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Abstract

When applying reinforcement learning—typically through GRPO—to large vision-
language model reasoning struggles to effectively scale reasoning length or gen-
erates verbose outputs across all tasks with only marginal gains in accuracy. To
address this issue, we present FAST-GRPO, a variant of GRPO that dynamically
adapts reasoning depth based on question characteristics. Through empirical analy-
sis, we establish the feasibility of fast-slow thinking in LVLMs by investigating
how response length and data distribution affect performance. Inspired by these
observations, we introduce two complementary metrics to estimate the difficulty of
the questions, guiding the model to determine when fast or slow thinking is more ap-
propriate. Next, we incorporate adaptive length-based rewards and difficulty-aware
KL divergence into the GRPO algorithm. Experiments across seven reasoning
benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over
10% relative improvement compared to the base model, while reducing token
usage by 32.7-67.3% compared to previous slow-thinking approaches, effectively
balancing reasoning length and accuracy.

1 Introduction

Slow-thinking reasoning has demonstrated remarkable capabilities in solving complex tasks
in Large Language Models (LLMs) [1–3] by applying large-scale reinforcement learn-
ing (RL), exemplified by OpenAI’s o1 [4], DeepSeek-R1 [5], and Qwen’s QwQ [6].

Figure 1: FAST achieves higher average accuracy
with shorter average response lengths across seven
benchmarks. All methods are built upon Qwen2.5-
VL.

Unlike fast-thinking models [7, 8], slow-
thinking models undertake more deliberate and
thorough reasoning before reaching an answer,
which facilitates the exploration of diverse solu-
tion paths for a given problem.

Researchers [9–12] have begun exploring sim-
ilar slow thinking approaches for large vision-
language models (LVLMs) to enhance visual
reasoning, which can be categorized into SFT-
RL two-stage methods [9, 13–16] and RL-only
methods [17–20]. SFT-RL methods collect
large-scale distilled data from slow-thinking
models before applying reinforcement learning,
while RL-only methods directly employ rein-
forcement learning on curated high-quality data.

Despite these efforts, several challenges persist
in slow-thinking for LVLM reasoning. First,
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while RL-only methods enable slow-thinking LVLMs to improve reasoning accuracy, they strug-
gle to effectively scale reasoning length [17, 19, 15], with observed changes ranging only from
–20% to +10% compared to base models. This limited adaptability in reasoning length may
constrain their effectiveness on complex tasks. Second, in contrast, we observe that slow-
thinking LVLMs with SFT-RL methods [21, 13, 9, 14] exhibit a pronounced overthinking phe-
nomenon—producing overly verbose responses across tasks while yielding only marginal im-
provements in accuracy. This observation suggests that excessive verbosity may arise from
the SFT stage, which performs behavior cloning from distilled data. As evidenced in Ta-
ble 1, R1-OneVision (one slow thinking model with SFT-RL) produces reasoning chains approx-
imately 2× longer than its base model across all difficulty levels on the Geometry [22] test set.
Notably, this overthinking proves detrimental for simpler questions, where extended reasoning results
in accuracy degradation (69.5% vs. 72.7%), highlighting the need for adaptive fast-slow thinking.

Table 1: Comparison of accuracy and response
length on Geometry 3K [22] test set across diffi-
culty levels for Qwen2.5-VL-7B, R1-OneVision,
and FAST.

Test Qwen2.5-VL R1-OneVision FAST

Acc. Len. Acc. Len. Acc. Len.

Easy 72.7 318 69.5 623 78.2 189
Med 33.9 406 40.4 661 49.2 220
Hard 5.5 412 10.2 835 12.3 304

All 37.7 378 40.3 731 46.4 239

We notice that current research on addressing
the overthinking phenomenon primarily focuses
on large language models (LLMs) and can be
classified into two categories based on the stage
of application. In the training stage, they design
length reward shaping in RL training to explic-
itly encourage concise model responses. [23–
26] In the inference stage, they enforce concise
reasoning via prompts, e.g., use less than 50
tokens, to constrain response length [27, 28].
However, these methods to address overthinking
in LLMs ignore challenges of visual inputs and
question characteristics in visual reasoning [23–
25], leaving their effectiveness in LVLMs largely unexplored. To our knowledge, no existing work
effectively balances fast and slow thinking in LVLMs.

To address these issues, we propose FAST-GRPO, a tailored variant of GRPO [5, 7] that balances
fast and slow reasoning by incorporating adaptive length-based rewards and dynamic regularization
conditioned on the characteristics of multimodal inputs. Our approach begins with an investigation of
the relationship between reasoning length and accuracy in LVLMs, empirically demonstrating how
length rewards and data distributions impact reasoning performance. Based on these findings, our
methodology first introduces two complementary metrics to estimate the difficulty of the questions,
guiding the model to determine when fast or slow thinking is more appropriate. Next, we incorporate
adaptive length-based rewards and difficulty-aware KL divergence into the GRPO algorithm. The
former dynamically incentivizes concise or detailed reasoning based on question characteristics,
while the latter modulates exploration constraints based on the estimated difficulty of each question.

We conduct extensive experiments on a range of reasoning benchmarks for LVLMs, and the experi-
mental results have demonstrated the effect of the proposed method. As shown in Figure 1, compared
with slow thinking or fast thinking methods, our model achieves state-of-the-art reasoning accuracy
with an average accuracy improvement of over 10% compared to the base model, while significantly
reducing reasoning length against slow thinking models from 32.7% to 67.3%.

2 Background: Group Relative Policy Optimization

Group Relative Policy Optimization (GRPO;[5, 7]) extends PPO [29] by replacing the value model
with group relative rewards estimation, optimizing the objective in Equation 1.

JGRPO(πθ) = Eq∼P (Q),{oi}Gi=1∼πθold
(·|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t,

clip
(

πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]}
− βDKL

(
πθ ∥πref

)] (1)

where ε and β are the clipping hyperparameter and the coefficient controlling the KL regularization [5].
Âi,t is the advantage, estimated through group relative rewards Âi,t =

ri−mean({r1,r2,...,rG})
std({r1,r2,...,rG}) with

two rule-based rewards: (1) accuracy reward (ra) gives a reward when the response is equivalent to
the answer, and (2) format reward (rf ) ensures responses adhere to the specified format.
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3 Pilot Experiments

As discussed in §1, when applying reinforcement learning—typically through GRPO—to LVLM rea-
soning struggles to effectively scale reasoning length (RL-only methods; [17, 19, 15]) or generates ver-
bose outputs across all tasks with only marginal gains in accuracy (SFT-RL methods; [21, 13, 9, 14]).

Figure 2: Effect of length rewards on reasoning
length and accuracy.

To better understand the factors affecting re-
sponse length and overall performance in GRPO
[5] for LVLM reasoning, we conduct a series of
experiments on the Geometry 3K dataset [22].
In particular, we analyze the impact of length-
based reward strategies (§3.1) and the influence
of data distribution characteristics (§3.2).

3.1 Length Rewards Analysis

Prior research has established that while GRPO
effectively scales response length in text-only
LLMs [5, 18, 30], this effect does not trans-
fer to LVLMs [17, 20]. To verify this phe-
nomenon and explore potential solutions, we
performed GRPO-Zero on Qwen2.5-VL [31]
with rule-based accuracy reward, and tested ex-
plicit length rewards that either encourage longer correct responses (rlengthy reward = Lcorrect/Lmax)
or shorter correct ones (rshort reward = 1− Lcorrect/Lmax) as extended rewards, where Lmax is the
maximum token length, Lcorrect denotes the length of the correct response. As shown in Figure 2,
with increasing training steps, GRPO with lengthy reward steadily increases to 700 tokens, GRPO
with short reward decreases to 180 tokens, while Naive GRPO remains stable around 330 tokens.
These length rewards successfully manipulated response length, producing variations from 180 to
700 tokens, but with only modest changes in accuracy (±3%). This decoupling between length and
accuracy suggests that LVLMs can maintain reasoning performance across different response lengths,
challenging the assumption that longer reasoning is always better.

