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ABSTRACT

When capturing images through glass surfaces or windshields on rainy days, rain-
drops and reflections frequently co-occur to significantly reduce the visibility of
captured images. Prior de-raindrop and de-reflection studies have failed to si-
multaneously remove both types of degradations from a single captured image,
thereby limiting their application and robustness in real-world scenarios. In this
work, we make the first attempt to explore this new task, i.e., unified removal
of raindrops and reflections (UR®). First of all, we set up an image acquisition
platform to collect our own dataset, namely RainDrop and ReFlection (RDRF)
dataset, which provides a new benchmark with substantial, high-quality, diverse
image pairs. Within each pair, one has a clean foreground and the rest is corrupted
by raindrops and reflections. Second, we propose a diffusion-based framework
(i.e., DiffUR®) to decouple the UR? task into a restoration stage and a condi-
tional generation stage (with multiple conditions). By leveraging the powerful
generative prior, DiffUR? successfully removes both degradations. Extensive ex-
periments demonstrate that our method achieves state-of-the-art performance on
our benchmark and on challenging in-the-wild images. The RDRF dataset and the
codes will be made public upon acceptance.

1 INTRODUCTION

When we try to capture background images through raindrop-covered glasses or windscreens (a
highly typical scenario is the vehicle camera recording on a rainy day), the phenomenon of reflection
often coexists (see in Fig. [T] (a)). Adherent raindrops and the reflections from camera side can
significantly reduce the visibility of captured images (You et al., [2016)). Previously, researchers
treated raindrop removal and reflection removal as two separate tasks (Qian et al.,|2018;|Quan et al.,
2019; |Shao et al., |2021; Hu et al.| 2024} |Zhao et al., [2025; Hu et al.l 2025)). Though these methods
can achieve relatively good performance in removing the target type of degradation (i.e., raindrop
or reflection) from a single image, they often fail to remove both types at the same time (see in
Fig.[T](c) and (d)). In this work, we aim to finding a meaningful solution capable of simultaneously
eliminating raindrops and reflections, thereby enhancing the clarity of captured images. We hope
this endeavor can provide support for applications such as autonomous driving, photography, and
video surveillance (Zhu et al., 2025bja)).

Unified Removal of Raindrops and Reflections (UR?) is a fundamental but complex task. Its key
challenges lie in the following three aspects. (1) Lack of data: deep learning based methods requires
a large number of image pairs for training process. Currently, no publicly available dataset exists
wherein the low-quality images contain both raindrop degradation and reflection degradation. (2)
Task gap: certain gap exists between raindrop removal and reflection removal. Cross-task adaptation
of pretrained models often yields sub-optimal performance due to domain shift. (3) Void informa-
tion: in regions with exceptionally large/dense raindrops or intense reflections, background scene
is completely lost. These occluded regions are extremely challenging, somewhat analogous to the
inpainting task.

Trying to address these challenges, we first set up an image acquisition platform to collect corre-
sponding data for the UR? task. We collect a substantial number of image pairs to constitute our
RainDrop and ReFlection (RDRF) dataset, wherein one image features a clean foreground, while
the other is a degraded image containing both raindrops and reflections (both images share identical
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Figure 1: (a) A low-quality image with raindrops and reflections. (b) The ground truth. (c) The

processed result of AGAN (Qian et al.||2018)). (d) The processed result of DAI (Hu et al., [2025). (e)
The processed result of a re-trained restoration method (Chen et al [2023b). Superscript t means

re-trained. (f) The processed result of our DiffUR? pipeline.

background). We hope RDRF dataset can contribute to the advancement and development of the
UR? task, and benefit the entire community.

Then, we propose a diffusion-based framework (i.e., DiffUR?) based on IRControlNet
to jointly remove these two kinds of degradations. Within this framework, the UR” task is
decoupled into two stages: (I) Restoration: remove some simple degradations without introduc-
ing artifacts to offer a reliable condition image. (II) Conditional generation: guided by multiple
condition images, reconstruct the challenging regions by leveraging the powerful generative prior.

Last but not least, we design a Modulate&Gate module to align each condition with the noisy la-
tent and adaptively select the beneficial components in the latent space. We also train an additional
fidelity encoder to offer faithful features for guiding VAE Decoder to maintain the texture and struc-
ture of the reconstructed image.

