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ABSTRACT

Despite remarkable progress in photorealistic image generation with large-scale
diffusion models such as FLUX and Stable Diffusion v3, the fragmented ecosys-
tem of community-developed LoRA adapters and the difficulty of systemati-
cally integrating them into foundational models hinder their practical deployment.
Their widespread adoption faces three pressing challenges: sparse metadata an-
notation, the requirement for zero-shot adaptation, and suboptimal strategies for
multi-LoRA fusion. To address these challenges, we propose a framework that
unifies community-developed LoRA adapters through semantic retrieval and dy-
namic fusion, effectively functioning as an ecosystem integrator. The framework
consists of two key components: (1) a weight encoding-based retriever that aligns
LoRA parameter matrices with text prompts in a shared semantic space, thereby
eliminating the need for original training data, and (2) a fine-grained gated fusion
mechanism that computes context-specific fusion weights across network layers
and timesteps, enabling the optimal integration of multiple LoRAs during genera-
tion. Experiments demonstrate that our approach significantly outperforms strong
baselines. Critically, AutoLoRA maintains high generation fidelity and aesthetic
quality when fusing up to three distinct LoRAs, a challenging scenario where prior
methods often suffer from catastrophic interference. Our framework not only im-
proves automated aesthetic scores by substantial margins but also establishes a
practical bridge between the community-driven proliferation of LoRA modules
and the deployment requirements of large-scale diffusion systems.

1 INTRODUCTION

The proliferation of open-source model adapters has created a new kind of knowledge repository,
yet we lack the fundamental tools to directly read and interpret these models from their weights.
This paper takes a first step toward what we call model-based semantics, where LoRA adapters
are no longer regarded as opaque parameter deltas but as carriers of reusable semantic capabilities.
The rapid advancement of large-scale diffusion models such as FLUX and Stable Diffusion v3 has
yielded astonishing capabilities in generating photorealistic and diverse imagery (Rombach et al.,
2022; Esser et al., 2024; Labs, 2024). To support efficient customization, the community has widely
adopted LoRA (Hu et al., 2022), a cost-effective fine-tuning technique that enables personalization
with minimal parameter overhead. Thousands of LoRA adapters have already emerged in open-
source communities such as ModelScope, Hugging Face, and Civitai, driving community growth
and catalyzing innovation in AI-generated art. However, these LoRAs are scattered and isolated, of-
ten lacking standardized metadata or descriptive documentation, hindering discovery, retrieval, and
integration of relevant adapters, making harnessing of this vast ecosystem a significant challenge.

A practical solution is to construct a LoRA retrieval and fusion system capable of fully utiliz-
ing community-contributed adapters to improve text-to-image generation. However, retrieving and
fusing relevant LoRAs poses unique challenges compared to other retrieval-augmented generation
(RAG) systems (Lewis et al., 2020; Gao et al., 2023). First, effective retrieval requires embed-
ding representations of LoRAs. Existing approaches such as PHATGOOSE (Muqeeth et al., 2024a),
which learns an embedding vector jointly with LoRA parameters during LoRA training, and SemLA
(Qorbani et al., 2025), which derives embeddings from the image data used to train LoRAs, both
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assume access to the original training process or dataset. In practice, open-source LoRAs rarely in-
clude training data or detailed documentation, making document-based or data-dependent retrieval
infeasible. Furthermore, the LoRA ecosystem is continuously expanding, requiring retrieval systems
to support zero-shot adaptation for newly released adapters. Second, multi-LoRA fusion remains a
major challenge. Naı̈ve linear combinations or distillation typically suppress the performance of
individual LoRAs, and performance deteriorates as the number of adapters increases. Recent works
have explored mixture-of-experts (MoE) approaches (Wu et al., 2024; Zhao et al., 2024), but these
methods rely on a fixed expert pool, which fundamentally limits their scalability. Such designs are
incompatible with the open-world nature of community-driven LoRA ecosystems, where the set of
available adapters grows dynamically and cannot be predetermined.

To address these challenges, we propose AutoLoRA, a framework for LoRA retrieval and dynamic
aggregation that leverages the collective capabilities of open-source adapters to improve text-to-
image generation. The framework consists of two key components: (1) Weight encoding-based
LoRA retriever: Motivated by the success of CLIP in multimodal representation learning, we de-
sign a weight encoder that maps both LoRA weights and text prompts into a shared feature space
via contrastive learning. Since LoRA weights differ significantly from natural language or images,
conventional encoders are inadequate. We therefore tokenize each layer’s weight matrix, embed
tokens through trainable parameters, and use transformer blocks to produce a compact representa-
tion of the entire LoRA. (2) Fine-grained gated fusion mechanism: Inspired by recent findings that
LoRAs exhibit layer- and timestep-specific effects within diffusion models (Ouyang et al., 2025),
we argue that a truly effective fusion mechanism must operate at this fine-grained level. To this end,
AutoLoRA employs learnable gating modules at each linear layer, which dynamically condition on
both the hidden states of the base model and LoRA-modulated features across diffusion timesteps.
Unlike naı̈ve fusion schemes that assign fixed weights, our mechanism flexibly adjusts contribu-
tions of each LoRA across feature dimensions and timesteps, enabling robust integration of multiple
adapters and maximizing generative performance.

To evaluate AutoLoRA, we collected 162 FLUX LoRAs from open-source platforms, covering di-
verse themes, tasks, and architectural variants. Although these community-contributed adapters lack
accessible training data or detailed documentation, most include a few sample renderings. We lever-
age Qwen-VL-Max to caption these renderings, constructing paired training and evaluation sets. Ex-
periments show that only a small number of renderings per LoRA suffice to train the weight encoder
and gated fusion module, and that retrieving and aggregating LoRAs with AutoLoRA consistently
improves text-to-image generation. In summary, AutoLoRA introduces a weight-encoding–based
retrieval model and a dynamic gated fusion mechanism, enabling semantic-driven retrieval and har-
monious aggregation of multiple LoRAs. Our approach not only significantly improves automated
aesthetic scores but also establishes a practical bridge between the community-driven proliferation
of LoRA modules and their deployment in large-scale diffusion systems, taking a first step toward
interpreting the semantic functionality encoded in model weights. An anonymous code repository
is available at https://anonymous.4open.science/r/AutoLoRA-6759.

