
Memory-Efficient Gradient Unrolling for
Large-Scale Bi-level Optimization

Qianli Shen1∗ Yezhen Wang1 Zhouhao Yang1 Xiang Li1 Haonan Wang1

Yang Zhang1 Jonathan Scarlett1 Zhanxing Zhu2 Kenji Kawaguchi1
1National University of Singapore 2University of Southampton, UK

Abstract

Bi-level optimization (BO) has become a fundamental mathematical framework
for addressing hierarchical machine learning problems. As deep learning models
continue to grow in size, the demand for scalable bi-level optimization has become
increasingly critical. Traditional gradient-based bi-level optimization algorithms,
due to their inherent characteristics, are ill-suited to meet the demands of large-scale
applications. In this paper, we introduce Forward Gradient Unrolling with Forward
Gradient, abbreviated as (FG)2U, which achieves an unbiased stochastic approx-
imation of the meta gradient for bi-level optimization. (FG)2U circumvents the
memory and approximation issues associated with classical bi-level optimization ap-
proaches, and delivers significantly more accurate gradient estimates than existing
large-scale bi-level optimization approaches. Additionally, (FG)2U is inherently de-
signed to support parallel computing, enabling it to effectively leverage large-scale
distributed computing systems to achieve significant computational efficiency. In
practice, (FG)2U and other methods can be strategically placed at different stages of
the training process to achieve a more cost-effective two-phase paradigm. Further,
(FG)2U is easy to implement within popular deep learning frameworks, and can be
conveniently adapted to address more challenging black-box bi-level optimization
scenarios. We provide a thorough convergence analysis and a comprehensive
practical discussion for (FG)2U, complemented by extensive empirical evaluations,
showcasing its superior performance in diverse large-scale bi-level optimization
tasks. Code is available at https://github.com/ShenQianli/FG2U.

1 Introduction

Bi-level optimization is a mathematical framework with a long history of research [10, 65, 73],
dealing with hierarchical optimization problems where one problem is nested within the other. A
bi-level optimization problem can be formulated as:

min
ϕ

f(θ∗(ϕ),ϕ) s.t. θ∗(ϕ) ∈ argmin
θ

g(θ,ϕ), (1)

where θ ∈ Θ ⊆ RM denotes the inner parameter, ϕ ∈ Φ ⊆ RN denotes the meta parameter, and f ,
g are called the meta objective function and inner objective function, respectively.

Recently, with the rise of deep learning, bi-level optimization has regained attention as a theoret-
ical framework covering a wide range of machine learning problems, including hyperparameter
optimization [46, 43, 17, 16, 45], neural architecture search [78, 38, 14], robust machine learn-
ing [79, 76, 71, 26], meta learning [15, 53, 49, 2], and physics-informed machine learning [23, 62].
In these scenarios, the inner problem often pertains to the optimization of neural networks, thereby
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Category Method Constant Hessian-Free Stochastic Grad. Approx.
Memory Optimization Preference

Classical
GU [17, 16] ✗ ✓ ✓ -

IF [53, 19, 64] ✓ ✗ ✓ -
VF [39, 37, 61, 33] ✓ ✓ ✗ -

Large-scale
TRGU [60] ✓ ✓ ✓ Efficiency

Hessian-Free [76, 75, 9] ✓ ✓ ✓ Efficiency
(FG)2U (ours) ✓ ✓ ✓ Accuracy
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Figure 1: Top Left: A comparison of bi-level optimization methods. (FG)2U circumvents the
large-scale challenges inherent in classical bi-level optimization techniques. Within large-scale
bi-level optimization, (FG)2U prioritizes the accuracy of gradient approximation over efficiency.
Top Right: An overview of the cost-effective two-phase paradigm. (FG)2U is ideally positioned
in Phase II to enhance performance after an approximate solution has been obtained using other
efficient methods. Bottom Left: GPU Memory Usage and Performance on Meta Learning Online
Adaptation experiment. (FG)2U can effectively address the memory issue of RGU when both the
inner model and the unrolled depth are large. Bottom Center: GPU Memory Usage and Performance
on Data Condensation experiments. The performance of (FG)2U surpasses that of other large-scale
bi-level optimization methods, owing to its accurate gradient approximation, while demonstrating
better memory efficiency. Bottom Right: Efficiency tradeoff of (FG)2U on Data Condensation
experiments. The efficiency of (FG)2U can be well enhanced via intra/inter-GPU parallelism.

precipitating challenges associated with gradient-based bi-level optimization. Consequently, various
gradient-based bi-level optimization algorithms have been developed [73]. These algorithms typically
employ an iterative solution θT obtained by executing multiple inner optimization steps to approxi-
mate the meta gradient, and provide different tradeoffs between computational costs and performance
for meta gradient approximation.

However, as the scale of deep learning models continues to expand, the requirements for scalability
in bi-level optimization correspondingly increase. Existing gradient-based bi-level optimization
algorithms, due to their inherent characteristics, are ill-suited to meet the demands of large-scale
applications. Concretely, gradient unrolling (GU) methods [17, 16, 40, 60] are bottlenecked by
the memory overhead associated with either the dimension of the inner parameter or the number
of iterative steps for the inner problem. Implicit Function (IF) approaches [48, 19, 64, 76] are
compromised by approximation errors, which stem from the iterative estimation of inner solutions and
computations that involve the Hessian matrix. Value Function (VF) based strategies [39, 37, 61, 33],
although exhibit commendable theoretical properties [8] for deterministic bi-level optimization, have
yet to gain traction in practical applications, predominantly due to their limitations in addressing large-
scale stochastic challenges [73]. Recent advancements in algorithms [60, 9] have been specifically
tailored for large-scale bi-level optimization. Although these methodologies facilitate efficient
gradient approximation by compromising accuracy, they may result in significantly suboptimal
performance due to biased gradient approximations. Additionally, these methods struggle in more
complex scenarios, such as when inner problems are addressed through black-box optimization.

In this paper, we propose a novel method called Forward Gradient Unrolling with Forward Gradient,
abbreviated as (FG)2U, which achieves an unbiased stochastic approximation of the meta gradient for
bi-level optimization. (FG)2U circumvents the memory issues associated with GU-based approaches
and approximation issues associated with IF-based approaches. Compared to recently developed
large-scale bi-level optimization approaches, (FG)2U delivers significantly more accurate gradient
estimates. Additionally, (FG)2U is inherently designed to support parallel computing, enabling it to
effectively leverage large-scale distributed computing systems to achieve significant computational
efficiency. In practice, a cost-effective two-phase paradigm can be achieved by strategically placing
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(FG)2U and other methods at different stages of the training process to balance efficiency and
performance. Further, (FG)2U is easy to implement within popular deep learning frameworks, and
can be conveniently adapted to address more challenging zeroth-order bi-level optimization scenarios.

We provide an overview of (FG)2U in Figure 1 to illustrate its strengths and role in large-scale
bi-level optimization. The rest of the paper is organized as follows. Firstly, in Section 2, we provide
summaries of existing bi-level optimization algorithms and discuss their limitations in large-scale
contexts. Next, in Section 3, we introduce the proposed method, (FG)2U, followed by a convergence
analysis in Section 3.1 and a detailed discussion of the practical considerations in Section 3.2. Further,
in Section 4, we conduct extensive empirical studies covering large-scale bi-level optimization in
computer vision, natural language processing, and physics-informed machine learning to demonstrate
the efficacy of (FG)2U in large-scale bi-level optimization scenarios.

2 Background

Gradient-based Bi-level Optimization. Within deep learning applications, the model concerned
with optimizing over θ as presented in (1) typically constitutes deep neural networks. The optimal pa-
rameters of such networks are not explicitly accessible and are estimated through iterative procedures.
Consequently, the primal problem of bi-level optimization in (1) is approximately reformulated as
follows:

min
ϕ∈Φ

h(ϕ) := f(θT (ϕ),ϕ), (2)

where θ0(ϕ) = Ω0(ϕ), θt(ϕ) = Ωt(θt−1(ϕ),ϕ) ∈ Θ, t = 1, . . . , T,

where Φ ⊆ RN , Θ ⊆ RM are the parameter spaces; T , commonly called the unrolled depth, denotes
the number of inner optimization steps for approximating θ∗(ϕ); Ω0 : RN → RM specifies the
initialization of the inner optimization, and Ωt : Θ × Φ → Φ delineates the transition dynamics
of the inner optimization at timestep t. In particular, for gradient descent, Ωt(θt−1(ϕ),ϕ) =
θt−1 − ηt∇θg(θt−1,ϕ), where ηt denotes the step size at timestep t.

To optimize ϕ using a first-order method, it is necessary to estimate the meta gradient ∇ϕh, which
can be further decomposed according to the chain rule:

∇ϕh(ϕ)︸ ︷︷ ︸
meta gradient

=
∂f(θT (ϕ),ϕ)

∂θT

dθT (ϕ)

dϕ︸ ︷︷ ︸
implicit gradient

+
∂f(θT (ϕ),ϕ)

∂ϕ︸ ︷︷ ︸
explicit gradient

. (3)

The computation of meta-gradient poses a significant challenge, primarily due to the need for efficient
approximation of the implicit gradient. This task is complicated by the recursive dependency of θT
on ϕ. To surmount this challenge, a variety of gradient-based bi-level optimization algorithms have
been developed, as extensively reviewed recently in [73]. These algorithms can be fundamentally
categorized into three types based on their approach to meta-gradient approximation: Gradient
Unrolling (GU), Implicit Function (IF), and Value Function (VF). Recent innovations such as
truncated RGU (TRGU) [60] and Hessian-Free approaches [76, 75, 9], which are predicated on GU
and IF methodologies respectively, have introduced significant biases in their approximations to
accommodate the computational constraints of large-scale scenarios. In the subsequent paragraph,
we furnish a concise overview of GU-based approaches, addressing their non-constant memory
issues in large-scale applications. Extended discussions on the remaining methods are reserved
for Appendix B.

Gradient Unrolling. The core idea behind GU [17, 16, 40, 60] entails unrolling the inner optimiza-
tion into an expansive computational graph, followed by the employment of automatic differentiation
(AD) techniques for the iterative computation of gradients.

