

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNIFIED REMOVAL OF RAINDROPS AND REFLECTIONS: A NEW BENCHMARK AND A NOVEL PIPELINE

Anonymous authors

Paper under double-blind review

ABSTRACT

When capturing images through glass surfaces or windshields on rainy days, raindrops and reflections frequently co-occur to significantly reduce the visibility of captured images. Prior de-raindrop and de-reflection studies have failed to simultaneously remove both types of degradations from a single captured image, thereby limiting their application and robustness in real-world scenarios. In this work, we make the first attempt to explore this new task, i.e., unified removal of raindrops and reflections (UR³). First of all, we set up an image acquisition platform to collect our own dataset, namely RainDrop and ReFlection (RDRF) dataset, which provides a new benchmark with substantial, high-quality, diverse image pairs. Within each pair, one has a clean foreground and the rest is corrupted by raindrops and reflections. Second, we propose a diffusion-based framework (i.e., DiffUR³) to decouple the UR³ task into a restoration stage and a conditional generation stage (with multiple conditions). By leveraging the powerful generative prior, DiffUR³ successfully removes both degradations. Extensive experiments demonstrate that our method achieves state-of-the-art performance on our benchmark and on challenging in-the-wild images. The RDRF dataset and the codes will be made public upon acceptance.

1 INTRODUCTION

When we try to capture background images through raindrop-covered glasses or windscreens (a highly typical scenario is the vehicle camera recording on a rainy day), the phenomenon of reflection often coexists (see in Fig. 1 (a)). Adherent raindrops and the reflections from camera side can significantly reduce the visibility of captured images (You et al., 2016). Previously, researchers treated raindrop removal and reflection removal as two separate tasks (Qian et al., 2018; Quan et al., 2019; Shao et al., 2021; Hu et al., 2024; Zhao et al., 2025; Hu et al., 2025). Though these methods can achieve relatively good performance in removing the target type of degradation (i.e., raindrop or reflection) from a single image, they often fail to remove both types at the same time (see in Fig. 1 (c) and (d)). In this work, we aim to finding a meaningful solution capable of simultaneously eliminating raindrops and reflections, thereby enhancing the clarity of captured images. We hope this endeavor can provide support for applications such as autonomous driving, photography, and video surveillance (Zhu et al., 2025b;a).

Unified Removal of Raindrops and Reflections (UR³) is a fundamental but complex task. Its key challenges lie in the following three aspects. (1) Lack of data: deep learning based methods requires a large number of image pairs for training process. Currently, no publicly available dataset exists wherein the low-quality images contain both raindrop degradation and reflection degradation. (2) Task gap: certain gap exists between raindrop removal and reflection removal. Cross-task adaptation of pretrained models often yields sub-optimal performance due to domain shift. (3) Void information: in regions with exceptionally large/dense raindrops or intense reflections, background scene is completely lost. These occluded regions are extremely challenging, somewhat analogous to the inpainting task.

Trying to address these challenges, we first set up an image acquisition platform to collect corresponding data for the UR³ task. We collect a substantial number of image pairs to constitute our RainDrop and ReFlection (RDRF) dataset, wherein one image features a clean foreground, while the other is a degraded image containing both raindrops and reflections (both images share identical

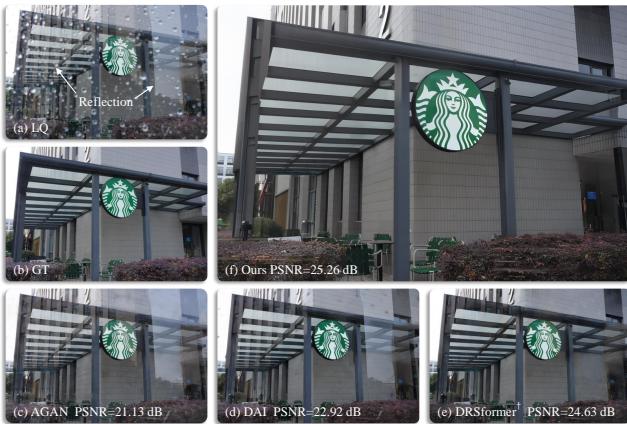


Figure 1: (a) A low-quality image with raindrops and reflections. (b) The ground truth. (c) The processed result of AGAN (Qian et al., 2018). (d) The processed result of DAI (Hu et al., 2025). (e) The processed result of a re-trained restoration method (Chen et al., 2023b). Superscript \dagger means re-trained. (f) The processed result of our DiffUR³ pipeline.