2 RELATED WORKS

2.1 ADAPTER RETRIEVAL

As adapter technology matures, the proliferation of adapters within the community has prompted
growing research interest in retrieving task-specific adapters. A straightforward approach involves
leveraging traditional MoE techniques (Lepikhin et al., 2021; Fedus et al., 2022) for adapter re-
trieval, where methods such as SMEAR (Muqeeth et al., 2024b) and MoLE (Wu et al., 2024) intro-
duce an additional routing module during training. This module dynamically directs input tokens
to different adapter experts based on their semantic content. The primary limitation of MoE-based
approaches is that the number of experts remains fixed and typically limited, leading to insufficient
flexibility and scalability. SemLA (Qorbani et al., 2025) proposes a training-free framework for
image segmentation that retrieves adapters by measuring the similarity between the input image
and the adapter training dataset. PHATGOOSE (Muqeeth et al., 2024a), in contrast, learns a LoRA
signature vector from the training dataset during LoRA model training and subsequently retrieves
adapters by computing the similarity between input tokens and the signature vector, thereby en-
hancing LLM performance across diverse tasks and improving adaptability in zero-shot scenarios.
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RAMoLE (Zhao et al., 2024) trains a sentence-embedding model via instruction fine-tuning and
retrieves task-specific LoRA models in LLMs by analyzing the similarity of sentence embeddings
derived from input text. While effective, these methods are mostly tailored for LLMs and require
adapter training data, limiting their generalizability to image generation.

2.2 ADAPTER FUSION

In the field of image generation, integrating personalized Adapters has long been a significant chal-
lenge, prompting numerous studies to be proposed (Dong et al., 2024; Yang et al., 2024; Gu et al.,
2023). ZipLoRA (Shah et al., 2024) proposes a straightforward method to learn scaling coefficients
that render the columns of two adapters’ weight matrices nearly orthogonal, thereby preventing in-
terference when combining the adapters. Inspired by recent advances in Mixture of Experts (MoE)
techniques, MoLE (Zhao et al., 2024) treats each adapter as an expert module and trains a gating
mechanism within every feed-forward network layer to dynamically modulate the contribution of
each adapter across different model layers. Unlike methods that combine different models through
integration, LoRACLR (Simsar et al., 2025) distills knowledge from multiple target-concept adapter
models across various image generation frameworks into a single adapter, enabling accurate gen-
eration of images depicting multiple concepts simultaneously. the recent K-LoRA (Ouyang et al.,
2025) propose a training-free approach that calculates the top-k elements from each target model
within every attention layer to dynamically determine which model should be activated at each step.
Similarly, DARE (Yu et al., 2024) employs a training-free strategy inspired by stochastic dropout,
randomly discarding incremental parameters from different models according to specific policies
to mitigate conflicts during model fusion. Although effective in controlled settings, these methods
typically focus on fusing only a small number of fixed LoRAs. They still encounter critical limita-
tions—including poor subject consistency and high training complexity—making them impractical
for scenarios where we dynamically retrieve arbitrary numbers of diverse LoRAs for each prompt.

3 AUTOLORA FRAMEWORK

3.1 WEIGHT ENCODING-BASE LORA RETRIEVER

Our goal is that the user inputs a text prompt, and the retriever can recall k LoRAs associated with the
text prompt from the LoRA pool, and the number of LoRAs in the pool of LoRAs is incrementally
updated. To achieve this goal, we use a CLIP (Radford et al., 2021) model architecture which contain
a text encoder and a LoRA encoder, they can encode text and LoRA into an embedding respectively,
and then calculate the similarity between the embeddings to complete the retrieval. The text encoder
we can use pre-trained model, but how do we design a LoRA encoder that can input a LoRA weight
parameter and output an embedding? As we all know, LoRA introduce low-rank matrices to each
linear layer. Specifically, for a linear with weight W0 ∈ Rd×k, LoRA augment it with two low-rank
matrics: W0 + ∆W = W0 + BA, where B ∈ Rd×r, A ∈ Rr×kand r ≪ min(d, k). Further, we
denote a LoRA as ∆W = (B,A), where B = {B1, · · · , Bm} and A = {A1, · · · , Am} denote
LoRA is applied to m linear layers of the original model. We conceptualize this encoding process
as “probing” the LoRA layer to reveal its functional semantics. For each layer i, we introduce a
trainable probe vector qi ∈ R1×din , where din is the input dimension of the linear layer (corresponds
to k in your notation). This probe acts as a canonical input signal. The LoRA layer’s response to
this probe is given by the transformation it applies:

responsei = qi(BiAi)
T = qiA

T
i B

T
i . (1)

This response, a vector in R1×dout , captures how the LoRA layer alters signals along the direction
of the probe. To map this response into the shared embedding space of dimension o, we apply a
trainable projection matrix Ŵi ∈ Rdout×o. Thus, the token embedding vi for the i-th layer is:

vi = (qiA
T
i B

T
i )Ŵi. (2)

By making qi and Ŵi trainable and layer-specific, the model learns to automatically discover the
most informative “virtual inputs” and projection schemes to distill the essential semantics of each
LoRA layer. This process is denoted as v = Embedder((B,A)), the sequence of these embeddings
v = [v1, . . . , vm] is then fed into a Transformer encoder to produce the global LoRA representation:

e = Encoder(v), (3)

3
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Figure 1: Illustration of the AutoLoRA framework, which consists of two main components: (a)
Weight Encoding–Based Retriever, where a LoRA weight encoder maps both LoRA parameters
and textual prompts into a shared embedding space through contrastive learning, enabling semantic-
driven retrieval; and (b) Fine-Grained Gated Fusion, which employs learnable gating modules to
dynamically regulate LoRA contributions across different dimensions, thereby facilitating effective
integration and mitigating conflicts among multiple LoRAs.

where e ∈ Ro is the final representation embedding of LoRA and Encoder(·) represents the feature
encoder composed of N standard Transform Blocks. The overall model structure of LoRA Encoder
is shown in the Figure 1. We compare different LoRA Encoders, validating the effectiveness of our
probe vector qi (see Appendix G.5 for details).

Training Object. We use contrastive learning for training. First, we use VLM to convert each LoRA
rendering into text, and use these texts as the labels corresponding to each LoRA. In this way, we can
get a data set T = {(x1,1, (B,A)1), · · · , (xj,t, (B,A)j)}, where each LoRA corresponds to at least
one text description. We use the pre-trained CLIP text encoder to encode text: t = CLIPtext(x), and
freeze the parameters of the text encoder during training, only update the parameters of the LoRA
encoder, and take N data from T for training each iteration. The loss function is as follows:

L =

N∑
i=1

(
− log

exp(e⊤i ti)∑N
j=1 exp(e

⊤
i tj)

− log
exp(e⊤i ti)∑N
j=1 exp(e

⊤
j ti)

)
(4)

In the LoRA retrieval stage, given a LoRA set Φ and an input prompt x, the top − k LoRAs are
retrieved according to the cosine similarity:

s = cos(Encoder(Embedder((B,A))),CLIPtext(x)). (5)

This process can be expressed as:

Φk = TopK{s((B,A)j , x), (B,A)j ∈ Φ}. (6)

3.2 FINE-GRAINED DYNAMIC GATED LORA FUSION

After retrieving k relevant LoRAs, the next thing we need to do is to integrate these LoRAs into
the diffusion model. A straightforward idea is to use the MoE method (Wu et al., 2024) to train an
additional router in each layer and assign different weights to each LoRA. However, the traditional
MoE method requires a fixed number of LoRAs during training, and can only assign weights to these
fixed LoRAs during inference. It cannot be applied to the scenario of dynamically selecting LoRAs
from the LoRA pool for fusion. To address this challenge, we propose a Fine-grained dynamic gating
LoRA fusion mechanism, which utilizes a learnable gating module in the linear layer to perceive the
hidden state features of each intermediate layer of the original model and LoRA during the diffusion
process, and dynamically calculates the LoRA weights of different dimensions.