Forward Gradient Unrolling (FGU) [17, 16] computes the meta gradient using the following forward
recursive formula, starting from Z0 = dΩ0(ϕ)

dϕ :

dθt(ϕ)

dϕ︸ ︷︷ ︸
Zt

=
∂Ωt(θt−1(ϕ),ϕ)

∂θt−1︸ ︷︷ ︸
At

dθt−1(ϕ)

dϕ︸ ︷︷ ︸
Zt−1

+
∂Ωt(θt−1(ϕ),ϕ)

∂ϕ︸ ︷︷ ︸
Bt

, t = 1, . . . , T, (4)
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Reverse Gradient Unrolling (RGU) [46, 16], instead of the employment of explict reccursive formulas
of ZT , focuses on the implicit reccursive formulas of∇ϕh:

∇ϕh(ϕ) =
∂f(θT (ϕ),ϕ)

∂θT︸ ︷︷ ︸
dT

dθT (ϕ)

dϕ︸ ︷︷ ︸
ZT

+
∂f(θT (ϕ),ϕ)

∂ϕ︸ ︷︷ ︸
cT

=dTZT + cT
(4)
= dTAT︸ ︷︷ ︸

dT−1

ZT−1 + dTBT + cT︸ ︷︷ ︸
cT−1

= · · · = d0Z0 + c0.

(5)

The corresponding reverse recursive formulas can thus be summarized as

ct−1 = ct + dtBt, dt−1 = dtAt, t = T, . . . , 1. (6)

Weakness (GU): Non-Constant Memory. Both GU approaches exhibit a non-constant memory
overhead, which constrains their utility in large-scale scenarios. The forward reccursive formulas in (4)
revolve around the Jacobian matrix product, demanding O(MN) space consumption. The reverse
recursive formulas in (6) necessitate the storage of the entire trajectory of the inner optimization θ0:T
for backward computation, thereby imposing a memory requirement of O(TM). These requirements
are often impractical for large-scale bi-level optimization, when ϕ and θ are of high dimension and a
significant unrolled depth is required.

Forward Gradient. Forward-mode automatic differentiation (forward-mode AD) has been applied
to a variety of research fields, including the training of recurrent neural networks [70], the computation
of Hessian vector products [50], etc. However, the computation of the true gradient via forward-mode
AD requires the full Jacobian, which is typically too costly to compute.

To solve this, forward gradient learning [69, 4, 63, 4, 56], built upon forward-mode AD, was
proposed. Forward gradient methods update parameters based on the directional gradient along a
random perturbation direction for backpropagation-free training. More formally, given a differentiable
function h : RN → R, the gradient for a given input ϕ ∈ RN can be approximated as

∇̂h(ϕ) = ∇h(ϕ)vvT , (7)

where v ∼ p(v) is a N -dimensional multivariate random variable, satisfying E[vvT ] = I. Common
choices of the distribution of v include Rademacher v ∼ Unif({−1, 1}N ), Gaussian v ∼ N (0, I),
and uniform distribution over a set of normalized orthogonal coordinates v ∼ Unif({

√
Nei}1:N ).

For any given ϕ, ∇̂h(ϕ) is an unbiased estimator of ∇h(ϕ), as E[∇̂h(ϕ)] = E[∇h(ϕ)vvT ] =
∇h(ϕ)E[vvT ] = ∇h(ϕ)I = ∇h(ϕ). Despite the unbiasedness of ∇̂h, the dimension-dependent
variance of the estimated gradient with a single direction impedes the scaling-up to high-dimensional
problems. In practice, Monte Carlo gradient estimation can be used via averaged forward gradients
over multiple random directions to reduce the variance.

3 (FG)2U: Forward Gradient Unrolling with Forward Gradient

We aim to circumvent the memory overhead issues associated with forward gradient unrolling (FGU)
as discussed in Section 2. We begin by examining the forward gradient of h at ϕ,

∇̂h(ϕ) = ∇h(ϕ)vvT (5)
=(dTZTv + cTv)v

T , (8)

where v ∼ p(v) is a N -dimensional multivariate random variable, satisfying E[vvT ] = I. We follow
the idea of FGU introduced in Section 2 to compute ZTv. By multiplying both sides of (4) by v on
the right, we can obtain the recursive formulas for Ztv as

Z0v = B0v; Ztv = AtZt−1v +Btv, t = 1, . . . , T. (9)

The revised recursive formulas in (9) facilitate the tracking of a M -dimensional vector Ztv, rather
than full Jacobian Zt of size M ×N , throughout the forward pass. The stochastic estimation in (8)
is unbiased, adhering to the properties of forward gradient methods. To reduce the variance, we use
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Monte Carlo estimate via averaged forward gradients over b i.i.d. random directions:

∇̂h(ϕ) = 1

b

b∑
i=1

∇h(ϕ)viviT =
1

b

b∑
i=1

(dTZTvi + cTvi)vi
T . (10)

We call this algorithm (FG)2U, as an abbreviation of Forward Gradient Unrolling with Forward
Gradient. The algorithm is summarized in Appendix A as Algorithm 1.

Compared to GU-based methods, as discussed in Section 2, (FG)2U eliminates the dependency on
the meta parameter dimension N and the depth of unrolling T without introducing bias, significantly
enhancing memory efficiency. Unlike IF-based methods, as discussed in Appendix B.2, (FG)2U
overcomes the approximation issues associated with them while maintaining a constant memory
overhead, thus providing superior gradient approximation. Compared to TRGU and Hessian-Free
methods, which compromise approximation accuracy for efficiency, (FG)2U consistently delivers
accurate gradient approximations. The computational efficiency of (FG)2U can be further enhanced
by leveraging large-scale distributed computing resources, capitalizing on its inherently parallelizable
formulation as presented in (10). In practice, a more cost-effective two-phase paradigm can be
achieved by strategically placing (FG)2U and other methods at different stages of the training process,
as we will discuss in Section 3.2. For an illustration of the role of (FG)2U in large-scale bi-level
optimization, please refer to Figure 1.

3.1 Convergence

In this section, we provide a convergence analysis for (FG)2U. The proofs can be found in Appendix C.

First, we establish a bound on the variance of the estimated gradient, when employing random vectors
whose entries follow the Rademacher distribution.
Lemma 3.1. For any ϕ ∈ Φ, if vi ∼ Unif({−1, 1}N ), the gradient estimation in (10), satisfies

E∥∇̂h(ϕ)−∇h(ϕ)∥2 =
1

ρ
∥∇h(ϕ)∥2,

where ρ := b
N−1 ∈ (0, 1] as the sample size b is selected from 1, · · · , N − 1.

The resultant error is bounded by O
(
N−1
b

)
, where b represents the sample size used for computing

the forward gradient, and N is the dimensionality of the gradient itself. This bound demonstrates
how the error scales inversely with the sample size while also being influenced by the gradient’s
dimensionality.

Next, we lay down the following assumptions, on which our main theorems are based. Let ψ =
(θ,ϕ) ∈ Θ× Φ denote the combination of the lower-level parameter θ and the meta parameter ϕ.
Following existing papers on the theory of bilevel optimization [45, 60, 28], in Assumption 3.2, we
adopt some standard assumptions over the smoothness of the objective functions f and g.
Assumption 3.2. The meta objective function f(ψ) and the lower-level objective function g(ψ) are
both C-Lipschitz and L-smooth, i.e., for any ψ,ψ′ ∈ Θ× Φ,

|f(ψ)− f(ψ′)| ≤ C∥ψ −ψ′∥, ∥∇f(ψ)−∇f(ψ′)∥ ≤ L∥ψ −ψ′∥, (11)

|g(ψ)− g(ψ′)| ≤ C∥ψ −ψ′∥, ∥∇g(ψ)−∇g(ψ′)∥ ≤ L∥ψ −ψ′∥. (12)

The next assumption regulates that the transition functions Ω satisfy similar smoothness conditions.
Assumption 3.3. The transition functions Ω0:T are CΩ-Lipschitz and LΩ-smooth, i.e., for any
ϕ,ϕ′ ∈ Φ,

∥Ω0(ϕ)−Ω0(ϕ
′)∥ ≤ CΩ∥ϕ− ϕ′∥, ∥∇Ω0(ϕ)−∇Ω0(ϕ

′)∥ ≤ LΩ∥ϕ− ϕ′∥. (13)
For any ψ,ψ′ ∈ Θ× Φ, t = 1, . . . , T ,

∥Ωt(ψ)−Ωt(ψ
′)∥ ≤ CΩ∥ψ −ψ′∥, ∥∇Ωt(ψ)−∇Ωt(ψ

′)∥ ≤ LΩ∥ψ −ψ′∥. (14)

Assumption 3.3 is made to ensure the generality of our analysis over different optimizers. Note that
Ω is scheme-dependent w.r.t. the gradient-based optimizer we adopt for lower-level problems. In
many cases, such as gradient descent where Ωt(ψt−1) = θt−1 − ηt∇θg(ψt−1), Assumption 3.3 is
a direct consequence of Assumption 3.2.
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We propose the following theorem and remark for convergence analysis of (FG)2U on problem (2).
Notice the convergence result can be extended to the primal BO problem (1) with some further
assumptions. We place a proof scratch and some discussions in Appendix C.3.
Theorem 3.4 (Convergence). Suppose that Asumption 3.2 and Assumption 3.3 hold. Setting the
learning rate β = ρ

(ρ+1)Lh
for gradient descent over the hyperparameter ϕ, then there exists a

constant Lh (depending on C, L, CΩ, LΩ, and T , and defined formally in the proof) such that

1

K

K−1∑
k=0

E
[
∥∇h(ϕk)∥2

]
≤ 4Lh (E[h(ϕ0)]−minϕ h(ϕ))

ρK
. (15)

Remark 3.5. Theorem 3.4 shows that Algorithm 1 converges to an ϵ-accurate stationary point with a
convergence rate of = O(ϵ−1ρ−1).

Recall that ρ = b
N−1 , which indicates that the convergence rate is linearly dependent on N , which

poses a significant challenge when managing high-dimensional meta-parameters ϕ. However, it is
important to note that the dimension-dependent convergence rate represents an upper bound, and
scalability has been found to be feasible with several practical considerations, as discussed in the
following subsection.