background). We hope RDRF dataset can contribute to the advancement and development of the UR³ task, and benefit the entire community.

Then, we propose a diffusion-based framework (i.e., DiffUR³) based on IRControlNet (Lin et al., 2024) to jointly remove these two kinds of degradations. Within this framework, the UR³ task is decoupled into two stages: (I) Restoration: remove some simple degradations without introducing artifacts to offer a reliable condition image. (II) Conditional generation: guided by **multiple** condition images, reconstruct the challenging regions by leveraging the powerful generative prior.

Last but not least, we design a Modulate&Gate module to align each condition with the noisy latent and adaptively select the beneficial components in the latent space. We also train an additional fidelity encoder to offer faithful features for guiding VAE Decoder to maintain the texture and structure of the reconstructed image.

2 RELATED WORK

2.1 RAINDROP REMOVAL

In the realm of raindrop removal, recent studies have explored diverse methodologies. Eigen et al. (2013) pioneered single-image raindrop removal using CNNs. Qian et al. (2018) introduced a generative adversarial network (GAN) to enhance raindrop removal. Transformer-based approaches like IDT (Xiao et al., 2023), UDR-S²Former (Chen et al., 2023a) and Histoformer (Sun et al., 2024) have demonstrated superior performance. Meanwhile, the CCN (Quan et al., 2021) adopts a unique approach by employing neural architecture search. More recently, diffusion-based methods like WeatherDiff (Özdenizci & Legenstein, 2023) and T³-DiffWeather (Chen et al., 2024) have emerged, leveraging the generative capabilities of diffusion models to enhance raindrop removal.

2.2 REFLECTION REMOVAL

In the field of single image reflection removal, various advanced techniques have been proposed to address the ill-posed nature of separating superimposed transmission and reflection layers. Early methods such as CEILNet (Fan et al., 2017) leverage edge information and deep learning. IBCLN (Li et al., 2020) introduces a cascaded refinement strategy to iteratively enhance the estimates of transmission and reflection layers. More recent advancements, YTMT (Hu & Guo, 2021), DSRNet (Hu & Guo, 2023) and DSIT (Hu et al., 2024), employ dual-stream networks to enhance feature interaction and correlation assessment. Further more, diffusion-based models like L-DIFFER (Hong et al., 2024) and DAI (Hu et al., 2025) show impressive removal capabilities across a wide range of real-world scenarios.