Formally, consider top-k retrieved LoRAs in a linear layer. The output of original model output
x ∈ Rl×d and a collection of LoRA outputs L = [l1, l2, . . . , lk] ∈ Rk×l×d , the module first applies
normalization to both inputs to eliminate scale discrepancies and highlight critical features:

x̂ = LayerNorm(x), L̂ = LayerNorm(L). (7)
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Subsequently, our gated mechanism computes dimension-specific contribution weights for each
LoRA through the synergistic operation of two specialized gate components:

G = σ
(
L̂⊙wl + x̂⊙ L̂⊙wc + b

)
, (8)

Here, wl,wc,b ∈ Rd are learnable weight and bias vectors. They are broadcasted to match the di-
mensions of L̂ ∈ Rk×l×d for the element-wise operations. The term L̂⊙wl allows the gate to weigh
LoRA contributions based on their own output features, while the interaction term x̂⊙L̂⊙wc makes
the gating decision conditional on the interplay between the base model’s state and the LoRA’s modi-
fication (See Appendix G.1 for gate ablation results). And b ∈ Rd is a learnable bias term, σ denotes
the sigmoid activation function, and ⊙ represents element-wise multiplication. The resulting gat-
ing matrix G ∈ Rk×l×d contains dynamic weights gi,j,d that determine the contribution strength
of the i-th LoRA to the d-th feature dimension of the j-th token representation, with values deter-
mined through the collaborative decision-making of the two gate components. Finally, the module
integrates the original output with the weighted LoRA outputs through amplitude calibration:

x′ = x+

k∑
i=1

(wo ⊙ gi ⊙ li) , (9)

where wo ∈ Rd is a learnable Fusion-Scaling Parameter specific to each layer, which further ensures
numerical stability during integration and gi represents the i-th row of G.

Global LoRA. Inspired by recent MoE approaches (Dai et al., 2024) that leverage shared experts
to capture and integrate general knowledge across diverse contexts, we introduce a Global LoRA in
our fusion framework. Unlike a standalone adapter, this Global LoRA is synthesized by summing
the weight matrices of the target LoRAs and then decomposing the aggregated matrix into two low-
rank components via matrix decomposition. From a matrix-theoretic perspective, the summation∑n

i=1 BiAi corresponds to combining multiple low-rank updates. Performing a low-rank decom-
position (e.g., SVD) on this sum amounts to identifying the principal directions that best capture
the subspace spanned by these updates. In this way, Bg, Ag represent the optimal low-rank approx-
imation of the aggregated update directions, yielding a compact representation of their common
knowledge. The global LoRA is seamlessly integrated into both training and generation phases:

Bg, Ag = Drg

(
n∑

i=1

BiAi

)
, (10)

where Drg (·) denotes the matrix decomposition algorithm. We adopt singular value decomposition
(SVD), and for efficiency, we employ PyTorch’s approximate SVD implementation by restricting
the decomposition rank to a small value . The rank rg of the global LoRA acts as a hyperparameter
controlling the capacity of the shared representation. A small rank enforces a strong bottleneck,
capturing only the most dominant shared semantics, while a larger rank allows for more nuanced
shared features at the risk of overfitting or capturing noise. We empirically found rg = 4 to be a
sweet spot (see Appendix G.2 and G.3 for details).

Training Object. We use a strategy called Interference-Resistant Training to train fusion module.
During each training iteration, we randomly sample two LoRAs from the pool: one designated as
the target LoRA Li and the other as the interference LoRA Lj . While both LoRAs are simultane-
ously active in the forward pass, the training signal is exclusively derived from the target LoRA’s
image-text pairs. This asymmetric supervision forces the fusion module to learn discriminative
gating behavior—effectively amplifying relevant features while suppressing interference—despite
the concurrent presence of both adapters. Intuitively, it provides the gating module with a direct,
reconstruction-error-based supervisory signal: when a LoRA’s contribution fails to improve align-
ment with the target, its gating weight is suppressed, while contributions consistent with the target
are amplified. The optimization objective employs the flow matching loss:

L = E
[∥∥Vθ̂ (xt, c, t, Li, Lj , Lg)− (x1 − x0)

∥∥2] , (11)

where Vθ̂ is the diffusion model with the LoRA fusion mechanism, Lg is the global LoRA con-
structed by Li and Lj , xt is the target image in latent space, x0 ∼ N(0, 1) is the noise, c is the
text condition, and t ∼ µ(0, 1) is the timestep.We compared different training strategies for the
fusion module and validated that our Interference-Resistant approach helps resolve conflicts when
combining multiple LoRAs (see Appendix G.4 for details).
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Original Top 1 Top 2 Top 3 Original Top 1 Top 2 Top 3

Figure 2: Qualitative comparison between AutoLoRA and the FLUX.1-dev. Top-1, Top-2, and Top-
3 denote images generated by retrieving and fusing 1, 2, and 3 LoRAs, respectively. AutoLoRA
enriches visual details, refines artistic characteristics, and enhances overall aesthetic quality.

4 EXPERIMENTS

4.1 RETRIEVAL-AUGMENTED FUSION FOR IMAGE GENERATION

Experimental Setup. We collected 162 diverse FLUX.1-dev LoRAs from multiple open-source
platforms, including only their weight parameters and a few reference images (1–5 per LoRA).
Descriptive captions for each reference image were generated using Qwen-VL-Max. For retrieval
experiments, we randomly sampled 1–3 LoRAs from the pool and synthesized prompts from their
reference images. Qwen-VL-Max produced prompts capturing both semantic and stylistic features,
resulting in a synthetic benchmark of 900 prompts. To test generalizability, we additionally sampled
1,000 real user-generated prompts from DiffusionDB (Wang et al., 2023) and rewrote them with an
LLM, introducing further diversity and complexity. Detailed procedures for dataset construction,
prompt synthesis, and model training are provided in Appendix B.

