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Abstract—Coping with stress is one of the most frequently cited
reasons for chronic cannabis use. Therefore, it is hypothesized
that cannabis users exhibit distinct physiological stress responses
compared to non-users, and that these differences may be
especially pronounced during moments of cannabis consumption.
However, there is a scarcity of publicly available datasets that
allow such hypotheses to be tested under real-world conditions.
This paper introduces a dataset named CAN-STRESS, collected
using Empatica E4 wristbands. The dataset includes multimodal
physiological measurements (such as skin conductance, heart
rate, and skin temperature) from 82 participants (39 cannabis
users and 43 non-users) as they went about their daily routines.
In addition to sensor data, participants provided self-reported
survey responses that included perceived stress ratings and
timestamps of key daily events such as cannabis use, physical
activity, and sleep. To demonstrate the utility of the dataset
for downstream applications, we present a preliminary machine
learning task aimed at classifying cannabis users versus non-
users based on physiological features. Our model achieves a
classification accuracy of approximately 96% and an fl-score
of around 98%. An analysis of feature importance using SHAP
values revealed that electrodermal activity and heart rate metrics
were the most influential predictors, consistent with their estab-
lished roles in stress detection. We publicly release the CAN-
STRESS dataset, which we believe serves as a reliable and rich
resource for studying the physiological correlates of cannabis use
and stress in naturalistic settings.

Index Terms—Physiological Data, Wearables, Stress, Machine
Learning

I. INTRODUCTION

Due to its widespread consumption and the increasing
legalization and decriminalization in many regions, studying
cannabis use and its implications is essential [1[]. Understand-
ing the physiological and psychological effects of cannabis
is crucial for informing policy, healthcare, and individual
decision-making. Furthermore, differentiating between the
physiological responses of cannabis users and non-users offers
insights into how chronic use may alter stress regulation, a fre-
quently cited reason for cannabis consumption [2[]. However,
most existing studies are conducted in controlled laboratory
environments, where ecological validity is constrained [3].
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Fig. 1. The process of collecting physiological data using wearable devices,
storing it in a centralized web portal, and enabling access for various research
applications addresses the limitations of laboratory-based studies. The stored
data can be used to advance research in fields such as stress detection, activity
recognition, and medical diagnostics.

These settings fail to capture the nuanced, real-world con-
ditions under which individuals consume cannabis, including
the interplay of stressors and other contextual factors. Bridging
this gap through field-based research is imperative to develop
a comprehensive understanding of cannabis effects under
realistic settings and enhance the applicability of findings to
broader populations and real-world scenarios.

The CAN-STRESS dataset was developed to enable the
study of cannabis use and stress in ecologically valid, real-
world conditions. It consists of multimodal data from 82
participants who wore Empatica E4 wristbands [4] for 24
hours while engaging in daily activities. The dataset includes
electrodermal activity (EDA), heart rate (HR), body tempera-
ture, and accelerometer data, synchronized with self-reported
logs of cannabis use, sleep, exercise, and perceived stress
levels. By including both frequent cannabis users and non-
users, CAN-STRESS provides a balanced framework for com-
parative analyses and is one of the largest publicly available
datasets capturing the physiological characteristics of cannabis
users in natural environments.

Participants were recruited with strict inclusion and exclu-
sion criteria. Cannabis users reported daily or near-daily use
(>4 times per week for at least one year), while non-users
reported fewer than 10 lifetime uses and none in the past year.
Individuals were excluded if they had neurological disorders,
psychosis, autism, bipolar I, heavy alcohol consumption, re-
cent use of illicit drugs, nicotine, or corticosteroid medications.
Eligible participants were at least 21 years old, fluent in
English, and smartphone owners. The study was reviewed
and approved by the Washington State University Institutional
Review Board, and informed consent was obtained prior to
participation. To protect participant privacy, all wearable and
survey data were anonymized and securely stored, with study
materials collected directly by researchers to minimize risk of
exposure.