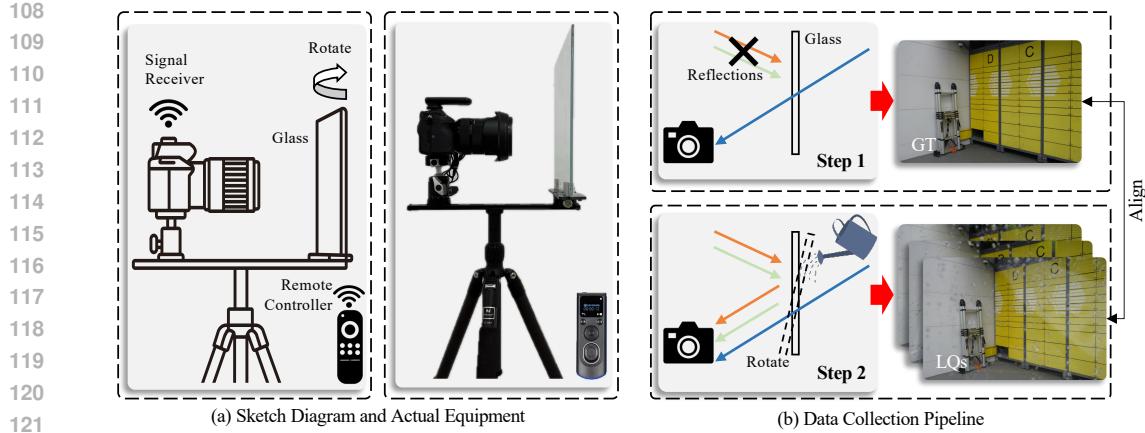


Figure 2: (a) Sketch diagram and actual equipment of our image acquisition platform. To suppress shutter-induced micro-vibrations which may potentially induce image misalignment, we implement a wireless triggering mechanism. It comprises a remote controller and a camera-mounted signal receiver, enabling contact-free shutter operation. (b) The data collection pipeline for our RDRF dataset. \times denotes light occlusion

2.3 DATASETS

Existing real-world datasets for raindrop removal include AGAN (Qian et al., 2018), RainDS (Quan et al., 2019), RobotCar (Porav et al., 2019), and Raindrop Clarity (Jin et al., 2024), these datasets provide low-quality images with raindrops and their corresponding ground truth images. Differently, Windshield (Soboleva & Shipitko, 2021) contains degraded images along with their corresponding binary masks that indicate the raindrop-affected areas. For reflection removal task, it is noteworthy that synthetic data is commonly employed for training. Recently, some real-world datasets have been proposed, such as RRW (Zhu et al., 2024) and DRR (Hu et al., 2025). However, there are no existing datasets that specifically address the unified removal of raindrops and reflections, which is the focus of our work.

3 RDRF DATASET

Similar to most deep learning based methods, our task (i.e., unified removal of raindrops and reflections) requires a large number of degraded images with corresponding clean labels for training. There are no existing training or testing datasets for this new task. As shown in Fig. 2 (a), we set up an image acquisition platform to collect our own **RainDrop and ReFlection** (RDRF) dataset. In our case, a substantial volume of image pairs are required, where each pair comprises two images with the identical background scene, yet one has a clean foreground and the other is corrupted by raindrops and reflections.

3.1 HARDWARE

Drawing inspirations from previous works of Zhu et al. (2024) and Li et al. (2024), our RDRF dataset is captured under real scenarios deliberately constructed in controlled environments. For the hardware configuration, the camera is mounted on a tripod using an adjustable base, with the glass slab positioned in front of the lens. We connect a signal receiver onto the camera, thereby enabling remote control of the shutter. This wireless triggering mechanism can effectively avoid image misalignment caused by camera vibrations resulting from manual operation. To ensure diversity, neither the camera nor the glass is fixed. They can be adjusted to simulate different shooting situations (e.g., camera-to-glass distances/angles). In addition, we utilize two cameras (Sony ILCE-7RM4A and Nikon D7100) with zoom lens and choose different glass thicknesses (3 mm, 5mm, and 8 mm) to further enhance diversity.

