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Abstract

We study the generalization error of statistical learning algorithms in a non-i.i.d. set-1

ting, where the training data is sampled from a stationary mixing process. We2

develop an analytic framework for this scenario based on a reduction to online3

learning with delayed feedback. In particular, we show that the existence of an4

online learning algorithm with bounded regret (against a fixed statistical learning5

algorithm in a specially constructed game of online learning with delayed feed-6

back) implies low generalization error of said statistical learning method even if7

the data sequence is sampled from a mixing time series. The rates demonstrate a8

trade-off between the amount of delay in the online learning game and the degree9

of dependence between consecutive data points, with near-optimal rates recovered10

in a number of well-studied settings when the delay is tuned appropriately as a11

function of the mixing time of the process.12

1 Introduction13

In machine learning, generalization denotes the ability of a model to infer patterns from a dataset14

of training examples and apply them to analyze previously unseen data (Shalev-Shwartz and Ben-15

David, 2014). The gap in accuracy between the model’s predictions on new data and those on the16

training set is usually referred to as generalization error. Providing upper bounds on this quantity17

is a central goal in statistical learning theory. Classically, bounds based on notions of complexity18

(e.g., VC dimension and Rademacher complexity) for the model’s hypothesis space were used to19

provide uniform worst-case guarantees (see Bousquet et al., 2004; Vapnik, 2013; Shalev-Shwartz20

and Ben-David, 2014). However, results of this kind are often too loose to be applied to the most21

common machine learning over-parameterised models, such as deep neural networks (Zhang et al.,22

2021). As a consequence, several approaches have been proposed to obtain algorithm-dependent23

generalization bounds, which can adapt to the problem and be much tighter in practice than their24

uniform counterparts. Often, the underlying idea is that if the algorithm’s output does not have a25

too strong dependence on the specific input dataset used for the training, then the model should not26

be prone to overfitting, and so generalize well. Examples of results that build onto these ideas are27

stability bounds, information-theoretic bounds, and PAC-Bayesian bounds (see, e.g., Bousquet and28

Elisseeff, 2002; Russo and Zou, 2020; Hellström et al., 2023; Alquier, 2024).29

Most results in the literature focus on the i.i.d. setting, where the training dataset is made of indepen-30

dent draws from some underlying data distribution. However, for several applications, this assumption31

is far from realistic. For instance, it excludes the case where observations received by the learner32

have some inherent temporal dependence, as it is the case for stock prices, daily energy consumption,33

or sensor data from physical environments (Ariyo et al., 2014; Takeda et al., 2016). This calls for the34

development of theory for addressing non-i.i.d. data. A common approach in the extant literature is35

to consider a class of non-i.i.d. data-generating processes usually referred to as stationary β-mixing36
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or φ-mixing processes. This assumption, together with a “blocking” trick introduced by Yu (1994),37

has led to a few results in the literature: Meir (2000), Mohri and Rostamizadeh (2008), Shalizi and38

Kontorovich (2013), and Wolfer and Kontorovich (2019) provided uniform worst-case generalization39

bounds, Steinwart and Christmann (2009) and Agarwal and Duchi (2012) discussed excess risk bound40

(comparing the algorithm’s output with the best possible hypothesis), while Mohri and Rostamizadeh41

(2010) gave bounds based on a stability analysis (in the sense of Bousquet and Elisseeff, 2002).42

Here, we propose propose results for the non-i.i.d. setting in the form of PAC-Bayesian bounds43

(Guedj, 2019; Alquier, 2024): high probability upper bounds on the expected generalization error of44

randomized learning algorithms. We achieve this by combining the “blocking” argument by Yu (1994)45

to manage the concentration of sums of correlated random variables, with the recent online-to-PAC46

conversion technique recently proposed by Lugosi and Neu (2023). Using their framework we show47

a new way to obtain generalization bounds for stationary dependent processes that satisfy a certain48

“short-memory” property (intuitively meaning that data points that are closer in time are more heavily49

dependent on each other). Our assumption slightly differs from β-mixing in the sense that we only50

need it to hold for a specific class of bounded loss functions. Among other results, this allows us to51

prove PAC-Bayesian generalization bounds for mixing processes. This complements previous work52

on such bounds that have only considered mild relaxations of the i.i.d. condition such as assuming53

that the data has a martingale structure (see, e.g., Seldin et al., 2012; Chugg et al., 2023; Haddouche54

and Guedj, 2023). Notable exceptions are the works of Alquier and Wintenberger (2012), Alquier55

et al. (2013), and Eringis et al. (2022, 2024), who provided generalization bounds for a sequential56

prediction setting where both the data-generating process and the hypothesis class used for prediction57

are stable dynamical systems. Their results are proved under some very specific conditions on these58

systems, and their guarantees involve unspecified problem-dependent constants that may be large. In59

contrast, our bounds hold under general, simple-to-verify conditions and feature explicit constants.60

The rest of the paper is organized as follows. In Section 2 we properly define the generalization error61

of a statistical learning algorithm for both i.i.d. and non-i.i.d. cases, and state our main assumption62

on the data dependence. Our main contribution lies in Section 3, where after recalling the results63

for the i.i.d. setting we show how to adapt this to stationary mixing processes. In Section 4 we64

provide concrete results of the bounds we can obtain through the online-to-PAC conversion. Finally65

in Section 5 we extend our results to the setting where the hypothesis class itself may consist of66

dynamical systems.67

Notation. For a distribution over hypotheses P ∈ ∆W and bounded function f : W → R we write68

⟨P, f⟩ to refer to the expectation of EW∼P [f(W )]. We denote DKL(P ||Q) = EX∼P

[
ln
(

P (X)
Q(X)

)]
69

to refer to the Kullback-Leibler divergence. We use ||.|| to denote a norm on the Banach space Q of70

the finite signed measures, and ||.||∗ the corresponding dual norm on the dual space Q∗ of measurable71

functions f on W such that ||f ||∗ = supQ∈Q:||Q||≤1⟨Q, f⟩.72

2 Preliminaries73

The classical statistical learning framework usually considers a dataset Sn = (Z1, ..., Zn), made of74

n i.i.d. elements drawn from a distribution µ over a measurable instance space Z . Often, one can75

think of each Zi as a feature-label pair (Xi, Yi). Furthermore, we are given a measurable class W of76

hypotheses and a loss function ℓ : W×Z → R+, with ℓ(w, z) measuring the quality of the hypothesis77

w ∈ W on the data instance z ∈ Z . For any given hypothesis w ∈ W , two key objects of interest are78

the training error L̂(w, Sn) =
1
n

∑n
i=1 ℓ(w,Zi) and the test error L(w) = EZ′∼µ[ℓ(w,Z

′)], where79

the random element Z ′ has the same distribution as Zi and is independent of Sn.80

A learning algorithm A : Zn → W maps the training sample to an hypothesis in W . More generally,81

we will focus on randomized learning algorithms, returning a probability distribution PWn|Sn
∈ ∆W82

over W , conditionally on Sn (deterministic algorithms can be recovered as special cases, whose the83

outputs are Dirac distributions). The ultimate goal of the learner is to minimize the test error. Yet, this84

quantity cannot be computed without knowledge of the data generating distribution µ. In practice, one85

typically relies on the training error in order to gauge the quality of the algorithm. For an algorithm A :86