3.2 Practical Considerations

Choice of b. According to the convergence analysis in Section 3.1, a sample size of b = O(N) is
required to achieve a convergence rate of O(ϵ−1). However, it has been widely observed that forward
gradient and zeroth-order optimization, despite having dimension-dependent convergence rates, work
well empirically with b = O(1) in large-scale scenarios, such as in LLM fine-tuning [47, 74]. In this
paper, we select the largest possible b that does not exceed the GPU memory limit for our empirical
study. Additionally, gradient accumulation is utilized to further control variance and stabilize the
training process.

Cost-Effective Two-Phase Paradigm. It is important to note that the upper bound delineated in (15)
linearly depends on the performance discrepancy between the initialized meta parameter ϕ0 and
the optimal. This dependence motivates the adoption of a more cost-effective two-phase paradigm
for large-scale bi-level optimization. In the initial phase, we utilize efficient yet less accurate
gradient approximation methods, such as TRGU [60] and Hessian-Free [9], to efficiently establish an
initial ϕ0 that surpasses random initialization, while keeping computational overhead manageable.
Subsequently, in the second phase, (FG)2U is utilized for a more accurate, albeit less efficient, gradient
approximation to further elevate the performance, leveraging extensive computational resources.

Implementation. The technique employed in computing ∇h(ϕ)v is identified as forward-mode
automatic differentiation (forward-mode AD). In advanced automatic differentiation libraries, such
as JAX [5] and PyTorch [3], forward-mode AD is efficiently implemented as Jacobian-vector product
(jvp), without the necessity of explicitly computing the Jacobian matrix. The FLOP cost of jvp is
approximately three times that of a standard forward pass, while the memory overhead is doubled. In
practice, it is only necessary to define the forward computational graph of inner optimization and
invoke forward-mode AD, which simplifies the implementation process significantly. Regarding
distributed training, JAX offers the vmap interface for efficient intra-GPU parallelism and the pmap
interface for effective inter-GPU parallelism.

Zeroth-order Bi-level optimization. In certain applications of bi-level optimization, the inner
problem is approached as a black box, where the gradient of Ω is inaccessible, rendering the analytical
gradient unrolling unfeasible. For example, in PDE-constrained optimization [23, 62], in which the
inner problem entails solving a Partial Differential Equation (PDE) using a non-differentiable solver.
In such scenarios, rather than employing forward-mode Automatic Differentiation (AD), one can
resort to Finite Difference methods to approximate the directional gradient∇h(ϕ)v by

∇h(ϕ)v = lim
µ→0

h(ϕ+ µv)− h(ϕ)

µ
≈ h(ϕ+ µ̄v)− h(ϕ)

µ̄
(16)

with sufficiently small positive µ̄ > 0. We refer to this zeroth-order variant of (FG)2U as (FG)2U-
ZO, noting that the computation solely encompasses two forward passes and does not involve the
utilization of any first-order information. The memory complexity is the same as forward-mode AD
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and the actual computation time will be slightly less than forward-mode AD, at the cost of introducing
an approximation bias. We give a more detailed discussion within the context of zeroth-order
optimization [41] in Appendix D, and empirically study a corresponding case in Section 4.

4 Experiments

We conduct experiments across various contexts, as detailed in the respective subsections. Initially,
we engage in an image data condensation task, where we focus on a comprehensive performance
comparison between (FG)2U and both classical and large-scale bi-level optimization algorithms.
Subsequently, we investigate meta-learning for the online adaptation of language models, employing
a GPT model as the inner model, to illustrate how (FG)2U effectively circumvents the non-constant
memory issue associated with RGU. Finally, we address a physics-informed bi-level optimization
problem, where gradient-based inner solvers are ineffective, to demonstrate the efficacy of combining
(FG)2U-ZO, the zeroth-order variant of (FG)2U discussed in Section 3.2, with non-differentiable
numerical solvers.

Data Condensation. To overcome the challenges posed by large-scale datasets, a line of works
known as data condensation [68, 72] has been proposed. The main idea is to generate a compact,
synthesized dataset, designed to elicit similar behaviors in machine learning models as those trained
with the original, massive dataset. The objective of the mainstream principles [72] designed for
data condensation can be naturally formulated as a bi-level optimization problem. We focus on the
best-known principle performance matching [72] on classification tasks, which can be formulated as

min
Dc

L(θT ;Do), where θt = θt−1 − η∇L(θt−1;Dc), t = 1, . . . , T, (17)

where Do, Dc respectively denote the original and condensed dataset, θ denotes the model parameter,
L denotes the cross-entropy loss function, and η represents the step-size for inner optimization.

Dataset IPC Ratio (%) Approaches For Reference
TRGU Hessian-Free Neumann (FG)2U RGU WHOLE

MNIST
1 0.017 73.76±1.68 65.98±1.38 68.37±1.44 82.44±0.68 92.32±0.33

99.6±0.0010 0.17 94.05±0.33 94.97±0.34 95.75±0.24 96.12±0.28 96.79±0.29

50 0.83 96.63±0.41 96.34±0.31 96.78±0.22 97.01±0.19 97.72±0.23

CIFAR-10
1 0.02 20.78±1.07 19.72±1.28 21.33±0.90 29.37±0.75 34.08±0.55

84.8±0.1010 0.2 44.01±0.57 45.32±1.02 47.67±0.87 50.10±0.56 53.15±0.53

50 1 49.22±0.45 48.73±0.78 50.02±0.69 51.98±0.44 56.37±0.37

CIFAR-100
1 0.2 3.96±0.68 3.14±0.41 4.52±0.56 8.22±0.45 15.61±0.32

56.2±0.3010 2 20.20±0.66 19.01±0.84 20.87±0.82 23.38±0.33 25.42±0.45

50 10 22.33±0.93 23.59±0.71 24.52±0.77 25.84±0.31 28.52±0.53

Table 1: The performance (testing accuracy %) comparison among various bilevel optimization
methods on the data condensation task over three datasets. All the datasets are condensed using a
3-layer ConvNet. IPC: image(s) per class. Ratio (%): the ratio of condensed examples to the whole
training set.

We conducted our experiments following the standard data condensation setting established by [68,
77, 67]. A more detailed task description is given in Appendix E.1 and implementation details are
given in Appendix F.1.

The condensed datasets are evaluated using 3-layer convolutional networks with randomly initialized
parameters, and the average accuracies on test datasets are summarized in Table 1. Compared to
large-scale bi-level optimization methods like TRGU and Hessian-Free, which prioritize efficiency at
the expense of approximation accuracy, (FG)2U exhibits significantly better performance, due to more
accurate gradient approximation as explained in Appendix B. Additionally, we assessed Neumann
Series (denoted as Neumann in Table 1), an IF-based method that mitigates gradient approximation
errors through extended computations, as introduced in Appendix B.2. While it demonstrates perfor-
mance enhancements over the Hessian-Free method, Neumann still yields suboptimal performance
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compared to (FG)2U, owing to the inherent bias of the IF-based method. Further discussions and
supporting evidence are available in Appendix B.2.

The results of RGU, which represent the upper performance bound for both TRGU and (FG)2U,
are provided for reference, along with the results from training on the entire dataset (denoted as
WHOLE in Table 1), representing the upper performance bound for all approaches. However, it
is crucial to acknowledge that RGU is not practical in large-scale bi-level optimization scenarios
due to its non-constant memory requirements, as discussed in Section 2. This limitation will be
further exemplified in the subsequent, where the inner model is significantly larger. In principle, the
performance of (FG)2U can be further improved to approach that of RGU by increasing the number
of random directions for gradient approximation.

The memory and computational efficiencies of TRGU, Hessian-Free, and (FG)2U in the most
challenging case (CIFAR-100, IPC=50) are reported in Figure 1 (Bottom Right), demonstrating that
the efficiency of (FG)2U can be significantly enhanced through intra/inter-GPU parallelism.

Meta Learning Online Adaptation of Language Models. The online adaptation of language
models (LM) has been studied recently to keep the knowledge of LM current [34, 27]. However,
trivial auto-regressive fine-tuning the LM, which applies uniform weights to all tokens, often results
in suboptimal performance in downstream tasks. This issue stems from the default average negative
log-likelihood (NLL) loss, which fails to capture the significance of tokens [25]. To overcome
this limitation, [25] proposed Context-aware Meta-learned Loss Scaling (CaMeLS), a strategy that
employs meta-learning to adjust token weights for more effective online adaptation. Specifically,
they meta train a weight model to reweight the auto-regressive loss during online fine-tuning, aiming
to enhance LM performance on downstream question-answering tasks. A comprehensive task
description and the mathematical formulation of the objectives are detailed in Appendix E.2.

The trained weight model is subsequently fine-tuned on unseen online documents and evaluated on
corresponding question-answering tasks. In [25], RGU is utilized for meta gradient approximation.
To mitigate the non-constant memory issue associated with RGU, a DistilGPT2 model [59] is chosen
as the surrogate base model for training the weight model, instead of larger models typically employed
for online adaptation. Additionally, a very limited unrolled depth of 6 is utilized within a 40 GiB
GPU memory budget. In our experiments, since (FG)2U has circumvented the non-constant memory
issue associated with RGU, we are able to increase the unrolled depth and upscale the base model for
training the weight model. Empirical evaluations are conducted on two datasets, StreamingQA [36]
and SQuAD-Seq [54].