Based on the findings above, we can draw the following conclusions:

Observation 1: LVLMs can produce significantly different reasoning lengths with modest
changes in accuracy via length rewards, suggesting potential for balancing reasoning depth
and performance.

3.2 Data Distribution Analysis

Figure 3: Effect of data distribution, especially
difficulty on reasoning length and accuracy.

Considering that overthinking models tend to
generate verbose reasoning responses regardless
of question difficulty, we next investigated how
data distribution—particularly the presence of
samples with varying difficulty levels—might
naturally influence reasoning length and perfor-
mance.

To this end, we stratified the Geometry3K train-
ing dataset into three difficulty tiers using the
pass@8 metric (i.e., the probability of correctly
solving a question within eight attempts): Easy
(0.75 ≤ pass@8), Medium (0.25 < pass@8 <
0.75), and Hard (pass@8 ≤ 0.25). This catego-
rization resulted in approximately 35% Easy, 25% Medium, and 40% Hard samples.

Figure 3 illustrates how training on these different difficulty distributions affected model behavior.
Models trained exclusively on Hard samples generated significantly longer responses but showed only
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marginal accuracy improvements. In contrast, training on Easy samples produced shorter responses
while improving accuracy. Models trained on Medium samples showed modest length increase and
the highest accuracy. Based on the findings above, we can draw the following conclusions:

Observation 2: Question difficulty acts as an implicit regulator of reasoning length, sug-
gesting that data distribution can be strategically leveraged to achieve adaptive fast-slow
thinking.

4 Fast-Slow Thinking GRPO

Building upon the aforementioned observations, we begin by introducing two complementary metrics
to quantify the difficulty of multimodal questions, which facilitates dynamic data selection during re-
inforcement learning(§4.1). Subsequently, we introduce FAST-GRPO, a variant of GRPO specifically
designed to balance fast and slow reasoning by leveraging adaptive length-based rewards conditioned
on question difficulty(§4.2).

4.1 Multimodal Question Difficulty Estimation

Given our findings that data distribution influences both reasoning length and performance, accurately
gauging data difficulty becomes essential for making dynamic adjustments to data distribution. To
address this need, we propose two complementary metrics to measure the difficulty of a given question
for the policy model: one directly evaluates the intrinsic difficulty of the multimodal question itself,
while the other measures its difficulty relative to the policy model’s current capabilities.

Extrinsic Difficulty. We first quantify question difficulty relative to the policy model through the
empirical success rate Sextrinsic = 1− pass@k , where pass@k = c/k represents the proportion of
correct solutions among k rollouts. This metric is computed online, reflecting the model’s evolving
capabilities.

Intrinsic Difficulty. While extrinsic difficulty reflects a model’s ability to solve problems, it may not
fully capture the inherent visual complexity of the questions. We therefore introduce image complexity
as an indicator that specifically evaluates the intrinsic difficulty within questions. Specifically, we use
the Gray-Level Co-occurrence Matrix (GLCM) score, which analyzes how frequently pairs of pixels
with specific intensity values occur at defined spatial relationships [32, 33]. However, GLCM captures
only low-level image complexity based on pixel-level interactions and fails to account for higher-level
semantic information. We therefore additionally employ the ViT classification entropy based on
the output of the feature layer [34, 35] for image semantics complexity, providing a high-level
representation of conceptual difficulty. The image complexity is computed as follows:

Himage = −
1

P

P∑
p=1

H(gp)−H(v) (2)

where gp represents the GLCM for image patch p, H(gp) is the entropy of the co-occurrence
probabilities across multiple radii and orientations; v denotes the feature output from the final layer of
the ViT classifier, and H(v) = −

∑N
j pj log pj is the entropy of the predicted probability distribution

over N classes, with pj being the probability for class j.

We integrate these metrics to get a comprehensive difficulty estimation (Sdifficulty) of a multimodal
question. Questions with higher difficulty scores typically correspond to greater visual complexity
and greater extrinsic difficulty for the policy model.

Sdifficulty = Sextrinsic ·Himage (3)

Slow-to-Fast Sampling. We adopt curriculum strategies for the fast–slow thinking paradigm, using
online-computed difficulty metrics. Two variants are considered: (i) Binary: distinct training
phases. In early epochs, exclude easy samples (Sextrinsic ≤ 0.25) to strengthen reasoning on hard
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questions; in later epochs, exclude hard samples (Sextrinsic ≥ 0.75) to practice concise reasoning.
(ii) Continuous: smoothly shift sampling probability from harder to easier questions over epochs,
enabling a gradual transition from slow to fast thinking. Binary enforces a clear capability-efficiency
separation, while Continuous offers a gentler progression.

4.2 FAST-GRPO

With the carefully designed difficulty estimation methods for multimodal question, we introduce
FAST-GRPO, a tailored variant of GRPO that balances fast and slow reasoning by incorporating
adaptive length-based rewards conditioned on question difficulty, as illustrated in Algorithm 1.

Algorithm 1 FAST-GRPO Training

Require: Base model πθ, selected dataset D, image
complexity Himg

1: Initialize πref ← πθ

2: for epoch = 1 to N do
3: Sample batch {qi} ∼ D
4: Generate {oji}Gj=1 ∼ πθ(qi)
5: Compute:

• Sext = 1− pass@k(qi)
• Sd = Sext ·Himg

• βi = βmin + (βmax − βmin)(1 −
Sext)

6: Filter samples via Slow-to-Fast Sampling
7: Compute rewards: rji = ra + λfrf + λtrt

rt =


1− L

Lavg
if (Sd < θ) ∧ (ra = 1)

min( L
Lavg

− 1, 1) if (Sd ≥ θ) ∧ (ra = 0)

0 otherwise

8: Update policy:

max
θ

E
[

clip
(

πθ

πold

)
Âj − βiDKL(πθ∥πref)

]
9: end for

Difficulty-Aware Length Reward Shaping.
In addition to the accuracy reward ra and for-
mat reward rf , we propose a difficulty-aware
length reward rt as follows, which guides the
model to employ the appropriate reasoning
approach based on question difficulty.

rt =


1− L

Lavg
if (Sd < θ) ∧ (ra = 1)

min( L
Lavg

− 1, 1) if (θ ≤ Sd) ∧ (ra = 0)

0 otherwise
(4)

where Sd is the difficulty score, θ is the 80th
percentile difficulty threshold across the batch,
and Lavg is the average length computed in
the batch of responses. For less complex ques-
tions (Sd < θ), the reward encourages fast
thinking for correct trajectories, specifically
rewards trajectories towards shorter than aver-
age length. Conversely, for complex questions,
the reward encourages thorough reasoning for
incorrect trajectories. Importantly, this reward
is capped at 1, preventing excessive verbosity
even for complex problems. Difficulty thresh-
old θ is a hyperparameter, for which we anal-
yse sensitivity in §5.4.

Following Deepseek-R1 setting [7, 17], we
define the final reward function as a linear combination of these components: ri = ra + λfrf + λtrt.
This difficulty-aware length reward necessitates encouraging exploration for complex problems while
maintaining efficient, accurate responses for simpler ones.

Difficulty-Aware KL Regularization. In addition to the aforementioned length reward that encour-
ages adaptive response length for questions of varying difficulty, the KL divergence term constrains
the policy model’s deviation from the reference model to achieve an exploitation-exploration balance,
which impacts learning effectiveness across questions of different difficulty levels [5, 29]. Our KL
coefficient sensitivity analysis in § 5.4 also reveals that no single static β value optimally serves
questions across difficulty levels. Lower KL constraints benefit challenging questions by enabling
broader exploration, while stronger regularization maintains performance on simpler tasks. To address
this issue, we implement a dynamic coefficient βd for difficulty-aware regularization.