Sn 7→ PWn|Sn
, we define the generalization error as the expected gap between training and test error:87

Gen(A, Sn) = E
[
L(Wn)− L̂(Wn, Sn)

∣∣∣Sn

]
.
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The expectation in the above expression integrates over the randomness in the output of the algorithm88

Wn ∼ PWn|Sn
, conditionally on the sample Sn. We remark that the test error is not equal to the89

mean of the training error, due to the dependence of Wn on the training data.90

We extend the previous setting by considering the case where the data have an intrinsic temporally91

ordered structure, and come in the form of a stationary process (Zt)t∈N∗ ∼ ν. Formally, we assume92

that the joint marginal distribution of any block (Zt, Zt−1, . . . , Zt−i) is the same as the distribution93

of (Zt+j , Zt+j−1, . . . , Zt+j−i) for any t, i and j, but the data points are not necessarily independent94

of each other. In particular, the marginal distribution of Zt is constant and is denoted by µ. Thus, it is95

natural to continue to use the definition of the test loss and generalization error given above, although96

with the understanding that µ now refers to the marginal distribution of an independent copy of Z1,97

a sample point from a stationary non-i.i.d. process. We remark here that other notions of the test98

loss may also be considered, and the framework that we propose can be extended to most natural99

definitions with little work (but potentially large notational overhead). In Section 5, we provide such100

an extension for a more general setting where the hypotheses themselves are allowed to have memory101

and the process may not be as strongly stationary as our assumption above requires.102

In order to obtain generalization results we need to have some control on how strong the dependencies103

between different datapoints are allowed to be. To this regard, we consider the following assumption.104

Assumption 1. There exists a non-increasing sequence (ϕd)d∈N∗ of non-negative real numbers such
that, for all w ∈ W and all t ∈ N∗:

E
[
L(w)− ℓ(w,Zt)

∣∣∣Ft−d

]
≤ ϕd ,

where L(w) = EZ′∼µ[ℓ(w,Z
′)], with Z ′ being independent on the process (Zt)t∈N∗ and having as105

distribution the stationary marginal µ of the Zt.106

The intuition behind this assumption is that the loss associated with the observations Zt becomes107

almost independent of the past after d steps, enabling us to treat each sequence of the form108

(Zt, Zt+d, . . . , Zt+(n−t)d) as an approximately i.i.d. sequence. Note that this assumption differs109

from the usual β-mixing assumption which requires the distribution of Zt|Ft−d to be close to the110

marginal distribution µ for all t, in terms of total variation distance. Our assumption is somewhat111

weaker in the sense that it only requires the expected losses under these distributions to be close,112

and only a one-sided inequality is required. It is easy to verify that our assumption is satisfied if the113

process is β-mixing in the usual sense and the losses are bounded in [0, 1].114

3 Proving generalization bounds via online learning115

Online learning focuses on algorithms that aim to improve performance incrementally as new116

information becomes available, often without any underlying assumption on how data are generated.117

The online learner’s performance is typically measured leveraging the idea of regret. This involves118

introducing a cost function for the problem and defining the regret as the difference between the119

cumulative cost of the online learner and that of a fixed comparator. We refer to the monographs120

Cesa-Bianchi and Lugosi, 2006 and Orabona, 2019 for comprehensive overviews on online learning121

and regret analysis. Recently, Lugosi and Neu (2023) established a connection between upper bounds122

on the regret and generalization bounds, showing that the existence of a strategy with a bounded123

regret in a specially designed online game translates into a generalization bound, via a technique124

dubbed online-to-PAC conversion. Their focus is on the i.i.d. setting, where the training dataset is125

made of independent draws. Here, we show that this framework can naturally be extended beyond126

the i.i.d. assumption.127

In what follows, we briefly review the setup of Lugosi and Neu (2023) in Section 3.1 and then128

describe our new extension of their model to the non-i.i.d. case in Section 3.2. In particular, we prove129

a high-probability bound for the generalization error of any statistical learning algorithm learnt with130

a stationary mixing process verifying Assumption 1.131

3.1 Online-to-PAC conversions for i.i.d. data132

Lugosi and Neu (2023) have recently established a framework to obtain generalization bounds via133

a reduction to online learning. Their technique allows to recover several classic PAC-Bayesian134
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results, and provide a range of generalizations thereof. The main idea of Lugosi and Neu (2023) is135

to introduce an online learning game called the generalization game, where the following steps are136

repeated for a sequence of rounds t = 1, 2, . . . , n:137

• the online learner picks a distribution Pt ∈ ∆W ;138

• the adversary selects the cost function ct : w 7→ ℓ(w,Zt)− L(w);139

• the online learner incurs the cost ⟨Pt, ct⟩ = EW∼Pt
[ct(W )];140

• Zt is revealed to the learner.141

The learner can adopt any strategy to pick Pt, but they can only rely on past knowledge to make142

their prediction. Explicitly, if Ft denotes the sigma-algebra generated by Z1, ..., Zt, then Pt has to be143

Ft−1-measurable. We also emphasize that in this setup the online learner is allowed to know the loss144

function ℓ and the distribution µ of the data points Zt, and therefore by revealing the value of Zt, the145

online learner may compute the entire cost function ct.146

We define the regret of the online learner against the possibly data-dependent comparator P ∗ ∈ ∆W147

as Regret(P ∗) =
∑n

t=1⟨Pt−P ∗, ct⟩. Now, denote as PWn|Sn
the distribution produced by the super-148

vised learning algorithm. With this notation, the generalization error can be written as Gen(A, Sn) =149

− 1
n

∑n
t=1⟨PWn|Sn

, ct⟩. By adding and subtracting the quantity Mn = − 1
n

∑n
t=1⟨Pt, ct⟩ we get the150

following decomposition.151

Theorem 1 (Theorem 1 in Lugosi and Neu, 2023; see appendix A.1). With the notation introduced152

above,153

Gen(A, Sn) =
Regretn(PWn|Sn

)

n
+Mn . (1)

The first of these terms correspond to the regret of the online learner against a fixed comparator154

strategy that picks PWn|Sn
at each step. The second term is a martingale and can be bounded in high155

probability with standard concentration tools. Indeed, since Pt is chosen before Zt is revealed, one156

can easily check that E[⟨Pt, ct⟩|Ft−1] = 0. Thus, to prove a bound on the generalization error of the157

statistical learning algorithm, it is enough to find an online learning algorithm with bounded regret158

against PWn|Sn
in the generalization game.159

As a concrete application of the above, the following generalization bound is obtained when picking160

the classic exponential weighted average (EWA) algorithm (Vovk, 1990; Littlestone and Warmuth,161

1994; Freund and Schapire, 1997) as online strategy, and plugging its regret bound into (1).162

Theorem 2 (Corollary 6 in Lugosi and Neu, 2023). Suppose that ℓ(w, z) ∈ [0, 1] for all w, z. Then,163

for any P1 ∈ ∆W and η > 0, with probability at least 1− δ on the draw of Sn, uniformly on every164

learning algorithm A : Sn 7→ PWn|Sn
, we have165

Gen(A, Sn) ≤
DKL(PWn|Sn

||P1)

ηn
+

η

2
+

√
2 log

(
1
δ

)
n

.