Model (# params) Method StreamingQA SQuAD-Seq
EM (↑) F1 (↑) EM (↑) F1 (↑)

DistilGPT2 (82M)
CaMeLS + RGU [25, 66] 1.62 5.79 1.45 3.08
CaMeLS + RGU (impl.) 2.04 5.53 1.52 3.16

CaMeLS + (FG)2U (ours) 2.22 6.37 1.72 3.50

GPT2-Large (774M)
CaMeLS + RGU [25, 66] 5.35 10.60 4.97 8.63
CaMeLS + RGU (impl.) 7.02 12.19 4.86 8.57

CaMeLS + (FG)2U (ours) 7.21 12.50 5.56 8.99

GPT2-XL (1.5B)
CaMeLS + RGU [25, 66] 6.55 11.67 6.70 10.15
CaMeLS + RGU (impl.) 7.93 12.94 6.71 9.65

CaMeLS + (FG)2U (ours) 8.89 14.42 7.37 10.37

Table 2: Comparison of the online adaptation performance. The reported evaluation metrics include
the exact match (EM) and F1 scores. For vanilla CaMeLS [25], RGU is conducted with unrolled
depth 6, using DistilGPT2 as the base model. We present both the results reported by [66] and those
from our implementation (denoted as impl.). For CaMeLS + (FG)2U, we select unrolled depths from
{24, 48}, and the base model from {DistilGPT2, GPT2}. We report the results for the combination
that yields the best F1 score. Additional details and ablation studies are documented in Appendix G.1.

Firstly, we increased the unrolled depth while maintaining the base model as a DistilGPT2. We plotted
the F1 scores and GPU memory usages for RGU with unrolled depths of {1, 2, 4, 6} and (FG)2U
with unrolled depths of {24, 48} on StreamingQA in Figure 1 (Bottom Left). The performance
of the weight model is positively correlated with the unrolled depth, substantiating the benefits of
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training with larger unrolled depths. The non-constant memory issue associated with RGU can be
observed when the unrolled depth increases, while (FG)2U maintains constant memory even with
large unrolled depth. Subsequently, we endeavored to upscale the base model to GPT2 to reduce the
disparity between training and evaluation. The performances are summarized in Table 2, with detailed
ablation studies on unrolled depths and base model variants documented in Table G.1 and Table G.2.

Data-driven Discovery of Partial Differential Equations (PDEs). Let us consider the following
general forms of parametrized and nonlinear PDEs:

ut +N [u;ϕ] = 0, x ∈ Ψ, t ∈ [0, T ], (18)

where x denotes the space-time coordinate, Ψ denotes a bounded domain with boundary, u : [0, T ]×
Ψ→ R denotes the latent solution, ut represents the first-order derivative of u with respect to t, and
N is a general differential operator parameterized by ϕ, acting on Ψ. This setup encompasses a broad
spectrum of problems in physics. For example, the one-dimensional Burgers’ equation is defined by
N [u;ϕ] = µuux − νuxx, where ϕ = (µ, ν) ∈ R2, and ux, uxx represent the first and second-order
derivatives of u with respect to x, respectively.
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Burgers: PDE Solver Efficiency
PINN (Adam)
PINN (SGD)
Numerical

Method (FG)2U (FG)2U-ZO

Inner solver PINN [52] Numerical

Burgers ϵϕ(E-2, ↓) 2143.58±855.26 0.97±0.45

ϵu(E-3, ↓) 336.06±46.91 0.63±0.33

Allen-Cahn ϵϕ(E-2, ↓) 438.13±101.77 2.34±0.64

ϵu(E-3, ↓) 133.61±35.93 0.97±0.54

KdV ϵϕ(E-2, ↓) 94.40±4.31 0.72±0.57

ϵu(E-3, ↓) 832.81±67.01 2.72±1.55

Figure 2: Left: Comparison of efficiency between the PINN solver and the numerical solver. We
evaluated Adam [29] and SGD as the inner optimizers for the PINN solver, with steps ranging from
100 to 50,000. The results demonstrate that the numerical solver is significantly more efficient.
Right: Comparison of relative L2 errors in the prediction of ϕ and u. ϵϕ = ∥ϕpred − ϕ∥2/∥ϕ∥2,
ϵu = ∥upred − u∥2/∥u∥2.

The problem of data-driven discovery of PDEs [52] can be framed as follows: given a set of scattered
observations of the latent solution u(x), what are the parameters most accurately describing the
observed data? The problem can be formulated as a PDE-constrained optimization problem (PDECO):

min
ϕ

Ex,u∼D |u(x;ϕ)− u|2 s.t. ut +N [u(·;ϕ);ϕ] = 0, x ∈ Ψ, (19)

where D = {(xi, ui)}1:k denotes the observed data. In cases where the closed-form solutions of the
nonlinear PDEs are intractable, parametric solutions uθ are used to approximate the latent solution u
for given ϕ. The PDECO in (19) is then reformulated into a bi-level optimization problem:

min
ϕ

Ex,u∼D |uθS(ϕ)(x;ϕ)− u|2 s.t. θs(ϕ) = Ωs(θs−1,ϕ), s = 1, . . . , S. (20)

Employing gradient-based PDE solvers, such as physics-informed neural networks (PINN) [52],
facilitates the direct application of (FG)2U. However, as demonstrated in Figure 2 (Left), the accuracy
and efficiency of PINNs fall short of the rigorous demands of scientific computing. This limitation
has prompted us to integrate faster and more accurate traditional solvers like the spectral method [1]
(see also Appendix E.3.4) to tackle the inner problem. Given these solvers are non-differentiable,
we employ (FG)2U-ZO, the zeroth-order variant of (FG)2U introduced in Section 3.2, to solve the
problem.

We conduct experiments on three non-linear PDEs: Burgers, Allen-Cahn, and KdV, with a more de-
tailed task description available in Appendix E.3. The results are summarized in Figure 2 (Right). We
can observe that the combination of (FG)2U-ZO and the numerical solver significantly outperforms
(FG)2U and the PINN solver, in terms of both the prediction on ϕ and u. The implementation details
are documented in Appendix F.3.
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5 Conclusion

In this work, we propose a novel algorithm Forward Gradient Unrolling with Forward Gradient,
abbreviated as (FG)2U, designed to tackle the challenges associated with large-scale bi-level op-
timization. We conduct a convergence analysis of (FG)2U, perform extensive comparisons with
existing methods, and provide detailed discussions on its practical applications. Additionally, we
undertake an empirical evaluation across a series of large-scale bi-level optimization tasks. Our
findings indicate that (FG)2U effectively complements existing bi-level optimization algorithms,
addressing gaps in large-scale bi-level optimization scenarios.

Limitations and future works. The experiments conducted in this paper are of relatively small scale,
with the largest inner model being a GPT-2 model. We look forward to validating its effectiveness
on larger-scale bi-level optimization tasks. Additionally, the application of black-box bi-level
optimization and the potential of (FG)2U-ZO remain underexplored, considering the prevalent black-
box interaction between users and models today. We hope our work will inspire further development
of large-scale bi-level optimization algorithms and their application in corresponding scenarios.
Furthermore, we have not specifically addressed the efficiency issues inherited by (FG)2U from
the forward gradient method. Enhancing the efficiency of (FG)2U while maintaining its gradient
estimation accuracy will be an important direction for future research.
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A Algorithm

Algorithm 1 (FG)2U: Forward Gradient Unrolling with Forward Gradient

Require: Initial inner parameters θ0, initial meta parameter ϕ0, random direction distribution p,
number of random directions b, total meta steps K, meta update mappings Ψ1:K .

1: θ ← θ0, ϕ← ϕ0
2: for k = 1, . . . ,K do
3: for i = 1, . . . , b do
4: Sample vi ∼ p(·) and initialize yi ←

∂Ω0(θ,ϕ)
∂ϕ vi

5: end for
6: for t = 1, . . . , T do
7: θ ← Ωt(θ,ϕ),A← ∂Ωt(θ,ϕ)

∂θ ,B ← ∂Ωt(θ,ϕ)
∂ϕ

8: for i = 1, . . . , b do
9: yi ← Ayi +Bvi

10: end for
11: end for
12: for i = 1, . . . , b do
13: wi ← ∂f(θ,ϕ)

∂θ yi +
∂f(θ,ϕ)

∂ϕ vi
14: end for
15: ϕ← Ψk(ϕ,

1
b

∑b
i=1 wiv

T
i )

16: end for
17: return ϕ

B Extended Discussion on Bi-level Optimization

B.1 Truncated Reverse Gradient Unrolling (TRGU)

To address the memory issue of GU methods, truncated Reverse Gradient Unrolling (TRGU) [60] is proposed to
reduce the memory usage by preserving only the last K steps of the inner optimization trajectory. However, this
introduces a significant bias in large-scale scenarios, particularly when the permissible K is small.

Recall (5) and (6), where the conventional RGU method computes the hypergradient by fully unrolling the T -step
inner optimization into a computational graph. Instead, TRGU performs s-step truncated back-propagation and
approximates the gradient with the intermediate term cT−s:

cT−s = cT +

T∑
t=T−s+1

BtAt+1 · · ·AT dT . (21)

According to Proposition 3.1 in [60], if the inner-level objective function g is L-smooth, twice-differentiable and
globally α-strongly convex, and the gradient update rule writes θt = θt−1 − η∇θg(θt−1,ϕ), then the bias of
s-step TRGU would be bounded by

∥∇ϕh− cT−s∥ ≤ (1− ηα)s

ηα
∥dT ∥ max

t∈0,...,T−s
∥Bt∥. (22)

The bound (22) demonstrates an exponentially decaying rate in s over the bias of s-step TRGU. However, when s
gets smaller, which means that we truncate the computational graph heavier in pursuit of lower memory cost, the
bias would grow exponentially. This would result in an inaccurate calculation of the hypergradient. Contrastively,
our (FG)2U is an unbiased estimator of the hypergradient, while still keeping high memory efficiency with a
small sample size of forward gradient as in (10).

B.2 Implicit Function (IF)

Another idea for computing the implicit gradient is to utilize the implicit function theorem (IFT) [30]. Suppose
that the inner optimality ∇θg(θT (ϕ),ϕ) ≈ 0 is approximately achieved by sufficient inner optimization steps.
If g is second-order differentiable, by applying the implicit function theorem and taking the first-order derivative
of ϕ,

∂2g(θT (ϕ),ϕ)

∂θ2T

dθT (ϕ)

dϕ
+

∂2g(θT (ϕ),ϕ)

∂θT ∂ϕ
≈ 0. (23)
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Then, if the Hessian is further assumed to be invertible, the meta gradient can be approximated as

∇h(ϕ) ≈ − ∂f(θT (ϕ),ϕ)

∂θT︸ ︷︷ ︸
d

(
∂2g(θT (ϕ),ϕ)

∂θ2T

)−1

︸ ︷︷ ︸
H−1

∂2g(θT (ϕ),ϕ)

∂θT ∂ϕ︸ ︷︷ ︸
Y

+
∂f(θT (ϕ),ϕ)

∂ϕ︸ ︷︷ ︸
c

. (24)

The main challenge lies in the computation of the inverse Hessian matrixH−1, which is intractable when θ is of
high dimensionality. Fortunately, several iterative inverse Hessian vector product (ihvp) approximators requiring

only Hessian vector product (hvp) and O(M) space can be employed to produce d̂H−1 for approximating
dH−1, based on Conjugate Gradient [48, 53], Neumann Series [19, 28] and low-rank approximation [64, 24].