2 RELATED WORK

2.1 RAINDROP REMOVAL

In the realm of raindrop removal, recent studies have explored diverse methodologies.

(2013) pioneered single-image raindrop removal using CNNs. (2018) introduced a gener-

ative adversarial network (GAN) to enhance raindrop removal. Transformer-based approaches like

IDT (Xiao et al., 2023), UDR-S?Former (Chen et al.| [2023al) and Histoformer (Sun et al., 2024)
have demonstrated superior performance. Meanwhile, the CCN (Quan et al.|[2021)) adopts a unique

approach by employing neural architecture search. More recently, diffusion-based methods like
WeatherDiff (Ozdenizci & Legenstein, [2023) and T3-DiffWeather (Chen et al.,[2024) have emerged,

leveraging the generative capabilities of diffusion models to enhance raindrop removal.

2.2 REFLECTION REMOVAL

In the field of single image reflection removal, various advanced techniques have been proposed to
address the ill-posed nature of separating superimposed transmission and reflection layers. Early
methods such as CEILNet leverage edge information and deep learning. IBCLN
introduces a cascaded refinement strategy to iteratively enhance the estimates of
transmission and reflection layers. More recent advancements, YTMT 2021), DSRNet

(Hu & Guo, [2023) and DSIT (Hu et al., 2024), employ dual-stream networks to enhance feature
interaction and correlation assessment. Further more, diffusion-based models like L-DiffER

[2024) and DAI (Hu et al [2025) show impressive removal capabilities across a wide range of

real-world scenarios.
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Figure 2: (a) Sketch diagram and actual equipment of our image acquisition platform. To suppress
shutter-induced micro-vibrations which may potentially induce image misalignment, we implement
a wireless triggering mechanism. It comprises a remote controller and a camera-mounted signal
receiver, enabling contact-free shutter operation. (b) The data collection pipeline for our RDRF
dataset. ¥ denotes light occlusion

2.3 DATASETS

Existing real-world datasets for raindrop removal include AGAN (Qian et al., 2018), RainDS
2019), RobotCar (Porav et al, 2019), and Raindrop Clarity (Jin et al [2024), these datasets

provide low-quality images with raindrops and their corresponding ground truth images. Differently,
Windshield (Soboleva & Shipitkol 2021)) contains degraded images along with their corresponding
binary masks that indicate the raindrop-affected areas. For reflection removal task, it is noteworthy
that synthetic data is commonly employed for training. Recently, some real-world datasets have
been proposed, such as RRW and DRR [2025). However, there are no
existing datasets that specifically address the unified removal of raindrops and reflections, which is
the focus of our work.

3 RDRF DATASET

Similar to most deep learning based methods, our task (i.e., unified removal of raindrops and re-
flections) requires a large number of degraded images with corresponding clean labels for training.
There are no existing training or testing datasets for this new task. As shown in Fig. 2] (a), we set
up an image acquisition platform to collect our own RainDrop and ReFlection (RDRF) dataset. In
our case, a substantial volume of image pairs are required, where each pair comprises two images
with the identical background scene, yet one has a clean foreground and the other is corrupted by
raindrops and reflections.

3.1 HARDWARE

Drawing inspirations from previous works of [Zhu et al.| (2024) and |L1 et al.| (2024), our RDRF
dataset is captured under real scenarios deliberately constructed in controlled environments. For
the hardware configuration, the camera is mounted on a tripod using an adjustable base, with the
glass slab positioned in front of the lens. We connect a signal receiver onto the camera, thereby
enabling remote control of the shutter. This wireless triggering mechanism can effectively avoid
image misalignment caused by camera vibrations resulting from manual operation. To ensure diver-
sity, neither the camera nor the glass is fixed. They can be adjusted to simulate different shooting
situations (e.g., camera-to-glass distances/angles). In addition, we utilize two cameras (Sony ILCE-
7RM4A and Nikon D7100) with zoom lens and choose different glass thicknesses (3 mm, Smm, and
8 mm) to further enhance diversity.
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Figure 3: Our RDRF dataset comprises a diverse collection of scenes, each contains a ground truth
and multiple low-quality images. As illustrated in this figure, the clean ground truths are highlighted
in red boxes, while corresponding low-quality images are arranged around. We divide it into the
training and testing subsets, ensuring no overlapping samples between them. Please check and
zoom in on screen for a better view.