Several studies have already leveraged CAN-STRESS to
advance cannabis research. [5] demonstrated that EDA signals
can be used to detect cannabis consumption episodes in natu-
ralistic environments. [6]] introduced the CUDLE framework,
showing that self-supervised learning can efficiently detect
cannabis use with limited labeled data. A third work examined
stress regulation, revealing disrupted diurnal stress rhythms
among cannabis users and showing that cannabis decreased
stress in daily life, in contrast to laboratory findings [7].
Together, these works highlight the dataset’s value in enabling
ecologically valid and computationally innovative research.

Building on this foundation, the present paper contributes
(1) a detailed description of the dataset, (2) new analyses
comparing physiological features of users vs. non-users, and
(3) a baseline machine learning pipeline that distinguishes
users from non-users using individual-level features. These
contributions aim to broaden access to the dataset and establish
benchmarks for future computational health research.

II. DATA MODALITIES

The CAN-STRESS dataset includes two primary modalities:
a self-reported questionnaire and multimodal physiological
data collected through the E4 wearable wristband. Together,
these modalities provide a comprehensive view of participants’
activities, physiological responses, and subjective experiences.
Aligning and integrating the two sources of the dataset allows
researchers to identify and analyze the correlations between
different events, e.g., cannabis consumption and exercise.

The dataset is organized in a straightforward structure to
facilitate use by other researchers. All files are arranged under
a root directory labeled CAN-STRESS/, with a subfolder
for each anonymized participant identifier. Within each par-
ticipant’s folder, the physiological modalities are stored as
individual . csv files (e.g., ACC.csv, EDA.csv, BVP.csv),
each containing time-stamped recordings sampled at their
respective rates. To aid interpretation, each participant folder
also includes an info.txt file describing the contents,
units, and sampling rates of the CSV files. The self-reported
questionnaire data are compiled across all participants in a
single 1logbook.x1lsx file stored at the root level, which
documents daily activities such as cannabis use, sleep, exer-
cise, and stress ratings.

A. Self-Reported Questionnaire

The first modality consists of a structured questionnaire
that participants completed during the data collection period.
These self-reported entries provide timestamps and labels
that can be matched with the second modality to facilitate
the analysis of relationships between physiological signals
and daily activities. The questionnaire captures significant
moments throughout the participants’ day, including:

« Sleep Patterns: Participants recorded the times they went
to bed and woke up, which provided insight into their
sleep duration and routines.

o Cannabis Use: Participants stated whether or not they
were a user, and they also documented the start and end
times of their cannabis consumption.

o Exercise Activities: The peak moments of physical
activity during the day were also recorded, which in
turn enabled us to account for physiological changes
associated with these activities.

o Stress Ratings: At key moments (e.g., sleep, exercise,
cannabis use), participants rated their perceived stress
on a scale from 1 (not at all stressed) to 10 (extremely
stressed). This straightforward approach has been widely
used in ecological momentary assessment (EMA) studies
to capture in-the-moment subjective stress levels [8].

B. Physiological Data from the Wristband

The second modality includes continuous physiological data
collected using the Empatica E4 wristband, a medical-grade
wearable device. This modality consists of the following
signals:

o Accelerometer (ACC): Captures triaxial movement data
at 32 Hz, which can be used to detect activity patterns,
such as exercise or sedentary behavior.

e Blood Volume Pulse (BVP): Measured at 64 Hz, BVP
provides raw data for calculating heart rate and interbeat
intervals that offers insights into cardiovascular dynamics.

o Electrodermal Activity (EDA): Collected at 4 Hz, EDA
measures skin conductance, which is closely associated
with stress and emotional arousal [9].

+ Heart Rate (HR): Derived from BVP, HR is sampled
at 1 Hz and reflects real-time changes in cardiovascular
activity.

o Interbeat Interval (IBI): Derived from BVP, IBI rep-
resents the time between successive heartbeats and is
critical for heart rate variability analysis.

o Body Temperature (TEMP): Recorded at 4 Hz, TEMP
tracks changes in skin temperature, which may be indica-
tive of physiological or environmental changes.

