at GitHub [ANON].

ised using the (Sub)Section-Paragraph-Sentence
structure. There are on average 6.2 sentences form-
ing a paragraph in the corpus. A natural question
is whether framing the NER task on the paragraph
level can improve the model effectiveness. That
is, the model takes a paragraph—instead of a sin-
gle sentence—as input and recognises all mentions
within the paragraph. We find that this simplified
setup ® does not improve the model effectiveness.
For example, the F} score of Flat Combined model
decreases from 77.5 to 76.8; the F} score of (Wang
et al., 2020) decrease slightly from 78.9 to 78.8.
We also find more sophisticated way (Zhong and
Chen, 2021) can benefit from larger context. That
is, the task is still framed as sentence-level NER,
recognising mentions within each sentence, how-
ever, the model can take as input other sentences in
the same paragraph to build the hidden representa-
tions. This modification can bring moderate (1.4
F score) improvements (Table 2), especially on
outermost and innermost mentions.

Human performance Recall that there are 76 ar-
ticles in the corpus which are annotated by at least
two annotators. To estimate the task difficulty, we
evaluate the performance of annotators using these
multi-annotated articles. We consider one anno-
tator’s (the one who annotates most) annotations
as ground truth and other annotators’ annotations

®There are 126 (2.3%) paragraphs contain more than 512
wordpieces. We truncate the first 512 wordpieces of these

paragraphs to satisfy the limit of BERT maximum sequence
length.

Mention pair



as ‘predicted outputs’, then we calculate F score
of these ‘predicted outputs’. The F} score eval-
uated on different documents range from 60.4 to
95.1, and the annotator-level F score—averaging
document-level scores by the same annotator—
range from 79.8 to 89.4. We believe the annotator-
level F} score can be considered as a performance
target for NER models on the corpus.

4 Evaluating Relation Extraction Models

We consider two types of relation extraction set-
tings: (1) classifying relations between two given
mentions in the text; and (2) extracting triplets con-
sisting of mentions and relations between them.

The former classification setting assumes the
gold mentions are given. We use the performance
under this simplified setting as a proxy for esti-
mating upper bound of the performance of a more
practical relation extraction model. Inspired by Wu
and He (2019), we insert special tokens at both the
beginning and end of two mentions, and simply
use the output hidden states of SCIBERT encoder
corresponding to the first token in the sequence
(i.e., [CLS])) as input of the final 3-way (Positive
PPI, Negative PPI, Frag) classifier. This model
achieves a very high accuracy of 96.8, which im-
plies that scholarly articles are usually comprehen-
sive enough to distinguish relations between de-
scribed concepts.

Regarding the extraction setting, we evaluate
(1) a pipeline approach (Zhong and Chen, 2021),
where the relation classification model considers
every pair of entities—the predicted outputs from
a NER model—and predicts the relation type for
each pair; and, (2) a joint approach (Wadden et al.,
2019), where dynamic span graph is used to refine
span representations, based on which NER and
relation classification are performed. We apply
boundaries evaluation (Bekoulis et al., 2018) where
a predicted relation is correct if the boundaries of
two predicted mentions and the predicted relation
type are correct. Results in Table 3 show that there
are still large improvement room for both methods,
especially in terms of recall.

Model P R F

(Wadden et al., 2019) 65.2 39.5 49.2
(Zhong and Chen, 2021) 67.8 51.5 58.5

Table 3: Relation extraction results on Open EPPI.

5 Related Work

Recent work has demonstrated increasing inter-
est in nested entity recognition (Alex et al., 2007;
Byrne, 2007; Finkel and Manning, 2009; Lu and
Roth, 2015; Katiyar and Cardie, 2018; Fisher and
Vlachos, 2019; Yu et al., 2020), however, corpora
annotated with nested entity mentions are still rare.
Besides, the most common data source of nested
NER corpora is newswire (Mitchell et al., 2006;
Walker et al., 2006; Benikova et al., 2014; Ringland
et al., 2019; Plank et al., 2020). The well-known
GENIA corpus (Kim et al., 2003) is a publicly avail-
able biomedical nested NER dataset. It consists of
2000 abstracts taken from MEDLINE database and
contains around 100K entity annotations. The main
difference between Open EPPI and GENIA is that
entity mentions and relations between them are an-
notated on full-text articles in the former, whereas
only abstracts are annotated with biological terms
in the latter.

Many scientific IE datasets also share similar
characteristics with Open EPPI, except that docu-
ments used in these datasets usually focus on dif-
ferent subject matters (Li et al., 2016; Augenstein
et al., 2017; Gébor et al., 2018; Luan et al., 2018;
Jain et al., 2020, 2021). CRAFT (Bada et al., 2012)
consists of 67 full-text biomedical articles and con-
tains concept mapping to different biomedical on-
tologies. It is worth noting that CRAFT contains
discontinuous mentions—mentions composed of
components that are separated by intervals—which
present different challenges from the nested anno-
tations in Open EPPI. Another difference between
CRAFT and Open EPPI is that coreference annota-
tions are provided in the former, whereas the latter
considers semantic relations between different en-
tity types. We believe the publicly released corpus,
in combination with these existing corpora, enables
a more comprehensive evaluation regarding chal-
lenges of different tasks and syntactic aspects.

6 Summary

We described Open EPPI, a biomedical information
extraction corpus for nested NER and relation ex-
traction. The corpus, evaluation scripts and bench-
mark results are publicly available at [ANON]. We
hope they provide a valuable resource to develop
tools and methods for automatically curating, re-
viewing and tracking the ever-increasing biomedi-
cal literature.
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