3.2 DATA COLLECTION PIPELINE

Fig.[2|(b) exhibits our data collection pipeline. For step 1, we utilize a light-blocking box to suppress
the reflections from the camera side (¥ denotes light occlusion). The obtained image is regarded as
the ground-truth. For step 2, we keep the background scenario and camera unchanged. The light-
blocking box is removed and the raindrops are created by spraying water onto the glass surface. By
randomly rotating the glass at different angles, we create varying reflections with different scenes
and intensities. For each scene, multiple images are captured as the low-quality ones.

Some samples are illustrated in Fig.[3] As demonstrated in the dataset, our RDRF dataset comprises
a comprehensive collection of scenes. The raindrops are captured under diverse shapes and sizes
(circular, elliptical, and irregular), ranging from sparse to dense. Raindrop flow traces are also
included. In addition, the reflections are also captured with diverse reflection scenes, ranging from
weak to strong. All the images are captured in 4752 x 3168 resolution to ensure high-quality.

In total, our RDRF dataset consists of 252 unique scenes (we categorize these scenes into eight
distinct classes, namely: building facades & structures, streets & traffic, public & open spaces, func-
tional components of building, industrial & commercial facilities, signs & markers, infrastructure
& obstacles, and others.). The category distribution diagram can be found in the Appendix[A.T]
(i.e., Fig.[T0). It is divided into a training set (216 scenes with 9003 image pairs) and a testing set
(36 scenes with 83 image pairs). There are no overlapping samples between them.

To address the spatial misalignment caused by our hardware, we follow the procedures proposed
in 2017). It starts by extracting SIFT 2004) keypoints and descriptors, which
are matched with L2 distance. Using the matched keypoints, a homography matrix is estimated via
RANSAC (Fischler & Bolles, [1981) to handle outliers and find a robust geometric transformation.
The low-quality image is aligned to the ground truth by applying a perspective warp using the
computed homography.

Our RDREF dataset represents the first-of-its-kind contribution to the UR? task. Some researches
have also noticed the reflection artifacts in the early raindrop datasets (Qian et al., 2018} [Quan
and proposed a highly valuable dataset to address the raindrop removal task only (i.e.,
Raindrop Clarity 2024)). Their brilliant dataset has different focus with ours.

4 METHODOLOGY

Our RDRF dataset provides sufficient and diverse training data for UR? task. Formally, given a
low-quality (LQ) image I;, € R**>*W with both raindrops and reflections on it, a straightforward
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Figure 4: (a) Overall pipeline of our DiffUR® framework. It consists of a restoration stage and
a conditional generation stage. Given a low-quality image I;,, the restoration stage removes the
undesired degradation to obtain the initial result I,. Both I;; and I, are fed into the next stage as
the condition images. We inject the condition information through a control branch, which outputs
control signals for the noise prediction U-Net. (b) Details of the Modulate&Gate module within the
control branch. (c) The generation of noisy latent z; during the training phase. Note that the noisy
latent starts from random Gaussian noise during the inference.

idea is to employ conventional restoration methods (Chen et al., 2023bj [Sun et al., [2024) to directly
learn the mapping function from the low-quality to the ground-truth. However, their results are
perceptually unsatisfying, because of the complexity of UR? task. An example can be found in
Fig.[T] (¢). Instead, we try to utilize the powerful generative priors of the diffusion model as an
effective solution. In this way, UR? is regarded as a conditional image generation problem.

By referring to DiffBIR (Lin et al., [2024)) framework, we design a two-stage network (i.e., DiffU R3)
shown in Fig. E| (a), which also consists of (I) a restoration stage, and (II) a conditional generation
stage. The restoration stage outputs an initial result I, which is then used as the condition image in
the following generation stage.

Although similar to DiffBIR framework, our DiffUR? has two major different designs: (1) Con-
sidering the fact that raindrops and reflections merely affect certain regions, some parts in the LQ
image can be regarded as clean. We also integrate the LQ image I;, as one of the conditions during
stage II. (2) We employ a fidelity encoder to provide faithful structural information for the decoding
process. Details of our DiffUR? pipeline are described below.

4.1 RESTORATION STAGE

In the first stage, our aim is to remove some simple yet undesired degradations from LQ input I,
without introducing artifacts. The output image [ provides a reliable condition image for training
the generation stage.

I :RM(Ilq)v (D

where RM(-) denotes the restoration model. In our implementation, we select the DRSformer
(Chen et al.| |2023b)) as the restoration model in stage I due to its superior performance and general-
ization capability.