Neumann Series. The inverse Hessian vector product can be approximated with a truncated sum of Neumann
series [19, 28],

d̂H−1 = α

K∑
k=0

d(I − αH)k = dH−1 − α

∞∑
k=K+1

d(I − αH)k, (25)

where α is a hyperparameter to ensure the convergence, and K is the number of truncated steps. Compared to
other IF-based methods, the Neumann Series has demonstrated good empirical performance and stability [19],
and its stochastic variant has been well studied [28].

Weakness (IF): Approximation Errors. The errors of IF emanate from two distinct sources Firstly, IFT
presupposes that the Karush-Kuhn-Tucker (KKT) conditions of the inner problem are satisfied, leading to
an approximation error in (23) when iterative approximations of the inner solutions are used. Secondly, the
singular nature of the Hessian within neural network training [57] leads to costly and unstable inverse Hessian
approximation in practical applications, with a heavy reliance on engineering efforts [9]. More formally, recall

∇h(ϕ) =
∂f(θT (ϕ),ϕ)

∂θT︸ ︷︷ ︸
d

dθT (ϕ)

dϕ︸ ︷︷ ︸
Z

+
∂f(θT (ϕ),ϕ)

∂ϕ︸ ︷︷ ︸
c

. (26)

The approximation error can be decomposed into

∇h(ϕ)− ∇̂h(ϕ)︸ ︷︷ ︸
ϵ

= d(Z +H−1Y )︸ ︷︷ ︸
ϵif

+(d̂H−1 − dH−1)Y︸ ︷︷ ︸
ϵinv

. (27)

To reduce the computational cost, Hessian-free approaches [76, 75, 9] propose approximating the Hessian as an
identity matrix, incorporating additional assumptions about the inner model and objective.

d̂H−1 = αdI, (28)

where α > 0 is a hyperparameter to control the magnitude. However, these numerous assumptions often diverge
from practical scenarios, resulting in significant approximation errors and consequently inducing suboptimal
outcomes.

100 101 102 103

Iteration
0

1

2

3

4

5

In
ne

r L
os

s

(a). Inner Loss v.s. Iterations.

100 101 102 103

Iteration

2.0

1.5

1.0

0.5

0.0

Lo
g1

0 
of

 L
2 

Gr
ad

. N
or

m

(b). Gradient Norm v.s. Iterations.

Figure B.1: CIFAR100, IPC=50: Inner Loss and gradient norm for Neumann

In Figure B.1, it is evident that the inner optimization has not converged by the unrolled step 100, as indicated
by both inner loss and gradient norm. This observation implies that the Karush-Kuhn-Tucker (KKT) conditions
are not satisfied, leading to the conclusion that the approximation used in (23) introduces a bias.
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B.3 Value Function (VF)

The VF-based methodology [39, 37, 61, 33] considers an equivalent reformulation of the original optimization
problem as outlined in (2):

min
θ,ϕ

f(θ,ϕ) s.t. g(θ,ϕ) ≤ g(θT (ϕ),ϕ). (29)

This reformulation casts the standard bi-level optimization challenge into a constrained single-level optimization
framework. VF-based methods circumvent the need for second-order computations and have demonstrated
near-optimal complexity, comparable to second-order methodologies in deterministic settings, as reported in [8].

Weakness (VF): stochastic optimization. VF-based strategies have yet to gain widespread acceptance in
practical ML applications. This limited adoption is primarily attributed to the challenges these methods face in
addressing large-scale stochastic problems, where the complexity significantly impedes their performance [73].

C Proofs of Theoretical Results

In this section, we detail the proofs of Lemma 3.1 and Theorem 3.4. Our approach to proving Theorem 3.4
follows a similar high-level approach as [19, 28, 60] with some important distinctions. Initially, in Lemma B.2,
we extend the smoothness properties of the objective functions f and g, and the transition functions Ω, to
the T -th iteration lower-level parameter θT . Following this, Lemma B.3 establishes the smoothness of the
meta-learning objective f(θT ,ϕ), incorporating results from the inner-loop computations. Building on the
demonstrated smoothness of the meta objective function and the variance of the forward gradient method (as
shown in Lemma 3.1), we then validate the convergence properties of Algorithm 1.

The novelty in our proof of Theorem 3.4 lies in two primary aspects. Firstly, our analysis does not presume that
the lower-level optimization yields an optimal solution θ∗; instead, it more realistically assumes the use of θT ,
which is derived from a finite number of iterations. This assumption aligns more closely with the computational
constraints encountered in real-world scenarios. Secondly, our convergence analysis explicitly accounts for the
variance of our unbiased gradient estimator, achieving a convergence rate of O(ϵ−1ρ−1). This demonstrates that
utilizing the forward gradient method, while significantly reducing memory requirements, does not adversely
affect the algorithm’s convergence rate, underscoring the practical viability and efficiency of our approach even
with memory constraints.

In Appendix C.3, we discuss how to extend the convergence of optimization problem (2) into (1), with additional
assumptions.

C.1 Proof of Lemma 3.1

For convenience, the lemma is restated as follows.
Lemma 3.1. For any ϕ ∈ Φ, the gradient estimation with forward gradient method:

∇̂h(ϕ) =
1

b

b∑
i=1

∇h(ϕ)vivi
⊤,

where vi ∼ Unif({−1, 1}N ), and b denotes the sample size, satifies

E∥∇̂h(ϕ)−∇h(ϕ)∥2 =
1

ρ
∥∇h(ϕ)∥2,

where ρ := b
N−1

∈ (0, 1] as b is selected from 1, . . . , N − 1.

Proof. We start by computing the variance of one-sample estimation, ∇̂h(ϕ) = ∇h(ϕ)vv⊤. Since E[vv⊤] =

I, we know that E[∇̂h(ϕ)] = ∇h(ϕ). Consequently,

E∥∇̂h(ϕ)− E∇̂h(ϕ)∥2 = E∥∇h(ϕ)(vv⊤ − I)∥2

= E[∇h(ϕ)⊤(vv⊤ − I)⊤(vv⊤ − I)(∇h(ϕ))]

= E[(∇h(ϕ))⊤(vv⊤)⊤vv⊤∇h(ϕ)− 2(∇h(ϕ))⊤(vv⊤)⊤∇h(ϕ) + (∇h(ϕ))⊤∇h(ϕ)]

= E∥∇h(ϕ)vv⊤∥2 − 2E∥∇h(ϕ)v∥2 + ∥∇h(ϕ)∥2.

(30)

Since v is an N -dimensional Rademacher random variable, we have E∥∇h(ϕ)v∥2 = ∥∇h(ϕ)∥2 and
E∥vv⊤∥2 = N . Then,

(30) = E∥∇h(ϕ)vv⊤∥2 − ∥∇h(ϕ)∥2

= (N − 1)∥∇h(ϕ)∥2.
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For the multi-sample estimation ∇̂h(ϕ) = 1
b

∑b
i=1 ∇h(ϕ)vivi

⊤. Sincevi are i.i.d. sampled, and E[∇̂h(ϕ)] =
∇h(ϕ), we have

E∥∇̂h(ϕ)− E∇̂h(ϕ)∥2 = E
∥∥∥∇h(ϕ)

1

b

b∑
i=1

(vivi
⊤ − I)

∥∥∥2

=
1

b2

b∑
i=1

E∥∇h(ϕ)(vivi
⊤ − I)∥2

=
N − 1

b
∥∇h(ϕ)∥2.

C.2 Proof of Theorem 3.4

To prove our main result (Theorem 3.4), we first establish useful smoothness properties of the hyperparameter
learned from solving the lower-level optimization problem. Subsequently, we establish the smoothness of the
meta objective function examined at the approximated lower-level parameters in Lemma B.3.

Regarding the lower-level parameter θ(ϕ), we present the following lemma, which is based on Assumption 3.3,
and establishes that θ(ϕ) inherits similar Lipschitz continuity and smoothness properties as Ωt.
Lemma B.2. Under Assumptions 3.2 and 3.3, θT (ϕ) is CZ -Lipchitz and LZ -smooth, i.e., for any ϕ,ϕ′ ∈ Φ,

∥θT (ϕ)− θT (ϕ′)∥ ≤ CZ∥ϕ− ϕ′∥, ∥∇θT (ϕ)−∇θT (ϕ′)∥ ≤ LZ∥ϕ− ϕ′∥,

where CZ =
CT+2

Ω
−CΩ

CΩ−1
and LZ = LΩ

[
CT

Ω +
CT+2

Ω
T

CΩ−1
− CT

Ω−1

(CΩ−1)2

]
.

Proof. We start with the proof of Lipshitz continuity. For any pair of ϕ,ϕ′ ∈ Φ, using (2) and Assumption 3.3,
we have

∥θs(ϕ)− θs(ϕ′)∥ = ∥Ω(θs−1(ϕ),ϕ)−Ω(θs−1(ϕ
′),ϕ′)∥

≤ CΩ∥θs−1(ϕ)− θs−1(ϕ
′)∥+ CΩ∥ϕ− ϕ′∥.

(31)

Applying (31) recursively over s = 1, . . . , t gives

∥θt(ϕ)− θt(ϕ′)∥ ≤ Ct
Ω∥θ0(ϕ)− θ0(ϕ′)∥+

t∑
s=1

Cs
Ω∥ϕ− ϕ′∥

≤
t+1∑
s=1

Cs
Ω∥ϕ− ϕ′∥ =

Ct+2
Ω − CΩ

CΩ − 1
∥ϕ− ϕ′∥,

(32)

where the last inequality holds from the fact that θ0 = Ω0 as well as Assumption 3.3, and the subsequent
equality follows from the geometric series summation formula.