We compared AutoLoRA with a baseline that retrieves LoRAs by cosine similarity between CLIP-
encoded prompts and LoRA reference images; both methods integrate the retrieved LoRAs using
the gated fusion mechanism during generation. Evaluation metrics include image aesthetic quality
measured by MPS (Zhang et al., 2024), HPS (Wu et al., 2023), and Aesthetic (Schuhmann et al.,
2022), as well as text–image alignment assessed with VQAScore (Lin et al., 2024). For each prompt,
we retrieved the top-1, top-2, and top-3 LoRAs to generate images. Appendix E details AutoLoRA’s
computational and memory costs, which remain acceptable.

Result Analysis. Table 1 presents the quantitative results of AutoLoRA on both datasets. Compared
to a text–image similarity retrieval baseline, AutoLoRA achieves consistent improvements across all
three aesthetic metrics as well as text–image alignment. This demonstrates that AutoLoRA is capa-
ble of retrieving LoRAs relevant to the input prompt; these retrieved LoRAs help the model better
interpret and emphasize specific elements in the prompt, and the gated fusion mechanism further
maximizes their utility—ultimately producing images of higher quality that more faithfully follow
textual instructions. We further observe that while performance generally improves as more LoRAs
are retrieved, the marginal gains diminish. This is because retrieval is similarity-based: the top-
ranked LoRA, being most relevant to the prompt, provides the largest improvement, whereas sub-
sequent LoRAs with lower similarity scores contribute progressively smaller benefits. It is also due
to semantic-space crowding: when multiple LoRAs attempt to modify overlapping feature dimen-
sions, even fine-grained gating mechanisms face increasing coordination difficulties, which grow
nearly exponentially with the number of adapters. Figure 2 presents qualitative results. Compared
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to outputs from FLUX.1-dev, integrating the retrieved LoRAs substantially improves visual fidelity,
enriches structural detail, enhances stylistic coherence, and elevates the overall aesthetic quality of
the generated images. We also provide a detailed analysis of representative failure cases in LoRA
retrieval and fusion in Appendix F, highlighting the challenges of aligning retrieved adapters with
nuanced user intent and integrating multiple semantically conflicting LoRAs.

Results on the DiffusionDB dataset show that AutoLoRA maintains effectiveness on out-of-
distribution prompts, demonstrating the robustness and generalizability of our framework. In con-
trast, retrieval methods based solely on text–image similarity perform poorly on this dataset, as
such a simple strategy struggles to cope with more complex scenarios. Figure 2 presents qualitative
results. Compared to outputs from FLUX.1-dev, integrating the retrieved LoRAs substantially im-
proves visual fidelity, enriches structural detail, enhances stylistic coherence, and elevates the overall
aesthetic quality of the generated images. Appendix D provides results from human assessments,
confirming that images generated by AutoLoRA better align with user intent and exhibit higher
aesthetic quality compared to baseline methods.

Table 1: Quantitative results using AutoLoRA on synthetic prompt set and DiffusionDB

Dataset Method MPS(↑) HPS(↑) Aes.(↑) VQA(↑)

Synthetic
prompt set

FLUX.1 dev 17.294 0.324 6.302 0.916

Text–Image
Similarity Retrieval

Top 1 17.485 0.326 6.292 0.919
Top 2 17.590 0.330 6.321 0.921
Top 3 17.593 0.329 6.334 0.920

AutoLoRA
Top 1 17.523 0.329 6.300 0.920
Top 2 17.634 0.335 6.362 0.922
Top 3 17.749 0.340 6.401 0.922

DiffusionDB

FLUX.1 dev 17.887 0.315 6.425 0.849

Text–Image
Similarity Retrieval

Top 1 17.729 0.316 6.454 0.855
Top 2 17.722 0.316 6.465 0.855
Top 3 17.593 0.315 6.467 0.852

AutoLoRA
Top 1 18.072 0.328 6.496 0.857
Top 2 18.105 0.332 6.522 0.861
Top 3 18.166 0.334 6.515 0.861

4.2 EFFECTIVENESS OF FINE-GRAINED GATED FUSION

Experimental Setup. Following K-LoRA (Ouyang et al., 2025), we first test fusion on 3 object
and 8 style LoRAs, generating 10 images per object-style prompt using the template: “a {Object}
in the {Style} style.” We then compute CLIP (Radford et al., 2021) similarity between the gener-
ated images and both the object and style references. For the more general setting, we construct
two separate test sets by randomly sampling 2 or 3 LoRAs from the candidate pool, with each set
containing 300 prompts. For each sampled combination, a single descriptive prompt is generated
from the cover images of all selected LoRAs using Qwen-VL-Max. This prompt consolidates vi-
sual information from multiple images, capturing the features of all involved LoRAs, and forms a
diverse LoRA fusion test set. Performance is measured using two complementary metrics: (1) im-
age aesthetic scores and text–image alignment, and (2) similarity between fused outputs—images
generated by integrating multiple LoRAs—and the outputs of individual LoRAs, quantifying how
well the fusion preserves the distinctive characteristics of each LoRA.

Result Analysis. From the results of Object and Style LoRA fusion in Table 2, it is evident that our
fine-grained gated fusion method substantially outperforms alternative baselines in simultaneously
preserving object fidelity and style consistency. Direct linear addition tends to prioritize stylistic
attributes at the expense of object fidelity, while K-LoRA, which specifically amplifies the style
LoRA during generation, thereby dominates style features and reduces overall balance. Tables 3
report the results for fusing randomly selected LoRAs. K-LoRA is tailored for Object-Style fusion
and exhibits suboptimal performance in these generalized scenarios. Moreover, its effectiveness is
highly dependent on the LoRA loading order, as it assumes the second loaded LoRA represents the
style component and disproportionately emphasizes it. Direct linear addition and DARE, lacking any

7
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Figure 3: Qualitative comparison of object-style LoRA fusion. Compared with other baseline meth-
ods, our fine-grained gating fusion mechanism can seamlessly integrate multiple LoRAs while both
ensuring object consistency and effectively preserving style attributes.

Table 2: Quantitative results of object and style LoRA fusion compared to baselines.

Method Direct K-LoRA DARE Ours
Obj Sim (↑) 0.728 0.639 0.732 0.742

Style Sim (↑) 0.579 0.624 0.577 0.577

selective modulation mechanism, suffer from mutual suppression among LoRAs. Particularly when
fusing three LoRAs, this interference leads to severe image degradation and feature entanglement,
resulting in distorted object shapes, incoherent styles, or mixed visual artifacts. In contrast, our
approach remains robust regardless of the number of LoRAs fused. By assigning dimension-wise
gating weights from latent features, our mechanism amplifies relevant contributions and suppresses
conflicts, preserving image quality. As shown in Figure 3, it integrates LoRAs seamlessly—for
example, producing a cat in oil painting style rather than a cat against an oil-painted background

Table 3: Comparison of random Multiple LoRAs fusion. ”Original” denotes image generation
without LoRA, ”li-Sim” represents similarity to the i− th LoRA’s generated image.