These physiological signals provide high-resolution, mul-
tivariate data that capture participants’ physical states and
responses in real time. By combining the self-reported data
with wristband signals, researchers can investigate the in-
terplay between subjective experiences (e.g., stress ratings)
and objective physiological responses (e.g., changes in HR
or EDA) across various activities and contexts.

III. DESCRIPTIVE ANALYSIS OF CANNABIS USERS AND
NON-USERS

To provide a comprehensive overview of the dataset, we
present key statistical features that highlight differences be-
tween cannabis users and non-users. These analyses help
characterize both baseline physiological patterns and stress-
related responses, and serve as a foundation for downstream
computational tasks. In particular, we use these features to
develop a machine learning model that classifies cannabis
users and non-users based on their physiological data.
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Fig. 2. Comparison of dataset features between cannabis users (n=39) and non-users (n=43). Each boxplot represents participant-level summary values: (1)
total recording duration (hours), (2) mean self-reported stress rating across the day, (3) mean electrodermal activity (EDA, uS), and (4) mean heart rate (bpm)

A. Group-Level Trends

This subsection presents important statistical distinctions
between cannabis users and non-users, covering aspects such
as average recording time, self-reported stress levels, sleep
duration, and physiological measurements including EDA and
heart rate. These variables reflect common behavioral and
physiological characteristics within each group and form the
basis for additional analyses, including those involving pre-
dictive modeling.

Figure 2] presents four boxplots comparing cannabis users
(n=39) and non-users (n=43) across key physiological and
behavioral dimensions. Recording duration (in hours) reflects
the total amount of usable data collected per participant. For
all other measures, participant-level means were computed
over the 24-hour recording period, including average self-
reported stress ratings (on a 1-10 scale), mean electrodermal
activity (EDA, in microsiemens), and mean heart rate (in beats
per minute). These participant-level summary values were
then aggregated within each group and visualized as boxplots
to illustrate variability and group-level trends. The results
highlight consistent patterns, with cannabis users reporting
higher stress ratings and exhibiting elevated EDA and heart
rate values compared to non-users.

B. Machine Learning for User Classification

Building on the group-level feature analysis, we explore the
use of machine learning to classify participants as cannabis
users or non-users based on their physiological data. The goal
of this task is not to develop a production-ready classifier but
to demonstrate the feasibility of using wearable data for down-
stream predictive modeling. The envisioned pipeline takes as
input the raw physiological signals collected by the wristband
and predicts a participant’s user status. For personalization,
we fine-tuned the pre-trained model using 50% of the available
windows from each test subject, while reserving the remaining
50% for evaluation. This setup highlights the potential of
the dataset for real-world applications that rely on minimal
supervision and passive sensing.

The classification model employed a multi-layer perceptron
architecture consisting of three hidden layers with 128, 64, and
32 neurons, respectively, followed by a single-neuron output
layer for binary classification. Each hidden layer incorporated
batch normalization and ReLU activation, with dropout regu-
larization (rate=0.2) applied to mitigate overfitting. The output

layer utilized sigmoid activation to produce probability scores.
Training and fine-tuning were performed using the Adam
optimizer, binary cross-entropy loss, and a learning rate of
0.001.

To prepare the input data for our model, we selected
four physiological modalities from the wristband data for
our predictive machine learning task: EDA, BVP, ACC, and
TEMP. To ensure data relevance and minimize confounding
from sleep-related physiological changes, we restricted our
analysis to data recorded during participants’ waking hours.
The continuous signals were segmented using a sliding win-
dow approach with fifteen-minute windows and 50% overlap
between consecutive segments [10]]. On average, this produced
approximately 180 windows per participant, resulting in a total
of about 14,600 windows across the dataset. Each window was
represented by 31 physiological features extracted from the
EDA, BVP, ACC, and TEMP signals.