βd = βmin + (βmax − βmin) · (1− Sextrinsic) (5)

We give a simple theoretical analysis to demonstrate how difficulty-aware βd enhances learning on
varying questions by decomposing the gradient coefficient from the gradient Equation 6:

∇θJGRPO(θ) = E[q∼P (Q),{oi}Gi=1∼πθold
(O|q)]

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[GCGRPO(q, o)]∇θ log πθ(oi,t|q, oi,<t)

]
(6)

GCGRPO(q, o) = Âi︸︷︷︸
Advantage Signal

+ βd

(
πref(oi|q)
πθ(oi|q)

− 1

)
︸ ︷︷ ︸
Adaptive KL Regularization

(7)
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As shown in Equation 7, the gradient coefficient consists of the advantage signal driving policy
improvement and the adaptive KL regularization term. For high-difficulty questions, βd approaches
βmin, weakening the KL regularization and allowing the policy update to be dominated by the
advantage signal. For low-difficulty questions, βd approaches βmax, restricting policy deviation
to ensure stability. Besides, the length normalization term 1

|oi| explicitly affects gradient updates,
providing theory insight into Observation 2: for incorrect responses, it encourages longer outputs
by reducing per-token penalties, while for correct responses, it encourages brevity through stronger
per-token updates. This creates an implicit bias toward increasing response length for difficult
questions where models generate more incorrect rollouts, while naturally promoting shorter responses
for simpler questions that yield more correct solutions.

5 Experiments

In this section, we evaluate the efficacy of our method for LVLM reasoning.

5.1 Experimental Setup
Table 2: Comparison of different training methods
and training samples.

Method Training Stage

SFT Sample RL Sample

Virgo [36] ✓ 5K ✗ –
Mulberry [37] ✓ 260K ✗ –

LMM-R1 [15] ✗ – ✓ 105K
MM-R1 [19] ✗ – ✓ 6K
MM-Eureka [20] ✗ – ✓ 56K
Curr-ReFT [16] ✓ 1.5K ✓ 9K
OpenVLThinker [9] ✓ 35K ✓ 15K
Vision-R1 [13] ✓ 200K ✓ 10K
R1-OneVision [14] ✓ 155K ✓ 10K

FAST (Ours) ✗ – ✓ 18K

Training Dataset. Starting with 500K ques-
tions from LLaVA-CoT [21], Mulberry [37],
and MathV-360K [38], we first apply filters for
answer verifiability. We deduplicate questions,
retain only rule-based verifiable answers [39],
and standardize to closed-form questions (e.g.,
multiple-choice, numeric answers). Second, we
apply Slow-to-Fast sampling to remove ques-
tions with extreme extrinsic difficulty scores
(Sextrinsic = 0 or 1), yielding 18K training ques-
tions. We display its distribution in Figure 6
and the specific source in the appendix.

Evaluation Benchmarks. we evaluate on 7
widely used multimodal benchmarks: (1) Math-
Vision [40], (2) MathVerse [41], (3) Math-
Vista [42], (4) MM-Math [43], (5) WeMath [44],
(6) DynaMath [45], and (7) MM-Vet [46]. The
first six cover various mathematical reasoning
tasks, while MM-Vet examines general multimodal abilities. We report both accuracy and response
length for all benchmarks. We also conduct additional cross-domain evaluations, including science
reasoning (MM-K12 [20]), open-domain VQA (Bingo [47], MMHAL [48]), low-level visual per-
ception (MMVP [49]), and comprehensive calibrated evaluation (MMEval-Pro [50]). Details are
provided in Appendix K.

Baselines. For slow thinking reasoning, we compare with three categories of approaches: (1) SFT on
distilled data (LLaVA-CoT, Mulberry, Virgo); (2) RL-only training (MM-Eureka, LMM-R1, MM-R1);
and (3) Two-stage approaches combining SFT and RL (R1-OneVision, Curr-ReFT, OpenVLThinker,
Vision-R1). A comparative analysis of training methodologies and samples across these baselines is
presented in Table 2. For fast-slow thinking comparison, we evaluate against fast thinking methods
using various reward shaping techniques: Kimi 1.5’s length penalty [23], cosine function rewards [24],
and DAST [25]. Table 10 details these different reward formulations.

5.2 Main Results

We report the main results concerning reasoning accuracy and reasoning length.

Reasoning Accuracy. Table 4 reports the main results of reasoning performance. First, FAST
achieves state-of-the-art results on MathVista with 73.8 and MathVerse with 50.6, outperforming
leading-edge closed-source LVLMs like GPT-4o. Second, on more challenging benchmarks, MathVi-
sion and MM-Math, FAST achieves competitive results, validating FAST’s ability to solve complex
questions. Third, FAST improves Qwen2.5-VL-7B, our base model, with an average accuracy
improvement of over 10%. Fourth, FAST improves Qwen2.5-VL-3B with an average accuracy
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Table 3: Main results on reasoning benchmarks compared with slow-thinking methods. For each
benchmark, we report both accuracy (acc.) and response length (len.). Tokens are counted with
Qwen2.5-VL’s tokenizer.

Method MathVision MathVerse MathVista MM-Math WeMath DynaMath MM-Vet

Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len.

Closed-Source Model
GPT-4o 30.4 – 49.9 – 63.8 – 31.8 – 69.0 – 63.7 – 80.8 –
Claude-3.5 Sonnet 37.9 – 46.3 – 67.7 – – – – – 64.8 – 68.7 –
Qwen-VL-Max 39.3 – 47.3 – 74.2 – 45.6 – – – – – 73.2 –
MM-Eureka 26.9 – 40.4 – 67.1 – – – – – – – 60.7 –
LLaVA-CoT 16.4 – 20.3 – 54.8 – 22.6 – – – 44.8 – 60.3 –

Base Qwen2-VL-7B
Qwen2-VL-7B 18.8 443.0 31.9 388.9 58.2 265.9 20.2 661.7 50.5 294.3 39.8 298.4 62.0 132.5
Mulberry 23.4 349.2 39.5 364.3 62.1 275.0 23.7 467.0 50.4 372.1 46.8 273.3 43.9 218.3
Virgo 24.0 – 36.7 – – – – – – – – – – –

Base Qwen2.5-VL-3B
Qwen2.5-VL-3B 21.2 450.6 34.6 362.3 62.3 212.9 33.1 627.9 50.4 323.7 48.2 270.9 61.3 138.8
Curr-ReFT 20.1 240.1 36.3 121.6 61.9 95.9 28.6 301.5 57.3 156.0 43.8 146.4 62.0 117.6
LMM-R1 25.2 447.8 41.8 423.9 63.2 245.0 36.5 634.5 62.9 382.5 53.1 341.6 65.9 166.3
FAST-3B (Ours) 26.8 323.5 43.0 286.3 66.2 158.7 39.4 425.0 63.1 244.9 54.4 213.7 64.0 112.7

Base Qwen2.5-VL-7B
Qwen2.5-VL-7B 25.6 443.0 46.9 388.9 68.2 189.1 34.1 666.7 61.0 294.3 58.0 273.3 67.1 132.5
MM-R1 30.2 324.6 49.8 283.9 71.0 185.6 41.9 528.5 67.9 235.7 57.5 254.2 70.6 137.9
Vision-R1 – – 52.4 – 73.5 – 40.4 – – – – – – –
R1-OneVision 29.9 692.8 46.4 631.5 64.1 402.5 34.1 688.6 61.8 591.9 53.5 560.6 71.6 440.7
OpenVLThinker 29.6 457.2 47.9 398.4 70.2 305.7 33.1 549.7 64.5 326.7 57.4 382.1 68.5 312.7
FAST-7B (Ours) 30.6 204.8 50.6 201.0 73.8 120.7 44.3 335.6 68.8 170.3 58.3 164.8 71.2 114.1

Table 4: Main results of accuracy and length compared with fast-thinking reward shaping methods.