Method Dataset MPS HPS VQA l1-Sim l2-Sim Dataset MPS HPS VQA l1-Sim l2-Sim l3-Sim

Original

2-LoRA
Fusion

18.28 0.33 0.91 0.82 0.82

3-LoRA
Fusion

18.35 0.33 0.92 0.83 0.82 0.85
Direct 17.19 0.31 0.89 0.85 0.84 16.78 0.29 0.89 0.82 0.81 0.81

K-LoRA 17.40 0.31 0.90 0.84 0.88 \ \ \ \ \ \
DARE 16.41 0.29 0.86 0.83 0.82 14.88 0.25 0.81 0.77 0.76 0.81
Ours 18.42 0.34 0.93 0.86 0.85 18.61 0.34 0.93 0.86 0.85 0.85

4.3 EFFECTIVENESS OF LORA ENCODER

To validate the effectiveness of the LoRA Encoder, we selected 20 LoRAs from the dataset covering
six distinct themes (Cyberpunk Style, Ghibli Style, Mecha, Pixel Style, Face Enhancement, and 3D
Rendering) and computed pairwise embedding similarities for all possible pairs. As visualized in
the left panel of Figure 4 using a heatmap, LoRAs belonging to the same theme are highlighted by
bounding boxes, indicating strong intra-theme coherence. We further calculated the average intra-
class and inter-class similarity for each theme, as summarized in the right panel of Figure 4. In
all themes, intra-class similarity exceeds inter-class similarity, confirming that the LoRA Encoder
successfully maps semantically related LoRAs into neighboring regions of the feature space, facil-
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itating accurate and robust retrieval in practice. Overall, these results suggest that the embeddings
produced by the LoRA Encoder are semantically meaningful and effective for downstream LoRA
retrieval tasks, demonstrating that we have successfully built a tool capable of directly reading and
interpreting the semantic content of model weights, breaking the black-box nature of parameterized
models and making “model-as-semantic” a practical possibility.

cy
be

r0
cy

be
r1

cy
be

r2
cy

be
r3

cy
be

r4
gh

ib
li0

gh
ib

li1
m

ec
ha

0
m

ec
ha

1
m

ec
ha

2
m

ec
ha

3
pi

xe
l0

pi
xe

l1
pi

xe
l2

fa
ce

0
fa

ce
1

fa
ce

2
fa

ce
3

3D
0

3D
1

cyber0
cyber1
cyber2
cyber3
cyber4
ghibli0
ghibli1

mecha0
mecha1
mecha2
mecha3

pixel0
pixel1
pixel2
face0
face1
face2
face3

3D0
3D1

LoRA Embedding Similarity Heatmap

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Theme Nums Intra-class(↑) Inter-class(↓)
Cyber 5 0.492 -0.043
Ghibli 2 0.434 -0.019
Mecha 4 0.453 0.015
Pixel 3 0.600 0.042
Face 4 0.474 -0.169
3D 2 0.368 0.036

Average 20 0.471 -0.023

Figure 4: Left: Heatmap of pairwise cosine similarities among 20 LoRAs, LoRAs from the same
theme are grouped in square brackets. Darker cells denote higher similarity. Right: Average intra-
class (within-theme) and inter-class (across-theme) similarities across six themes, showing that Lo-
RAs within the same theme are more coherent than across themes.

4.4 GATING MODULE ANALYSIS
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Figure 5: Gate values across timesteps.

To verify that our gating module dynamically regu-
lates LoRA contributions during generation, we vi-
sualize the gating values G in an attention layer
(blocks.18.attn.a to qkv). Using one Object LoRA
and one Style LoRA, we generate images and track
the top-512 summed values of each gating vector gi
across timesteps (Fig. 5). The results show that the
Object LoRA dominates at early stages, while the
Style LoRA gains influence later, aligning with the
diffusion process where global structure forms first
and fine-grained style emerges later. This demonstrates that the gating module adaptively allocates
weights to different LoRAs, maximizing their utility while mitigating conflicts.

5 CONCLUSION AND POTENTIALS

In this work, we introduce AutoLoRA, a unified framework that combines a weight-encoding re-
triever with a fine-grained gated fusion mechanism. AutoLoRA addresses zero-shot retrieval from
sparse metadata and robustly fuses multiple, potentially conflicting adapters. Experiments show that
it improves generative quality and fidelity while providing a scalable, data-efficient bridge between
decentralized LoRA creation and centralized deployment in foundational models. Beyond practical
gains, this work establishes a new paradigm of model-based semantics, viewing LoRAs as structured
carriers of semantic information—styles, object concepts, or complex relations—rather than opaque
parameter deltas. Our LoRA encoder maps raw weights to a coherent semantic space, enabling
functional intent to be inferred directly from parameters and transforming unstructured weights into
a queryable knowledge base. This semantic space opens rich avenues for future research. Model
arithmetic could synthesize new capabilities—for example, ’Ghibli Style’ - ’Anime Character’ +
’Landscape’ might produce a LoRA specialized for Ghibli-style landscapes. Semantic model edit-
ing allows subtle manipulation of embeddings—e.g., shifting a style toward ’more vintage’ or a
concept toward ’more abstract’—without retraining. Automatic capability discovery could cluster
embeddings from large, unannotated LoRA collections to reveal emergent concepts and novel artis-
tic or functional modules. This approach may reshape interactions with machine learning models,
moving from monolithic training to modular, semantic composition, editing, and understanding.
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ETHICS STATEMENT

This work introduces AutoLoRA, a unified framework for retrieving and fusing community-
contributed LoRA adapters to enhance text-to-image generation. Our focus is developing a weight-
encoding-based retriever and a gated fusion mechanism. All experiments are conducted using pub-
licly available, open-source LoRAs, without involving sensitive data, user information, or NSFW
content. As such, this research does not pose specific ethical or safety risks and aims to promote
scalable and responsible use of community-contributed LoRA adapters in foundational models.

REPRODICIBILITY STATEMENT

We provide detailed experimental settings, model architectures, and implementation details in the
appendix to ensure reproducibility. An anonymous code repository is available to facilitate verifi-
cation and replication of our results. All datasets used in our experiments will be publicly released
upon acceptance of the paper. These resources allow other researchers to reproduce our experiments
and extend our AutoLoRA framework in a transparent and verifiable manner.
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A USES OF LLMS

Large language models (LLMs) are used exclusively in this work for translation, text polishing,
and grammar correction. All experimental design, data collection, model training, and analysis are
performed entirely by the authors. LLMs do not generate, modify, or influence any experimental
results or conclusions.

