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Abstract

Under pure textual modality, Large Language Models (LLMs) have demonstrated remark-
able success in complex reasoning tasks by decomposing them into simpler sub-problems.
However, Multimodal Large Language Models (MLLMs) still struggle with some seem-
ingly straightforward visual tasks, such as counting and solving jigsaw puzzles. We argue
that these tasks challenge the ability of visual-to-textual conversion, where MLLMs con-
vert visual information perceived from the input scene, to textual information for further
reasoning and generating the answer. If the complexity of the visual input is beyond the
perceptual capability of the MLLMs, without decomposing this conversion process, simply
scaling inference-time reasoning cannot solve the task because it repeatedly encounters the
same perceptual bottleneck. We propose an approach, autonomous imagination, to enable
MLLMs to iteratively modify visual inputs (e.g. isolating objects, rearranging puzzle pieces)
into intermediate visual states, decomposing visual-to-textual conversion into closed-loop vi-
sual modification steps. We show that, without any retraining, MLLMs can now solve tasks
initially beyond their perceptual capability, highlighting that closed-loop visual modification
can be an effective way of decomposing the visual reasoning task into solvable substeps. Our
code and data are released at (publicly available upon acceptance).

1 Introduction

Modern Large Language Models (LLMs) demonstrate exceptional reasoning capabilities through systematic
task decomposition (Huang & Chang, 2023). By breaking complex problems into sequential subtasks, models
achieve remarkable performance in textual reasoning domains (Yao et al., 2023; OpenAI, 2024b). More
recently, Multimodal Large Language Models (MLLMs) (OpenAI, 2024a; Liu et al., 2023; Bai et al., 2023;
Wang et al., 2023a) are gaining increasingly strong abilities in visual understanding. Inspired by work on
visual prompting (Jiang et al., 2024; Lin et al., 2024; Hong et al., 2023; Zhang et al., 2023b;c; Mitra et al.,
2023; Zheng et al., 2023; Zhang et al., 2024; Yu et al., 2024), recent methods enable MLLMs to perform
visual reasoning by proactively adding visual prompts (such as bounding boxes) to the image, to reduce
hallucination and handle challenging visual tasks without human intervention (Lai et al., 2023; Wu & Xie,
2023; Chen et al., 2023; Qi et al., 2024; Shao et al., 2024; Zhou et al., 2024b).

Despite these advancements, existing methods often struggle to make MLLMs natively handle intuitive
visual reasoning tasks. When challenged with tasks such as jigsaw puzzle assembly (even when provided
with explicit step-by-step instructions), or simply counting objects, state-of-the-art MLLMs consistently fail
to reason through the entire process. A key observation is that, instead of challenging high-level reasoning
abilities such as logical deduction, these tasks actually challenge the ability to perceive and understand
complex visual scenes. Referring to the failure of existing MLLMs on them, we argue that ineffective
task decomposition remains a fundamental cause. Reasoning in complex visual input requires the strong
ability of visual-to-textual conversion, where MLLMs convert visual information perceived from the input
scene to textual information for further reasoning and generating the answer. However, in current MLLM
reasoning, the visual-to-textual conversion process remains an atomic operation rather than being divided
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A: Apple is at [445,535],
and should be placed at [450,150].

Reasoning in Imagination Space

I have located the apple at [450,450],
moving it to the right side.

This location looks better, but I will
try to find a better location.

... ...

Reasoning in Imagination Space Reasoning in Imagination Space

A: There are 10 balls.

GPT-4o

Q: How many balls are there in this image?

GPT-4o with Autonomous Imagination

Q: How many balls are there in this image?

Creating the imagination space.
Controlling cursor.

Reasoning in Imagination Space

I should count by ignoring balls.
Let’s start from the red and white one.

I have ignored the red and white ball.
Let’s count the white ball on the left.

...

A: There are 11 balls.

...

Reasoning in Imagination Space Reasoning in Imagination Space

Creating the imagination space.
The apple is right at the cursor.

Q: The guest will sit on the right side of the table, near 
the yellow cup. Where should we serve the apple?

Q: The guest will sit on the right side of the table, near 
the yellow cup. Where should we serve the apple?

A: I think this is a nice spot.
Target location: [705,376].

Figure 1: Our autonomous imagination approach empowers advanced MLLMs to engage in iterative imagi-
native reasoning, enabling them to address previously unsolvable tasks without additional training.

into executable substeps. When the complexity of the visual scene is beyond the perceptual ability of
MLLMs, without decomposing this conversion step, simply scaling inference-time reasoning cannot solve the
task because it repeatedly encounters the same perceptual bottleneck.

We hypothesize that, similar to textual reasoning, where intermediate textual states are necessary, MLLMs
need to generate intermediate images that gradually simplify the original scene or approach the target
visual state. To test this, we propose enabling MLLMs to iteratively modify visual inputs (e.g., isolating
objects, rearranging puzzle pieces) into intermediate visual states, decomposing visual-to-textual conversion
into closed-loop visual modification steps, without any additional training of MLLMs. For simplicity, we
refer to this approach as autonomous imagination. Technically, we implement the approach to support the
conversion from an unstructured input visual scene into a structured representation and the visual operators
that efficiently modify the visual content into new states (e.g., through transformation or erasing). This
allows MLLMs to generate successive visual states that progressively simplify the original visual scene or
gradually approach the target visual state in an autonomous fashion.

We conduct experiments under visual reasoning tasks that challenge the perception and understanding
abilities of MLLMs under complex visual scenes, including counting, jigsaw puzzle solving, object placement,
and multi-object hallucination. The results show that previously challenging visual reasoning tasks, which
are beyond the perceptual capability of the MLLMs, can be effectively tackled natively by them equipped
with our approach. This serves as empirical validation that a major limitation in visual reasoning stems
from insufficient support for visual task decomposition, which we hope will inspire future research.

2 Related Work

2.1 Reasoning in LLMs

Numerous studies explore reasoning paradigms in natural language using their in-context learning abil-
ity (Brown et al., 2020), showing that Large Language Models (LLMs) improve through reasoning-based
outputs (Wei et al., 2022; Kojima et al., 2022). Subsequent work further improves reasoning through in-
context learning by improving in-context sample selection (Rubin et al., 2021; Lu et al., 2022; Zhang et al.,
2022; Fu et al., 2022; Wang et al., 2022; Li et al., 2022b). Recently, notable advancements in OpenAI’s
o1 (OpenAI, 2024b) have demonstrated that by scaling LLMs for inference-time reasoning before answering,
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LLMs can be greatly enhanced in reasoning. A key insight from these advances is that proper decomposition
of the reasoning process into simpler subtasks is essential for successful reasoning (Wei et al., 2022).