Proof. We can bound each term of (1) separately. A data-dependent bound for the regret166

term is obtained via a direct application of the regret analysis of EWA which brings the term167

DKL(PWn|Sn ||P1)

ηn + η
2 (see Appendix B.1). The term

√
2 log( 1

δ )
n results from bounding the martingale168

Mn via an application of Hoeffding–Azuma inequality.169

Note that the first term in the above bound is data-dependent due to the presence of PWn|Sn
, and thus170

optimizing it requires a data-dependent choice of η, which is not allowed by Theorem 2. However,171

via a union bound argument it is possible to get a bound in the form172

Gen(A, Sn) = O

(√
DKL(PWn|Sn

||P1)

n
+

√
1

n
log

(
log n

δ

))
,

For the details, we refer to the proof of Corollary 5 of Lugosi and Neu (2023), which recovers a173

classical PAC-Bayes bound of McAllester (1998).174
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3.2 Online-to-PAC conversions for non-i.i.d. data175

In what follows, we will drop the i.i.d. assumption for the data, and instead consider non-i.i.d. se-176

quences satisfying Assumption 1. For this setting we define the following variant of the generalization177

game.178

Definition 1 (Generalization game with delay). The generalization game with delay d ∈ N∗ is an179

online learning game where the following steps are repeated for a sequence of rounds t = 1, ..., n:180

• the online learner picks a distribution Pt ∈ ∆W ;181

• the adversary selects the cost function ct : w 7→ ℓ(w,Zt)− L(w);182

• the online learner incurs the cost ⟨Pt, ct⟩ = EW∼Pt
[ct(W )];183

• if t ≥ d, Zt−d+1 (and thus ct−d+1) is revealed to the learner.184

The main difference between our version of the generalization game and the standard one of Lugosi185

and Neu (2023) is the introduction of a delay on the online learning algorithm’s decisions. Specifically,186

we will force the online learner to only take information into account up to time t− d when picking187

their action Pt. Clearly, setting d = 1 recovers the original version of the generalization game with188

no delay.189

It is easy to see that the regret decomposition of Theorem 1 still remains valid in the current setting.190

The purpose of introducing the delay is to be able to make sure that the term Mn = − 1
n

∑n
t=1 ⟨Pt, ct⟩191

is small. The lemma below states that the increments of Mn behave similarly to a martingale-192

difference sequence, thanks to the introduction of the delay.193

Lemma 1. Fix d ∈ [[1, n]]. Under assumption 1, it holds for all t ∈ [[1, n]]:
E[⟨−Pt, ct⟩|Ft−d] ≤ ϕd .

where Pt and ct are defined as in 1.194

Proof. Since Pt is Ft−d-measurable we have E[⟨−Pt, ct⟩|Ft−d] = ⟨Pt,E[−ct|Ft−d]⟩ ≤ ϕd, where195

the last step uses Assumption 1.196

Thus, by following the decomposition of Theorem 1, we are left with the problem of bounding the197

regret of the delayed online learning algorithm against PWn|Sn
, denoted as Regretd,n(PWn|Sn

) =198 ∑n
t=1

〈
Pt − PWn|Sn

, ct
〉
. The following proposition states a simple and clean bound that one can199

immediately derive from these insights.200

Proposition 1 (Bound in expectation). Consider (Zt)t∈N∗ satisfying Assumption 1 and suppose there201

exists a d-delayed online learning algorithm with regret bounded by Regretd,n(P
∗) against any202

comparator P ∗. Then, the expected generalization of A is bounded as203

E [Gen(A, Sn)] ≤
E
[
Regretd,n(PWn|Sn

)
]

n
+ ϕd .

Proof. By Theorem 1, it holds that E[Gen(A, Sn)] =
E[Regretd,n(PWn|Sn )]

n + E[Mn], where the204

regret is for a strategy Pt in the delayed generalization game. Hence, by Lemma 1205

E[Mn] = E

[
− 1

n

n∑
t=1

⟨Pt, ct⟩

]
=

1

n

n∑
t=1

E[⟨−Pt, ct⟩] =
1

n

n∑
t=1

E [E[⟨−Pt, ct⟩|Ft−d]] ≤ ϕd ,

which proves the claim.206

The above result holds in expectation over the training sample. We now provide a high-probability207

guarantee on the generalization error.208

Theorem 3 (Bound in probability). Assume that (Zt)t∈N∗ satisfies Assumption 1 and consider a209

d-delayed online learning algorithm with regret bounded by Rd,n(P
∗) against any comparator P ∗.210

Then, for any δ > 0, it holds with probability 1− δ on the draw of Sn, uniformly for all A,211

Gen(A, Sn) ≤
Rd,n(PWn|Sn

)

n
+ ϕd +

√
2d log

(
d
δ

)
n

.
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The proof of this claim follows directly from combining the decomposition of Theorem 1 with a212

standard concentration result for mixing processes that we state below.213

Lemma 2. Fix d ∈ [[1, n]] and consider (Zt)t∈N∗ satisfying Assumption 1. Consider the generaliza-214

tion game of Definition 1. Then, for any δ > 0, the following bound is satisfied with probability at215

least 1− δ:216

Mn ≤ ϕd +

√
2d log

(
d
δ

)
n

.

The proof is based on a classic “blocking” technique due to Yu (1994). For the sake of completeness,217

we provide a proof in Appendix A.2.218

4 New generalization bounds for non-i.i.d. data219

The dependence on the delay d for the bounds that we presented in the previous section is non-trivial.220

Indeed, if on the one hand increasing the delay will reduce the magnitude of ϕd, on the other hand221

the regret of the online learner will grow with d. There is hence a trade-off between these two terms222

appearing in our bounds. In what follows, we derive some concrete generalization bounds from223

Theorem 3, under a number of different choices of the online learning algorithm. For concreteness,224

we will consider two types of mixing assumptions, but stress that the approach can be applied to any225

process that satisfies Assumption 1.226

4.1 Regret bounds for delayed online learning227

From Theorem 3, we can obtain a generalization bound using our framework if we have a regret228

bound for a delayed online algorithm. This is a well-known problem in the area of online learning229

(see, e.g., Weinberger and Ordentlich, 2002; Joulani et al., 2013). In the following, we will leverage230

the following simple trick that allows us to extend the regret bounds of any online learning algorithm231

to its delayed counterpart, provided that the regret bound respects some specific assumptions.232

Lemma 3 (Weinberger and Ordentlich, 2002). Consider any online algorithm whose regret satisfies233

Regretn(P
∗) ≤ R(n) for any comparator P ∗, where R is a non-decreasing real-valued function234

such that y 7→ yR(x/y) is a concave function of y for any fixed x. Then, for any d ≥ 1 there exists235

an online learning algorithm with delay d such that, for any comparator P ∗,236

Regretd,n(P
∗) ≤ dR (n/d) .