Method MathV MathVista MathVer. WeMath MM-Vet Avg.

Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len.

Kimi 25.9 78.9 71.1 58.1 48.2 105.8 66.2 75.3 67.1 57.1 55.7 75.0
CosFn 27.9 396.4 72.1 247.2 49.6 383.9 68.1 311.9 71.1 148.9 57.8 297.7
DAST 27.0 281.1 72.9 93.5 48.5 194.5 67.4 148.9 67.6 66.3 56.7 156.9
FAST 30.6 204.8 73.8 120.7 50.6 201.0 68.8 170.3 71.2 114.1 59.0 162.2

improvement of over 14%, demonstrating that our method can be applied to different-sized models.
Further scalability results on a 32B-parameter model are provided in Appendix J. Lastly, FAST
maintains its general multimodal ability, evidenced by improved performance on MM-Vet, and
further demonstrates strong generalization beyond math-centric benchmarks in science reasoning
and open-domain VQA. In these evaluations, FAST improves its base model by 7–9% in physics,
chemistry, and biology, and on open-domain VQA matches or surpasses strong baselines, showing
effectiveness across diverse reasoning domains. Detailed results are provided in Appendix K.

Reasoning Length. Tables 3 and 4 report the main results of reasoning length. First, FAST achieves
a significant reduction of average reasoning length compared to slow thinking methods, from 32.7%
against MM-R1 to 67.3% versus R1-OneVision, while preserving comparable or better reasoning
accuracy. Second, compared to other fast thinking methods in LLMs, FAST achieves a modest
reasoning length reduction and better reasoning accuracy. Third, FAST achieves slower thinking
on more challenging questions, producing 60% longer responses on Hard than Easy of Geometry
3K as shown in Table 1 and averaging 79% more tokens on MM-Math. Lastly, in cross-domain
evaluations ( §K), FAST yields substantially shorter responses: on MM-K12, average length drops
by ∼106 tokens (33.8%) vs. its base model and over 30% vs. strong slow-thinking baselines. In
open-domain VQA (Bingo, MMHal), outputs are consistently 15–25% shorter, showing effective
control of reasoning length beyond math tasks.
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5.3 Ablations

Table 5: Ablation Results on MathVista, MathVi-
sion, and MathVerse. More details of naive GRPO
refer to appendix § F.

Model MathVista MathV. MathVer. Len.

Qwen-2.5-VL-7B 68.2 25.6 46.9 340.3

FAST 73.8 30.6 50.6 175.5
w/o Data Sampling 69.9 27.2 48.4 257.3
w/o Thinking Reward 73.6 31.5 45.9 302.2
w/o Difficulty Aware 72.0 29.5 49.2 171.6

Naive GRPO 67.2 25.3 47.6 205.4
+ early stop 70.4 28.1 48.9 243.6

We conduct ablation studies to validate the
effectiveness of each design of our method:
Data Sampling, thinking reward shaping, and
difficulty-aware optimization. The results are
represented in Table 5. We can draw the fol-
lowing conclusions. First, without Data Sam-
pling, reasoning accuracy seriously degrades on
all benchmarks, highlighting the critical role of
proper data distribution. Second, our thinking re-
ward significantly reduces relative 42% response
length with minor reasoning accuracy degrada-
tion, from 31.5 to 30.6 on MathVision. Third,
the difficulty-aware regularization demonstrates robust improvement across all benchmarks, with a
1.8-point absolute increase on MathVista.

5.4 Analyses

Table 6: Results on the effect of Slow-to-Fast Sam-
pling.

Method MathV. MathVista MathVer. Len.

No Selection 25.3 67.2 47.6 205.4

Dynamic Sampling 27.0 73.2 50.3 317.9
Fast to Slow 26.3 72.9 50.2 266.1
Continuous Slow-to-Fast 30.9 74.4 51.0 221.2
Binary Slow-to-Fast 30.6 73.8 50.6 175.5

Effect of Slow to Fast Sampling. We further
investigate the effect of Slow to Fast sampling
by comparing our Slow to Fast sampling with
alternative approaches: Fast to Slow, i.e., exclud-
ing hard samples early, easy samples later, and
Dynamic Sampling [51], i.e., always filtering
out Easy and Hard samples). As shown in Ta-
ble 6, Fast to Slow yields comparable accuracy
but shows degradation on challenging MathVi-
sion, while Dynamic Sampling leads to 80%
longer responses without better accuracy improvements. We also compared our binary Slow-to-Fast
sampling against a continuous variant to examine the effect of gradual curriculum shifts. This
additional comparison is reported in Appendix I.

Table 7: Results on the effect of SFT vs GRPO.
Samples Annotator MathV. MathVis. MathVer.

260K 4o 27.9 64.0 46.5
200K R1 18.8 66.8 47.1

18K – 30.6 73.8 50.6

Table 8: Correlation between image complexity
metrics and human judgments.

Metric SRCC PLCC

GLCM entropy score 0.75 0.77
Himg 0.49 0.54

Effect of SFT versus GRPO. As shown in Table 7, to further verify the efficacy of our FAST
compared to SFT methods, we compare our method with SFT using: (1) 260K structured CoT data
from GPT-4o [37] and (2) 200K long CoT from Deepseek-R1 [13]. SFT on Deepseek-R1 data
produces overthinking responses with degraded reasoning, while SFT on GPT-4o data mimics fixed
structures without substantial gains. In contrast, FAST with just 18K samples demonstrates superior
performance across all benchmarks.

Validation of Image Complexity. In our image complexity design, we utilize the GLCM entropy
score [32, 33] to measure texture complexity and ViT classification entropy [34, 35] for semantic
complexity. Zhang et al. [32] demonstrated that GLCM entropy achieves strong human alignment
with a Spearman Rank-order Correlation Coefficient (SRCC) of 0.75 and a Pearson Linear Correlation
Coefficient (PLCC) of 0.77. To validate the effectiveness of our combined metric Himg on our specific
dataset, we followed the methodology in [32], having three participants rate 200 sampled training
images on a 5-point scale based on visual detail complexity. As shown in Table 8, while our combined
metric Himg demonstrates moderate correlation with human judgments (SRCC=0.49, PLCC=0.54),
it maintains well alignment with human perception.

Difficulty Threshold Analysis. We use the 80th percentile of batch difficulty as our threshold
θ. Figure 4 shows our grid search results: the 100th percentile yields concise responses (140.8
tokens) but reduces accuracy, while a 0 threshold produces excessive verbosity (486.2 tokens) with
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Figure 4: Left: Results on the effect of difficulty threshold. The average accuracy is computed
across MathVision, MathVerse, and MathVista. Middle: Test set results with different difficulty level
training split comparisons on Geometry 3K. Right: Test set results with different β value comparison
in pilot experiments on Geometry 3K. OOD results comparison on MM-Vet benchmark.

performance degradation. The 50th percentile achieves comparable accuracy to our 80th percentile
but with 37% longer responses, confirming our choice effectively balances accuracy and conciseness.

Extrinsic Difficulty Analysis. Figure 4 reveals how training on different extrinsic difficulty splits
affects model performance. First, training on Medium difficulty samples yields the best overall
performance (45.4%), providing optimal balance for learning. Second, we observe clear difficulty-
specific transfer effects: Easy training improves Easy test performance (76.3%), Medium training
benefits Medium tests (44.4%), and Hard training significantly boosts Hard test performance (15.1%
vs. base 5.5%). However, Hard sample training degrades Easy performance (68.2% vs. base 72.7%),
while Easy training shows limited transfer to Hard problems. These findings support our Slow-to-Fast
sampling strategy, demonstrating that no single difficulty level is optimal for all test cases.