2.2 Visual Reasoning in MLLMs

MLLMs have evolved in visual understanding ability, initially leveraging domain-specific expert models such
as HuggingGPT (Shen et al., 2023), MM-REACT (Yang et al., 2023), and VisualChatGPT (Wu et al., 2023).
The focus later shifted to training LLMs with an adapter for the other modal, such as LLaVA (Liu et al.,
2023), BLIP-2 (Li et al., 2022a; 2023), and MoVA (Zong et al., 2024). Many recent MLLMs now exhibit
native visual understanding through training in text-image pairs, with fine-tuning on question-answering
tasks (Liu et al., 2023; Bai et al., 2023; Wang et al., 2023a; Zhu et al., 2023; Chen et al., 2022; Luo et al.,
2023; Alayrac et al., 2022), including the state-of-the-art closed-source MLLM GPT-4o (OpenAI, 2024a).

In addition to reasoning within text modalities, substantial efforts are made in reasoning in visual tasks.
Existing MLLMs often face limitations in direct visual perception and are prone to generating answers with
hallucinations (Zhang et al., 2023d). Initial approaches used attention mechanisms to improve question-
answering abilities (Zhou et al., 2021), and subsequent solutions include strengthening reasoning in the
visual modality by training (Lin et al., 2023; Wang et al., 2023b), employing auxiliary knowledge (Mitra
et al., 2023), and utilizing external visual perception modules Surís et al. (2023). In addition, researchers
have proposed effective visual prompting methods to refine the focus of MLLMs (Jiang et al., 2024; Lin et al.,
2024; Hong et al., 2023; Zhang et al., 2023b;c; Mitra et al., 2023; Zheng et al., 2023; Zhang et al., 2024; Yu
et al., 2024). See Wu et al. (2024a) for the recent comprehensive survey. Attempts have been made to utilize
visual prompts in the Chain-of-Thought (CoT) paradigm (Wei et al., 2022). Based on pioneer studies (Zhang
et al., 2023d; Zheng et al., 2023; Zhang et al., 2023a; Peng et al., 2023), recent approaches build CoT by
enabling MLLMs to add visual prompts autonomously either through direct model training (Lai et al.,
2023; Wu & Xie, 2023; Chen et al., 2023; Qi et al., 2024; Shao et al., 2024) or by utilizing external visual
processing models (Zhou et al., 2024b). By using visual prompts (e.g., bounding boxes) to highlight key
information in images, the visual-to-textual conversion step becomes easier, leading to a performance boost.
However, even though visual prompts simplify the perception of input images, this paradigm still restricts to
do visual-to-textual conversion only in one step, which is after all visual prompts are added in the input. As
our experiments demonstrate, even when visual prompting is applied, visual-to-textual conversion remains
a bottleneck in common visual reasoning tasks that are intuitive to humans, highlighting the necessity of
effective task decomposition.

We also discuss some recent work on action planning, which addresses a significantly different task from ours,
while has also explored various imagination techniques, such as using video generation models to simulate
control processes as references (Ajay et al., 2023; Du et al., 2023), employing image generation to visualize
target goals (Zhou et al., 2024a), and improving an LLM’s understanding of the current state, either through
textual descriptions or visualizations (Liu et al., 2022; Wu et al., 2024b). However, these approaches are
limited to closed-world settings where the state and action spaces are predefined. Although these techniques
have shown promising results in closed environments, they are designed specifically for constrained settings
and cannot be directly extended to open-world contexts, where the visual scene is primitive and unstructured.

Recently, advanced image editing models that accept input of natural languages are proposed (Huang et al.,
2024; Wang et al., 2024). Notably, concurrent work has enables image editing models with strong reasoning
abilities (Fang et al., 2025). These models have the potential to be utilized as the imagination tools in our
approach, while are more capable to deal with visual generation and editing tasks by themselves.

The closest studies to ours are from the field of robotics, where recent methods utilize the ability of MLLMs
to perform object manipulation (Kapelyukh et al., 2024; Ding et al., 2024). These methods also create a
virtual space and use MLLMs as evaluators to judge whether the object’s final state matches the instruction,
in order to generate a final state where the object should be moved to. However, current approaches adopt
random sampling to conduct exhaustive searches in the virtual environment, which is not feasible when the
possible state space is large. We implement this method in the experiments to verify this argument.
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Figure 2: An overview of our autonomous imagination approach: The imagination space begins with an
unstructured input scene and undergoes an iterative reasoning process. In each cycle, MLLMs first perceive
the current state of the imagination space, select an operation to apply, and then reassess the updated
imagination space. Upon completing this reasoning sequence, MLLMs generate an answer based on the
cumulative context of the process and the final state of the imagination space.

3 Method

3.1 Problem Formulation

We challenge MLLMs with visual reasoning tasks that are intuitive for humans: counting, jigsaw puzzle
solving, object placement, and multi-object hallucination. For object placement, to capture a holistic top-
down view, we reconstruct the input scene using 3D Gaussian Splatting (Kerbl et al., 2023) and render it
from a top-down perspective. We directly feed the unstructured raw input scene into the model: no semantic
pre-processing (e.g., segmentation or grounding) is applied initially, aligning with real-world settings where
visual inputs are provided directly. We evaluate whether MLLMs can natively solve these tasks by proactively
modifying the visual state on their own, with minimal reliance on external semantic visual understanding
abilities (e.g., we avoid using object detection models for counting, which would constitute “cheating”).

3.2 Closed-Loop Reasoning Formulation

To enable existing MLLMs to proactively modify the visual scene during reasoning, we propose a plug-and-
play virtual space. In this framework, the MLLM is treated as a pre-trained policy that executes a sequence
of operations. We refer to this space as the imagination space for simplicity. The MLLM can move a cursor
to focus on an object, perform an operation on it (e.g., ignore or transform it), and then go back to use
the cursor again until convergence. The imagination space continuously updates the MLLM with the latest
visual state by dynamically re-rendering the scene.

Note that our only external model dependency is Segment Anything 2 (SAM2) (Ravi et al., 2024), which
is invoked solely to isolate a visual element after the MLLM selects it via the cursor. Since our focus is on
testing visual perception rather than high-level logical reasoning, we directly provide the MLLM with task-
specific reasoning plans (e.g., “count by ignoring balls”) through system prompts. This mitigates occasional
failures caused by the MLLM adopting bad reasoning strategies.

Specifically, we assume that the MLLM is given an input image o and input text prompt token r0, the aim
of the reasoning is to obtain the prediction probability P (y|o, r0), where y is the final output text token. In
general, to utilize CoT, the reasoning problem of predicting P (y|o, r0) can be transformed into intermediate
steps of predicting P (zt|o, zt−1), t ∈ 1, 2, . . . , T . Each zt = {rt, ct} denotes the augmented textual prompts rt

and visual information ct for deepening scene understanding and pushing forward reasoning. After the final
reasoning step at T , the final output is set to y = rT . The target transforms into predicting the following
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joint probability:

P (z1:T |o, r0) =
T∏

t=1
P (zt|o, z0:t−1), (1)

where zt1:t2 = {zt1 , zt1+1, . . . , zt2} and z0 = r0. What is essential in CoT design is to make each step simple
enough to match the reasoning capacity of MLLMs.