Therefore, θt(ϕ) is CZ(t)-Lipchitz, where CZ(t) :=
Ct+2

Ω
−CΩ

CΩ−1
. Substituting t = T , we get CZ = CZ(T ) =

CT+2
Ω

−CΩ

CΩ−1
.

We now proceed with the proof of LZ -smoothness. For simplicity of notation, we follow (4) and denote

Zt(ϕ) = ∇θt(ϕ); At(ϕ) =
∂Ωt(θt−1(ϕ),ϕ)

∂θt−1
; Bt(ϕ) =

∂Ωt(θt−1(ϕ),ϕ)

∂ϕ
.

Subsequently, considering the update rule Zt(ϕ) = At(ϕ)Zt−1(ϕ) +Bt(ϕ) of Forward Gradient Unrolling
(4), we have
∥∇θt(ϕ)−∇θt(ϕ′)∥
= ∥Zt(ϕ)−Zt(ϕ

′)∥
(4)
= ∥At(ϕ)Zt−1(ϕ) +Bt(ϕ)−

[
At(ϕ

′)Zt−1(ϕ
′) +Bt(ϕ

′)
]
∥

≤ ∥At(ϕ)Zt−1(ϕ)−At(ϕ
′)Zt−1(ϕ

′)∥+ ∥Bt(ϕ)−Bt(ϕ
′)∥

= ∥At(ϕ)Zt−1(ϕ)−At(ϕ)Zt−1(ϕ
′) +At(ϕ)Zt−1(ϕ

′)−At(ϕ
′)Zt−1(ϕ

′)∥+ ∥Bt(ϕ)−Bt(ϕ
′)∥

≤ ∥At(ϕ)Zt−1(ϕ)−At(ϕ)Zt−1(ϕ
′)∥+ ∥At(ϕ)Zt−1(ϕ

′)−At(ϕ
′)Zt−1(ϕ

′)∥
+ ∥Bt(ϕ)−Bt(ϕ

′)∥
≤ ∥At(ϕ)∥ · ∥Zt−1(ϕ)−Zt−1(ϕ

′)∥+ ∥At(ϕ)−At(ϕ
′)∥ · ∥Zt−1(ϕ

′)∥+ ∥Bt(ϕ)−Bt(ϕ
′)∥

≤ CΩ∥Zt−1(ϕ)−Zt−1(ϕ
′)∥+ (CZ(t) + 1)LΩ∥ϕ− ϕ′∥,

(33)
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where the last inequality follows from Assumption 3.3 that Ω0(ϕ) and Ω1:T (ψ) are CΩ-Lipshitz and LΩ-
smooth, and the previously proved result that θt(ϕ) is CZ(t)-Lipchitz.

Noting that Z0(ϕ) = ∇θ0(ϕ) = ∇Ω0(ϕ), applying (33) recursively over t = 1, . . . , T gives

∥∇θT (ϕ)−∇θT (ϕ′)∥ ≤ CT
Ω∥Z0(ϕ)−Z0(ϕ‘)∥+

T∑
t=1

CT−t
Ω (CZ(t) + 1)LΩ∥ϕ− ϕ′∥

= CT
Ω∥∇Ω0(ϕ)−∇Ω0(ϕ

′)∥+ CT
Ω

T∑
t=1

CZ(t) + 1

Ct
Ω

LΩ∥ϕ− ϕ′∥

≤ LΩCT
Ω∥ϕ− ϕ′∥+ CT

Ω

T∑
t=1

Ct+2
Ω − 1

Ct
Ω(CΩ − 1)

LΩ∥ϕ− ϕ′∥

= LΩ

[
CT

Ω + CT
Ω

T∑
t=1

C2
Ω

CΩ − 1
− CT

Ω

CΩ − 1

T∑
t=1

1

Ct
Ω

]
∥ϕ− ϕ′∥

= LΩ

CT
Ω +

CT+2
Ω T

CΩ − 1
− CT

Ω

CΩ − 1

1
CΩ

(1− 1
CT

Ω

)

1− 1
CΩ

 ∥ϕ− ϕ′∥

= LΩ

[
CT

Ω +
CT+2

Ω T

CΩ − 1
− CT

Ω − 1

(CΩ − 1)2

]
∥ϕ− ϕ′∥,

where the third line follows from Assumption 3.3 that Ω0(ϕ) is LΩ-smooth and the choice CZ(t) =
Ct+2

Ω
−CΩ

CΩ−1

(which gives CZ(t) + 1 =
Ct+2

Ω
−1

CΩ−1
), and the fifth line again uses the geometric series summation formula.

Hence, θT (ϕ) is LZ -smooth with LZ = LΩ

[
CT

Ω +
CT+2

Ω
T

CΩ−1
− CT

Ω−1

(CΩ−1)2

]
.

Next, we provide a lemma establishing that the upper-level objective f , evaluated at the learned parameter
(θT (ϕ),ϕ), also adheres to certain smoothness properties.
Lemma B.3. Define h(ϕ) := f(θT (ϕ),ϕ). Under Assumptions 3.2 and 3.3, h(ϕ) is Lh-smooth, i.e., for any
ϕ,ϕ′ ∈ Φ,

∥∇h(ϕ)−∇h(ϕ′)∥ ≤ Lh∥ϕ− ϕ′∥,
where Lh = (CZ + 1)2L+ CLZ , with CZ and LZ defined in Lemma B.2.

Proof. For simplicity of notation, we follow (5) and denote

Zt(ϕ) = ∇θt(ϕ); cT (ϕ) =
∂f(θT (ϕ),ϕ)

∂ϕ
; dT (ϕ) =

∂f(θT (ϕ),ϕ)

∂θT
.

For any ϕ,ϕ′ ∈ Φ, following a similar proof as Lemma B.2, we have

∥∇h(ϕ)−∇h(ϕ′)∥
(5)
= ∥dT (ϕ)ZT (ϕ) + c(ϕ)− (dT (ϕ

′)ZT (ϕ
′) + c(ϕ′))∥

≤ ∥dT (ϕ)ZT (ϕ)− dT (ϕ
′)ZT (ϕ

′)∥+ ∥cT (ϕ)− cT (ϕ′)∥
= ∥dT (ϕ)ZT (ϕ)− dT (ϕ

′)ZT (ϕ) + dT (ϕ
′)ZT (ϕ)− dT (ϕ

′)ZT (ϕ
′)∥+ ∥cT (ϕ)− cT (ϕ′)∥

≤ ∥dT (ϕ)− dT (ϕ
′)∥ · ∥ZT (ϕ)∥+ ∥dT (ϕ

′)∥ · ∥ZT (ϕ)−ZT (ϕ
′)∥+ ∥cT (ϕ)− cT (ϕ′)∥

(34)

Subsequently, we deduce that

(34) ≤ CZ∥dT (ϕ)− dT (ϕ
′)∥+ CLZ∥ϕ− ϕ′∥+ ∥cT (ϕ)− cT (ϕ′)∥

≤ CZ

(∥∥∥∂f(θT (ϕ),ϕ)
∂θT

− ∂f(θT (ϕ
′),ϕ)

∂θT

∥∥∥+
∥∥∥∂f(θT (ϕ′),ϕ)

∂θT
− ∂f(θT (ϕ

′),ϕ′)

∂θT

∥∥∥)
+

(∥∥∥∂f(θT (ϕ),ϕ)
∂ϕ

− ∂f(θT (ϕ
′),ϕ)

∂ϕ

∥∥∥+
∥∥∥∂f(θT (ϕ′),ϕ)

∂ϕ
− ∂f(θT (ϕ

′),ϕ′)

∂ϕ′

∥∥∥)
+ CLZ∥ϕ− ϕ′∥

≤ CZL∥θT (ϕ)− θT (ϕ′)∥+ CZL∥ϕ− ϕ′∥+ L∥θT (ϕ)− θT (ϕ′)∥+ L∥ϕ− ϕ′∥
+ CLZ∥ϕ− ϕ′∥

≤ CZLCZ∥ϕ− ϕ′∥+ CZL∥ϕ− ϕ′∥+ LCZ∥ϕ− ϕ′∥+ L∥ϕ− ϕ′∥+ CLZ∥ϕ− ϕ′∥
= [(CZ + 1)2L+ CLZ ]∥ϕ− ϕ′∥,
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where the first, third, and fourth lines all follow directly from Lemma B.2 and Assumption 3.3 (recall that the
latter states that f is L-Lipschitz and C-smooth).

Therefore, h(ϕ) is Lh-smooth with Lh = (CZ + 1)2L+ CLZ .

Now based on the aforementioned lemmas, we put forward the proof of our main theorem: the convergence
analysis for our bilevel optimization method (FG)2U.
Theorem 3.4 (Convergence). Suppose that Asumption 3.2 and Assumption 3.3 hold. Setting the learning rate
β = ρ

(ρ+1)Lh
for gradient descent over the hyperparameter ϕ, we have

1

K

K−1∑
k=0

E
[
∥∇h(ϕk)∥

2] ≤ 4Lh (E[h(ϕ0)]−minϕ h(ϕ))

ρK
. (35)

Proof. We have

h(ϕk+1)− h(ϕk)

≤
〈
∇h(ϕk),ϕk+1 − ϕk

〉
+

Lh

2
∥ϕk+1 − ϕk∥

2

= −β⟨∇h(ϕk), ∇̂h(ϕk)⟩+
β2Lh

2
∥∇̂h(ϕk)∥

2

= −β⟨∇h(ϕk), ∇̂h(ϕk)⟩+
β2Lh

2
∥∇h(ϕk) + ∇̂h(ϕk)−∇h(ϕk)∥

2

= −β2Lh

2
∥∇h(ϕk)∥

2 + (β2Lh − β)⟨∇h(ϕk), ∇̂h(ϕk)⟩+
β2Lh

2
∥∇h(ϕk)− ∇̂h(ϕk)∥

2,

(36)

where the second line is a well-known inequality for smooth functions with the Lh-smoothness itself following
from Lemma B.3, and the third line uses the gradient descent rule ϕk+1 = ϕk − β∇̂h(ϕk).

