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Abstract

The Open EPPI corpus comprises 151 full-text001
papers annotated by domain experts for entity002
mentions, protein-protein interactions (PPIs),003
and normalisation of entities to publicly avail-004
able ontologies. The corpus is publicly avail-005
able at [ANON]. We benchmark recent nested006
NER and relation extraction models. Results007
show that, although existing nested NER mod-008
els achieve good performance on outermost009
and innermost entity mentions, they struggle010
with other types of nested mentions. Bench-011
mark results for relation extraction show sub-012
stantial room for improvement with precision013
under 70 and recall around 40 to 52.014

1 Introduction015

The increasing rate of biomedical publishing leads016

to a vicious cycle in which information over-017

load can reduce the impact of the new knowl-018

edge (Aviv-Reuven and Rosenfeld, 2021). For ex-019

ample, within August 2021 alone, there were more020

than five hundred papers published at PubMed,1021

searching with the keyword “protein-protein in-022

teractions[Abstract]”. Automatically extracting023

structured information—such as biomedical con-024

cepts, attributes, events, and their relations—from025

unstructured text can be a useful first step for re-026

searchers to find relevant information (Ananiadou027

and McNaught, 2006; Jiang, 2012).028

Although impressive benchmark results have029

been observed in many Information Extraction (IE)030

datasets in the generic domain, such as ACE and031

OntoNotes corpora (Yamada et al., 2020; Wang032

et al., 2020; Zhong and Chen, 2021), reduced per-033

formance is usually reported when methods are034

applied to biomedical text (Leaman et al., 2015;035

Wei et al., 2016). There are several challenges036

associated with biomedical IE, due to the special037

subject matter of the content being discussed and038

the variety of language used in scholarly articles:039

1https://pubmed.ncbi.nlm.nih.gov/

• Biomedical names may contain complex struc- 040

ture (e.g., nested) which cannot be easily 041

recognised using standard NER models (Kim 042

et al., 2003; Ju et al., 2018); 043

• Researchers tend to write long text to make 044

the description more comprehensible and less 045

confused, which requires the model to capture 046

long-range contexts; and, 047

• The training of models usually requires suffi- 048

cient amount of labelled data, which are usu- 049

ally difficult to obtain in the biomedical do- 050

main. 051

To facilitate ongoing research on biomedical IE, 052

we introduce Open EPPI—a large-scale dataset 053

for biomedical entity recognition, relation extrac- 054

tion and concept normalisation. The corpus con- 055

tains a large portion of nested entity annotations— 056

16.3% sentences contain nested mentions—and is 057

therefore a suitable testbed for nested NER models. 058

24.7% PPIs in the corpus are inter-sentence rela- 059

tions, which requires the model to make use of long- 060

range contexts to recognise them. The large size of 061

the corpus—151 full text articles—also enables the 062

development of more sophisticated document-level 063

IE models. In the following sections, we describe 064

first the corpus and then our benchmarking results 065

using existing methods. 066

2 The Open EPPI corpus 067

The Open EPPI corpus contains 151 full-text arti- 068

cles under non-copyrighted license. The average 069

number of sentences per article is 309.4, and the 070

average number of words per sentence is 25.1. The 071

units of annotation consist of entity mentions, rela- 072

tions and concept normalisations. The descriptive 073

statistics are listed in Table 1. 074

The mentions annotated are either PROTEINS 075

and other related entities involved in PPI re- 076

lations, i.e., COMPLEX, FUSION, FRAGMENT 077
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and MUTANT, or attributes of PPI relations, i.e.,078