4.2 CONDITIONAL GENERATION STAGE

Our generation stage is based on the Stable Diffusion Model (Rombach et al.l |2022), because its
powerful generative prior can facilitate the restoration of regions that are challenging to be recov-
ered in stage I through a conditional generation approach. To achieve better efficiency and stabilized
training, the pretrained VAE (Kingma & Welling, [2013)) encoder £ is employed to encode the con-
dition images into the latent space. Both diffusion and denoising processes are performed in this
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space instead of the pixel space. The main denoising network is a pretrained U-Net. The denoising
output is then converted back to the pixel space using the pretrained VAE decoder D.

As mentioned above, for UR? task we argue LQ image [;, contains clean information within certain
regionsﬂ Therefore, both I;; and I are encoded by £:

Cl(pcs :g(llqals)7 (2)

where ¢, € R** £X% and cs € R4* X5 denote the obtained condition latent from Iiq and I,

respectively. Besides, the noisy latent z; is also embedded, since it has been proven to enhance
image quality (Lin et al.,[2024). The generation of z; is shown in Fig. E](c).

Similar to previous work (Lin et al., 2024), we also inject the condition information via a control
branch. We make a trainable copy of the pretrained U-Net encoder and middle block (i.e., F.,,
in Fig. 4| (a)), which receives condition information and then outputs control signals. A normal
solution is to add or concatenate c;4, ¢; and z; before sending to F,,, (Chen et al., 2025 Ozdenizci
& Legenstein, 2023)). However, we observe that the noisy latent z; varies at different time steps, yet
the condition latent (i.e., ¢4 or ¢s) remains unchanged. Instead of direct addition or concatenation,
we propose a more reasonable solution to modulate ¢;4 and ¢, through z;. Since there are more than
one condition latent, a gate mechanism is introduced to adaptively assign different spatial weights
to ¢jq and c,.

To this end, before entering the F.,,, we design a Modulate&Gate module which consists of a
Modulate block and a Gate block. Fig.[d](b) shows the details of our Modulate&Gate module. We
describe them as below.

4.2.1 MODULATE BLOCK

Take ¢, as an example, c;4 can be similarly derived. First, both ¢, and z; individually pass through

a convolutional layer to extract their features f, € R Ex¥ and f. € RO~ X%, C denotes
the channel number of the extracted feature. In our implementation, we set C = 32. Then, their
concatenation result is fed into two consecutive transformer layers (Vaswani et al., 2017) to perform
the cross attention operation, which can facilitate the information interaction between f. and f..
Our cross attention operation aligns the dimensions of the output f..,ss and f, at the end. Finally,

we add foposs € REX FX% with f-, and employ another convolutional layer to reduce the channel
number back to 4. The formulations are as follows:
fer f- = Conv(cs, zt),
fcross = CrAttn([fcvfz])a (3)
és = Conv(fcross + fz)7
where C'onv(-) denotes the convolutional layer, C'r Attn(-) denotes the cross attention operation,

[-,-] denotes the concatenation, ¢ is the modulated condition latent, and Ciq can be derived by
replacing ¢, with ¢;q in Eqn.[3]

4.2.2 GATE BLOCK

After obtaining ¢ and ¢;4, we need to selectively extract the components that are beneficial to our
DiffUR?. We concatenate them together, and then send to a spatial attention to generate a spatial
weight a € RE*% . The spatial attention operation consists of two convolutional layers, one
activation layer, and one sigmoid layer. The formulations are as follow:

a = SpAttn([és, éq)),

Cs =+ 657 (4)

Clg = (1 — OL) . élq,
where SpAttn(-) denotes the spatial attention operation, ¢, and ¢, are the output condition latent

variables. Note that our Modulate&Gate module is simple yet effective. More sophisticated designs
can be considered for better performance, which is not the focus of this work.

!'Unlike blind super-resolution and blind image denoising in (Lin et al., [2024), where the entire LQ image
is degraded.
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We concatenate C,, ¢4, and the noisy latent z; together, and send them to F,, for generating the
control signals, which are added to the denoising U-Net via zero convolutions (Zhang et al.} [2023).
At each time step, the noise prediction U-Net estimates the noise component and performs denoising
on the noisy latent z;. During the inference phase, the noisy latent starts from random Gaussian noise
and iteratively passes through the pretrained U-Net to estimate the clean latent 2.