The proof idea is closely related to the blocking trick of Yu (1994), with an algorithmic construction237

that runs one instance of the base method for each index i = 1, 2, . . . , d, with the i-th instance being238

responsible for the regret in rounds i, i+ d, i+ 2d, . . . (more details are provided in Appendix B.3).239

For most of the regret bounds that we consider, the function R takes the form R(n) = O(
√
n), so240

that the first term in the generalization bound is typically of order
√

d/n. Since this term matches241

the bound on Mn in Lemma 2, in this case the final generalization bound behaves effectively as if242

the sample size was n/d instead of n.243

4.2 Geometric and algebraic mixing244

The following definition gives two concrete examples of mixing processes that satisfy Assumption 1245

with different choices of ϕd, and are commonly considered in the related literature (see, e.g., Mohri246

and Rostamizadeh, 2010, Levin and Peres, 2017).247

Definition 2. We say that a stationary process (Zt)t∈N∗ satisfying Assumption 1 is:248

• geometrically mixing, if ϕd = Ce−
d
τ , for some positive τ and C;249

• algebraically mixing, if ϕd = Cd−r, for some positive r and C.250

Instantiating the bound of Theorem 3 to these two cases yields the following two corollaries.251

Corollary 1. Assume (Zt)t∈N∗ is a geometrically mixing process with constants τ, C > 0. Consider252

a d-delayed online learning algorithm with regret bounded by Rd,n(P
∗) for all comparators P ∗.253
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Then, setting d = ⌈τ log n⌉, for any δ > 0, with probability at least 1− δ we have that, uniformly for254

any algorithm A,255

Gen(A, Sn) ≤
Rd,n(PWn|Sn

)

n
+

C

n
+

√√√√2 (τ log n+ 1) log
(

τ logn+1
δ

)
n

.

Up to a term linear in τ and some logarithmic factors, the above states that under the geometric256

mixing the same rates are achievable as in the i.i.d. setting. Roughly speaking, this amounts to saying257

that the effective sample size is a factor τ smaller than the original number of samples n, as long as258

generalization is concerned.259

Corollary 2. Assume (Zt)t∈N∗ is an algebraic mixing process with constants r, C > 0. Consider260

a d-delayed online learning algorithm with regret bounded by Rd,n(P
∗) against any comparator261

P ∗. Then, setting d =
(
C2n

)1/(1+2r)
, for any δ > 0, with probability at least 1 − δ we have that,262

uniformly for any algorithm A,263

Gen(A, Sn) ≤
Rd,n(PWn|Sn

)

n
+ C

(
1 +

√
log(d/δ)

)
n− 2r

2(1+2r) .

This result suggests that the rates achievable for algebraically mixing processes are qualitatively264

much slower than what one can get for i.i.d. or geometrically mixing data sequences (although the265

rates do eventually approach 1/
√
n as r goes to infinity).266

4.3 Multiplicative weights with delay267

We start our discussion on possible online strategies by focusing on the classic exponential weighted268

average (EWA) algorithm (Vovk, 1990; Littlestone and Warmuth, 1994; Freund and Schapire, 1997).269

We fix a data-free prior P1 ∈ ∆W and a learning rate parameter η > 0. We consider the updates270

Pt+1 = arg min
P∈∆W

{
⟨P, ct⟩+

1

η
DKL(P ||Pt)

}
,

Combining the standard regret bound of EWA (see Appendix B.1) with Lemma 3 and Corollary 1271

yields the result that follows.272

Corollary 3. Suppose that (Zt)t∈N∗ is a geometric mixing process with constants τ, C > 0. Suppose273

that ℓ(w, z) ∈ [0, 1] for all w, z. Then, for any P1 ∈ ∆W and any δ > 0, with probability at least274

1− δ, uniformly on any learning algorithm A we have275

Gen(A, Sn) ≤
DKL(P

∗||P1)(τ log n+ 1)

ηn
+

η

2
+

C

n
+

√√√√2 (τ log n+ 1) log
(

τ logn+1
δ

)
n

.

This results suggests that when considering geometric mixing processes, by applying a union bound276

over a well-chosen range of η we recover the PAC-Bayes bound of McAllester (1998) up to a277

O(
√
τ log n) factor. A similar result can be derived from Corollary 2 for algebraically mixing278

processes, leading to a bound typically scaling as n−2r/(2(1+2r)).279

4.4 Follow the regularized leader with delay280

In this subsection we extend the common class of online learning algorithms known as follow the281

regularized leader (FTRL, see e.g., Abernethy and Rakhlin, 2009; Orabona, 2019) to the problem of282

learning with delay. FTRL algorithms are defined using a convex regularization function h : ∆W →283

R. We restrict ourselves to the set of proper, lower semi-continuous and α-strongly convex functions284

with respect to a norm ||.|| (and its respective dual norm ||.||∗) defined on the set of signed finite285

measures on W (see Appendix B.2 for more details). The online procedure (without delay) of the286

FTRL algorithm is as follows:287

Pt+1 = argmin
P∈∆W

{
t∑

s=1

⟨P, cs⟩+
1

η
h(P )

}
.
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The existence of the minimum is guaranteed by the compactness of ∆W under ∥·∥, and its uniqueness288

is ensured by the strong convexity of h. Combining the analysis of FTRL (see Appendix B.2) with289

Lemma 3 and Corollary 1 yields the following result.290

Corollary 4. Suppose that (Zt)t∈N∗ is a geometric mixing process with constants τ, C > 0. Suppose291

that ℓ(w, z) ∈ [0, 1] for all w, z. Assume there exists B > 0 such that for all t, ||ct||∗ ≤ B. Then, for292

any P1 ∈ ∆W , for any δ > 0 with probability at least 1− δ on the draw of Sn, uniformly for all A,293

Gen(A, Sn) ≤
(h(P ∗)− h(P1)) (τ log n+ 1)

ηn
+

ηB2

2α
+

C

n
+

√√√√2 (τ log n+ 1) log
(

τ logn+1
δ

)
n

.