B IMPLEMENTATION DETAILS

B.1 LORA ENCODER

The LoRA Encoder consists of two components: an Embedder and Transformer Blocks. The main
trainable parameters in the Embedder are qi ∈ Rkand Ŵi ∈ Rd×o. The values of k and d depend
on the corresponding LoRA layer, while the output dimension o is fixed at 768. The Transformer
component comprises 2 blocks with 12 attention heads, each of dimension 64, and a feed-forward
network with a hidden size of 3072. The total parameter count of the encoder is approximately
112.9M. For the text encoder, we adopt the pretrained CLIP-ViT-Large-Patch14. Training is per-
formed with a learning rate of 1 × 10−4 using the AdamW optimizer and a batch size of 32. The
model is trained for 5 hours on 4 × AMD ASPEED (rev 52) GPU.

B.2 LORA FUSION MODULE

For each linear layer in the base model where a LoRA adapter is inserted, we augment it with a
gating module. Each gate is a vector of dimension d, resulting in a total parameter count of only
27.3M for the entire gating module. Training is conducted with a learning rate of 1× 10−4using the
AdamW optimizer for 8,000 steps. The process takes approximately 7 hours on 4 × AMD ASPEED
(rev 52) GPU.

C DATASET CONSTRUCTION DETAILS

C.1 LORA SELECTION STRATEGY

We collected LoRA models primarily from two open-source platforms: ModelScope and Civitai.
Starting from the top-ranked models by download count, we initially obtained over 1,100 LoRAs.
Given the varying quality of community-contributed LoRAs, and the presence of some with inap-
propriate content, we applied further filtering. Specifically, we used the multimodal model Qwen-
VL-Max to generate textual descriptions of each LoRA’s cover images. These captions were then
used to generate new images with both the base model and the base model augmented by the corre-
sponding LoRA. To evaluate whether a LoRA provides meaningful enhancement, we compared the
generated images using models such as MPS, HPS, and VQAScore, assessing improvements in both
aesthetic quality and text–image alignment. Only LoRAs that achieved consistent improvements
across both aspects were retained, resulting in a curated pool of 162 LoRAs.
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C.2 DATASET CONSTRUCTION

Our training dataset is structured as T = {(I1,1, x1,1, (B,A)1), · · · , (Ij,t, xj,t, (B,A)j)}
whereIj,tand xj,t denote the t-th cover image of LoRA j and its corresponding textual captions,
respectively. Text captions are generated via the Qwen-VL-Max API using the following system
prompt:

You are a professional image captioner.
Generate a detailed caption according to the image so that another image

generation model can generate the image via the caption.
The caption should not only describe the content of the image, but also

include details about its overall style.
Just return the string description, do not return anything else.

For the retrieval and fusion experiments’ test set, we randomly select 1–3 LoRAs from the candidate
pool along with one of their cover images, and generate a joint prompt using the Qwen-VL-Max
API. Unlike the training captions, these prompts integrate features from multiple images, thereby
simulating fusion scenarios. The system prompt used is:

[ROLE]
You are a professional image captioner with expertise in AI model

evaluation.
[TASK]
Generate a detailed image description (no more 150 words, no line breaks)

for LoRA model fusion testing.
[INPUT]
Two or three LoRA-generated images with distinct features/styles.
[INSTRUCTION]
1. Identify and merge key elements from both images
2. Prioritize dominant subject (person/object) while integrating

secondary style
3. Ensure visual logic consistency (e.g., lighting, perspective)
4. Balance style attributes proportionally to input prominence
5. Resolve conflicts with plausible synthesis (e.g., "cyborg cat" to "

organic-mechanical hybrid")

[FORMAT]
"{Primary subject} {action} {secondary style descriptors} {contextual

environment}"
stroke texture matching the original painting’s impasto technique"
[CONSTRAINTS]
- Maintain semantic coherence
- Avoid abstract metaphors
- Specify style implementation level (subtle/medium/intense)
- Use precise artistic terminology when applicable

Although these prompts are informed by LoRA cover images, they differ substantially from the
training captions, thereby ensuring diversity while maintaining relevance to the candidate pool—in
the sense that associated LoRAs remain represented to some extent within the pool. To further
assess generalization, we additionally constructed a test set from DiffusionDB. To enhance prompt
diversity and complexity, making them more representative of real-world user intentions, we used
the Qwen-Max API to rewrite the original prompts with the following system prompt:

You are an expert in text image prompt word polishing.
You need to polish the prompt words input by users so that they are

suitable for input into the text graph model to generate high-quality
images. Only the polished prompt word string needs to be returned,

and no other things need to be returned.

D HUMAN EVALUATION

To evaluate the effectiveness of AutoLoRA in both retrieval and fusion, we conducted user studies
with 10 participants. For the retrieval evaluation, we randomly sampled 50 prompts from the Diffu-
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Table 4: Human evaluation results for LoRA retrieval and fusion.

LoRA Retrieval LoRA Fusion
Method User Preference Method User Preference

FLUX.1 dev 0.6% K-LoRA /
Direct

17.2%
Text–Image
Similarity

29.4%

AutoLoRA 70.0% AutoLoRA 82.8%

sionDB dataset and compared three methods: the original FLUX.1 dev model, retrieval followed by
fusion using text–image similarity, and retrieval followed by fusion using AutoLoRA. For each case,
the top-3 retrieved LoRAs were fused, and users were asked to select the best output based on image
quality and semantic alignment. The user preference rates for each method were then recorded.

For the fusion evaluation, we compared AutoLoRA with the strongest baseline methods under two
settings. In the case of fusing two LoRAs, we used K-LoRA as the baseline, while for fusing three
LoRAs, we adopted direct addition. For each setting, we randomly sampled 50 prompts and asked
the same 10 participants to assess outputs in terms of image quality, aesthetics, and the preservation
of each LoRA’s distinctive features. We report the overall user preference rate across both datasets.

The results in Table 4 consistently show that AutoLoRA is more aligned with human preferences,
confirming its superior performance in both LoRA retrieval and fusion tasks.

E EFFICIENCY ANALYSIS

To provide a comprehensive efficiency analysis of AutoLoRA, we evaluated both the retrieval and
fusion stages in terms of computational cost, GPU memory usage, and inference latency. For the
retrieval stage, we computed embeddings for all 162 LoRAs in our collection. The offline embedding
computation was performed once and amortized across all queries. At inference time, we measured
the cost of retrieving the top-3 LoRAs for a given prompt using cosine similarity search. For the
fusion stage, we compared the memory consumption and per-step latency of AutoLoRA against
the baseline FLUX model under different numbers of fused LoRAs (k = 0, 1, 2, 3). GPU memory
usage was recorded using PyTorch’s max memory allocated() to capture the peak memory footprint
during the forward pass. Latency was measured as the average time per diffusion step across 50
steps with batch size set to 1. All experiments were conducted on an AMD ASPEED (rev 52) GPU
with 192 GB of memory.