4.3 ADDITIONAL FIDELITY ENCODER

Even with the control branch, we still observe some un-
wanted textural and structural distortions in some cases
after decoding estimated clean latent 2, back to pixel - N R—
space. An example can be found in Fig.[7] (a). To deal | mureui | & oo

with this issue and improve the fidelity of generated re- “ 6 | o=z @
. . T . Gate S2 VAE
sults, we train a fidelity encoder after the training of con- | %% L £ \  Encoder
trol branch, inspired by (Chang et all 2023). Fig.[f]is the = """ L
training pipeline of our fidelity encoder, which shares the g T

same architecture with VAE encoder (Kingma & Welling| T
[2013) (besides the first convolutional layer). c "4

To keep consistent with the control branch, both LQ im-
age I;, and initial result I, are fed into the fidelity encoder
through a Gate block to extract faithful features. The ex-
tracted fidelity features are added to corresponding posi-
tions in VAE Decoder via zero convolutions. Then, we
encode the ground truth Iy, via the pretrained VAE encoder to latent space, simulating the denoised
latent i.e., zo. Finally, guided by the fidelity features, pretrained VAE decoder (Kingma & Welling,
converts the compressed latent zj to a reconstructed image I gt- The whole pipeline is trained

by minimizing a mean absolute error (i.e., L loss) between I gt and gy

Figure 5: Training pipeline of our fi-
delity encoder.

5 EXPERIMENTAL RESULTS

5.1 IMPLEMENTATION DETAILS AND METRICS

Our DiffUR? is trained on our RDRF-training dataset. We train the restoration model in stage I for
300k iterations (batch size = 4) on a single RTX 4090 GPU. Then we adopt the Stable Diffusion 2.1-
base (Rombach et al} 2022) as the generative prior, and train the control branch in stage II for 50k
iterations (batch size = 40) on two A6000 GPUs. The fidelity encoder is trained for 300k iterations
(batch size = 6) on two A6000 GPUs. More details can be found in Appendix[A.2]

We adopt three traditional metrics (PSNR, SSIM, LPIPS (Zhang et al.,[2018))) and four no-reference

image quality assessment metrics (MUSIQ 2021), CLIPIQA (Wang et al},[2023)), CLIP-
IQA+ [2023), HyperIQA [2020)) to evaluate our performance.

Candidate conditions Zoom-in views of outputs
Baseline 1 Baseline 2 w/o M&G Ours
(1iq) Is) (hiq&ls) (hq&ls)

Cropped I;4 Cropped I,

Figure 6: Ablation study of our Modulate&Gate (M&G) module. ¢ and ¥ denote good and bad
results, respectively.
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5.2 ABLATION STUDY

5.2.1 OVERALL

First, we employ the naive diffusion-based

method which solely adopts I;; as the condi-  Table 1: Ablation study of key components.
tion image (similar to (]Ozdenizci & Legensteinl, Model | PSNRT SSIMt LPIPS|
2023)) and denote it as Baseline 1. In addition, = o === a0 o5
Baseline 2 means only the I is regarded as the Baseline 2 (I, as condition) | 29.18  0.9311  0.0838
condition image (similar to 2024)). Wi Modulate&Gate Module | 2921 09322 0.0802
To validate the effectiveness of key components w/o Fidelity Encoder 27.64 08198  0.0990
in our DiffUR3, we perform ablation studies of DiffUR?3 | 29.84 09400 0.0733
modulate&gate module and fidelity encoder on
our RDRF-testing dataset. We remove corresponding components from our DiffUR? and denote
them as ‘w/o components’ in Table[T]

Table |I| summarize the quantitative results in terms of PSNR, SSIM, and LPIPS. We observe that
both modulate&gate module and fidelity encoder are critically important for our DiffUR?, as omit-
ting either component leads to a significant performance degradation.

5.2.2 MODULATE&GATE MODULE

In Table EI, w/o Modulate&Gate Module means both I;, and I, are embedded as the condition
images and fused by channel-wise concatenation in latent space. We provide an in-depth analysis
on the function of modulate&gate module. As illustrated in Fig. [6] Baseline 1 occasionally exhibits
generation errors due to the inherent characteristics of diffusion model. In contrast, Baseline 2 relies
on the condition image I/;. They demonstrate distinct advantages across different regions. Simple
channel-wise concatenation fails to systematically integrate their complementary strengths (third
column). The introduced modulate&gate module enables adaptive integration of information from
dual condition images, thereby enhancing the model performance.