This generalization bound is similar to the bound of Theorem 9 of Lugosi and Neu (2023) up to a294

O(
√
τ log n) factor, when applying a union-bound argument over an appropriate grid of learning-rates295

η. In particular, this result recovers PAC-Bayesian bounds like those of Corollary 3 when choosing296

h = DKL (·∥P1). We refer to Section 3.2 in Lugosi and Neu (2023) for more discussion on such297

bounds. As before, a similar result can be stated for algebraically mixing processes, with the leading298

terms approaching zero at rate of n−2r/2(1+2r) instead of n−1/2.299

5 Generalization bounds for dynamic hypotheses300

Finally, inspired by the works of Eringis et al. (2022, 2024), we extend our framework to accommodate301

loss functions ℓ that rely not only on the last data point Zt, but on the entire data sequence Zt =302

(Zt, Zt−1, . . . , Z1). Formally, we will consider loss functions of the form ℓ : W ×Z∗ → R+
1 and303

write ℓ(w, zt) to denote the loss associated with hypothesis w ∈ W on sequence zt ∈ Zt. This304

consideration extends the learning problem to class of dynamical predictors such as Kalman filters,305

autoregressive models, or recurrent neural networks (RNNs), broadly used in time-series forecasting306

(Ariyo et al., 2014; Takeda et al., 2016). Specifically, if we think of zt = (xt, yt) as a data-pair of307

context and observation, in time-series prediction we usually not only rely on the context xt but also308

on the past sequence of contexts and observations (xt−1, yt−1, . . . , x1, y1). As an example, consider309

ℓ(w, zt, . . . , z1) =
1
2 (yt − hw(xt, zt−1, . . . , z1))

2 where h ∈ H is a function class parameterized by310

W . For this type of loss function a natural definition of the test error is:311

L̃(w) = lim
n→∞

E[ℓ(w,Z ′
t, Z

′
t−1, ..., Z

′
t−n)],

where Z
′
t = (Z ′

t, Z
′
t−1, . . . ) is a semi-infinite random sequence drawn from the same stationary312

process that has generated the data Zt. We consider the following assumption.313

Assumption 2. For a given process (Zt)t∈Z with joint-distribution ν over ZZ and same marginals µ
over Z , there exists a non-increasing sequence (ϕd)d∈N∗ of non-negative real numbers such that the
following holds for all w ∈ W , for all t ∈ N∗:

E
[
ℓ(w,Zt, . . . , Z1)− L̃(w)

∣∣∣Ft−d

]
≤ ϕd.

This is a generalization of Assumption 1 in the sense that taking ℓ(w,Zt, . . . , Z1) = ℓ(w,Zt) simply
amounts to requiring the same mixing condition as before. For our online-to-PAC conversion we
consider the same framework as in Definition 1, except that now the cost function is defined as

ct : w 7→ ℓ(w,Zt, . . . , Z1)− L̃(w) .

Then it easy to check that result of Lemma 2 still holds for this specific cost, and we can thus extend314

all the results of Section 4. For concreteness, we state the following adaptation of Theorem 3 below.315

Theorem 4. Assume (Zt)t∈Z which satisfies Assumption 2 and consider a d-delayed online learning316

algorithm with regret bounded by Rd,n(P
∗) against any comparator P ∗. Then, for any δ > 0, it317

holds with probability 1− δ:318

Gen(A, Sn) ≤
Rd,n(PWn|Sn

)

n
+ ϕd +

√
2d log

(
d
δ

)
n

.

1Here, Z∗ denotes the disjoint union Z∗ = ⊔t∈NZt.

8



To see that Assumption 2 can be verified and the resulting bounds can be meaningfully applied,319

consider the following concrete assumptions about the hypothesis class, the loss function, and the320

data generating process. The first assumption says that for any given hypothesis, the influence of past321

data points on the associated loss vanishes with time (i.e., the hypothesis forgets the old data points at322

a controlled rate).323

Assumption 3. There exists a decreasing sequence (Bd)d∈N∗ of non-negative real numbers such324

that for any two sequences zt = (zt, . . . , zi) and z′t = (z′t, . . . , z
′
j) of possibly different lengths that325

satisfy zk = z′k for all k ∈ t, . . . , t− d+ 1, we have |ℓ(w, zt)− ℓ(w, z′t)| ≤ Bd, for all w ∈ W .326

This condition can be verified for stable dynamical systems like autoregressive models, certain classes327

of RNNs, or sequential predictors that have bounded memory by design (see Eringis et al., 2022,328

2024). The next assumption is a refinement of Assumption 1, adapted to the case where the loss329

function acts on blocks of d data points zt−d+1:t = (zt, zt−1, . . . , zt−d+1).330

Assumption 4. Let Zt = (Zt, . . . , Z1) be a sequence of data points and let Z
′
t = (Z ′

t, . . . , Z
′
0, . . . )331

be an independent copy of the same process. Then, there exists a decreasing sequence (βd)d∈N∗332

non-negative real numbers such that the following is satisfied for all hypotheses w ∈ W and all333

d ∈ N∗:334

E
[
ℓ(w,Z

′
t−d+1:t)− ℓ(w,Zt−d+1:t)

∣∣∣Ft−2d

]
≤ βd .

This assumption can be verified whenever the loss function is bounded and the joint distribution of335

the data block Zt−d+1:t satisfies a β-mixing assumption. In more detail, this latter condition amounts336

to requiring that the conditional distribution of each data block given a block that trails d steps behind337

is close to the marginal distribution in total variation distance, up to an additive term of βd. The338

following proposition shows that these two simple conditions together imply that Assumption 2339

holds, and that thus the bound of Theorem 4 can be meaningfully instantiated for bounded-memory340

hypothesis classes deployed on mixing processes.341

Proposition 2. Suppose that the loss function satisfies Assumption 3 and the data distribution satisfies342

Assumption 4. Then Assumption 2 is satisfied with ϕd = 2Bd/2 + βd/2.343

6 Conclusion344

We have developed a general framework for deriving generalization bounds for non-i.i.d. processes345

under a general mixing assumption, via an extension of the online-to-PAC-conversion framework of346

Lugosi and Neu (2023). Among other results, this approach has allowed us to prove PAC-Bayesian347

generalization bounds for such data in a clean and transparent way, and even study classes of dynamic348

hypotheses under a simple bounded-memory condition. These results provide a clean and tight349

alternative to the results of (Alquier and Wintenberger, 2012; Eringis et al., 2022). The generality of350

our approach further demonstrates the power of the Online-to-PAC scheme of Lugosi and Neu (2023),351

and in particular our results provide further evidence that this framework is particularly promising352

for developing techniques for generalization in non-i.i.d. settings. We hope that flexibility of our353

framework will find further uses and enables more rapid progress in the area.354
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A Omitted proofs422

A.1 The proof of Theorem 1423

Let (Pt)
n
t=1 ∈ ∆n

W be the predictions of an online learner playing the generalization game. Then424

Gen(A, Sn) =
1

n

n∑
t=1

E[ℓt(Wn)− L(Wn)|Sn]

= − 1

n

n∑
t=1

E[ct(Wn)|Sn]

= − 1

n

n∑
t=1

⟨PWn|Sn
, ct⟩

=
1

n

n∑
t=1

⟨Pt − PWn|Sn
, ct⟩ −

1

n

n∑
t=1

⟨Pt, ct⟩

=
Regretn(PWn|Sn

)

n
+Mn.

A.2 The proof of Lemma 2425

Assume n = Kd for simplicity:426

Mn = − 1

n

n∑
t=1

⟨Pt, ct⟩

=
1

dK

d∑
i=1

K∑
t=1

⟨−Pi+d(t−1), ci+d(t−1)⟩

We denote X
(i)
t = ⟨−Pi+d(t−1), ci+d(t−1)⟩ and we want to bound in high-probability the term427

1
K

∑K
t=1 X

(i)
t . Let also denote F (i)

t = Fi+d(t−1). Then for i ∈ [[1, d]], we can write using Chernoff’s428

technique that for all λ > 0 it holds:429

P

(
1

K

K∑
t=1

X
(i)
t ≥ u

)
≤

E
[
e

λ
K

∑K
t=1 X

(i)
t

]
eλu

≤ E
[
e

λ
K

∑K−1
t=1 X

(i)
t E

[
e

λ
K X

(i)
K

∣∣∣F (i)
K−1

]]
e−λu.