CELLLINE, DRUGCOMPOUND, EXPERIMENTAL-079

METHOD, MODIFICATION. Annotators were able080

to nest mentions, however, mentions were not al-081

lowed to cross or to be discontinuous.2 There are082

in total 22, 609 sentences containing at least one083

entity mention; 3, 681 (16.3%) sentences contain084

nested entity mentions. Note that there are also085

2, 332 multi-type entity mentions (Dai, 2018). That086

is, one biomedical name may have multiple entity087

types. For example, one mention may be classified088

as both PROTEIN and DRUGCOMPOUND, indicat-089

ing that the protein is used to affect the function of090

an organism, cell or biological process.091

Two types of relations were annotated: PPI (in-092

teractions between two PROTEINS) and Frag (con-093

nect MUTANTS and FRAGMENTS with their parent094

PROTEINS). Annotators were permitted to mark095

relations between entities in the same sentence096

(intra-sentential) and in different sentences (inter-097

sentential). There are 2, 796 out of 11, 309 rela-098

tions (24.7%) that link entity mentions located in099

different sentences; 713 even cross different para-100

graphs. Both positive and negative PPI relations,101

i.e., statements asserting that an interaction did or102

did not occur, were marked with properties used to103

distinguish between them.104

Annotation was performed by nine biologists, all105

qualified to PhD level in biology. Fifty-one articles106

were annotated by two annotators, and twenty-five107

articles were annotated by three annotators. We108

refer readers to [ANON]3 for more details regard-109

ing document selection, annotation process and110

inter-annotator agreement analysis.111

3 Evaluating NER models112

We evaluate several existing NER models on113

the corpus: (1) the standard sequence tagging114

model which can handle only flat entity men-115

tions; (2) a span-based nested NER model (Zhong116

and Chen, 2021); (3) a CRF-based nested NER117

model (Shibuya and Hovy, 2020); (4) a layered118

nested NER model (Wang et al., 2020); and, (5) a119

hypergraph based nested NER model (Wang and120

Lu, 2018).121

2Discontinuous coordinations such as ‘A and B cells’ were
annotated as two nesting entities ‘A and B cells’ and ‘B cells’.
This annotation strategy was also used in the GENIA cor-
pus (Kim et al., 2003).

3In [ANON], lessons learned from annotating two corpora
in the [ANON] project are discussed. The Open EPPI corpus
is a non-copyrighted license subset of corpora annotated in
the project.

Train Dev Test

# Documents 114 15 22
# Sentences 35,520 4,724 6,468

# Tokens 892,836 116,043 164,353
# Mentions 51,247 7,058 8,765
# Relations 8,935 811 1,577

Table 1: The descriptive statistics of the corpus.

Since the standard sequence tagger cannot han- 122

dle nested mentions directly, we follow the ap- 123

proach proposed by Ringland et al. (2019). That 124

is, we train two flat NER models, using either the 125

outermost (Flat Outermost in Table 2) or the in- 126

nermost mentions (Flat Innermost in Table 2) for 127

training. We also combine the outputs from these 128

two flat NER models and denote the results as Flat 129

Combined. Note that instead of the BiLSTM en- 130

coder used in (Ringland et al., 2019), we use SciB- 131

ERT 4 (Beltagy et al., 2019) encoder due to its 132

superiority. We refer readers to the aforementioned 133

papers for more details of other nested NER mod- 134

els. 135

Evaluation metric We frame the task as a 136

sentence-level NER task and use the mention-level 137

micro F1 score—requiring an exact match of men- 138

tion start, end and entity type—as the main metric 139

to evaluate the effectiveness of the model. The 140

model checkpoint which is most effective on the 141

development set, measured using the F1 score, is 142

used to evaluate the test set. 143

To evaluate the effectiveness of different models 144

on recognising nested mentions, we also construct 145

several subsets of the test set: (1) a subset where 146

only sentences with nested mentions are included; 147

(2) a subset where only multi-type entity mentions 148

are considered; (3) a subset where only outermost 149

mentions are considered; (4) a subset where only 150

innermost mentions are considered; and, (5) a sub- 151

set where only middle mentions are considered. To 152

evaluate whether a model can recognised nested 153

mentions simultaneously, we employ a new metric 154

that calculates F1 score over outer-inner mention 155

pairs. For example, if there are four mentions: 156

ABC (outermost), AB (contained by ABC and con- 157

4In our preliminary experiments, we find scibert-scivocab-
uncased performs better than other pre-trained models, in-
cluding those of larger size (e.g., bert-large-uncased). There-
fore, we use this version of SciBERT in all experiments, ex-
cept (Wang and Lu, 2018), which is based on GloVe embed-
dings and BiLSTM encoder.