5.2.3 FIDELITY ENCODER

We also provide the qualitative analysis on the function of fidelity encoder. As shown in Fig.[7} when
the fidelity encoder is excluded, the recovered text exhibits distortions (which is highly difficult to
be recognized by human begins), and some structure deformations emerge in the scene.

Competitor Ours

Voting Rate

DRSformer’ Histoformer’  Histoformer -DAT_ RaindropDiffas” AGANT
Method

w/o Fidelity Encoder (b) Ours

Figure 7: Ablation study of our Fidelity Encoder. Figure 8: User study on RDRF-testing.

5.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

Since this work is the first exploration for unified removal of raindrops and reflections (UR?) task.
There are no prior methods. We employ three classical raindrop removal methods (i.e., AGAN (Qian
2018), Histoformer , WeatherDiffs, (Ozdenizci & Legenstein, 2023)), three
classical reflection removal methods (i.e., RDNet 2025), DSIT 2024), DAI
[2025)), two cascaded methods (de-raindrop then de-reflection, and de-reflection then de-
raindrop) as the competitors. We adopt their published models for these methods. In addition, by
utilizing their published codes, we re-train AGAN, DRSformer, Histoformer, RaindropDiffgs4 on our
RDRF-training dataset, endowing them with capabilities for UR? task. We do not re-train reflection
removal models because they typically require access to additional synthetic data for training, which
would make the comparison unfair.
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Table 2: Benchmark results on our RDRF-testing dataset. We report PSNR, SSIM, LPIPS and four
no-reference image quality assessment metrics (i.e., MUSIQ, CLIPIQA, CLIPIQA+, HyperIQA) to
perform comprehensive comparisons. The bold and underline indicate the best and second best.

RDRF-testing

Type Method PSNRT SSIM{ LPIPS, MUSIQt CLIPIQAT CLIPIQA+T HyperlQAT
Raindrop AGAN 2571 09258 0.0990  74.36 0.4844 0.6479 0.6915
| Histoformer 2647 09300 0.0990  74.08 0.4315 0.6226 0.6816
remova WeatherDiffg, 2519 09067 0.1074  73.85 0.4497 0.6604 0.6679
Reflection RDNet 27.11 09232 01076 7234 0.4637 0.6243 0.6585
| DSIT 26.53  0.9207 0.1130  72.86 0.4450 0.6326 0.6585
remova DAI 2775  0.9294  0.0951 74.53 0.4556 0.6413 0.6896
Cascadeq | Histoformer+DAT | 2813 09395 00804 7531 0.4743 0.6490 0.7083
DAI+Histoformer | 27.78  0.9340 0.0851  75.09 0.4768 0.6520 0.7007
AGAN' 2602 09145 0.1475  71.85 0.4193 0.5768 0.6669
Re-trained | Histoformerf 20.53 09384 0.0745  73.38 0.4738 0.6433 0.6764
RaindropDiffg,t | 2695 09236 0.0922  73.49 0.5013 0.6662 0.6493
DRSformer® 20.61  0.9417 0.0745  74.16 0.4706 0.6536 0.6864
Ours | DiffUR3 | 29.84 09400 0.0733 7541 0.5018 0.6800 0.7256

() GT

t (e) Histoformer ' [€3) RaindropDifféf (g) Cascaded

(c) Ours (d) DRSformer

(a) Input

Figure 9: Visual results of various methods on our RDRF-testing. For Cascaded in (g), we choose
Histoformer+DAI. Superscript T means this method is re-trained on our RDRF-traing dataset. Please
check and zoom in on screen for a better view.