In imagination space, ô are images rendered from the space for MLLMs to perceive. We also introduce a set
of operators to modify the imagined scenes into new ones. Denote by vt = {ôt, r0:t} and at the operator in
step t. Our method transforms Eq. 1 into

P (ô1:T , r1:T , a1:T |o, r0) =
T∏

t=1
P (vt, at|vt−1), (2)

where v0 = {o, r0} and finally y = rT . The one-step reasoning task P (vt, at|vt−1) is factorized into

P (vt, at|vt−1) = π(at|vt−1)ϕ(ôt|ôt−1, at)ω(rt|ôt, r0:t−1). (3)

Eq. 3 shows that one-step reasoning is factorized into a decision function π(at|vt−1), a scene modification
function ϕ(ôt|ôt−1, at), and a reasoning function ω(rt|ôt, r1:r−1). Given the current imagined scene ôt−1 and
the augmented text prompt token rt−1, the decision function chooses a specific scene modification operator
at. The scene modification function then utilizes at to update ôt−1 into ôt. The reasoning function finally
updates rt−1 into rt based on ôt. The decision and reasoning functions are purely based on the native
reasoning ability of MLLMs. The scene modification function is implemented inside the imagination space.

Comparing Eq. 1 and Eq. 2, the imagination space transforms CoT reasoning into a closed-loop decision-
making and reasoning process. During the reasoning process, the visual state is gradually simplified or
approaching a target visual state: the reasoning step at step t is only dependent on ôt−1, ôt but independent
of all previous visual states, leads to effective task decomposition.

3.3 Imagination Space

The imagination space is designed to render images for MLLMs to perceive and supports a minimal set of
operators for MLLMs to call: focus, ignore, and transform. Focus isolates relevant content for further manip-
ulation, ignore enables MLLMs to disregard extraneous information, and transform allows the repositioning
of desired content. This compact set of operations enables MLLMs to reason and solve practical challenges
by themselves, as demonstrated in our experiments. MLLMs select operators through natural language
output, which are then applied to the imagination space. The updated space is rendered and returned to
MLLMs for the subsequent reasoning step.

We discuss the detailed implementation of the operators in the following sections. The operators are imple-
mented separately for the 2D space (represented as images) and the 3D space (represented via 3D Gaussians).
MLLMs are unaware of this implementation difference, as it interacts exclusively with rendered images as
input and executes operators identically in both scenarios.

3.4 Focus Operator

The focus operator allows MLLMs to isolate and label target content from a scene, creating distinct elements
for further transformation. Once MLLMs identify an object of interest using a virtual cursor (as described
in Sec. 3.7), the focus operator segments this content for focused manipulation. In 2D space, this cursor
directly conditions the Segment Anything Model (SAM) (Kirillov et al., 2023) to perform segmentation.
MLLMs verify segmented output to ensure alignment with their intended focus. In the 3D Gaussian space,
segmentation on demand poses unique challenges: Existing methods (Ye et al., 2024; Shen et al., 2024)
are designed for unconditional segmentation, where all objects are segmented without the ability to specify
conditions. However, our use case requires conditional segmentation, focusing on a specific object selected
by an input condition, making these methods unsuitable.
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Figure 3: Illustrations of operations within our imagination space: transformations can be applied to focused
elements (including the virtual cursor), focus operations allow segmentation of cursor-selected elements, and
ignore operations make cursor-selected elements visually invisible.

To enable the focus operator in 3D Gaussian-based representations, we introduce a method to selectively
segment an object from an unstructured 3D Gaussian scene, which is illustrated in Alg. 1.1 Given the
MLLM’s initial selection block, we first generate a virtual camera trajectory that orbits around the targeted
object, creating a video sequence. This sequence is fed into the SAM2 model (Ravi et al., 2024), which applies
the selection cursor condition on all rendered frames. For each frame, rays are cast from pixels within the
segmentation mask, and path tracing records the radiance contributions of intersecting Gaussians. This
process is expressed as volumetric integration illustrated in Line 4-11. Gaussians who receive a contribution
higher than a threshold will receive one vote.

We select the 3D Gaussian with votes exceeding 10% of the highest vote, forming a shell around the target
object’s radiance field. This shell, along with the internal radiance Gaussians, is segmented collectively to
define the object’s radiance structure. In both 2D and 3D spaces, the segmented object is placed in a separate
layer, while the remaining content is retained in a base layer.

3.5 Ignore Operator

The ignore operation removes a focused object from the imagination space to prevent interference with the
reasoning process. Since API access to state-of-the-art MLLMs does not support attention masks, removing
the object leaves a hole in the base layer, potentially causing hallucinations. To address this, we simply
inpaint the hole created by the removal of the object. For both 2D and 3D imagination spaces, we project
the object mask onto the rendered image as the region to inpaint. We directly use the implementation
provided by OpenCV (Itseez, 2015) by simply merging the nearby pixels. The inpainted image is then used
for further reasoning by the MLLMs, avoiding paying attention to the inpainted region as the content has
been removed.

3.6 Transform Operator

Object transformation can occur in four directions: up, down, left, and right, each represented by an alphabet
character (a, b, c, d) to avoid interference with semantically meaningful words. In each step of the iterative
imagination process, MLLMs select a direction for movement. Since MLLMs struggle with determining
precise distances, we standardize movement units in screen space coordinates and gradually reduce step size
throughout the process, where MLLMs only control the direction of movement.

1We refer the detailed introduction of the 3D conditional segmentation algorithm to our open-released code.
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Algorithm 1: 3D conditional segmentation
Input : SAM2 mask, 3D scene, thresholds ϵ1, ϵ2
Output: Set of marked Gaussians Gmarked

1 Initialize vote counts: votes[gi] ← 0 for each Gaussian gi in the scene
2 foreach pixel p in masked_pixels do
3 ray ← cast_ray(p) ; T ← 1
4 foreach Gaussian gi intersected by ray do
5 αi ← get_alpha(gi, ray) ; Ci ← T · αi

6 if Ci > ϵ1 then
7 votes[gi] ← votes[gi] +1
8 end
9 T ← T · (1− αi)

10 if T < ϵ2 then break
11 end
12 end
13 max_vote ← maximum of votes[gi] over all gi

14 Gmarked ← ∅
15 foreach Gaussian gi do
16 if votes[gi] ≥ 0.1× max_vote then
17 Gmarked ← Gmarked ∪ {gi}
18 end
19 end

3.7 Reasoning Process

The iterative reasoning process described in Sec. 3.2 is executed as follows: After initializing the imagination
space, a virtual cursor is positioned at the center and automatically considered as focused. MLLMs can
perform transform operations on the cursor to reposition it within the space. Following each operation,
MLLMs conduct scene modification and receive an updated image of the newly rendered imagination space.

When MLLMs identify that the cursor has selected a visual element of interest, a focus operation is performed
based on the location of the cursor. If MLLMs determine that this operation has correctly segmented the
intended element, the focus is shifted to that object, enabling MLLMs to execute either a transformation or
ignore operation on it. Once MLLMs have either repositioned or disregarded the object, the focus returns
to the virtual cursor. This process iterates continuously as part of the reasoning workflow until all necessary
reasoning steps are completed, culminating in a final textual response.