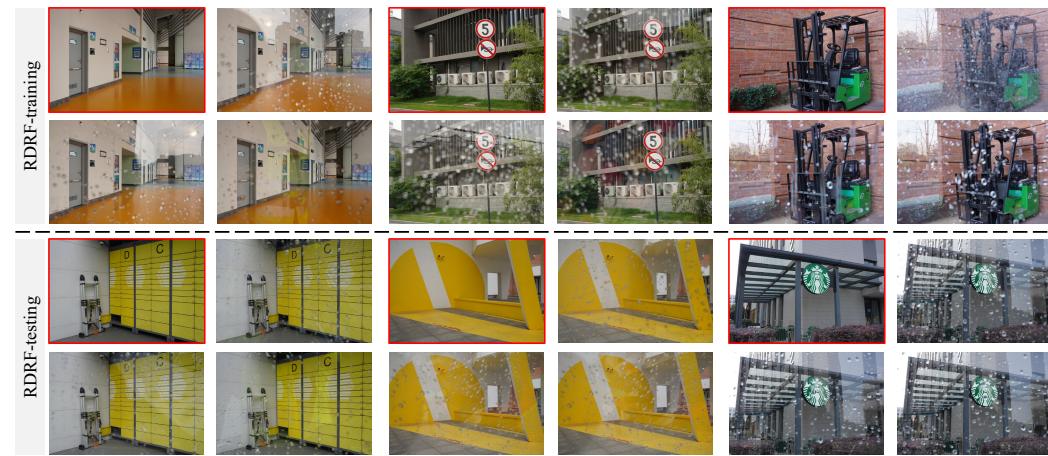


Figure 3: Our RDRF dataset comprises a diverse collection of scenes, each contains a ground truth and multiple low-quality images. As illustrated in this figure, the clean ground truths are highlighted in red boxes, while corresponding low-quality images are arranged around. We divide it into the training and testing subsets, ensuring no overlapping samples between them. Please check and zoom in on screen for a better view.

3.2 DATA COLLECTION PIPELINE

Fig. 2 (b) exhibits our data collection pipeline. For step 1, we utilize a light-blocking box to suppress the reflections from the camera side (\times denotes light occlusion). The obtained image is regarded as the ground-truth. For step 2, we keep the background scenario and camera unchanged. The light-blocking box is removed and the raindrops are created by spraying water onto the glass surface. By randomly rotating the glass at different angles, we create varying reflections with different scenes and intensities. For each scene, multiple images are captured as the low-quality ones.

Some samples are illustrated in Fig. 3. As demonstrated in the dataset, our RDRF dataset comprises a comprehensive collection of scenes. The raindrops are captured under diverse shapes and sizes (circular, elliptical, and irregular), ranging from sparse to dense. Raindrop flow traces are also included. In addition, the reflections are also captured with diverse reflection scenes, ranging from weak to strong. All the images are captured in 4752×3168 resolution to ensure high-quality.

In total, our RDRF dataset consists of 252 unique scenes (we categorize these scenes into eight distinct classes, namely: building facades & structures, streets & traffic, public & open spaces, functional components of building, industrial & commercial facilities, signs & markers, infrastructure & obstacles, and others.). **The category distribution diagram can be found in the Appendix A.1 (i.e., Fig. 10).** It is divided into a training set (216 scenes with 9003 image pairs) and a testing set (36 scenes with 83 image pairs). There are no overlapping samples between them.

To address the spatial misalignment caused by our hardware, we follow the procedures proposed in (Wan et al., 2017). It starts by extracting SIFT (Lowe, 2004) keypoints and descriptors, which are matched with L2 distance. Using the matched keypoints, a homography matrix is estimated via RANSAC (Fischler & Bolles, 1981) to handle outliers and find a robust geometric transformation. The low-quality image is aligned to the ground truth by applying a perspective warp using the computed homography.

Our RDRF dataset represents the first-of-its-kind contribution to the UR³ task. Some researches have also noticed the reflection artifacts in the early raindrop datasets (Qian et al., 2018; Quan et al., 2019) and proposed a highly valuable dataset to address the raindrop removal task only (i.e., Raindrop Clarity (Jin et al., 2024)). Their brilliant dataset has different focus with ours.

4 METHODOLOGY

Our RDRF dataset provides sufficient and diverse training data for UR³ task. Formally, given a low-quality (LQ) image $I_{lq} \in \mathbb{R}^{3 \times H \times W}$ with both raindrops and reflections on it, a straightforward