Now remark that:430

E
[
e

λ
K X

(i)
K

∣∣∣F (i)
K−1

]
= E

[
e

λ
K (X

(i)
K −E[X(i)

K |F (i)
K−1])

∣∣∣F (i)
K−1

]
e

λ
K E[X(i)

K |F (i)
K−1].

If we denote Z = X
(i)
K − E[X(i)

K |F (i)
K−1] then |Z| ≤ 2 and E[Z|F (i)

K−1] = 0 so via Hoeffding’s431

lemma:432

E[e
λ
K Z ] ≤ e

λ2

2K2 .

Now by construction of the Pt and because of Lemma 1 it follows that for all i, E[X(i)
K |F (i)

K−1] ≤ ϕd.433

Repeating the same reasoning for each term of the sum yields:434

P

(
1

K

K∑
t=1

X
(i)
t ≥ u

)
≤ e

λ2

2K eλϕde−λu.

Optimzing with λ = K(u − ϕd) and taking δ = e−
K(u−ϕ)2

2 it finally holds for any δ > 0, with
probability 1− δ

d :

1

K

K∑
t=1

X
(i)
t ≤ ϕd +

√
2 log

(
d
δ

)
K

.
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Thus applying a union bound we have with probability 1− δ:435

Mn ≤ ϕd +

√
2 log

(
d
δ

)
K

,

which concludes the proof.436

A.3 Proof of Proposition 2437

Suppose without loss of generality that d is even and define d′ = d/2. For the proof, let Z
′
n be a438

semi-infinite sequence drawn independently from the same process as Zn. Then, we have439

L̃(w) = lim
n→∞

E[ℓ(w,Z ′
t, Z

′
t−1, ..., Z

′
t−n)]

≤ E[ℓ(w,Z ′
t, Z

′
t−1, . . . , Z

′
t−d′)] +Bd′

≤ E [ℓ(w,Zt, Zt−1, . . . , Zt−d′)| Ft−2d′ ] +Bd′ + βd′

≤ E [ℓ(w,Zt, Zt−1, . . . , Zt−d′ , . . . , Z1)| Ft−2d′ ] + 2Bd′ + βd′

≤ E [ℓ(w,Zt, Zt−1, . . . , Z1)| Ft−2d′ ] + 2Bd′ + βd′ ,

where we used Assumption 3 in the first inequality, Assumption 4 in the second one, and Assumption 3440

again in the last step. This proves the statement.441

B Online Learning Tools and Results442

B.1 Regret Bound for EWA443

Recalling EWA updates we have:444

Pt+1 = arg min
P∈∆W

{
⟨P, ct⟩+

1

η
DKL(P ||Pt)

}
,

where η > 0 is a learning-rate parameter. The minimizer can be shown to exist and satisfies:445

dPt+1

dPt
(w) =

e−ηct(w)∫
W e−ηct(w′)dPt(w′)

,

and the following result holds.446

Proposition 3. For any prior P1 ∈ ∆W and any comparator P ∗ ∈ ∆W the regret of EWA447

simultaneously satisfies for η > 0:448

Regret(P ∗) ≤ DKL(P
∗||P1)

η
+

η

2

n∑
t=1

||ct||2∞.

We refer the reader to Appendix A.1 of Lugosi and Neu (2023) for a complete proof of the result449

above.450

B.2 Regret Bound for FTRL451

We say that h is α−strongly convex if the following inequality is satisfied for all P, P ′ ∈ ∆W and all452

λ ∈ [0, 1]:453

h(λP + (1− λ)P ′) ≤ λh(P ) + (1− λ)h(P ′)− αλ(1− λ)

2
||P − P ′||2.

Recalling the FTRL updates:454

Pt+1 = argmin
P∈∆W

{
t∑

s=1

⟨P, cs⟩+
1

η
h(P )

}
,

the following results holds.455
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Proposition 4. For any prior P1 ∈ ∆W and any comparator P ∗ ∈ ∆W the regret of FTRL456

simultaneously satisfies for η > 0:457

Regretn(P
∗) ≤ h(P ∗)− h(P1)

η
+

η

2α

n∑
t=1

||ct||2∗.

We refer the reader to Appendix A.3 of Lugosi and Neu (2023) for a complete proof of the results458

above.459

B.3 Details about the reduction of Weinberger and Ordentlich (2002)460

For concretenes we formally present how to turn any online learning algorithm into its delayed version.461

For sake of convenience, assume n = Kd. We denote c̃
(i)
t = ci+d(t−1) (for instance c̃

(1)
1 = c1 is the462

cost revealed at time d+ 1). Then we create d instances of horizon time K of the online learning as463

follows, for i = 1, . . . , d:464

• We initialize P̃
(i)
1 = P0,465

• for each block i of length K we update for t = 1, . . . ,K:466

P̃
(i)
t+1 = OLupdate

(
(c̃(i)s )ts=1

)
.

Here OLupdate refers to the update function of the online learning algorithm we consider which can467

possibly depend of the whole history of cost functions (e.g., in the case of the FTRL update).468
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NeurIPS Paper Checklist469

The checklist is designed to encourage best practices for responsible machine learning research,470

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove471

the checklist: The papers not including the checklist will be desk rejected. The checklist should472

follow the references and follow the (optional) supplemental material. The checklist does NOT count473

towards the page limit.474

Please read the checklist guidelines carefully for information on how to answer these questions. For475

each question in the checklist:476

• You should answer [Yes] , [No] , or [NA] .477

• [NA] means either that the question is Not Applicable for that particular paper or the478

relevant information is Not Available.479

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).480

The checklist answers are an integral part of your paper submission. They are visible to the481

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it482

(after eventual revisions) with the final version of your paper, and its final version will be published483

with the paper.484

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.485

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a486

proper justification is given (e.g., "error bars are not reported because it would be too computationally487

expensive" or "we were unable to find the license for the dataset we used"). In general, answering488

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we489

acknowledge that the true answer is often more nuanced, so please just use your best judgment and490

write a justification to elaborate. All supporting evidence can appear either in the main paper or the491

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification492

please point to the section(s) where related material for the question can be found.493

1. Claims494

Question: Do the main claims made in the abstract and introduction accurately reflect the495

paper’s contributions and scope?496

Answer: [Yes]497

Justification: We claim that we present a new framework adapted from Lugosi and Neu,498

2023 to prove generalization bounds in non-i.i.d setting. We present it in Section 3and we499

provide PAC-Bayesian bounds in Section 4.500

Guidelines:501

• The answer NA means that the abstract and introduction do not include the claims502

made in the paper.503

• The abstract and/or introduction should clearly state the claims made, including the504

contributions made in the paper and important assumptions and limitations. A No or505