3.8 System Prompts

Our approach is training-free and utilizes the native reasoning ability of the MLLMs to autonomously utilize
the visual imagination operators provided. We design a set of general system prompts across all tasks. The
reasoning instructions given to the MLLMs in our tasks are shown in Fig. 15. The prompts used as reminders
for autonomous imagination operations are illustrated in Fig. 16.

4 Experiments

In the experiments, we challenge MLLMs with four tasks that are intuitive to humans and require strong
visual understanding and reasoning abilities: counting, simple jigsaw puzzle solving, object placement, and
multi-object hallucination. We target at verifying that compared to 1) simply scaling textual reasoning steps
2) conducting visual prompting, while still conducting visual-to-textual conversion within a single step, the
closed-loop task decomposition paradigm is indeed more effective and necessary.

7



Under review as submission to TMLR

4.1 Benchmark and Evaluation Protocol

Counting: When faced with numerous densely packed objects, humans often rely on multi-step reasoning
to reach an accurate count, as a single glance may not suffice. Existing MLLMs, however, struggle with
counting, as their multistep reasoning is not yet effective for this task. We include this task to assess
whether the model can leverage reasoning to offset its limited direct perception, mirroring human strategies.

For evaluation, we directly compare the predicted count of the model with the ground truth. In addition to
reporting the success rate, we calculate the mean and variance of the counting errors to provide insight
into the accuracy and consistency of each approach. We constructed 122 images with real objects with paired
ground truth.

Solving Simple Jigsaw Puzzles: Jigsaw puzzles are classic tests of visual perception and reasoning,
commonly used to assess intelligence. In this task, we evaluate the ability of MLLMs to solve simple
jigsaw puzzles, aligning their problem-solving performance with that of humans to assess visual reasoning
capabilities. In the jigsaw puzzle solving task, MLLMs are tasked with identifying and placing missing pieces
in their correct locations.

For evaluation, we use a digital jigsaw puzzle game with a magnetic mechanism, where pieces automatically
snap into place when positioned close to their correct locations. Success is measured by the completion
rate, defined as the percentage of pieces placed in their correct locations. For evaluation, we constructed 11
cases where four pieces are missing and 11 cases where six pieces are missing. The size of the puzzle ranges
from 3× 5 to 5× 8.

Object Placement: Previous methods have shown progress in enabling MLLMs to understand and describe
static scenes, such as identifying object locations (e.g., “Where is the cup?”). However, for practical use,
MLLMs must also interpret dynamic instructions that convey intent, such as “Where should the cup be
placed?” In the object placement task, MLLMs are required to identify both the current and target locations
of objects based on abstract instructions (e.g., “Prepare two cups for guests in the living room”). Given the
input scene of 3D Gaussians, MLLMs must determine the original locations of objects and their intended
locations based on a provided prompt.

For evaluation, we first measure the locating success rate, which reflects the model’s ability to accurately
identify the initial location of the correct object. If the model fails to do this, the placement task is au-
tomatically marked as a failure. We then measure the placement success rate by checking whether the
predicted final location falls into the marked ground-truth region. For both success rates, when multiple
correct solutions exist, we provide multiple ground truth regions and selecting any valid region is considered
correct. We captured a total of 17 scenes, including 271 user prompts and paired ground truth for evaluation.

Multi-Object Hallucination: Current MLLMs can suffer from hallucination by perceiving or generating
non-existing objects in the input scene. The complexity of the input scene is beyond the limitation in
perceptual capability of MLLMs, which is a plausible reason for hallucination. Our approach can serve
as a promising way to address this challenge, especially for the scenes where multiple objects exist. By
the closed-loop iterative process of autonomous imagination, MLLMs can deal with objects one by one, as
in our counting benchmark, instead of handling them all together, effectively reducing the possibility of
hallucination. We conducted additional experiments on the recently proposed multi-object hallucination
benchmark ROPE (Chen et al., 2024a) to validate this argument. We focus on the most challenging subset
in the benchmark where the state-of-the-art model on the official leaderboard, GPT-4o, exhibits the poorest
performance, which is answering about single object given multiobject image, heterogeneous object types,
on unseen data split. We refer to the detailed benchmark setting from the original paper.

4.2 Baselines

We evaluate our approach against state-of-the-art MLLM, namely GPT-4o (OpenAI, 2024a) (our approach
is also utilized to enhance GPT-4o in all experiments). We provide a clearly defined 2D coordinate system
to GPT-4o so that output coordinates are generated without any ambiguity. We also adopt the recently
proposed visual reasoning method VCoT (Shao et al., 2024) using their open-released pre-trained model.

8



Under review as submission to TMLR

Table 1: Quantitative comparison results under counting, jigsaw puzzle solving, and object placement. See
Sec. 4.1 for details of the metrics. We consider two variants of cursor-only in counting, leading to two sets of
results, and GPT-4o Sampling cannot be applied to counting and locating as illustrated, please see Sec. 4.3,
4.2, and Sec. 4.5 for details. ∗In object placement, cursor-only functions the same as our method in locating,
so their results are identical. Furthermore, NA* indicates that under these tasks, Molmo constantly fails to
output reasonable coordinates or refuses to output.

Settings GPT-4o o1 Molmo VCoT Ours (cursor-only) GPT-4o Sampling GPT4o+Ours

Counting
Success Rate 39.8% 50.8% 86.2% 15.5% 39.0%/0% - 85.3%
Mean Error 0.73 0.74 0.34 3.11 1.12/not calculable - 0.19

Variance 0.62 0.90 2.57 5.51 1.22/not calculable - 0.22

Simple Jigsaw Puzzle 4-Piece Missing 29.5% 31.8% NA* 9.1% 27.3% 43.2% 68.2%
6-Piece Missing 9.1% 27.3% NA* 3.3% 24.2% 30.3% 51.5%

Object Placement Locating 10.9% 17.3% NA* 10.4% 69.4%∗ - 69.4%
Placement 3.6% 8.5% NA* 1.5% 27.8% 17.3% 37.3%

We developed a baseline GPT-4o Sampling inspired by the sample-then-evaluate imagination paradigm
used in robotics (Kapelyukh et al., 2024; Ding et al., 2024). Since their original methods are designed for
robotic manipulation, we reimplement them under our method. Note that this sampling strategy can only be
applied to some of the tasks in our evaluation since sampling in large solution spaces is heavily intractable.
Furthermore, to demonstrate the necessity of altering the visual scene for task decomposition beyond adding
visual prompts, we crafted a reasoning baseline named cursor-only that utilizes our imagination space, but
restricts operations solely to transform operations of the virtual cursor. Note that this baseline serves as
an ablation of our method, which has the same closed-loop control design except that scene modification
is disabled and only virtual cursor moving is enabled. Furthermore, we also adopt two recently proposed
advanced MLLMs, namely OpenAI’s o1 (OpenAI, 2024b) and Molmo (Deitke et al., 2024). o1 is well
known to have specifically trained reasoning abilities under pure textual modality. We utilize it to justify
whether simply scaling text-time textual reasoning could solve the tasks. On the other hand, Molmo is
trained to have ability to utilize visual markers as cues in visual modality for reasoning. We utilize it to
justify the necessity of task decomposition instead of conducting visual prompting with visual markers.