2



Single Mention Mention pair

All Sent w. nest Multi type Outermost Innermost Middle
8,765 2,233 184 7,745 8,116 232 1,088

Flat Outermost 74.3 56.9 0.0 78.8 76.0 0.0 0.0
Flat Innermost 76.9 66.3 0.0 78.9 79.8 0.0 0.0
Flat Combined 77.5 70.2 28.8 79.9 80.0 25.6 25.6

(Wang and Lu, 2018) 58.5 59.2 62.3 59.0 58.9 56.0 36.3
(Wadden et al., 2019) 74.9 69.0 0.0 77.1 76.7 12.5 35.4

(Wang et al., 2020) 78.9 77.4 67.7 80.0 79.6 61.5 54.0
(Shibuya and Hovy, 2020) 78.8 76.9 65.5 80.6 79.8 60.7 45.4

(Zhong and Chen, 2021) 78.9 76.2 0.0 80.5 80.3 14.2 42.6

(Zhong and Chen, 2021) (LC) 80.3 76.4 0.0 81.6 81.8 2.5 45.4

Table 2: NER results on Open EPPI using different methods. The number of gold mentions belonging to each set
and the number of nested mention pairs are listed in the table header. We frame the task as sentence-level NER,
except in the LC (Larger Context) row, where sentences in the same paragraph are used to build contextual hidden
representations.

taining B), B (innermost), and C (innermost), we158

want the model to recognise all outer-inner mention159

pairs: ABC-AB, ABC-B, ABC-C, AB-B, because160

these nested structure usually contain useful infor-161

mation (Ringland et al., 2019).162

Main results 5 Table 2 shows the effectiveness163

of different NER models. First, we observe a de-164

crease (ranging from 1.5 to 17.4) of effectiveness of165

all models—except (Wang and Lu, 2018)—when166

evaluated on subset of sentences containing nested167

mentions comparing to all sentences in the test set.168

Additionally, all models achieve low F1 when eval-169

uated on outer-inner mention pairs. This scenario170

demonstrates the difficulty of recognising nested171

mentions simultaneously. Secondly, sequence tag-172

ging based flat NER models achieve decent perfor-173

mance when evaluated on the complete test set. Flat174

Combined outperforms two nested NER models175

due to its superiority of recognising outermost and176

innermost entity mentions. The best performing177

model—(Zhong and Chen, 2021)—performs well178

on outermost and innermost mentions, but fails to179

deal with multi-type and middle layer mentions.180

Last but not least, several nested NER models181

achieve encouraging results on multi-type, which is182

comparatively less studied, and middle layer men-183

tions.184

Can larger context improve model effective-185

ness? Scholarly articles are usually well organ-186

5The evaluation scripts and predicted outputs from differ-
ent models can be found at GitHub [ANON].

ised using the (Sub)Section-Paragraph-Sentence 187

structure. There are on average 6.2 sentences form- 188

ing a paragraph in the corpus. A natural question 189

is whether framing the NER task on the paragraph 190

level can improve the model effectiveness. That 191

is, the model takes a paragraph—instead of a sin- 192

gle sentence—as input and recognises all mentions 193

within the paragraph. We find that this simplified 194

setup 6 does not improve the model effectiveness. 195

For example, the F1 score of Flat Combined model 196

decreases from 77.5 to 76.8; the F1 score of (Wang 197

et al., 2020) decrease slightly from 78.9 to 78.8. 198

We also find more sophisticated way (Zhong and 199

Chen, 2021) can benefit from larger context. That 200

is, the task is still framed as sentence-level NER, 201

recognising mentions within each sentence, how- 202

ever, the model can take as input other sentences in 203

the same paragraph to build the hidden representa- 204

tions. This modification can bring moderate (1.4 205

F1 score) improvements (Table 2), especially on 206

outermost and innermost mentions. 207

Human performance Recall that there are 76 ar- 208

ticles in the corpus which are annotated by at least 209

two annotators. To estimate the task difficulty, we 210

evaluate the performance of annotators using these 211

multi-annotated articles. We consider one anno- 212

tator’s (the one who annotates most) annotations 213

as ground truth and other annotators’ annotations 214

6There are 126 (2.3%) paragraphs contain more than 512
wordpieces. We truncate the first 512 wordpieces of these
paragraphs to satisfy the limit of BERT maximum sequence
length.
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as ‘predicted outputs’, then we calculate F1 score215