KL Coefficient Analysis. Recent works [51, 52] suggest that removing KL constraints can enhance
long-form reasoning in language models. We explored this effect in visual reasoning through a grid
search on the KL coefficient β (Figure 4). Our analysis reveals that lower β values significantly
improve performance on Hard questions (16.9% at β = 0 vs. base 5.5%) by enabling greater
exploration, but risk catastrophic forgetting on previously mastered tasks. Conversely, higher β values
maintain strong performance on Easy questions and improve out-of-distribution generalization (69.2%
at β = 5e − 2 on MM-Vet), but restrict exploration on complex reasoning tasks. These findings
demonstrate no static β value optimally serves questions across all difficulty levels—Hard questions
benefit from looser constraints while Easy ones and generalization require stronger regularization.

In-depth Analysis of Multiplying Estimated Difficulties. The multiplicative form Sdifficulty =
Sextrinsic ·Himage jointly captures empirical hardness and intrinsic visual complexity. One theoretical
concern is that this product could give low scores for cases that are hard for the model but visually
simple, potentially leading to fast-thinking behaviour when slow reasoning is needed. In practice,
such mismatches are rare (less than 5% of our training set), and our reward design in §4.2 assigns
zero length reward in these cases, avoiding contradictory signals. We also tested a weighted-sum
alternative S

(sum)
difficulty = αSextrinsic + (1 − α)Himage, where α = 0.5, and found almost identical

performance to the multiplicative form across MathVista, MathVision, and MathVerse (differences
within 0.5% accuracy). These results confirm that FAST’s difficulty estimation is robust to this
potential corner case and to the choice of combination strategy. Details are provided in §H.

5.5 Case Studies and Failure Mode Analysis

We complement our quantitative results with qualitative illustrations of FAST’s behaviour. Ap-
pendix §L provides examples where FAST adapts its reasoning, from concise answers on simple
problems to expanded chains on complex ones, as well as typical failure cases. Here, we focus on a
systematic analysis of these failures.

To understand when and why FAST-GRPO succeeds or fails, we analyse all incorrect responses
from FAST-7B, R1-OneVision-7B, and the base model (Qwen2.5-VL-7B) on MATHVISTA. We
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observe three recurring failure patterns (Figure 5): (i) Visual Perception Failures — where the
model incorrectly extracts or interprets visual cues (e.g., scales, chart values, spatial relations); (ii)
Reasoning Error Propagation — where a mid-chain mistake contaminates subsequent logical
steps; and (iii) Knowledge Conflict & Gap — where language priors override contradictory visual
evidence, or the model hallucinates in the absence of domain knowledge.

Figure 5: Error breakdown by category.

Key Insights. First, adaptive fast–slow think-
ing substantially reduces reasoning-related fail-
ures: FAST-7B cuts Reasoning Error Propaga-
tion and Knowledge Conflict cases by ∼27%
and ∼19% relative to its base model. Shorter,
targeted reasoning chains leave fewer opportu-
nities for mid-proof errors and help suppress
hallucinations caused by overextended thought.

Second, perception, not reasoning, is the dom-
inant bottleneck: over half of FAST-7B’s errors
stem from visual misinterpretation. Once a spa-
tial relation is mis-localised or a key numeric
value misread, even perfectly structured reason-
ing will converge to an incorrect answer. Future
gains will likely come from strengthening the input stage, e.g., fine-grained OCR, calibrated scale
reading, robust chart and graph value extraction, and accurate spatial grounding, so adaptive reasoning
can operate on correct evidence.

6 Related Work

We review approaches for LVLM reasoning and methods addressing overthinking in LLMs.

Slow-thinking methods for LVLMs. SFT-RL two-stage methods leverage high-quality reasoning
trajectories while inadvertently behavior cloning overthinking. Examples include Mulberry [37, 53]
using MCTS from GPT-4o, LLaVA-CoT [21] with structured reasoning stages, and Virgo [36]
finetuning on text-only reasoning chains. Vision-R1 [13], R1-OneVision [14], and OpenVLThinker [9]
first collect distilled data from advanced models before applying SFT and RL. RL-only methods
directly employ RL to improve reasoning accuracy but struggle with scaling response length [54, 19,
20]. Visual-RFT [54] uses GRPO for various vision tasks, while MM-R1 [19], LMM-R1 [15], and
MM-Eureka [20] apply RL on base models with curated visual reasoning questions.

Fast-Slow thinking methods for LLMs. Methods addressing overthinking in LLMs include
inference-stage approaches include TALE [28] enforcing token budgets in prompt and CCoT [27]
providing concise examples in context. Training-stage approaches include O1-Pruner [26] using
a tailored RL objective to reduce verbosity, CoT-Value [55] fine-tuning on varied-length reason-
ing chains to learn dynamic thinking, and Kimi [23] proposing length penalty rewards in RL and
Long2Short DPO [56] to shorten length. DAST [25] and CosineReward [24] encourage shorter
correct responses and longer in- correct responses via curated length rewards. While effective for
text-only tasks, these approaches remain largely unexplored for LVLM reasoning.

7 Conclusion

We presented FAST, a framework enabling LVLMs to dynamically adapt reasoning depth based on
question characteristics, addressing the overthinking phenomenon. Through empirical analysis, we
developed FAST-GRPO with three components: model-based metrics for question characterization,
adaptive thinking rewards, and difficulty-aware KL regularization. Extensive experiments demon-
strated that FAST achieves state-of-the-art accuracy with over 10% improvement compared to the
base model while reducing token usage compared to previous slow-thinking approaches, effectively
balancing reasoning length and accuracy.
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This Appendix for "Fast-Slow Thinking GRPO for Large Vision-Language Model Reasoning" is
organized as follows:

• Experimental Setup and Reproducibility. In §B we detail the implementation settings;
§C describes the training and evaluation datasets; §D compares different length reward
shaping methods; §E provides the human evaluation prompt for image complexity.

• Additional Experimental Analyses. §F analyses naive GRPO behaviors; §G reports
statistical significance of main results; §L presents case studies and failure mode examples;
§K gives cross-domain evaluation results (science reasoning, open-domain VQA, low-
level visual perception, calibrated evaluation); §J shows scalability experiments on a
32B-parameter LVLM.

• Discussion and Limitations. §A discusses potential limitations of FAST-GRPO and
directions for future work.

A Limitations

While our FAST framework demonstrates significant improvements in balancing reasoning length
and accuracy, we acknowledge several limitations in our current work. Due to computational resource
constraints, we were only able to evaluate our approach on models up to 32B parameters (Qwen2.5-
VL-32B). The effectiveness of fast-slow thinking mechanisms may scale differently with larger
models (e.g., models with 70B+ parameters), which could potentially exhibit different reasoning
patterns and overthinking behaviors.

B Implementation Details Table 9: Training Hyperparameters

Hyperparameter Value
Model Qwen2.5-VL
Epochs 10
Learning Rate 1e-6
Train Batch Size 512
Temperature 1.0
Rollout per Prompt 8
Prompt Max Length 4096
Generation Max Length 4096
Max KL Coefficient 0.03
Min KL Coefficient 0.001
Precision BF16
Max Pixels 1000000
λf 0.5
λt 0.5

Difficulty


Easy if 0.75 ≤ pass@k
Hard if pass@k ≤ 0.25

Medium otherwise
Difficulty Threshold 80th percentile

We implement FAST using
Qwen2.5-VL-3B and 7B as our
base models. Below we detail our
training setup and hyperparameters.

General Training Hyperparame-
ters. For FAST training, we use our
18K dataset with a learning rate of
1e-6, a batch size of 512. We set the
maximum sequence length to 4096
for both prompts and generation,
and apply BF16 precision through-
out training. The training process
runs for 10 epochs, requiring ap-
proximately 600 H100 GPU hours.
We use the prompt: You FIRST think
about the reasoning process as an
internal monologue and then pro-
vide the final answer. The reasoning
process MUST BE enclosed within
< think > < /think > tags.
The final answer MUST BE put in
< answer > < /answer > tags.