4.3 Counting

The results are shown in Tab. 1. Our approach significantly improves the performance of original GPT-
4o, achieving a higher success rate and lower errors when mistakes occur. It is worth noting that Molmo is
known to be specifically trained to conduct counting with its native “pointing” ability. Our approach enables
GPT-4o to perform on par with it. Note that the sampling method is not directly applicable to the counting
task due to intractability, so we omit its comparisons. VCoT only supports drawing one bounding box to
highlight a piece of visual evidence, hence is unsuitable for more complex reasoning tasks involving multiple
objects, such as counting. We also compare with our cursor-only baseline in counting, observing that it
performs similarly to GPT-4o. Since having a cursor moving around might be ineffective for counting, we
adopt a cursor-only variant, where the MLLM can draw a bounding box on the cursor location to highlight
the object during counting. Although technically able to draw boxes on every ball to perform counting
accurately, the model quickly enters a negative feedback loop: hallucinations lead it to draw more markers,
which introduce additional noise and exacerbate the hallucinations. This results in a success rate of 0% and
makes mean error and variance not calculable, as the model cannot stop counting, further highlighting the
importance of modifying the visual scene.

To further verify the essentialness of task decomposition in visual modality, we conduct additional analysis
under the real object data by increasing the counting difficulty by adding more objects with partial data.
The purpose was to evaluate the impact of difficulty and reasoning steps on performance. To achieve this,
we selected a subset of cases from the whole data and supplemented them with simpler cases involving
fewer objects. We then re-conducted the experiments on this partial dataset using GPT-4o, alongside a
newly introduced textual CoT reasoning baseline. In the first experiment (Fig. 4a), we show the success
rate of different methods when faced with varying numbers of objects. In the second experiment (Fig. 4b),
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(a) Success Rate vs. Number of
Objects

(b) Solvable Rate vs. Reasoning
Steps

(c) Counting by drawing bounding boxes
only

Figure 4: (a)(b) show that as counting task difficulty increases linearly, scaling inference-time textual reason-
ing (implemented as GPT-4o-text-cot, See Sec. 4.3) fails—and even performs worse than vanilla GPT-4o—as
complexity exceeds perception limits. In contrast, our methods remain unaffected by these limits, achieving
correct counting even as difficulty rises. Additionally, adding visual prompts can introduce noise, causing
MLLMs to enter hallucination loops; for instance, in (c), the model incorrectly concluded there were 196
balls when only two were present. The qualitative results of counting are provided in the appendix.
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Figure 5: Qualitative comparison on simple jigsaw puzzle solving, we use a black background to make
jigsaw pieces more visible to MLLMs. We illustrate the final visual state achieved by different methods
after completing their reasoning processes and producing a solution. For clarity, the actual location of each
coordinate in the image is highlighted with an orange line and circle.

we test how different methods improve when given different limits on the number of reasoning steps. The
result is shown as the solvable rate, which indicates the percentage of cases the method can solve under the
current budget. When imposing such a limit, our model is restricted to performing no more than the specified
number of steps, with each step defined as a combination of the focus operation and the subsequent operation
performed after focusing. For the textual CoT baseline, we explicitly instructed the model on the maximum
number of reasoning steps it was allowed to use. The results are shown in Fig. 4a with an additional baseline
GPT-4o-text-cot, indicating the pure text-based CoT. This reveals perceptual limitations in GPT-4o that
cannot be overcome by simply increasing the textual CoT steps, while our method remains unaffected.
Fig. 4b shows the percentage of cases solved as reasoning steps increase. For reference, we include the one-
step results from GPT-4o depicted as a flat line. Our method performs consistently better as reasoning steps
grow, whereas GPT-4o-text-cot fails to do this and may even introduce noise, resulting in poorer performance
than one-step GPT-4o.

4.4 Simple Jigsaw Puzzle Solving

In the jigsaw puzzle solving task, the rotations of pieces are not considered. As multiple trials are allowed,
we restrict the total number of attempts to 20 and report the finish rate, defined as the proportion of missing
pieces successfully placed. The sampling method involves comparing pairs of target locations and iteratively
selecting the better option until a single target location remains. We guarantee that the correct answer exists
within the sampling process. In our method, once a jigsaw piece is moved to the imagined target location, it
is considered to be placed. GPT-4o and o1 select the target location by outputting coordinates, while VCoT
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GPT-4o

Coordinate: [450,150].

Autonomous Imagination
(ours)

Coordinate: [705,376]. Coordinate: [648,111].

Autonomous Imagination
(cursor only)Sampling

Coordinate: [814,156].

Visual CoT

Coordinate: [464,408].

Prompt: The guest will sit on the right side of the table, near the yellow cup. Where should we serve the apple?

Figure 6: Qualitative comparison of apple placement based on user prompts. Coordinate locations are
highlighted on the image with orange lines and circles for improved visualization. Our method aligns more
closely with the user’s requirements, placing the apple further to the right side of the table.

and Molmo determine the target location by drawing a block or marker, leveraging their specialized training
for such tasks.

As shown in Tab. 1 and Fig. 5, our method consistently outperforms all baselines. It achieves a higher
locating accuracy, which contributes to a higher success rate with the same number of attempts. Since this
visual reasoning task requires the model to choose the correct target location rather than simply locating
visible elements, VCoT is ineffective at reasoning. The sampling method performs reasonably well in this
task, since we set a large sampling budget to ensure the correct answers can be sampled as the candidate
answers. However, despite its extensive reasoning budget, it still does not match the performance of our
method. This highlights the effectiveness and robustness of establishing an autonomous perception-control
loop. We also demonstrate that the cursor-only baseline performs similarly to primitive GPT-4o in the
four-piece missing scenario. However, it performs significantly better under the more challenging six-piece
missing scenario, further confirming the effectiveness of our closed-loop control approach.

4.5 Object Placement

Similar to the approach used in solving simple jigsaw puzzles, the methods compared include the follow-
ing: GPT-4o and o1, which output the target location by specifying coordinates; the sampling method,
which iteratively compares sampled results until a single option remains; VCoT and Molmo, which deter-
mines placement by drawing blocks or markers; and our method, which outputs the final placement after
completing a transformation operation. In line with how related work in robotics handles sampling-based
methods (Kapelyukh et al., 2024; Ding et al., 2024), the sampling baseline restricts its search to a subregion
of the space, filtering out certain incorrect answers. For example, regions occupied by existing objects are
excluded from consideration. This principle is also incorporated into the transformation operation in our
method. Specifically, a focus operation is first applied to identify the platform on which the target object
should reside, creating a region mask. The transformation operation then ensures that no movement is sug-
gested if it would lead the object outside the defined mask. This approach improves efficiency and ensures
a fair comparison between the sampling baseline and our method by reducing unnecessary exploration of
invalid regions.