of these ‘predicted outputs’. The F1 score eval-216

uated on different documents range from 60.4 to217

95.1, and the annotator-level F1 score—averaging218

document-level scores by the same annotator—219

range from 79.8 to 89.4. We believe the annotator-220

level F1 score can be considered as a performance221

target for NER models on the corpus.222

4 Evaluating Relation Extraction Models223

We consider two types of relation extraction set-224

tings: (1) classifying relations between two given225

mentions in the text; and (2) extracting triplets con-226

sisting of mentions and relations between them.227

The former classification setting assumes the228

gold mentions are given. We use the performance229

under this simplified setting as a proxy for esti-230

mating upper bound of the performance of a more231

practical relation extraction model. Inspired by Wu232

and He (2019), we insert special tokens at both the233

beginning and end of two mentions, and simply234

use the output hidden states of SciBERT encoder235

corresponding to the first token in the sequence236

(i.e., [CLS]) as input of the final 3-way (Positive237

PPI, Negative PPI, Frag) classifier. This model238

achieves a very high accuracy of 96.8, which im-239

plies that scholarly articles are usually comprehen-240

sive enough to distinguish relations between de-241

scribed concepts.242

Regarding the extraction setting, we evaluate243

(1) a pipeline approach (Zhong and Chen, 2021),244

where the relation classification model considers245

every pair of entities—the predicted outputs from246

a NER model—and predicts the relation type for247

each pair; and, (2) a joint approach (Wadden et al.,248

2019), where dynamic span graph is used to refine249

span representations, based on which NER and250

relation classification are performed. We apply251

boundaries evaluation (Bekoulis et al., 2018) where252

a predicted relation is correct if the boundaries of253

two predicted mentions and the predicted relation254

type are correct. Results in Table 3 show that there255

are still large improvement room for both methods,256

especially in terms of recall.257

Model P R F

(Wadden et al., 2019) 65.2 39.5 49.2
(Zhong and Chen, 2021) 67.8 51.5 58.5

Table 3: Relation extraction results on Open EPPI.

5 Related Work 258

Recent work has demonstrated increasing inter- 259

est in nested entity recognition (Alex et al., 2007; 260

Byrne, 2007; Finkel and Manning, 2009; Lu and 261

Roth, 2015; Katiyar and Cardie, 2018; Fisher and 262

Vlachos, 2019; Yu et al., 2020), however, corpora 263

annotated with nested entity mentions are still rare. 264

Besides, the most common data source of nested 265

NER corpora is newswire (Mitchell et al., 2006; 266

Walker et al., 2006; Benikova et al., 2014; Ringland 267

et al., 2019; Plank et al., 2020). The well-known 268

GENIA corpus (Kim et al., 2003) is a publicly avail- 269

able biomedical nested NER dataset. It consists of 270

2000 abstracts taken from MEDLINE database and 271

contains around 100K entity annotations. The main 272

difference between Open EPPI and GENIA is that 273

entity mentions and relations between them are an- 274

notated on full-text articles in the former, whereas 275

only abstracts are annotated with biological terms 276

in the latter. 277

Many scientific IE datasets also share similar 278

characteristics with Open EPPI, except that docu- 279

ments used in these datasets usually focus on dif- 280

ferent subject matters (Li et al., 2016; Augenstein 281

et al., 2017; Gábor et al., 2018; Luan et al., 2018; 282

Jain et al., 2020, 2021). CRAFT (Bada et al., 2012) 283

consists of 67 full-text biomedical articles and con- 284

tains concept mapping to different biomedical on- 285

tologies. It is worth noting that CRAFT contains 286

discontinuous mentions—mentions composed of 287

components that are separated by intervals—which 288

present different challenges from the nested anno- 289

tations in Open EPPI. Another difference between 290

CRAFT and Open EPPI is that coreference annota- 291

tions are provided in the former, whereas the latter 292

considers semantic relations between different en- 293

tity types. We believe the publicly released corpus, 294

in combination with these existing corpora, enables 295

a more comprehensive evaluation regarding chal- 296

lenges of different tasks and syntactic aspects. 297

6 Summary 298

We described Open EPPI, a biomedical information 299

extraction corpus for nested NER and relation ex- 300

traction. The corpus, evaluation scripts and bench- 301

mark results are publicly available at [ANON]. We 302

hope they provide a valuable resource to develop 303

tools and methods for automatically curating, re- 304

viewing and tracking the ever-increasing biomedi- 305

cal literature. 306
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