Method-specific Training Hyperparameters. For our reinforcement learning approach, we employ
a temperature of 1.0, 8 rollouts per question, and a KL coefficient ranging from 0.001 (min) to 0.03
(max). The reward weighting factors are set to 0.5. The difficulty threshold is set at the 80th percentile.
For GLCM computation, following prior setting [32], gp is derived from local patch p in the original
image with 64 gray levels, defined by radius δ = [1, 2, 3, 4] and orientation θ = [0◦, 45◦, 90◦, 135◦].
In practice, we divide the gray image into local patches of size 64.

Computation Environment. All training experiments were conducted using H20 GPUs. Model in-
ference in evaluations is performed using the vLLM framework [57], and our training implementation
extends the VeRL codebase [58].
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The complete set of hyperparameters is provided in Table 9. We commit to releasing all the code,
data, and model checkpoints for experimental results reproducibility.

C Datasets

Figure 6: Distribution of Training Dataset Sources
by Category.

Our training dataset comprises samples from
four main categories: (1) Mathematical prob-
lems, including data from MathV360K, Ge-
ometry3K, and other mathematical reasoning
datasets; (2) Visual QA tasks, sourced from
ShareGPT4V, Vizwiz, and additional visual
question answering benchmarks; (3) Science
problems from AI2D, ScienceQA, and other
scientific reasoning datasets; and (4) Figure
Understanding tasks from DocVQA, ChartQA,
and other document and chart comprehension
datasets. The distribution is balanced across
these categories, with Mathematical problems
constituting the largest portion, followed by
Figure Understanding, Science, and Visual QA
tasks.

D Length Rewards

We provide a comparison of different length rewards in Talbe 10.

Table 10: Comparison of different length reward shaping methods.

Method Length Reward

Kimi Length Penalty [23]

{
0.5− len(i)−min_len

max_len−min_len if correct
min(0, 0.5− len(i)−min_len

max_len−min_len ) otherwise

CosFn [24] ηmin + 1
2 (ηmax − ηmin)(1 + cos( tπT ))

where t is generation length, T is maximum length
ηmin/ηmax are min/max rewards
For correct answers: ηmin = rc0, ηmax = rcL
For wrong answers: ηmin = rw0 , ηmax = rwL

DAST [25]
{
max(−0.5λ+ 0.5, 0.1) if correct
min(0.9λ− 0.1,−0.1) if incorrect

where λ =
Li−Lbudget

Lbudget

and Lbudget = p · Lr + (1− p) · Lmax, p = c
N

FAST rt =


1− L

Lavg
if Sdifficulty < θ and ra = 1

min( L
Lavg

− 1, 1) if θ ≤ Sdifficulty and ra = 0

0 otherwise
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E Human Evaluation Prompt

Image Complexity Rating Instructions for Visual Reasoning Tasks

Please rate the complexity of the given image on a scale of 1-5, considering how challenging
it would be for visual reasoning tasks. Focus on aspects that affect the difficulty of analyzing,
interpreting, and reasoning about the image content.

Rating Scale:
1 - Very Simple

• Clear, uncluttered images with few objects
• Simple spatial relationships
• High contrast and clear visibility
• Minimal text or numbers if present
• Straightforward visual patterns

2 - Somewhat Simple
• Moderately clear images with a manageable number of objects
• Basic spatial relationships requiring minimal analysis
• Good visibility with minor distractions
• Limited text or numerical information
• Recognizable patterns with minimal complexity

3 - Moderate Complexity
• Multiple objects with varied relationships
• Moderate spatial reasoning required
• Some visual clutter or distractions
• Moderate amount of text, numbers, or symbols
• Patterns requiring some analysis

4 - Complex
• Numerous objects with intricate relationships
• Challenging spatial reasoning required
• Significant visual clutter
• Substantial text, numbers, or symbols requiring careful reading
• Complex patterns requiring detailed analysis

5 - Very Complex
• Dense arrangement of many objects with intricate relationships
• Advanced spatial reasoning required
• Heavy visual clutter making object identification difficult
• Extensive text, numbers, or symbols with complex relationships
• Intricate patterns requiring sophisticated analysis

When rating, consider: number of objects, visual clarity, amount of information, spatial
relationships, and reasoning steps needed to understand the image content.

F Naive GRPO Results

As shown in Figure 7, the training accuracy for naive GRPO continues to increase throughout the
training process, similar to other methods like Dynamic Sampling and FAST. However, when we
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Figure 7: Training accuracy of Naive GRPO. Figure 8: Validation accuracy of Naive GRPO.

examine the validation accuracy in Figure 8, we observe a concerning trend. The validation accuracy
of naive GRPO initially increases, reaching a peak of 0.40 around step 150, but then begins to decline
despite continued improvements in training accuracy.

This discrepancy between training and validation performance indicates a clear overfitting phe-
nomenon in naive GRPO. Upon closer examination of the model outputs in later training stages (e.g.,
case in Figure 9 ), we observe an increasing inconsistency between the chain-of-thought reasoning
and the final answers produced by the model. Specifically, the model develops a tendency to generate
reasoning chains that do not logically support its final conclusions, suggesting that it is memorizing
training examples rather than learning generalizable reasoning patterns.

This overfitting behavior explains why the validation accuracy deteriorates even as training accuracy
continues to improve. The model optimizes for the training distribution at the expense of generaliza-
tion capability. Therefore, implementing early stopping based on validation performance is crucial
when using naive GRPO to select the optimal checkpoint (around step 150 in our experiments) before
overfitting severely impacts the model’s reasoning abilities.

Example Case: Inconsistent Reasoning in Naive GRPO on Training Dataset

Geometry problem with angles

Question: What is the measure of ∠GHI?
Chain of Thought:
Since the lines AB and CD are parallel, and EF is a
transversal, the angles created by the transversal with
the parallel lines have specific relationships. Specifically,
the angle at point E that is adjacent to 40° and the angle
at point F that is adjacent to 70° are supplementary angles
with the angle GHI.
The angle at point E is 40°, and since EF is a straight line,
the angle adjacent to it on the other side of the transversal
is 180° - 40° = 140°. Similarly, the angle at point F is 70°,
and the adjacent angle on the other side of the transversal
is 180° - 70° = 110°.
Since GHI is the angle formed by the intersection of the
transversal with the parallel lines, it is the angle that is
supplementary to the 110° angle. Therefore, the measure
of angle GHI is 180° - 110° = 70°.
So, the measure of ∠GHI is 70°.
Final Answer: 110

Figure 9: Example of reasoning inconsistency in naive GRPO on training dataset: The model
produces the correct final answer (110°) despite having flawed reasoning in its CoT (which incorrectly
concludes 70°). This suggests memorization rather than proper understanding of geometric principles.
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G Statistical Significance Analysis

Table 11: Main results on reasoning benchmarks. We report accuracy (Acc.) and response length
(Len.) with standard deviation across 5 runs with temperature set to 0.1. * indicates statistical
significance (p<0.05).

Benchmark Qwen2.5-VL-3B FAST-3B Qwen2.5-VL-7B FAST-7B

Acc. Len. Acc. Len. Acc. Len. Acc. Len.