As shown in Tab. 1, our method consistently outperforms the baseline methods in both object locating and
placement performance. It is important to note that our cursor-only ablation baseline is identical to our full
method when locating an object. Therefore, we assign them with the same locating result. Additionally, the
sampling method is intractable for locating. Thus, we directly utilize the locating results of our method for
placement. Methods lacking advanced visual reasoning capabilities perform poorly on the placement task,
as successful placement requires inferencing about the correct spatial position for that element beyond visual
recognition. The cursor-only baseline, which moves the visual marker instead of the scene modification, does
not perform as effectively as our complete method. This difference underscores the necessity for substantial
modification in visual task decomposition. Although the sampling baseline receives substantial visual infor-
mation, it still underperforms relative to our method and even falls short of the cursor-only baseline. In
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Table 2: Results under multi-object hallucination benchmark. Except for o1, Molmo, and our method, the
results of other baselines are cited from the official leaderboard in https://multi-object-hallucination.
github.io/. For each base model family, we take the one with the highest performance. Mechanistically
grounded MLLMs (marked with *) take visual prompts by dedicated pointer tokens. Please refer to the
original paper for more details.

Models Acc. Models Acc. Models Acc. Models Acc.
LLaVA-34B 30.81% CogVLM-C 13.50% Qwen VL-C 15.37% Molmo 28.90%
IDEFICS 6.50% GLaMM* 52.28% MiniCPM-V 14.39% o1 60.20%

Yi-VL-34B 0.41% GroundHOG* 38.13% GPT-4o 53.74% GPT-4o+Ours 65.00%

“There is a french fry in the image.” “This is the dumbbell.” "I should place this piece at this spot."

Figure 7: Failure cases in our method caused by hallucination, including instances where MLLMs mistakenly
perceive a fry that does not exist, misinterpret the wrongly focused floor as a dumbbell, and incorrectly believe
that a puzzle piece has been placed in the correct spot.

contrast, in simple jigsaw puzzle solving, the sampling method achieves a relatively high success rate com-
pared to the cursor-only baseline. This contrast highlights the importance of a structured reasoning pathway,
particularly in complex, open-world scenarios where the abundant visual information could overwhelm the
MLLM, preventing it from identifying the correct answer despite its presence in the sample. By following
the closed-loop control reasoning process, MLLMs can progressively approach the correct answer without
requiring an exhaustive number of samples, resulting in greater efficiency and improved accuracy.

4.6 Multi-Object Hallucination Benchmark

We evaluated our method using the recently proposed ROPE benchmark for Multi-Object Hallucina-
tion (Chen et al., 2024a), focusing on the most challenging subset where GPT-4o exhibits the poorest
performance, which is answering about a single object given multi-object image, heterogeneous object types,
on unseen data split. Our method uses GPT-4o as the base model that equips the imagination space. Please
refer to the original paper for more details. Given that this benchmark emphasizes the identification of
abstract objects that are not suitable for segmentation, we turn the focus operation into drawing a large
rectangular region by MLLMs natively, through selecting top-left and bottom-right corners. The benchmark
indicates that MLLMs are prone to hallucinations when confronted with multiple objects that introduce
additional visual distractions. We demonstrate that using our method, MLLMs can autonomously focus on
the important region despite these distractions, leading to more accurate responses due to the elimination
of irrelevant visual information.

4.7 Discussions

Results on more existing benchmarks. To verify the robustness of our approach, we further conduct
experiments under two more existing benchmarks. One is CLEVR (Johnson et al., 2017) for the counting
task. In each image from CLEVR, a scene containing various number of geometric objects is presented. We
randomly sample from the official test set to ensure balance over the numbers of objects in the images, which
includes 178 images. Another is Where2Place (Yuan et al., 2024), which includes 100 real-world scenes from
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Table 3: Results under more existing benchmarks.

Models CLEVR (Counting) Where2Place (Object Placement)
Success Rate Mean Error Variance Accuracy

GPT-4o 57.3% 0.52 0.45 29.1%
GPT-4o + ours 74.7% 0.42 0.74 37.0%

Table 4: Results for smaller MLLMs under the object placement task.

Qwen2.5-VL-7B Qwen2.5-VL-32B InternVL2_5-8B InternVL2_5-26B
Base Model Ours Base Model Ours Base Model Ours Base Model Ours

Locating 7.2% 19.3% 2.9% 16.8% 1.1% 11.6% 1.5% 16.7%
Placement 1.1% 2.2% 0.85% 4.2% 0% 3.6% 0.7% 5.1%

homes and offices in the wild for the object placement task. The results are shown in Tab. 3, verifying that
our approach consistently improves the reasoning ability of the base MLLM.

Applying on smaller-sized MLLMs. Our approach requires the ability of the base MLLMs to au-
tonomously utilize the visual imagination operators provided. This is natively satisfied by larger state-
of-the-art MLLMs, such as GPT-4o, while maybe challenging for smaller-sized MLLMs without specific
training. We verify this in the counting and jigsaw puzzle solving tasks, where the smaller-sized MLLMs
usually have the difficulty in realizing “when to stop”: Common issues include incorrectly deciding to stop
counting when there still exist remaining objects, or being hard to judge whether the jigsaw piece has been
put at the right position. This shows the essentialness of studying how the autonomous imagination ability
can be trained, which is left as future work. On the other hand, we discover that our training-free strategy
can indeed be utilized to enhance smaller-sized MLLMs (Qwen2.5 (Bai et al., 2025) and InternVL2.5 (Chen
et al., 2024b)) under the object placement task, which is shown in Tab. 4, verifying the potential of our
approach for smaller-sized MLLMs.

Comparing with in-domain training. It is also meaningful to compare our approach with in-domain
trained models. In Tab. 1, we have shown that Molmo achieves strong performance in the counting task, with
the specifically trained ability to utilize visual cues in counting, while performing not ideally under other
tasks. We further test the RobotPoint model (Yuan et al., 2024), trained specifically for predicting image
keypoint affordances given language instructions, which is especially suitable to handle the Where2Place
benchmark. We compare its performance under Where2Place, as well as our counting, jigsaw puzzle solving,
and object placement tasks, as shown in Tab. 5. Similar to Molmo, RobotPoint shows strong performance
under Where2Place that it is trained to handle, while fails to generalize its ability in other tasks. This suggests
that in-domain training is more suitable to address specific tasks, while improving test-time reasoning can
be an easier way to improve general reasoning ability across different tasks. Moreover, as discussed in the
analysis of smaller-sized MLLMs, conducting training on the general reasoning ability instead of domain-
specific task solving is also promising.

Failure cases. In Fig. 7, we illustrate failure cases of our approach, which are majorly resulted from the
hallucination of MLLMs.