By Lemma 3.1 and the fact that ∇̂h is unbiased (see the proof of Lemma 3.1), we know that

E[⟨∇h(ϕk), ∇̂h(ϕk)⟩|ϕk] = ∥∇h(ϕk)∥
2;

E[∥∇h(ϕk)− ∇̂h(ϕk)∥
2|ϕk] =

1

ρ
∥∇h(ϕk)∥

2.

Therefore, taking the conditional expectation E[ · |ϕk] over (36) gives

E[h(ϕk+1)|ϕk]− h(ϕk) ≤ −
[
β −

(
1 +

1

ρ

)β2Lh

2

]
∥∇h(ϕk)∥

2. (37)

Furthermore, taking the full expectation and telescoping (37) over k form 0 to K − 1 yields

1

K

K−1∑
k=0

[
β − (ρ+ 1)Lh

2ρ
β2

]
E
[
∥∇h(ϕk)∥

2] ≤ E[h(ϕ0)]− E[h(ϕK)]

K

≤ E[h(ϕ0)]−minϕ h(ϕ)

K
.

(38)

Choosing β = ρ
(ρ+1)Lh

, we have

1

K

K−1∑
k=0

E
[
∥∇h(ϕk)∥

2] ≤ 2(ρ+ 1)Lh (E[h(ϕ0)]−minϕ h(ϕ))

ρK

≤ 4Lh (E[h(ϕ0)]−minϕ h(ϕ))

ρK
.

(39)

Hence, Algorithm 1 requires O(ϵ−1ρ−1) steps to attain an ϵ-accurate stationary point.

C.3 Extended Discussions

Convergence of Problem (1). To extend the convergence of optimization problem (2) into (1), we need to
assume that the lower-level objective function g is strongly convex w.r.t. θ as commonly done by previous
works [60, 28]. From the strong convexity and first-order smoothness (Assumption 3.2) of g, we have 1) the
zeroth and first-order smoothness of θ∗(ϕ); 2) ∥θT (ϕ′)− θ∗(ϕ′)∥ → 0 as T → +∞. Then the inequality

∥θT (ϕ)− θT (ϕ′)∥ ≤ ∥θT (ϕ)− θ∗(ϕ)∥+ ∥θT (ϕ′)− θ∗(ϕ′)∥+ ∥θ∗(ϕ)− θ∗(ϕ′)∥ (40)
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implies the the zeroth and first-order smoothness of θT (ϕ). Following the same line of proof as presented in our
paper, we derive the smoothness of f(θ∗(ϕ),ϕ) and f(θT (ϕ),ϕ), and subsequently the convergence of either
problem (1) or (2).

However, as discussed in Section 2, given that the scope of this paper is large-scale BO, the inner optimization
typically involves deep neural networks. Therefore, the optimal parameters are not explicitly accessible and
can only be estimated through iterative procedures. Most related works [9, 60, 28] are implicitly or explicitly
solving (2) instead of (1). Additionally, it is important to acknowledge that achieving strong convexity is
often unfeasible in practical applications. Consequently, we focus on (2), aiming to present a more practical
convergence theory that proves the effectiveness of our method.

D Zeroth-Order Derivative Estimator

In this section, we give a more detailed introduction to zeroth-order (ZO) derivative estimators. These estimators
are pivotal in scenarios where the computation of exact derivatives is either infeasible due to memory constraints
or computationally prohibitive. Apart from the forward gradient method employed in (FG)2U, randomized
smoothing (RS) is another widely-used derivative estimator, both in Reinforcement Learning [22, 32] and Large
Language Models [18, 47, 74].

For a function F : Rn → R, gradient estimation via RS can be mathematically formulated as:

∇xF ≈ Ev∼N (0,I)

[
F (x+ ϵv)− F (x)

ϵ
v⊤

]
≈ 1

b

b∑
i=1

F (x+ ϵvi)− F (x)

ϵ
v⊤i , (41)

where b is the number of random samples, ϵ is the smoothing parameter, vi are samples drawn from a standard
Gaussian distribution. Regarding the accuracy of estimation, it has been shown in [13, 42] that the variance of
RS is roughly in the order of O(N/b), which is the same as FG as proved in Lemma 3.1.

RS stands out particularly in its ability to estimate gradients of functions evaluated through black-box systems,
where internal operations are inaccessible or highly complex. This characteristic makes RS exceptionally
valuable in practical applications such as adversarial robustness and black-box optimization, where obtaining
direct gradients might not be possible. Another advantage of RS is its robustness against noise and discontinuities
in the function landscape. Unlike deterministic methods, the stochastic nature of RS allows it to approximate the
gradient over a smoothed version of the function, providing stability in scenarios where slight perturbations can
lead to substantial changes in the output.

While RS provides robust gradient estimates across various scenarios, it is critical to recognize that RS inherently
introduces bias if the expectation is not computed during inference. In many CV and NLP applications, the
computational expense of Monte Carlo sampling at the evaluation stage is prohibitive, leading to a biased
estimation when using RS. However, in the context of inverse PDE problems, where the inner-loop solvers are
non-differentiable numerical solvers, we employ RS as a zeroth-order derivative estimator.

E Detailed Task Description

E.1 Data Condensation

In the era of rapid advancement in machine learning, a multitude of foundation models [11, 6, 55] has benefited
from training on large-scale datasets, exhibiting formidable performance that models trained on small-scale
data cannot match. However, the exponential growth of data also presents challenges: (1) Models updated with
only new data are prone to catastrophic forgetting [20] while retaining all historical data for subsequent training
imposes significant storage and computational burdens. (2) Applications within the realm of meta-learning, such
as hyperparameter tuning [46, 43] and neural architecture search [78, 38], necessitate multiple training iterations
over datasets. The computational cost of these operations scales dramatically with the size of the datasets, posing
a bottleneck for efficiency and scalability. (3) The widespread dissemination and utilization of datasets have
raised significant concerns regarding privacy and copyright [12].

To overcome the challenges posed by large-scale datasets, a line of work known as data condensation [68, 72]
has been proposed, with the idea to generate a compact, synthesized dataset, designed to elicit similar behaviors
in machine learning models as those trained with the original, massive dataset. The objectives of the mainstream
principles [72] designed for data condensation can be naturally formulated as a bi-level optimization problem.
We focus on the best-known principle performance matching [72] on classification task, which can be formulated
as,

min
Do

L(θT ;Do), where θt = θt−1 − η∇L(θt−1;Dc), t = 1, . . . , T, (42)

We conduct our experiments to condense the following image datasets:

21



• MNIST [35]: a handwritten digits dataset containing 60, 000 training images and 10, 000 testing
images with the size of 28× 28 from 10 categories.

• CIFAR 10/100 [31]: colored natural images datasets contraining 50, 000 training images and 10, 000
testing images from 10/100 categories, respectively.

The scale of the condensed dataset will fundamentally impact the results. Therefore, we consider different scales
for each dataset, with images per class set to 1, 10, and 50. The condensed dataset will be used to train random
initialized models, and evaluated on a test dataset.

E.2 Meta Learning Online Adaptation of Language Models

The online adaptation of language models (LM) [34, 27] has been studied recently to keep the knowledge of
LM updated to date. However, trivial auto-regressive fine-tuning the LM with uniform weights for all tokens
results in poor performance in downstream tasks, as the default average negative log-likelihood (NLL) loss
does not accurately reflect the importance of tokens [25]. To address the issue, [25] proposed Context-aware
Meta-learned Loss Scaling (CaMeLS) to meta-learning the weights of tokens for effective online adaption. More
formally, let θ denote the parameter of the base model for adaptation, ϕ denote the parameter of a parametric
weight model to assign weights for each token, the meta-learning online adaption of LM can be formulated as
the following bi-level optimization,

min
ϕ

Lmeta(θT (ϕ),ϕ) s.t. θt(ϕ) = θt−1(ϕ)− η∇θLtrain(θt−1, wϕ), t = 1, . . . , T. (43)

We follow the setting studied by [25], where the downstream task is question-answering. The meta-objective
consists of a question-answering term measuring the performance gained from adaptation, and a locality term
that prevents the updated base model parameters from excessively changing the base model’s behavior. Let DQA

denotes the question-answering dataset, Dloc denotes the locality dataset, and c ∈ R+ denotes the weight of the
locality term, then the meta objective is formally defined as

Lmeta(θT (ϕ),ϕ) := Eq,a∼DQA − log pθT (a|q) + cEx∼Dloc

∑
i

KL(pθT (·|x:i) ∥ pθ0(·|x:i)). (44)

The inner objective is defined as a weighted NLL loss, where the weights are determined by the weight model
wϕ,

Ltrain(θ, wϕ) := Ex∼Dtrain

∑
i

−wϕ(xi, x) log pθ(xi|x:i). (45)

The trained weight model is then fine-tuned on unseen online documents and evaluated on corresponding
question-answering tasks.

E.3 Data-driven Discovery of Partial Differential Equations (PDEs)
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Figure E.1: Visualization of the 2D latent solutions for the Burgers, Allen-Cahn, and KdV equations.
The observed data are sampled on an 8× 8 grid, denoted by white points.

We conducted experiments on three non-linear PDEs, with the latent solutions visualized in Figure E.1. The PDE
structures (46) (47) (48) are assumed to be known while the PDE parameters ν in (46) (47) (48) are assumed
to be unknown. For each equation, 64 observed data points are sampled on an 8× 8 grid. The objective is to
predict the unknown PDE parameters using the observed data. The predicted PDE parameters are evaluated
by comparing the error with the ground truth, as well as the error in the corresponding prediction of the latent
solution.

E.3.1 Burgers Equation

The nonlinear viscous Burgers equation is a pivotal partial differential equation arising in diverse domains of
applied mathematics such as fluid mechanics, nonlinear acoustics, and traffic flow. This equation can be deduced
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from the Navier-Stokes equations for the velocity field by omitting the pressure gradient term. In our experiment,
the equation along with Dirichlet boundary conditions, is expressed as follows:

ut + uux − νuxx = 0, x ∈ [−1, 1], t ∈ [0, 1], ν > 0,

u(0, x) = − sin(πx),

u(t,−1) = u(t, 1) = 0,

(46)

with actual viscosity ν = 0.01
π

≈ 0.0031831. For PINN, following [44], we enforced the initial condition into
the output by choosing a surrogate model of the solution as

û(x) = (1− exp(−t))NN(x;θ)− sin(πx),

where NN(x;θ) is a neural network.