MathVision 21.2 450.6 26.8±0.3∗ 323.5±14.2∗ 25.6 443.0 30.6±0.4∗ 204.8±12.3∗
MathVerse 34.6 362.3 43.0±0.4∗ 286.3±12.8∗ 46.9 388.9 50.6±0.5∗ 201.0±10.5∗
MathVista 62.3 212.9 66.2±0.5∗ 158.7±9.3∗ 68.2 189.1 73.8±0.6∗ 120.7±8.2∗
MM-Math 33.1 627.9 39.4±0.6∗ 425.0±16.7∗ 34.1 666.7 44.3±0.7∗ 335.6±15.3∗
WeMath 50.4 323.7 63.1±0.4∗ 244.9±11.5∗ 61.0 294.3 68.8±0.5∗ 170.3±9.8∗
DynaMath 48.2 270.9 54.4±0.3∗ 213.7±10.6∗ 58.0 273.3 58.3±0.4 164.8±11.2∗
MM-Vet 61.3 138.8 64.0±0.5∗ 112.7±6.9∗ 67.1 132.5 71.2±0.6∗ 114.1±7.5∗

Figure 10: Performance comparison between
FAST-7B and Qwen2.5-VL-7B across multiple
benchmarks.

To rigorously evaluate the effectiveness of
our approach, we conducted statistical signif-
icance analysis across all benchmarks. Table 11
presents comprehensive results comparing our
FAST models with their respective Qwen2.5-VL
baselines, including standard deviations from
multiple runs.

Figure 10 visualizes the performance differ-
ences between FAST-7B and Qwen2.5-VL-7B.
The top panel illustrates accuracy improvements
in percentage points, while the bottom panel
shows response length reduction percentages.
Error bars represent standard deviation across 5
runs with temperature set to 0.1, and asterisks
(*) indicate statistically significant differences
(p<0.05).

Our analysis reveals that FAST-7B achieves statistically significant accuracy improvements on 6 out of
7 benchmarks, with only DynaMath showing a non-significant improvement (0.3 percentage points).
The most substantial accuracy gains are observed on mathematical reasoning tasks (MathVision:
+5.0%, MathVerse: +3.7%, MM-Math: +10.2%), demonstrating our method’s particular effectiveness
on complex reasoning problems.

Regarding response length, FAST-7B consistently produces significantly more concise responses
across all benchmarks, with length reductions ranging from 13.9% to 53.8%. This confirms that
our approach successfully achieves both improved accuracy and enhanced efficiency in generating
responses. The statistical significance of these improvements provides strong evidence for the
effectiveness of our FAST framework in enhancing both the reasoning capabilities and efficiency.

H Analysis of Multiplicative Difficulty Formulation and Weighted-Sum
Alternative

The multiplicative combination

Sdifficulty = Sextrinsic ·Himage

was designed to jointly capture a model’s empirical success rate and the intrinsic visual complexity of
a question. One concern raised in review is that when Sextrinsic is high (model finds the problem hard)
but Himage is very low (visually simple), the product may be close to zero, potentially signalling "fast
thinking" in a case that is actually challenging.
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Reward design avoids conflict

As shown in Algorithm (1), the difficulty-aware length reward rt applies non-zero shaping only in
two aligned cases:

• Correct and Not Complex (Sdifficulty < θ): encourage shorter responses.
• Incorrect and Complex (Sdifficulty ≥ θ): encourage longer responses.

The misaligned case in question (Incorrect but Not Complex, or Correct but Complex) yields rt = 0,
so no penalty or incorrect encouragement is applied.

Empirical rarity of corner cases

We ranked 1,000 random training samples and computed correlations between Sextrinsic, Himage, and
Sdifficulty. High Sextrinsic combined with low Himage was rare (< 5% of samples).

Weighted-sum alternative

We compared the multiplicative form with a weighted sum:

S
(sum)
difficulty = αSextrinsic + (1− α)Himage, α = 0.5.

Table 12 shows near-identical results.

Table 12: Multiplicative vs weighted-sum difficulty formulation.
Formulation MathVision MathVista MathVerse Avg. Len.

Multiplicative 30.6 73.8 50.6 175.5
Weighted Sum 29.1 73.9 50.2 183.8

These results confirm (i) corner cases are rare in our actual training distribution, (ii) reward shap-
ing avoids contradictory signals for such cases, and (iii) performance is robust to the choice of
multiplicative vs sum combination.

I Continuous Slow-to-Fast Sampling

In the main text (Section 5.4), we compared our Slow-to-Fast sampling strategy against alternative
approaches such as Fast-to-Slow and Dynamic Sampling [51]. Here, we further contrast a continuous
variant of Slow-to-Fast scheduling: .

Binary Slow-to-Fast. In this setting, the training curriculum makes a hard switch at the halfway
point of total epochs: the first half samples only hard and medium questions, and the second half
incorporates easy questions, following the procedure in Algorithm 1.

Continuous Slow-to-Fast. Here, the probability of drawing an easy sample, peasy , increases
linearly with the training epoch t from 0 at the start to a maximum Pmax at the final epoch:

peasy(t) = Pmax ·
t

T
,

where T is the total number of epochs. We set Pmax = 0.4 following initial tuning, ensuring a
gradual transition from hard/medium-focus to more balanced sampling.

Results. Table 13 compares the two schedules under identical training settings on MATHVISTA,
MATHVISION, and MATHVERSE.

Findings. Continuous scheduling provides accuracy gains (e.g., +0.6pp on MATHVISTA) and
increases average output length by 26%, reducing efficiency. We hypothesize that the chosen Pmax

was insufficient to sample a large enough proportion of easy questions in later epochs, limiting
potential efficiency gains. Additional tuning or adaptive Pmax may yield more favourable trade-offs.
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Table 13: Binary vs. Continuous Slow-to-Fast scheduling. Accuracy (%) / Avg. length (tokens).
Method MATHVISTA MATHVISION MATHVERSE Avg. Len.

Binary 73.8 30.6 50.6 175.5
Continuous 74.4 30.9 51.0 221.2

J Scalability to Larger Models

To evaluate the scalability of FAST-GRPO beyond mid-sized LVLMs, we train and test the framework
on the 32B-parameter model Qwen-2.5-VL-32B using the same 18K-question training set as in our
main experiments. Due to compute constraints, training was stopped after 3 epochs (∼1,200 GPU
hours), which likely results in a sub-optimal checkpoint. We compare FAST-32B to strong slow-
thinking baselines including Vision-R1-32B and MM-Eureka-32B on six benchmarks, including
MM-K12 [20], a 2,000-question scientific reasoning benchmark evenly covering math, physics,
chemistry, and biology. Due to compute constraints, we stopped training after three epochs (1200
GPU hours), resulting in a likely sub-optimal checkpoint.

Table 14: Performance of FAST-GRPO on 32B models compared to baselines. Accuracy (%) / Avg
length (tokens).

Model MATHVISION MATHVISTA MATHVERSE WEMATH MM-K12 MM-VET Avg Acc / Len

Qwen-2.5-VL-32B 38.4 / 651 71.7 / 331 49.9 / 550 69.1 / 515 66.8 / 840 71.1 / 312 61.1 / 533.2
Vision-R1-32B 39.1 / 976 76.4 / 410 60.9 / 818 74.2 / 637 64.8 / 1039 72.2 / 384 64.6 / 710.6
MM-Eureka-32B 34.4 / 639 74.8 / 352 56.5 / 560 73.4 / 524 72.2 / 857 73.4 / 344 64.1 / 546.0
FAST-32B 37.2 / 531 75.4 / 268 57.6 / 430 74.4 / 420 68.4 / 629 72.6 / 254 64.3 / 422.1

Findings. Despite shorter training, FAST-32B matches or slightly exceeds the accuracy of stronger
slow-thinking baselines while using notably fewer tokens:

• Versus Vision-R1-32B, average output length is reduced by ∼ 40% (422.1 vs. 710.6
tokens) with comparable accuracy (64.3% vs. 64.6%).

• Versus MM-Eureka-32B, length is reduced by∼ 22% (422.1 vs. 546.0 tokens) while slightly
improving average accuracy (64.3% vs. 64.1%).

These results indicate that FAST-GRPO scales effectively to larger LVLMs, maintaining its accuracy-
efficiency trade-off. We leave exploration on ultra-large (≥ 70B) LVLMs for future work.