Table shows the quantitative results on our RDRF-testing dataset. Note that our DiffUR? ranks the
first among six metrics, except SSIM. We conduct a user study to evaluate our DiffUR? subjectively
against other methods. The statistical results in Fig. [8]indicates that our DiffUR? is more favored
by the invited experts. More details about the user study can be found in Appendix [A.3] In
addition, some visual comparisons of our DiffUR? and the competitors are provided in Fig.[9] It is
worth mentioning that the results of our DiffUR? are closer to the ground truth with less degradation
residuals and artifacts than the alternatives. We also capture some testing images from real-world
driving scenarios in rainy weather to form the RDRF-wild dataset. More visual results of RDRF-
testing and RDRF-wild can be found in Appendix[A.4}

6 CONCLUSION

This work introduces a pioneering approach to the challenging task of UR3. By establishing the first
dedicated dataset (RDRF dataset) and proposing a novel diffusion-based framework (DiffUR?), we
successfully address the limitations of previous methods that treat raindrop and reflection removal as
separate tasks. Our two-stage pipeline, incorporating a restoration stage and a conditional generation
stage, effectively leverages generative priors to remove both types of degradations simultaneously.
Extensive experiments demonstrate the superiority of our approach over state-of-the-art methods.
The RDRF dataset and DiffUR® framework contribute significantly to the advancement of the UR?
task, offering valuable resources for future research.
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We have taken several measures to ensure the reproducibility of our results. The main paper and
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To further facilitate reproducibility, We provide the essential code snippets in the supplementary
material to illustrate the core components of our method. In addition, the random seed used in all
experiments is fixed, ensuring consistent results. These efforts are intended to make it possible for
other researchers to replicate and extend our findings.
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A APPENDIX

USE OoF LLMSs

In accordance with ICLR’s guidelines, we disclose that large language models (LLMs) were em-
ployed solely as a general-purpose tool for aiding or polishing writing in this submission.

A.1 CATEGORY DISTRIBUTION DIAGRAM

Our RDRF dataset covers a diverse range of urban scene categories with varying semantic attributes.
As shown in Fig. the category distribution diagram reveals a rich diversity of semantic groups,
along with a relatively balanced representation across them, thereby providing a solid foundation for
the UR? task.
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Figure 10: The category distribution diagram of our RDRF dataset.

A.2 IMPLEMENTATION DETAILS

For the training of stage I, we adopt DRSformer (Chen et all 2023Db) as the restoration model.
{No,N1,N2,N3,N, } are set to {0,2,4,4,8}, and the number of attention heads for sparse transformer
blocks (i.e., STBs) in level 1 to level 4 are set to {1,2,4,8}. The initial channel C' is set to 16.
Compared with the original, we make certain simplifications to accelerate the computation in Stage
I. Patches of size 256 x 256 are randomly cropped from the RDRF-training dataset, and horizontal
and vertical flips are applied as the data augmentation techniques. This model is trained with a
batch size of 4 and with an initial learning rate of 3e~4 for the first 100K iterations, which will

gradually reduced to 1e~% using cosine annealing schedule (He et al., 2019) during the remaining
200K iterations.

For stage II, the images in our RDRF-training dataset are randomly cropped into 512 x 512 patches.
Horizontal and vertical flips, resizing, rotation are applied as the data augmentation techniques. The
control branch is trained with a batch size of 40 and with a fixed learning rate of 1e~* for entire 50K
iterations. To accelerate the sampling process, we adopt a spaced DDPM sampling schedule

& Dhariwall, [2021)) which requires 50 sampling steps.

For the training of the additional fidelity encoder, we follow the training settings of stage II, except
the batch size and number of iterations.

Note that the images in our RDRF-training dataset are firstly resized to a fixed resolution of 1080 X
720, and we use AdamW (Loshchilov et al., 2017) optimizer with default settings for all the training
procedures.
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A.3 DETAILS OF OUR USER STUDY

We conduct a user study to evaluate our DiffUR? subjectively against five methods (i.e., DRSformer
(Chen et al.l 2023b)), Histoformer (Sun et al., [2024), Histoformer+DAI (Sun et al.,[2024; [Hu et al.,
2025), RaindropDiffgy (Ozdenizci & Legenstein, 2023), AGAN (Qian et al., [2018)). Apart from
the cascaded method (Histoformer+DAI), all the other methods are re-trained on our RDRF dataset.
Specifically, we randomly select 50 images from our RDRF-testing dataset and invite 20 experts
with image restoration background as volunteers. For every image, each expert is asked to compare
the result of our DiffUR? with the alternatives one by one. For each comparison, the observers are
demanded to choose the favored one after at least 10 seconds of observation. Afterward, we statistic
the percentage of certain method to be selected.