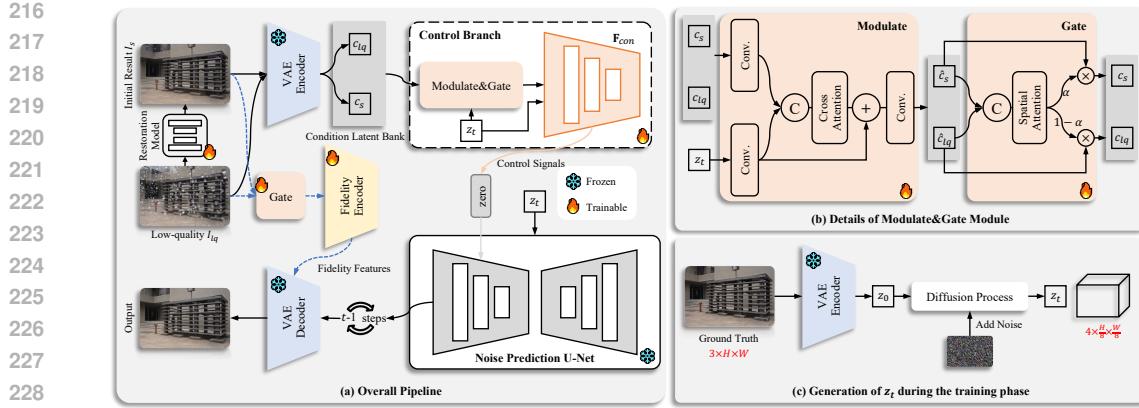


Figure 4: (a) Overall pipeline of our DiffUR³ framework. It consists of a restoration stage and a conditional generation stage. Given a low-quality image I_{lq} , the restoration stage removes the undesired degradation to obtain the initial result I_s . Both I_{lq} and I_s are fed into the next stage as the condition images. We inject the condition information through a control branch, which outputs control signals for the noise prediction U-Net. (b) Details of the Modulate&Gate module within the control branch. (c) The generation of noisy latent z_t during the training phase. Note that the noisy latent starts from random Gaussian noise during the inference.

idea is to employ conventional restoration methods (Chen et al., 2023b; Sun et al., 2024) to directly learn the mapping function from the low-quality to the ground-truth. However, their results are perceptually unsatisfying, because of the complexity of UR³ task. An example can be found in Fig. 1 (e). Instead, we try to utilize the powerful generative priors of the diffusion model as an effective solution. In this way, UR³ is regarded as a conditional image generation problem.

By referring to DiffBIR (Lin et al., 2024) framework, we design a two-stage network (i.e., DiffUR³) shown in Fig. 4 (a), which also consists of (I) a **restoration stage**, and (II) a **conditional generation stage**. The restoration stage outputs an initial result I_s , which is then used as the condition image in the following generation stage.

Although similar to DiffBIR framework, our DiffUR³ has two major different designs: (1) Considering the fact that raindrops and reflections merely affect certain regions, some parts in the LQ image can be regarded as clean. We also integrate the LQ image I_{lq} as one of the conditions during stage II. (2) We employ a fidelity encoder to provide faithful structural information for the decoding process. Details of our DiffUR³ pipeline are described below.

4.1 RESTORATION STAGE

In the first stage, our aim is to remove some simple yet undesired degradations from LQ input I_{lq} without introducing artifacts. The output image I_s provides a reliable condition image for training the generation stage.

$$I_s = \mathcal{RM}(I_{lq}), \quad (1)$$

where $\mathcal{RM}(\cdot)$ denotes the restoration model. In our implementation, we select the DRSformer (Chen et al., 2023b) as the restoration model in stage I due to its superior performance and generalization capability.

4.2 CONDITIONAL GENERATION STAGE

Our generation stage is based on the Stable Diffusion Model (Rombach et al., 2022), because its powerful generative prior can facilitate the restoration of regions that are challenging to be recovered in stage I through a conditional generation approach. To achieve better efficiency and stabilized training, the pretrained VAE (Kingma & Welling, 2013) encoder \mathcal{E} is employed to encode the condition images into the latent space. Both diffusion and denoising processes are performed in this

space instead of the pixel space. The main denoising network is a pretrained U-Net. The denoising output is then converted back to the pixel space using the pretrained VAE decoder \mathcal{D} .