Time cost. The time cost of our approach depends mainly on three factors: the running time of a single
call of imagination operators, a single call of MLLM reasoning, and the number of MLLM calls. The
calls of imagination operators are quite efficient. For example, each call of the SAM model takes 220ms
on NVIDIA RTX 4090 on average, which is very efficient compared with MLLM reasoning. Considering
the number of calls for MLLM reasoning, the average numbers of MLLM API call for our approach are:
counting=117 (for all objects), jigsaw puzzle=20 (for one piece), object placement=15 (for one object),
multi-object hallucination=26 (for one object). As shown by the comparisons on GPT-4o Sampling baseline
in Tab. 1, our approach is more efficient than previous sampling-based imagination strategies (Kapelyukh
et al., 2024; Ding et al., 2024), the closest previous studies to ours, by enabling to solve broader tasks with
vast solution spaces.
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Table 5: Comparison between RobotPoint (fine-tuned to solve Where2Place tasks) and GPT-4o enhanced
with our approach.

Models Counting Simple Jigsaw Puzzle Object Placement (Ours) Object Placement (Where2Place)
Success Rate Mean Error Variance 4-Piece Missing 6-Piece Missing Locating Placing Accuracy

RobotPoint 25.0% 2.04 3.92 6.8% 6.1% 1.0% 0.03% 46.8%
GPT-4o 39.8% 0.73 0.62 29.5% 9.1% 10.9% 3.6% 29.1%

GPT-4o + ours 85.3% 0.19 0.22 68.2% 51.5% 69.4% 37.3% 37.0%

5 Conclusion

In this work, we target at tackling visual reasoning problems using MLLMs where textual-to-visual conversion
is the major bottleneck. We propose the autonomous imagination approach, which employs plug-and-play
imagination space and operator design, enabling MLLMs to modify visual content autonomously, leading to
closed-loop decomposition of this conversion process. We conduct experiments under visual reasoning tasks
that are beyond the perceptual capabilities of MLLMs, while remained straightforward to humans. The
results show that these tasks can be effectively tackled natively by MLLMs equipped with our approach.

Limitations and future work. Our work is a proof of concept: While closed-loop task decomposition
overcomes the visual-to-textual conversion bottleneck in our demonstrated tasks, resource constraints pre-
vented us from training a model with native closed-loop reasoning and visual modification capabilities. This
also prevents us from validating our approach under large, general-purpose visual benchmarks. We hope that
our work inspires future efforts to close this critical gap. Furthermore, even though we test the robustness of
our approach in counting and jigsaw puzzle sovling through different levels of difficulty (in terms of numbers
of objects/pieces), for object placement and multi-object hallucination tasks, properly measuring the task
difficulty is itself a challenging problem. These tasks involve real-world scenes with complicated spatial and
semantical relationships among the objects, which may not be easily captured by a single measurement of
hardness. We treat this as an important future research problem. Finally, our current approach limits to
utilize chain reasoning with fixed plans, which is not optimal in terms of time cost. Future work can improve
the efficiency of reasoning with more advanced searching and planning strategies.
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Table 6: Quantitative results on counting using Cog-
CoM (Qi et al., 2024), by directly asking it to output
the number of objects, and by prompting it to use
the trained GROUNDING ability, which counts for
the object. We find that though explicitly trained
to perform GROUNDING which counts the specific
object, it somehow performs worse in our evaluation.

Settings CogCoM CogCoM-GROUNDING

Counting
Success Rate 30.3% 14.8%
Mean Error 1.26 3.77

Variance 1.39 15.47

SmartEdit placing pear SmartEdit placing apple

Figure 8: We show that existing image editing mod-
els lack the capability to effectively comprehend and
execute complex commands, such as placing the ap-
ple/pear at the left/right side on the table.

Identify the empty region in the image. The 
landmark information does not provide 
sufficient details to identify a specific area 
within the given description "sa_1679". So 
ultimately, the conclusive answer to the 
question in discussion is doesn't match my 
current knowledge.

Input Output

Figure 9: Qualitative results on using CogCoM (Qi et al., 2024) for jigsaw puzzle solving show that it
generates unrelated text when asked where the highlighted puzzle piece should be placed.

A Potential Broader Impact

Our work is largely foundational and aims to improve the reasoning capabilities and reliability of multimodal
language models. Reducing hallucinations in complex visual scenes could enhance safety and robustness in
real-world applications. On the other hand, our approach could increase the computational cost of MLLMs,
leading to energy inefficiency and environmental impact. Reproducing our work also requires access to
existing MLLMs and visual tools, leading to additional complexity and costs. We hope that our efforts on
open-release all our code and data could reduce this burden.

B More Experiments

Imagine with Image Editing Models. We experimented with utilizing image editing models that accept
input of natural languages, such as the state-of-the-art model SmartEdit (Huang et al., 2024). Ideally,
such models would provide effective guidance by generating the target goal based on descriptions in natural
language. However, as shown in Fig. 8, we find that the image editing model is not ideal when it comes to
following complex instructions. This underscores the significant challenge of “imagining” the target state in
open-world problems, suggesting that a world model capable of accurately providing such visual guidance
requires further development.

CogCoM. We have also experimented with a potentially feasible baseline CogCoM (Qi et al., 2024). How-
ever, we find that it does not function well when tackling our challenges. Despite explicitly trained with a
GROUNDING ability for counting objects, as shown in Tab. 6, directly prompting the model to output the
counting result is more accurate than performing GROUNDING. When asked to complete the jigsaw puzzle
by finding target location, it starts hallucinating by outputing unrelated text, as shown in Fig. 9. This is
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potentially due to the model trained on different tasks and not generalizing to our challenged tasks. We
decided to present the result in the appendix instead.

C Additional Qualitative Results

We present qualitative results on tasks that include counting, solving simple jigsaw puzzles, and placing
objects in Fig. 10 - 14. These images more effectively illustrate the detailed visual reasoning processes
and the changes within the imagination space. Please also see the supplementary video, which shows the
reasoning process of our approach in the jigsaw puzzle solving task.

GPT-4o

Coordinate: [1025,625]. Coordinate: [661,435].

Autonomous Imagination
(cursor only) Sampling

Coordinate: [401,522].

Visual CoT

Coordinate: [530,248].

Ground Truth

Autonomous Imagination
(ours)

Coordinate: [617,384].

GPT-4o

Coordinate: [732,598]. Coordinate: [553,507].

Autonomous Imagination
(cursor only) Sampling

Coordinate: [298,540].

Visual CoT

Coordinate: [455,467].

Ground Truth

Autonomous Imagination
(ours)

Coordinate: [432,531].

GPT-4o

Coordinate: [680,470]. Coordinate: [445,435].

Autonomous Imagination
(cursor only) Sampling

Coordinate: [419,380].

Visual CoT

Coordinate: [525,229].

Ground Truth

Autonomous Imagination
(ours)

Coordinate: [533,343].

Figure 10: Additional qualitative results of simple puzzle solving. Please zoom in for a clearer view.
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Figure 11: Qualitative demonstration of the counting process autonomously performed by our approach.
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Figure 12: Qualitative demonstration of the counting process autonomously performed by our approach.
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GPT-4o

Coordinate: [200,200]. Coordinate: [80,815].