As shown in Table 5, the retrieval stage incurs negligible cost, with top-3 retrieval completed within
0.625 seconds, confirming the efficiency of our retriever. For the fusion stage, memory overhead
scales linearly with the number of LoRAs, and latency follows a similar trend: the baseline FLUX
runs at 1.02s per step, while AutoLoRA with k = 3 increases to 2.11s, roughly doubling infer-
ence time. Most of this overhead stems from separately computing forward passes for each LoRA,
highlighting a clear direction for future optimization. Overall, AutoLoRA introduces modest and
predictable computational overhead while delivering substantial gains in retrieval and fusion qual-
ity, making it practical for large-scale deployment.

F FAILURE CASES ANALYSIS AND POTENTIALS FOR FUTURE WORKS

Figure 6 presents several representative failure cases observed during our LoRA retrieval experi-
ments, highlighting limitations in current retrieval strategies. In the first example, the input prompt
contains keywords such as ”nintendo” and ”video game,” leading to the retrieval of a ”pokemon-
pixel” LoRA. While there is some semantic overlap between ”Pokemon” and the broader concepts
of video games or Nintendo, this retrieved LoRA does not align with the user’s intended visual
outcome. Moreover, due to its pixel-art style, the generated image adopts an unintended aesthetic,
significantly deviating from the desired content. Notably, even within the top-3 most similar candi-
dates, a completely irrelevant ”home-decoration” LoRA is retrieved, further indicating inaccuracies
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Table 5: Efficiency analysis of AutoLoRA. We report offline and online retrieval costs, as well as
GPU memory usage and per-step latency during fusion under different numbers of LoRAs (k =
0, 1, 2, 3). Results show that AutoLoRA introduces modest overhead while maintaining practical
efficiency for deployment.

Stage Metric Setting Value

Retrieval Offline embedding computation 162 LoRAs 429.265 s
Online Top-k retrieval Tok-3 LoRAs 0.625 s

Fusion

GPU memory (MB)

k=0 35734.33
k=1 36229.75 (+495.42)
k=2 36547.51 (+813.18)
k=3 37681.76 (+1947.43)

Latency (s/step)

k=0 1.02
k=1 1.39 (+0.37)
k=2 1.90 (+0.88)
k=3 2.11 (+1.09)

Prompt Retrieved LoRAs Top 1 Top 2 Top 3Original

Nintendo 64 screenshot of 
the video game adaptation
of the movie hereditary 
(2018) 

Pokemon-pixel1 Shadow-style2 Home-decoration3

night cityscape, by aboudia, 
jean-michel basquiat and 
genesis tramaine, trending 
on artstation, cgsociety, 
deviantart 

Cyber0014 Cyber-ink5 Cyberpunk6

Figure 6: Illustrative retriever failure cases, showing the gap between keyword-level similarity and
deeper intent alignment.

in the retrieval process. This suggests that relying solely on text-based semantic similarity may be
insufficient for capturing nuanced user intent. The performance of our retrieval system is also con-
strained by the size and diversity of the LoRA candidate pool. For instance, since no LoRA related
to “movie hereditary (2018)” exists in the pool, the system defaults to retrieving semantically prox-
imate yet ultimately irrelevant models, resulting in suboptimal outputs. Another illustrative case
involves the prompt “night cityscape,” which retrieves a “cyberpunk style” LoRA. This occurs be-
cause the training data of this LoRA predominantly consists of neon-lit urban night scenes, creating
a strong statistical association between the model and night-time city imagery. While superficially
plausible, this reflects a fundamental limitation of the “model-as-semantic” paradigm: the semantics
learned by such models are grounded in the distribution of their training data rather than in abstract,
human-aligned conceptual understanding. These failure cases underscore two critical challenges:
(1) the gap between surface-level keyword matching and deeper intent comprehension, and (2) the
dependency of retrieval quality on both the coverage of the LoRA repository and the alignment
between model semantics and human perception. They motivate future work toward developing
retrieval models that better capture complex instructions and abstract concepts—ideally trained to
reflect human preferences rather than merely replicating data-driven co-occurrence patterns.

Figure 7 illustrates some failure cases encountered by our fusion module. For instance, when fusing
a ”Cyber Style” LoRA with a ”Portraits” LoRA, the generated image depicts a person against a
cybercity background, rather than a true cyberpunk-style character. This indicates that although the
fusion module can preserve individual LoRA characteristics, it still lacks sufficient creative capa-
bility—specifically, the ability to combine two LoRAs into something novel and emergent. While
our dynamic gating mechanism enables fine-grained control over each LoRA’s contribution during
generation, at a more fundamental level, this modulation still essentially performs a ”weighted”
fusion. Although such refined weighting can significantly mitigate conflicts among different Lo-
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LoRA 1 LoRA 2

+

LoRA 1 LoRA 2

+

LoRA 1 LoRA 2

+ +

LoRA 3

Realistic-composition Building-block-style Plush-building

+ +

Chinese-comics Cinematic-warm-light Ral-dissolve-style

Cyber-ink Portraits Cat Particle-effects

Figure 7: Representative failure cases of the fusion module, highlighting its limited capacity for
creative composition and the suboptimal results when combining multiple semantically conflicting
LoRAs.

RAs, achieving genuinely ”creative combination” remains a major challenge for the fusion module.
Moreover, when merging highly conflicting LoRAs, our fusion gating mechanism may fail entirely,
resulting in suppressed contributions from all involved LoRAs or the dominance of only one. For
example, when combining ”Chinese-comic,” ”Cinematic-warm-light,” and ”Ral-dissolve-style,” the
fusion module exhibits only the features of ”Chinese-comic.”

G OTHER ABLATION STUDIES

G.1 THE IMPACT OF DIFFERENT GATES

We further investigate the impact of different gating mechanisms on the fusion module by conduct-
ing an ablation study. During training, we retain only the LoRA-Specific Gate wl while keeping
all other components unchanged. Experiments are conducted on the three-LoRA fusion test set.
Results in Table 6 indicate that retaining only the LoRA-Specific Gate yields a slight advantage in
LoRA similarity, but leads to a decline in image quality and text–image alignment. This suggests
that the Cross-Interaction Gate plays a crucial role in capturing inter-LoRA feature interactions and,
through fine-grained regulation, alleviates conflicts among LoRAs during fusion.

Table 6: Ablation on Gating Mechanisms in the Fusion Module.