NA answer to this question will not be perceived well by the reviewers.506

• The claims made should match theoretical and experimental results, and reflect how507

much the results can be expected to generalize to other settings.508

• It is fine to include aspirational goals as motivation as long as it is clear that these goals509

are not attained by the paper.510

2. Limitations511

Question: Does the paper discuss the limitations of the work performed by the authors?512

Answer: [Yes]513

Justification:514

Guidelines:515

• The answer NA means that the paper has no limitation while the answer No means that516

the paper has limitations, but those are not discussed in the paper.517
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• The authors are encouraged to create a separate "Limitations" section in their paper.518

• The paper should point out any strong assumptions and how robust the results are to519

violations of these assumptions (e.g., independence assumptions, noiseless settings,520

model well-specification, asymptotic approximations only holding locally). The authors521

should reflect on how these assumptions might be violated in practice and what the522

implications would be.523

• The authors should reflect on the scope of the claims made, e.g., if the approach was524

only tested on a few datasets or with a few runs. In general, empirical results often525

depend on implicit assumptions, which should be articulated.526

• The authors should reflect on the factors that influence the performance of the approach.527

For example, a facial recognition algorithm may perform poorly when image resolution528

is low or images are taken in low lighting. Or a speech-to-text system might not be529

used reliably to provide closed captions for online lectures because it fails to handle530

technical jargon.531

• The authors should discuss the computational efficiency of the proposed algorithms532

and how they scale with dataset size.533

• If applicable, the authors should discuss possible limitations of their approach to534

address problems of privacy and fairness.535

• While the authors might fear that complete honesty about limitations might be used by536

reviewers as grounds for rejection, a worse outcome might be that reviewers discover537

limitations that aren’t acknowledged in the paper. The authors should use their best538

judgment and recognize that individual actions in favor of transparency play an impor-539

tant role in developing norms that preserve the integrity of the community. Reviewers540

will be specifically instructed to not penalize honesty concerning limitations.541

3. Theory Assumptions and Proofs542

Question: For each theoretical result, does the paper provide the full set of assumptions and543

a complete (and correct) proof?544

Answer: [Yes]545

Justification: The main result of the paper lies in Section 3.2 and is carefully explained.546

Regarding Section 4 where most of the results are presented we give all the technical results547

and references in the AppendixB.548

Guidelines:549

• The answer NA means that the paper does not include theoretical results.550

• All the theorems, formulas, and proofs in the paper should be numbered and cross-551

referenced.552

• All assumptions should be clearly stated or referenced in the statement of any theorems.553

• The proofs can either appear in the main paper or the supplemental material, but if554

they appear in the supplemental material, the authors are encouraged to provide a short555

proof sketch to provide intuition.556

• Inversely, any informal proof provided in the core of the paper should be complemented557

by formal proofs provided in appendix or supplemental material.558

• Theorems and Lemmas that the proof relies upon should be properly referenced.559

4. Experimental Result Reproducibility560

Question: Does the paper fully disclose all the information needed to reproduce the main ex-561

perimental results of the paper to the extent that it affects the main claims and/or conclusions562

of the paper (regardless of whether the code and data are provided or not)?563

Answer: [NA]564

Justification: paper does not include experiments requiring code.565

Guidelines:566

• The answer NA means that the paper does not include experiments.567

• If the paper includes experiments, a No answer to this question will not be perceived568

well by the reviewers: Making the paper reproducible is important, regardless of569

whether the code and data are provided or not.570
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• If the contribution is a dataset and/or model, the authors should describe the steps taken571

to make their results reproducible or verifiable.572

• Depending on the contribution, reproducibility can be accomplished in various ways.573

For example, if the contribution is a novel architecture, describing the architecture fully574

might suffice, or if the contribution is a specific model and empirical evaluation, it may575

be necessary to either make it possible for others to replicate the model with the same576

dataset, or provide access to the model. In general. releasing code and data is often577

one good way to accomplish this, but reproducibility can also be provided via detailed578

instructions for how to replicate the results, access to a hosted model (e.g., in the case579

of a large language model), releasing of a model checkpoint, or other means that are580

appropriate to the research performed.581

• While NeurIPS does not require releasing code, the conference does require all submis-582

sions to provide some reasonable avenue for reproducibility, which may depend on the583

nature of the contribution. For example584

(a) If the contribution is primarily a new algorithm, the paper should make it clear how585

to reproduce that algorithm.586

(b) If the contribution is primarily a new model architecture, the paper should describe587

the architecture clearly and fully.588

(c) If the contribution is a new model (e.g., a large language model), then there should589

either be a way to access this model for reproducing the results or a way to reproduce590

the model (e.g., with an open-source dataset or instructions for how to construct591

the dataset).592

(d) We recognize that reproducibility may be tricky in some cases, in which case593

authors are welcome to describe the particular way they provide for reproducibility.594

In the case of closed-source models, it may be that access to the model is limited in595

some way (e.g., to registered users), but it should be possible for other researchers596

to have some path to reproducing or verifying the results.597

5. Open access to data and code598

Question: Does the paper provide open access to the data and code, with sufficient instruc-599

tions to faithfully reproduce the main experimental results, as described in supplemental600

material?601

Answer: [NA]602

Justification: The paper does not include experiments requiring code.603

Guidelines:604

• The answer NA means that paper does not include experiments requiring code.605

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/606

public/guides/CodeSubmissionPolicy) for more details.607

• While we encourage the release of code and data, we understand that this might not be608

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not609

including code, unless this is central to the contribution (e.g., for a new open-source610

benchmark).611

• The instructions should contain the exact command and environment needed to run to612

reproduce the results. See the NeurIPS code and data submission guidelines (https:613

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.614

• The authors should provide instructions on data access and preparation, including how615

to access the raw data, preprocessed data, intermediate data, and generated data, etc.616

• The authors should provide scripts to reproduce all experimental results for the new617

proposed method and baselines. If only a subset of experiments are reproducible, they618

should state which ones are omitted from the script and why.619

• At submission time, to preserve anonymity, the authors should release anonymized620

versions (if applicable).621

• Providing as much information as possible in supplemental material (appended to the622

paper) is recommended, but including URLs to data and code is permitted.623

6. Experimental Setting/Details624
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-625

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the626

results?627

Answer: [NA]628

Justification: The paper does not include experiments requiring code.629

Guidelines:630

• The answer NA means that the paper does not include experiments.631

• The experimental setting should be presented in the core of the paper to a level of detail632

that is necessary to appreciate the results and make sense of them.633

• The full details can be provided either with the code, in appendix, or as supplemental634

material.635

7. Experiment Statistical Significance636

Question: Does the paper report error bars suitably and correctly defined or other appropriate637

information about the statistical significance of the experiments?638

Answer: [NA]639

Justification: The paper does not include experiments requiring code.640

Guidelines:641

• The answer NA means that the paper does not include experiments.642

• The authors should answer "Yes" if the results are accompanied by error bars, confi-643

dence intervals, or statistical significance tests, at least for the experiments that support644

the main claims of the paper.645

• The factors of variability that the error bars are capturing should be clearly stated (for646

example, train/test split, initialization, random drawing of some parameter, or overall647

run with given experimental conditions).648

• The method for calculating the error bars should be explained (closed form formula,649

call to a library function, bootstrap, etc.)650

• The assumptions made should be given (e.g., Normally distributed errors).651

• It should be clear whether the error bar is the standard deviation or the standard error652

of the mean.653

• It is OK to report 1-sigma error bars, but one should state it. The authors should654