A.4 ADDITIONAL VISUAL RESULTS OF RDRF-wWILD AND RDRF-TESTING

Images collected in real-world scenarios often exhibit lower quality than those captured in controlled
environments, making them more suitable for evaluating model robustness in practical settings. We
capture a set of images from actual driving environments, namely RDRF-wild. As shown in Fig.
the results demonstrate that our method effectively removes raindrops and reflections, significantly
enhancing image quality. This indicates the robustness and generalization capability of our approach
in real-world applications. We also provide additional visual results of various methods on our
RDRF-testing in Fig.

A.5 DOWNSTREAM APPLICATION

To further demonstrate the downstream applicability of our DiffUR?, we employ Google Vision
API E] to test whether our outputs can improve the object detection performance. Specifically, we
conduct object detection on degraded images and our restored results. As shown in Fig. |13} the orig-
inal inputs yield missing or incorrect object annotations due to the visual interference of raindrops
and reflections. In contrast, our DiffUR? effectively assist the detector in recognizing the omitted
objects. This proves that our method not only improves perceptual image quality but also enhances
performance in high-level vision tasks, validating its potential for real-world applications.

A.6 DISCUSSION ON STAGE I

Our DiffUR? pipeline represents a highly flexible framework. Although it needs a condition image
generated by the restoration model (i.e., DRSformer) within stage I during the training phase, this
condition can be discarded during the testing phase, and instead, another condition image gener-
ated by other models (e.g., Histoformer (Sun et al.| [2024), DAI (Hu et al.,|[2025)) can be utilized.
This indicates that the DiffUR® has already learned the capability to extract valuable information
from the condition image. Fig.[T4]shows the experimental results with different stage I. By replac-
ing DRSformer with DAI during the inference phase, our DiffUR? still can output pleasing result
(Fig.[14|(c)). Note this DAI model has not been re-trained on our RDRF dataset. We also extend our
DiffUR® to let it incorporate two stage I (Fig.|14{(d)). This model achieves the best performance.
We will further delve into an in-depth exploration of this research direction.

A.7 GENERALIZATION TO SINGLE-DEGRADATION DATASET

We also apply our DiffUR? on raindrop-only dataset (i.e., Qian’s dataset (Qian et al.| [2018)). It
contains 861 image pairs for training and another 58 pairs for testing. The benchmark results on
the testing image pairs (i.e., Test-a) are listed in Table [3, We observe that our DiffUR? ranks first
in terms of no-reference image quality assessment metrics, which aligns closely with human visual
perception (some visual results are illustrated in Fig. [I5). It should be noted that Qian’s dataset
has a relatively small number of samples (861 pairs) and relatively low resolutions (mostly merely
720 x 480), which is detrimental to the training of diffusion models and may lead to sub-optimal
results. During the training, we have to reduce the patch size to accommodate Qian’s dataset.

Zhttps://cloud.google.com/vision.
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(a) Input (b) Ours (c) AGANT (d) DRSformer (e) Histoformer | [63)] RaindropDiffMJr (g) Cascaded

Figure 11: Visual results of various methods on our RDRF-wild dataset. Please check and zoom in
on screen for a better view.

(a) Input (b) GT (c) Ours (d) DRSformer’ (e) Histoformer ' (f) RaindropDiffy, ' (g) Cascaded

Figure 12: More visual results of various methods on our RDRF-testing dataset. Please check and
zoom in on screen for a better view.
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(a) Original image as input (b) Our result as input

Figure 13: We conduct object detection on original images and our restored results.

15



Under review as a conference paper at ICLR 2026

(c) DAI as stage I (d) Both DRSformer & DAI as stage 1

Figure 14: Experimental results with different settings of stage I.

Table 3: Benchmark results on Test-a dataset. We report PSNR, SSIM and three no-reference image
quality assessment metrics (i.e., MUSIQ, CLIPIQA+, HyperIQA) to perform comprehensive com-
parisons. The bold and underline indicate the best and second best.

Train: Qian’s dataset | Test: Test-a

Method ‘ PSNRT SSIM} MUSIQ CLIPIQA+T HyperlQAT
AGAN 3157 09023 7052 0.6691 0.6650
Histoformer | 33.06 0.9441  70.66 0.6530 0.6695
DuRN 3124 09259 7030 0.6433 0.6545
DiffUR? 3166 09324 7222 0.6857 0.7058

(a) Input (b) GT (c) Ours (d) AGAN (e) Histoformer (f) WeatherDiff,

Figure 15: Visual results of various methods on Test-a dataset. Please check and zoom in on screen
for a better view.
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