For feature extraction, we applied modality-specific meth-
ods designed to capture the distinct temporal and physiological
characteristics of each signal. Using the NeuroKit2 [11] pack-
age, we decomposed the EDA signal into tonic and phasic
components and extracted features such as mean tonic level,
number of skin conductance response peaks, peaks per minute,
and the statistical properties of peak amplitudes. From the
BVP signal, we derived heart rate variability (HRV) features,
including RMSSD, pNNS50, and SDNN, in addition to basic
statistical measures of heart rate (e.g., mean and standard
deviation). For the temperature signal, we computed statistical
metrics, including mean, standard deviation, and range, along
with the linear slope to capture thermal trends across each
window. Accelerometer data was processed by computing the
vector magnitude of the triaxial acceleration, from which we
extracted features such as mean activity level, proportion of
time spent in motion, and axis-specific statistics that charac-
terize both intensity and direction of movement. In total, we
extracted 31 features across all modalities, which served as
the input to our downstream classification task.

Following feature extraction, our dataset consisted of tabular
data, where each row corresponded to a 15-minute window
and included 31 physiological features. To address individual
differences in baseline physiology, we applied subject-wise
standardization, ensuring that each participant’s features had a
mean of zero and a standard deviation of one. We employed a
leave-one-subject-out strategy to evaluate model generalization



to new individuals. In each fold, one participant served as
the test subject while the model trained on all remaining
participants. To personalize the model for each test subject,
we implemented a transfer learning approach: we first trained
a base model on the training subjects, then fine-tuned the final
layer of the pre-trained model using 50% of the test subject’s
data, and evaluated performance on the remaining 50%. This
process was repeated across all participants, with each individ-
ual serving as the test subject once. Final performance metrics
were computed as averages across all folds.

In table [I, We report our model’s performance on both the
training and test data using four evaluation metrics: accuracy,
F1 score , precision, and recall. Accuracy represents the over-
all proportion of correct predictions. Precision measures the
fraction of predicted positive cases that are actually positive,
while recall reflects the fraction of actual positive cases that
were correctly identified by the model. The F1 score is the
harmonic mean of precision and recall, offering a single metric
that balances both, particularly useful in scenarios with class
imbalance.

TABLE I
MODEL PERFORMANCE ON TRAINING AND TEST DATA (AVERAGED
ACROSS SUBJECTS).

Data Acc Prec Rec F1

Train Data  99.93% (+0.00)
Test Data  95.96% (£0.06)

99.96% (£0.00)  100.00% (£0.00)  99.93% (£0.05)
97.82% (£0.05)  100.00% (£0.00)  95.92% (£0.06)

To better understand which signals influenced the model’s
predictions, we used SHAP (Shapley Additive Explana-
tions) [[12]] to analyze feature importance. As shown in the
SHAP summary plot (Figure [3), features derived from HR
and EDA dominated the top rankings. The most impactful
feature was the maximum heart rate (hr_max), followed
closely by several EDA-related features, including eda_min,
eda_mean, eda_phasic_mean, and eda_max. Heart rate
variability metrics such as hrv_sdnn and hrv_rmssd also
contributed significantly. This result aligns with the expec-
tation that physiological markers of stress (captured through
both heart rate and skin conductance) differ between cannabis
users and non-users. Overall, the SHAP results highlight the
central role of stress-related signals, particularly EDA and HR,
in driving the model’s ability to distinguish between the two
groups.

IV. CONCLUSION

In this paper, we introduced CAN-STRESS, a multimodal
dataset designed to advance research into the physiological
and behavioral effects of cannabis use in real-world settingsﬂ
By integrating self-reported data on key daily activities with
high-resolution physiological signals collected via a wearable
wristband, CAN-STRESS provides a unique opportunity to ex-
amine the relationship between subjective experiences and ob-
jective measurements. Addressing the limitations of lab-based
studies, CAN-STRESS offers an ecologically valid foundation
for exploring stress regulation, activity recognition, and other

Uhttps://zenodo.org/records/14842061
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Fig. 3. SHAP summary plot showing the top 10 most important features
influencing the model’s predictions. Features related to heart rate, heart rate
variability, and electrodermal activity contribute most strongly

health-related research domains. We encourage researchers to
utilize CAN-STRESS to drive advancements in behavioral
science, wearable computing, and medical diagnostics.
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