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis655

of Normality of errors is not verified.656

• For asymmetric distributions, the authors should be careful not to show in tables or657

figures symmetric error bars that would yield results that are out of range (e.g. negative658

error rates).659

• If error bars are reported in tables or plots, The authors should explain in the text how660

they were calculated and reference the corresponding figures or tables in the text.661

8. Experiments Compute Resources662

Question: For each experiment, does the paper provide sufficient information on the com-663

puter resources (type of compute workers, memory, time of execution) needed to reproduce664

the experiments?665

Answer: [NA]666

Justification: The paper does not include experiments requiring code.667

Guidelines:668

• The answer NA means that the paper does not include experiments.669

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,670

or cloud provider, including relevant memory and storage.671

• The paper should provide the amount of compute required for each of the individual672

experimental runs as well as estimate the total compute.673

• The paper should disclose whether the full research project required more compute674

than the experiments reported in the paper (e.g., preliminary or failed experiments that675

didn’t make it into the paper).676
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9. Code Of Ethics677

Question: Does the research conducted in the paper conform, in every respect, with the678

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?679

Answer: [Yes]680

Justification:681

Guidelines:682

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.683

• If the authors answer No, they should explain the special circumstances that require a684

deviation from the Code of Ethics.685

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-686

eration due to laws or regulations in their jurisdiction).687

10. Broader Impacts688

Question: Does the paper discuss both potential positive societal impacts and negative689

societal impacts of the work performed?690

Answer: [NA]691

Justification: The contribution is mainly theoretical so we do not discuss these issues in the692

paper.693

Guidelines:694

• The answer NA means that there is no societal impact of the work performed.695

• If the authors answer NA or No, they should explain why their work has no societal696

impact or why the paper does not address societal impact.697

• Examples of negative societal impacts include potential malicious or unintended uses698

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations699

(e.g., deployment of technologies that could make decisions that unfairly impact specific700

groups), privacy considerations, and security considerations.701

• The conference expects that many papers will be foundational research and not tied702

to particular applications, let alone deployments. However, if there is a direct path to703

any negative applications, the authors should point it out. For example, it is legitimate704

to point out that an improvement in the quality of generative models could be used to705

generate deepfakes for disinformation. On the other hand, it is not needed to point out706

that a generic algorithm for optimizing neural networks could enable people to train707

models that generate Deepfakes faster.708

• The authors should consider possible harms that could arise when the technology is709

being used as intended and functioning correctly, harms that could arise when the710

technology is being used as intended but gives incorrect results, and harms following711

from (intentional or unintentional) misuse of the technology.712

• If there are negative societal impacts, the authors could also discuss possible mitigation713

strategies (e.g., gated release of models, providing defenses in addition to attacks,714

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from715

feedback over time, improving the efficiency and accessibility of ML).716

11. Safeguards717

Question: Does the paper describe safeguards that have been put in place for responsible718

release of data or models that have a high risk for misuse (e.g., pretrained language models,719

image generators, or scraped datasets)?720

Answer: [NA]721

Justification: The paper poses no such risks.722

Guidelines:723

• The answer NA means that the paper poses no such risks.724

• Released models that have a high risk for misuse or dual-use should be released with725

necessary safeguards to allow for controlled use of the model, for example by requiring726

that users adhere to usage guidelines or restrictions to access the model or implementing727

safety filters.728
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• Datasets that have been scraped from the Internet could pose safety risks. The authors729

should describe how they avoided releasing unsafe images.730

• We recognize that providing effective safeguards is challenging, and many papers do731

not require this, but we encourage authors to take this into account and make a best732

faith effort.733

12. Licenses for existing assets734

Question: Are the creators or original owners of assets (e.g., code, data, models), used in735

the paper, properly credited and are the license and terms of use explicitly mentioned and736

properly respected?737

Answer: [NA]738

Justification: We do not use existing assets.739

Guidelines:740

• The answer NA means that the paper does not use existing assets.741

• The authors should cite the original paper that produced the code package or dataset.742

• The authors should state which version of the asset is used and, if possible, include a743

URL.744

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.745

• For scraped data from a particular source (e.g., website), the copyright and terms of746

service of that source should be provided.747

• If assets are released, the license, copyright information, and terms of use in the748

package should be provided. For popular datasets, paperswithcode.com/datasets749

has curated licenses for some datasets. Their licensing guide can help determine the750

license of a dataset.751

• For existing datasets that are re-packaged, both the original license and the license of752

the derived asset (if it has changed) should be provided.753

• If this information is not available online, the authors are encouraged to reach out to754

the asset’s creators.755

13. New Assets756

Question: Are new assets introduced in the paper well documented and is the documentation757

provided alongside the assets?758

Answer: [NA]759

Justification: The paper does not release new assets.760

Guidelines:761

• The answer NA means that the paper does not release new assets.762

• Researchers should communicate the details of the dataset/code/model as part of their763

submissions via structured templates. This includes details about training, license,764

limitations, etc.765

• The paper should discuss whether and how consent was obtained from people whose766

asset is used.767

• At submission time, remember to anonymize your assets (if applicable). You can either768

create an anonymized URL or include an anonymized zip file.769

14. Crowdsourcing and Research with Human Subjects770

Question: For crowdsourcing experiments and research with human subjects, does the paper771

include the full text of instructions given to participants and screenshots, if applicable, as772

well as details about compensation (if any)?773

Answer: [NA]774

Justification: the paper does not involve crowdsourcing nor research with human subjects775

Guidelines:776

• The answer NA means that the paper does not involve crowdsourcing nor research with777

human subjects.778
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• Including this information in the supplemental material is fine, but if the main contribu-779

tion of the paper involves human subjects, then as much detail as possible should be780

included in the main paper.781

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,782

or other labor should be paid at least the minimum wage in the country of the data783

collector.784

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human785

Subjects786

Question: Does the paper describe potential risks incurred by study participants, whether787

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)788

approvals (or an equivalent approval/review based on the requirements of your country or789

institution) were obtained?790

Answer: [NA]791

Justification: the paper does not involve crowdsourcing nor research with human subjects.792

Guidelines:793

• The answer NA means that the paper does not involve crowdsourcing nor research with794

human subjects.795

• Depending on the country in which research is conducted, IRB approval (or equivalent)796

may be required for any human subjects research. If you obtained IRB approval, you797

should clearly state this in the paper.798

• We recognize that the procedures for this may vary significantly between institutions799

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the800

guidelines for their institution.801

• For initial submissions, do not include any information that would break anonymity (if802

applicable), such as the institution conducting the review.803
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