Autonomous Imagination
(cursor only) Sampling

Coordinate: [31,451].

Visual CoT

Coordinate: [252,173].

Prompt: The calculator in the first table is dirty, please bring some tissues.

Ground Truth

Autonomous Imagination
(ours)

Coordinate: [72,417].

GPT-4o

Coordinate: [600,400]. Coordinate: [450,759].

Autonomous Imagination
(cursor only) Sampling

Coordinate: [493,576].

Visual CoT

Coordinate: [490,1037].

A student is sitting in a seat with a white bag on it. Could you place the black cell phone on her table?

Ground Truth

Autonomous Imagination
(ours)

Coordinate: [397,754].

Figure 13: Additional qualitative results of object placement are provided. We also illustrate some steps in
our method during the search for the target object and its placement. Please zoom in for a clearer view.
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GPT-4o

Coordinate: [300,300]. Coordinate: [406,311].

Autonomous Imagination
(cursor only) Sampling

Coordinate: [229,279].

Visual CoT

Coordinate: [625,595].

Prompt: Could you place the pear on the plate in front of the dark blue bag?

Ground Truth

Autonomous Imagination
(ours)

Coordinate: [413,251].

GPT-4o

Coordinate: [800,800]. Coordinate: [747,1052].

Autonomous Imagination
(cursor only) Sampling

Coordinate: [703,814].

Visual CoT

Coordinate: [745,810].

Prompt: The laptop's battery is dead. Please take it to the outlet to charge.

Ground Truth

Autonomous Imagination
(ours)

Coordinate: [768,715].

Figure 14: Additional qualitative results of object placement are provided. Please zoom in for a clearer view.
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General Reasoning Instructions for Counting  
You are an assistant which counts the number of specific objects in the given image and 
outputs it. Please recognize distinct objects one by one, describe each unique object 
including its color and location, and count during this process.  

General Reasoning Instructions for Jigsaw Puzzle Solving  
In this task, you will receive a picture of an unfinished puzzle. The image contains a nearly 
complete puzzle and several pieces that have not yet been placed into the whole.  

You should think step by step as follows:  
1. Which of these individual puzzle pieces fits best into the whole? Describe the contents 
and location of the puzzle piece.  
2. Establish a two-dimensional rectangular coordinate system in the image, with the lower 
left corner as the origin, the right direction as the positive x-axis, and upward as the positive 
y-axis. The x-axis coordinate range of the image is 0~$IMAGE_WIDTH (pixels), and the 
y-axis coordinate range is 0~$IMAGE_HEIGHT (pixels).  

Please output the coordinates of your selected piece in the image. You should output the 
answer in the last line in the format ['x_coordinate','y_coordinate'].  

General Reasoning Instructions for Object Placement  
You are an assistant that decides where to place an object based on user requirements. 
First, make a plan by:  
1. Listing the objects mentioned in the user requirement  
2. Identifying which objects need to be moved or placed  
3. Determining a reasonable order to move them  

Finally, summarize the objects with numbers that need to be moved in the last line, using 
lowercase singular form. The output format should be [['Object', Object_number]].  

A two-dimensional rectangular coordinate system is established in the image, with the lower 
left corner as the origin (right = positive x-axis, upward = positive y-axis). The x-axis ranges 
0~$IMAGE_WIDTH (pixels), and y-axis ranges 0~$IMAGE_HEIGHT (pixels).  

For each object:  
1. Locate it by outputting its coordinates  
2. Output the target location coordinates  

You should format your final answer as ['x_coordinate','y_coordinate'].  

Prompts for Autonomous Imagination  
You can manipulate the scene using these operations:  
1. Control a cursor to focus on objects  
2. Transform focused objects or ignore them  
3. Return to cursor control after operations  

For counting: Ignore irrelevant objects while counting.  
For object placement: Move the cursor to focus on the target object, then transform it to the 
proper location.  
For jigsaw puzzles: Focus on the puzzle piece and transform it to its ideal position.

Figure 15: General reasoning instructions provided to models for visual reasoning, as well as the reasoning
instruction given to utilize autonomous imagination. It is not difficult for an advanced MLLM to figure out
this plan. As we aim to break the visual-to-textual conversion bottleneck, we simplify this by directly given
the reasoning plan to the MLLM to avoid occasional failure caused by the MLLM choosing a bad reasoning
strategy.
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Cursor Control
You are now controlling the cursor. You should find the target object based on the plan you 
made. You will receive an image and the object to be located. There is a red circle in the 
image, surrounded by the four letters: 'a', 'b', 'c', and 'd'. You should choose the letter 
closest to the target object. If there are multiple target objects in the image, you should aim 
the red circle at the closest one. Ignore artifacts like shadows and floating spots. You should 
output the quoted letters in the last line, that is: ['a'], ['b'], ['c'], or ['d']. The distance will be 
reduced in each iteration until convergence, so you only need to choose the direction.

Checking Focus Segmentation
Your task is to check if the object shown in the image is the object you seek. The image 
should show a single target object against a black background. Areas of the image that do 
not belong to the object are set to black. If not, you should judge it as ['no'] and end your 
check. You should imagine what the object would look like from above and compare it to the 
image.

You should describe the object in the image, then output the check result in the last line in 
the format: ['yes'] or ['no'].

After Focus
You are now focusing on the object you desire. You can choose to perform a transform 
operation or ignore the operation based on your own plan. Output ['transform'] or ['ignore'] in 
the last line to perform the corresponding operation.

Transform Control
You are now moving the object to the destination. The object you are controlling is highlight-
ed and surrounded by at most four letters: 'a', 'b', 'c', and 'd'. Ignore artifacts like shadows 
and floating spots. Choose the direction leading to the destination. The distance will be 
reduced in each iteration until convergence, so you only need to choose the direction. You 
should output the quoted letters in the last line, that is: ['a'], ['b'], ['c'], or ['d'].

Cursor Control (Special Focus for Multi-Object Hallucination)
You are now controlling the cursor. You should focus on the region based on the provided 
object ID. You should first move the cursor to the top-left corner of the object region. There 
is a red circle in the image, surrounded by the four letters: 'a', 'b', 'c', and 'd'. You should 
output the quoted letters in the last line, that is: ['a'], ['b'], ['c'], or ['d']. The distance will be 
reduced in each iteration until convergence, so you only need to choose the direction.

You have selected the top-left corner of the region. You should focus on the bottom-right 
corner of the region to be focused on. There is a red circle in the image, surrounded by the 
four letters: 'a', 'b', 'c', and 'd'. You should output the quoted letters in the last line, that is: 
['a'], ['b'], ['c'], or ['d']. The distance will be reduced in each iteration until convergence, so 
you only need to choose the direction.

Figure 16: Detailed prompts instructing the MLLM about the operations it can utilize. This is given to the
MLLM as a reminder when the MLLM enters corresponding state during the reasoning.
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