K Cross-Domain Evaluation

To validate FAST-GRPO beyond math-intensive benchmarks, we conducted additional experiments
on science reasoning, open-domain VQA, hallucination analysis, and low-level visual perception.
These evaluations were added in response to reviewer requests for broader task coverage.

K.1 MM-K12 Scientific Reasoning

The MM-K12 benchmark [20] consists of 2,000 multimodal reasoning questions evenly covering
four domains: mathematics, physics, chemistry, and biology.

Findings. Compared to its base model, FAST-7B improves accuracy by +8.4pp in physics, +7.0pp
in chemistry, and +8.8pp in biology, while reducing output length by ∼ 33.8%. Even against strong
slow-thinking models such as MM-Eureka-7B, accuracy remains comparable with ∼ 30% fewer
tokens.

K.2 Additional General Benchmarks

We further evaluate on four benchmarks covering open-domain VQA and visual robustness:
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Table 15: Accuracy (%) and average output length (tokens) on MM-K12 across subjects.
Model Math Physics Chemistry Biology Avg Acc / Len

Qwen-2.5-VL-7B 58.4 45.4 56.4 54.0 53.6 / 477.6
FAST-7B 69.0 53.8 63.4 62.8 62.2 / 371.2
MM-Eureka-7B 71.2 56.2 65.2 65.2 64.5 / 537.8
OpenVLThinker-7B 63.0 53.8 60.6 65.0 60.6 / 561.0
R1-OneVision-7B 44.8 33.8 39.8 40.8 39.8 / 817.5

FAST-3B 56.0 50.6 56.2 57.6 55.1 / 318.1

Table 16: Performance across diverse benchmarks.
Model Bingo ↑ MMHALU ↑ MMVP ↑ MMEval-Pro ↑ MM-K12 ↑
Qwen2.5-VL-7B 3.70 3.50 47.3 76.0 53.6
FAST-7B 3.72 3.40 47.0 75.0 62.2
Vision-R1-7B 3.62 3.10 44.0 72.2 –
MM-Eureka-7B 3.69 3.20 46.7 74.8 64.5
OpenVLThinker-7B 3.45 3.00 46.5 71.5 60.6

• Bingo Score [47]: Open-domain VQA benchmark for hallucination analysis.
• MMHal [48]: Hallucination and informativeness evaluation in open-domain VQA.
• MMVP [49]: Low-level visual perception probing.
• MMEval-Pro [50]: Calibrated multimodal benchmark spanning math, science, and general

VQA.

Findings. FAST matches or slightly outperforms strong slow-thinking baselines in open-domain
VQA and hallucination-robustness benchmarks, while producing shorter outputs. This supports the
observation that adaptive reasoning length mitigates hallucination risk in multimodal reasoning [59].

L Case Study

Figure 11 illustrates how FAST balances reasoning length and accuracy. For simple coordinate
identification, R1-OneVision exhibits overthinking with 349 tokens output (highlighted in green),
while FAST delivers a concise 59-token solution. For complex geometry, the base model makes a
critical error in angle calculations, while R1-OneVision produces a correct but verbose 676-token
solution. FAST demonstrates adaptive slow thinking with a more efficient and correct 375-token
solution. validating our approach’s ability to adjust reasoning depth based on question complexity.

In addition to these efficiency-focused examples, we present three representative error cases illus-
trating the main failure categories discussed in Section 5.5: one each for Visual Perception Failure,
Reasoning Error Propagation, and Knowledge Conflict & Gap. These cases are shown in Fig-
ures 12–14 and provide visual, task-specific instances of how such errors manifest across different
problem types.
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Figure 11: Case studies of different models’ reasoning. Mistakes and overthinking are highlighted in
red and green.

Example Case: Visual Perception Failure

Beaker with scale markings

Question: What is the highest amount this class mea-
sures?
Ground Truth: 400 (ml) Model Answer: 600 (ml)
Error Analysis:
The image shows a beaker with markings up to 400 ml
and a label indicating a total capacity of 600 ml. The
question asks for the highest amount measured, which
refers to the highest marked graduation (400 ml), not the
container’s maximum capacity. The model misinterprets
the labeling and outputs 600 ml.
Error Type: Misinterpretation of visual context, confus-
ing scale markings with container capacity.

Figure 12: Visual Perception Failure example: Model confuses the beaker’s maximum capacity label
with the highest visible measurement marking, leading to an incorrect answer. This highlights the
bottleneck in visual extraction accuracy.
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Example Case: Reasoning Error Propagation

Geometry diagram

Question: Find x Choices: (A) 21, (B) 34, (C) 58, (D) 67
Ground Truth: (C) 58 Model Answer: (B) 34
Error Analysis:
The model correctly identifies the problem as a right-
triangle angle calculation and applies the tangent ratio:
tanx = 10/16 = 5/8, yielding x ≈ 33.75◦. The mid-
chain error occurs when mapping this computed angle
to the provided options: the model selects option 34°,
overlooking that the target quantity in the diagram cor-
responds to another angle (58°). This incorrect mapping
contaminates the final answer choice.
Error Type: A correct method with an intermediate mis-
take that propagates to the final conclusion.

Figure 13: Reasoning Error Propagation example: The model applies the correct trigonometric
method but misaligns the computed value with the problem’s actual target, causing subsequent steps
to be built on a wrong assumption.

Example Case: Knowledge Conflict & Gap

TCP transmission diagram

Question: Fig.Q3 shows an excerpt of the transmission
phase of a TCP connection. Assume the length of the IP
header is 20 bytes. What is the ACK number at message
6?
Ground Truth: 839 Model Answer: 451
Error Analysis:
To compute the ACK number, the model must correctly
trace the TCP sequence of events in the diagram and
account for byte offsets per message. Here, the model
applies general TCP knowledge and standard ACK pro-
gression, but fails to interpret the specific visual data flow
in the diagram (misidentifying the sequence range of mes-
sage 3). This leads to an underestimated ACK number.
Error Type: Domain knowledge misapplication, relying
on generic protocol rules over conflicting visual evidence
from the figure.

Figure 14: Knowledge Conflict & Gap example: The model ignores the specific sequence number
information in the visual diagram and instead applies an incorrect general TCP rule, leading to a
wrong ACK number.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions,
including the FAST framework for balancing fast-slow thinking in LVLMs, the empirical
analysis of reasoning length and accuracy, and the three key components of the approach.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a dedicated Limitations section A that acknowledges
computational resource constraints limited evaluation to models up to 7B parameters, and
notes that effectiveness may scale differently with larger models (70B+) which could exhibit
different reasoning patterns.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper is primarily empirical and does not include formal theoretical results
requiring proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the the implementation details can be found in § 5.1 and B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and model checkpoint are stated to be open source. Data generation
for the training dataset is described, and evaluation benchmarks are public.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We list experimental setting in § B and § 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Figure 10 and Table 11.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See §B. We specify that training requires approximately 600 H100 GPU hours,
with a global batch size of 512 and 8 rollouts per question over 10 epochs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We promise that this paper conforms, in every respect, with the NeurIPS Code
of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper does not explicitly discuss potential positive and negative societal
impacts of the work. The research focuses on improving reasoning efficiency in vision-
language models, which has general benefits for AI applications but could benefit from a
discussion of broader implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper focuses on improving reasoning capabilities rather than releasing
models with high risk for misuse. The proposed method enhances existing models rather
than creating new potentially harmful capabilities.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites and credits the original sources of datasets (LLaVA-
CoT, Mulberry, MathV-360K) and models (Qwen2.5-VL) used in the experiments, as well
as the evaluation benchmarks.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper describes the training data generation process and mentions releasing
model checkpoints as well as code, with sufficient documentation of the methodology to
understand the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Human evaluation instruction is provided in §E.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The human evaluation conducted appears to be a minimal risk assessment of
image complexity rather than research requiring IRB approval, as it doesn’t involve personal
data or potential harm to participants.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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