E.3.2 Allen-Cahn Equation

The Allen-Cahn equation is a reaction-diffusion equation of mathematical physics describing the process of
phase separation in multi-component alloy systems, including order-disorder transitions. In our experiment, it is
expressed as follows:

ut − νuxx = 5(u− u3), x ∈ [−1, 1], t ∈ [0, 1], ν > 0,

u(0, x) = x2 cos(πx),

u(t,−1) = u(t, 1) = −1,

(47)

with the actual diffusion coefficient ν = 0.001. For PINN, we enforced the initial condition into the output by
choosing a surrogate model of the solution as

û(x) = (1− exp(−t))NN(x;θ) + x2 cos(πx),

where NN(x;θ) is a neural network.

E.3.3 Korteweg–De Vries (KdV) Equation

The Korteweg–de Vries (KdV) equation serves as a mathematical model for waves on shallow water surfaces.
This equation is distinguished as a prototypical example of an integrable PDE. It is characterized by features
typical of integrable systems, including a plethora of explicit solutions, notably soliton solutions, and an infinite
number of conserved quantities. These properties are particularly noteworthy given the inherent nonlinearity of
the equation, which generally complicates the solvability of PDEs. In specific, we consider:

ut + uux + νuxxx = 0,

x ∈ [−1, 1], t ∈ [0, 1], ν ̸= 0,

u(0, x) = cos(πx),

(48)

with the actual coefficient of dispersion ν equal to 0.0025. For PINN, we enforced the initial condition into the
output by choosing a surrogate model of the solution as

û(x) = (1− exp(−t))NN(x;θ) + cos(πx),

where NN(x;θ) is a neural network.

E.3.4 Numerical PDE solver

Numerical solvers play a critical role in the study and application of PDEs, enabling the simulation and analysis
of complex physical phenomena that cannot be addressed analytically [51]. These solvers convert PDEs into
a form that can be handled computationally, typically by discretizing the domain into a finite set of points or
elements and approximating the derivatives. Conventional numerical methods include finite difference methods,
finite element methods, and spectral methods [1].

Among the various numerical methods for solving PDEs, spectral methods stand out for their ability to deliver
highly accurate solutions, particularly for problems with smooth solutions [21, 7]. Spectral methods involve
representing the solution to a PDE as a sum of basis functions, such as trigonometric polynomials, which are
globally defined over the domain. This approach contrasts with finite difference or finite element methods, where
the solution is localized to the grid points or elements. In this paper, we mainly adopt spectral methods, as we
focus on the Burgers, Allen-Cahn, and KdV equations. All these three equations can be efficiently and accurately
resolved by spectral techniques.
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F Implementation Details

F.1 Data Condensation

We conducted our experiments following the standard data condensation setting established by [68, 77, 67].
The condensation and evaluation are both performed on a depth-3 convolutional neural network [58]. The
hyperparameters we used for (FG)2U are summarized in Appendix F.1. All experiments are conducted on
NVIDIA-L40S (40G).

Datasets MNIST CIFAR10 CIFAR100
IPC 1 10 50 1 10 50 1 10 50

Unrolled Depth 100 100 100 100 100 100 100 100 200
# Random Directions 32 32 32 32 32 32 32 32 32

# Inner Batch Size Full Full Full Full Full Full Full Full 100
Hessian-Free Pretraining ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Gradient Accumulate 16 32 32 32 32 32 64 64 64
Outer Steps 10000 10000 10000 10000 10000 10000 10000 10000 10000

Outer Step Size 1e-2 5e-4 5e-4 1e-2 5e-4 5e-4 1e-2 5e-4 5e-4
Evaluation Steps 1000 10000 10000 1000 10000 10000 1000 10000 10000

Table F.1: (FG)2U hyperparameters for data condensation experiments.

F.2 Meta Learning Online Adaptation of Language Models

We adhered to the standard settings of CaMeLS [25] and adapted their official code for our implementation. The
only modification made was replacing the meta gradient approximation module with (FG)2U. It is important
to note that the base models used for meta-learning were initially pre-trained on a split QA-paired set. While
the official codebase provided the script for pretraining, it did not include the exact base model (weights) they
used. We executed the official script to generate the pre-trained base models and observed that meta-learning
performance is sensitive to the choice of base models. For a fair comparison, we reported both the results from
[66] (where CaMeLS [25] presented performance improvements over baselines using bar plots without specific
metric values) and the results with our best custom pre-trained base models. Following the two-phase training
paradigm introduced in Section 3.2, we performed training of (FG)2U on RGU (DistilGPT2, unrolled depth
6) results. The hyperparameters we used for (FG)2U are summarized in Appendix F.2, while all remaining
hyperparameters were kept the same as in [25]. All experiments are conducted on one NVIDIA A100 GPU
(80G).

base model DistilGPT2 GPT2

Unrolled Depth 24/48 24/48
# of Random Directions 12 8

Gradient Accumulate 32 32
Outer Optimizer Adam Adam
Outer Step Size 2.5E-6 2.5E-6

Table F.2: (FG)2U hyperparameters for CaMeLS experiments.

F.3 Data-driven Discovery of Partial Differential Equations (PDEs)

The hyperparameters we used for this experiment are summarized in Appendix F.3. All experiments are
conducted on NVIDIA-L40S (40G). The structure for PINN is a depth-9 and width-20 MLP with tanh activations.

G Additional Experimental Results

G.1 Meta Learning Online Adaptation of Language Models

Ablation results on the unrolled depth and the base model are summarized in Table G.1 and Table G.2.
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PDEs Burgers AllenCahn KdV
Inner Solvers PINN Numerical PINN Numerical PINN Numerical

Directional Grad. Calculation FAD ZO FAD ZO FAD ZO
# Random Directions 1 1 1 1 1 1

Outer Steps 5000 5000 5000 5000 5000 5000
Unrolling Depth 1000 - 1000 - 1000 -

Grid Size for Numerical Method - 256×512 - 256×512 - 256×512
Range of initial ν (0, 1e1] (0, 1e1] (0, 1e-1] (0, 1e-1] (0, 1e-2] (0, 1e-2]
Outer Optimizer Adam Adam Adam Adam Adam Adam
Outer Step Size 1e-2 1e-2 1e-2 1e-2 1e-3 1e-3
Inner Optimizer SGD - SGD - SGD -
Inner Batch Size 5000 - 5000 - 5000 -
Inner Step Size 1e-3 - 1e-3 - 1e-3 -

µ for Finite Difference - 1e-4 - 1e-4 - 1e-4

Table F.3: (FG)2U hyperparameters for discovery of PDEs experiments. ν denotes the unknown PDE
parameters.

Model (# params) Method Unrolled DistilGPT2 GPT2
Steps (#) EM (↑) F1 (↑) EM (↑) F1 (↑)

DistilGPT2 (82M)
RGU (impl.) 6 2.04 5.53 OOM

(FG)2U (ours) 24 2.10 5.59 2.22 6.37
48 2.10 6.25 2.16 6.32

GPT2-Large (774M)
RGU (impl.) 6 7.02 12.19 OOM

(FG)2U (ours) 24 6.91 12.12 7.21 12.50
48 7.03 12.31 7.27 12.45

GPT2-XL (1.5B)
RGU (impl.) 6 7.93 12.94 OOM

(FG)2U (ours) 24 8.34 13.46 8.89 14.42
48 8.23 13.70 8.65 13.91

Table G.1: StreamingQA: Ablation results on the unrolled depth and the base model.

Model (# params) Method Unrolled DistilGPT2 GPT2
Steps (#) EM (↑) F1 (↑) EM (↑) F1 (↑)

DistilGPT2 (82M)
RGU (impl.) 6 1.52 3.16 OOM

(FG)2U (ours) 24 1.72 3.49 1.72 3.50
48 1.75 3.47 1.73 3.49

GPT2-Large (774M)
RGU (impl.) 6 4.86 8.57 OOM

(FG)2U (ours) 24 5.49 8.88 5.56 8.99
48 5.45 8.90 5.32 8.97

GPT2-XL (1.5B)
RGU (impl.) 6 6.71 9.65 OOM

(FG)2U (ours) 24 7.00 10.13 7.27 10.33
48 7.37 10.37 7.25 10.32

Table G.2: SQuAD: Ablation results on the unrolled depth and the base model.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing
issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: The
papers not including the checklist will be desk rejected. The checklist should follow the references and follow
the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each
question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area
chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions)
with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While
"[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper
justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or
"we were unable to find the license for the dataset we used"). In general, answering "[No] " or "[NA] " is not
grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is
often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting
evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer
[Yes] to a question, in the justification please point to the section(s) where related material for the question can
be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?
Answer: [Yes]
Justification: The assumptions are included in Section 3.1, and the complete proof is placed in Ap-
pendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: To the best of our knowledge, all the information needed to reproduce the main experi-
mental results are included in Section 4, Appendix E, and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: The data used in this paper is public. We will release the code on the acceptance of the
paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: To the best of our knowledge, all necessary information has been included in Sec-
tion 4, Appendix E, and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We have reported the error bars in Data Condensation experiments and Data-driven
Discovery of PDE experiments. For Meta Learning Online Adaptation of LM experiments, we adhere
to the standard evaluation protocol as employed in [25, 66], specifically, using the identical evaluation
script with the same random seed, to ensure a fair comparison, hence, without error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide the information of computer resources in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the NeurIPS Code
of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]
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Justification: The research presented in this paper focuses on fundamental algorithms rather than
specific applications. Consequently, it is challenging to predict the potential social impacts of this
work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: We do not have plans to release any new data or models in conjunction with this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All usages of the related assets are accompanied by formal citations and comply with the
respective licensing terms and conditions.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: We do not have plans to release any new assets or models in conjunction with this work.
The code, which will be released upon acceptance, will be well documented, and the documentation
will also be made publicly available.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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