Gate MPS HPS VQA l1-Sim l2-Sim l3-Sim
wl 18.594 0.338 0.929 0.861 0.854 0.856

wl + wc 18.611 0.339 0.931 0.862 0.854 0.854

G.2 IMPACT OF GLOBAL LORA

We investigates the impact of incorporating a constructed Global LoRA into training and inference
for LoRA fusion. To this end, we retrain the gated fusion model on 162 LoRA models without
Global LoRA integration, while keeping all other configurations fixed. Experiments are conducted
on three LoRA fusion datasets, and the results are reported in Table 7. The findings show that
incorporating Global LoRA into both training and inference significantly enhances multi-LoRA
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fusion performance, with particularly notable gains in the aesthetic quality of generated images. This
suggests that Global LoRA provides a shared semantic representation that captures and integrates
global information across multiple LoRAs, thereby alleviating conflicts and improving coherence
during fusion. Moreover, we observe improvements in individual LoRA similarity, indicating that
Global LoRA not only mitigates interference but also enables the fusion module to preserve and
emphasize the unique characteristics of each LoRA.

Table 7: The impact of Global LoRA integration on LoRA fusion performance.

Method MPS HPS VQA l1-Sim l2-Sim l3-Sim
W.o/ Global LoRA 18.451 0.333 0.924 0.861 0.853 0.851
W/ Global LoRA 18.611 0.339 0.931 0.862 0.854 0.854

G.3 EFFECT OF GLOBAL LORA RANK

Table 8 reports the impact of varying the rank of the global LoRA on fusion performance. We kept
all other parameters fixed and only varied the rank during matrix factorization, evaluating ranks of 2,
4, 8, and 16 when fusing three LoRAs. The quantitative results indicate that the overall performance
is not highly sensitive to the choice of rank. However, we observed a tendency for the aesthetic
quality of generated images to degrade as the rank increases. A plausible explanation is that higher
ranks introduce redundancy: while they capture more fine-grained LoRA features, they also pre-
serve conflicting or noisy components across different LoRAs. This reduces the regularizing effect
of low-rank approximation, thereby amplifying inconsistencies in the fused representation and com-
promising visual quality. Moreover, higher-rank decompositions incur greater computational costs,
as they require more parameters and longer training or inference time. Table 9 further summarizes
the time required to construct a global LoRA at different ranks. Considering both effectiveness and
efficiency, we adopt rank=4 as the default setting for our main experiments.

Table 8: Effect of different decomposition ranks in the global LoRA.

Rank MPS HPS VQA l1-Sim l2-Sim l3-Sim
Rank=2 18.543 0.338 0.930 0.86 0.85 0.85
Rank=4 18.557 0.339 0.932 0.86 0.85 0.85
Rank=8 18.558 0.338 0.930 0.86 0.86 0.85

Rank=16 18.530 0.337 0.929 0.86 0.85 0.85

Table 9: Computation cost of constructing a global LoRA under different decomposition ranks.

Metric Rank=2 Rank=4 Rank=8 Rank=16
Time (s) 0.865 1.11 1.524 2.358

G.4 IMPACT OF TRAINING STRATEGY

To evaluate the effectiveness of our Interference-Resistant training strategy, we compare it against a
baseline where the fusion module is trained with only a single LoRA loaded at a time. The training
LoRA set remains the same for both methods, and each is trained for 8,000 steps. For evaluation, we
construct fusion test sets comprising 300 prompts with 2 LoRAs and 300 prompts with 3 LoRAs,
following the procedure described earlier, and report average scores across all metrics.

Results in Table 10 show that while single-LoRA training can preserve the characteristics of in-
dividual adapters, it falls short in aesthetic quality and text–image alignment compared to our
interference-resistant approach. This is because, when multiple LoRAs are combined, their over-
lapping or divergent features may superpose uncontrollably, leading to feature entanglement and
degraded visual quality (e.g., distorted object shapes, incoherent styles, and mixed artifacts). In
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contrast, our strategy enables the fusion module to retain each adapter’s beneficial traits while sup-
pressing conflicting contributions, resulting in more harmonious integration, higher aesthetic scores,
and stronger alignment.

Table 10: Quantitative comparison between the Interference-Resistant training strategy and the
Single-LoRA Training on multi-LoRA fusion tasks

Training MPS HPS VQA l1 Sim l2 Sim l3 Sim
Single-LoRA Training 18.449 0.338 0.926 0.857 0.852 0.860
Interference-Resistant 18.507 0.338 0.931 0.858 0.852 0.858

G.5 DIFFERENT LORA ENCODERS

To demonstrate the necessity of our proposed LoRA Encoder, we compare it against two simple
baselines:(1) MLP Encoder. A naive approach is to encode LoRA weights using a simple MLP.
However, given the large parameter size of each LoRA layer, directly flattening the A and B ma-
trices and feeding them into a linear layer is infeasible, especially since LoRAs may have different
ranks, making the input dimension inconsistent. To address this, we first sum along the rank dimen-
sion within each LoRA layer, then flatten and concatenate the resulting A and B matrices. Each
concatenated vector is passed through a linear layer, and the outputs from all layers are summed to-
gether. Finally, the aggregated representation is fed into a two-layer MLP with a hidden dimension
of 768. Despite this simplification, the model still contains 3.68B parameters—an order of magni-
tude larger than our weight encoder, which only has 112.9M parameters. (2) Fixed-qi. Based on our
LoRA Encoder, this baseline initializes each probe vector qi randomly but keeps them fixed during
training, preventing any adaptation.

Table 11 presents the intra-class and inter-class similarity results across six LoRA categories. Com-
pared to the MLP Encoder, our proposed encoder achieves better performance with far fewer pa-
rameters. The fixed-qi method performs worst in terms of intra-class similarity, highlighting the
importance of learnable probe vectors. For inter-class similarity, all three methods achieve compa-
rable results (all negative), indicating that LoRAs are well separated in the learned semantic space.
The higher intra-class similarity of our method shows that training enables the encoder to capture
shared characteristics of LoRAs with similar functions. In particular, learnable qi vectors contribute
significantly by automatically discovering functional features of each LoRA, which brings LoRAs
of the same category closer together in the semantic space.

Table 11: Ablation on the LoRA Encoder. Our method yields higher intra-class similarity with fewer
parameters while maintaining inter-class separation.

Metric Method Cyber Ghibli Mecha Pixel Face 3D Avg.

Intra-class(↑)
MLP 0.457 0.435 0.447 0.512 0.403 0.302 0.426

Fixed-qi 0.513 0.364 0.432 0.483 0.384 0.324 0.417
Ours 0.492 0.434 0.453 0.600 0.474 0.368 0.471

Inter-class(↓)
MLP -0.036 -0.033 0.017 0.014 -0.167 -0.002 -0.034

Fixed-qi -0.025 -0.051 0.019 0.009 -0.170 0.002 -0.036
Ours -0.043 -0.019 0.015 0.042 -0.169 0.036 -0.023
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