As mentioned above, for UR³ task we argue LQ image I_{lq} contains clean information within certain regions ¹. Therefore, both I_{lq} and I_s are encoded by \mathcal{E} :

$$c_{lq}, c_s = \mathcal{E}(I_{lq}, I_s), \quad (2)$$

where $c_{lq} \in \mathbb{R}^{4 \times \frac{H}{8} \times \frac{W}{8}}$ and $c_s \in \mathbb{R}^{4 \times \frac{H}{8} \times \frac{W}{8}}$ denote the obtained condition latent from I_{lq} and I_s , respectively. Besides, the noisy latent z_t is also embedded, since it has been proven to enhance image quality (Lin et al., 2024). The generation of z_t is shown in Fig. 4 (c).

Similar to previous work (Lin et al., 2024), we also inject the condition information via a control branch. We make a trainable copy of the pretrained U-Net encoder and middle block (i.e., \mathbf{F}_{con} in Fig. 4 (a)), which receives condition information and then outputs control signals. A normal solution is to add or concatenate c_{lq} , c_s and z_t before sending to \mathbf{F}_{con} (Chen et al., 2025; Özdenizci & Legenstein, 2023). However, we observe that the noisy latent z_t varies at different time steps, yet the condition latent (i.e., c_{lq} or c_s) remains unchanged. Instead of direct addition or concatenation, we propose a more reasonable solution to modulate c_{lq} and c_s through z_t . Since there are more than one condition latent, a gate mechanism is introduced to adaptively assign different spatial weights to c_{lq} and c_s .

To this end, before entering the \mathbf{F}_{con} , we design a Modulate&Gate module which consists of a Modulate block and a Gate block. Fig. 4 (b) shows the details of our Modulate&Gate module. We describe them as below.

4.2.1 MODULATE BLOCK

Take c_s as an example, c_{lq} can be similarly derived. First, both c_s and z_t individually pass through a convolutional layer to extract their features $f_c \in \mathbb{R}^{C \times \frac{H}{8} \times \frac{W}{8}}$ and $f_z \in \mathbb{R}^{C \times \frac{H}{8} \times \frac{W}{8}}$. C denotes the channel number of the extracted feature. In our implementation, we set $C = 32$. Then, their concatenation result is fed into two consecutive transformer layers (Vaswani et al., 2017) to perform the cross attention operation, which can facilitate the information interaction between f_c and f_z . Our cross attention operation aligns the dimensions of the output f_{cross} and f_z at the end. Finally, we add $f_{cross} \in \mathbb{R}^{C \times \frac{H}{8} \times \frac{W}{8}}$ with f_z , and employ another convolutional layer to reduce the channel number back to 4. The formulations are as follows:

$$\begin{aligned} f_c, f_z &= Conv(c_s, z_t), \\ f_{cross} &= CrAttn([f_c, f_z]), \\ \hat{c}_s &= Conv(f_{cross} + f_z), \end{aligned} \quad (3)$$

where $Conv(\cdot)$ denotes the convolutional layer, $CrAttn(\cdot)$ denotes the cross attention operation, $[\cdot, \cdot]$ denotes the concatenation, \hat{c}_s is the modulated condition latent, and \hat{c}_{lq} can be derived by replacing c_s with c_{lq} in Eqn. 3.

4.2.2 GATE BLOCK

After obtaining \hat{c}_s and \hat{c}_{lq} , we need to selectively extract the components that are beneficial to our DiffUR³. We concatenate them together, and then send to a spatial attention to generate a spatial weight $\alpha \in \mathbb{R}^{\frac{H}{8} \times \frac{W}{8}}$. The spatial attention operation consists of two convolutional layers, one activation layer, and one sigmoid layer. The formulations are as follow:

$$\begin{aligned} \alpha &= SpAttn([\hat{c}_s, \hat{c}_{lq}]), \\ \bar{c}_s &= \alpha \cdot \hat{c}_s, \\ \bar{c}_{lq} &= (1 - \alpha) \cdot \hat{c}_{lq}, \end{aligned} \quad (4)$$

where $SpAttn(\cdot)$ denotes the spatial attention operation, \bar{c}_s and \bar{c}_{lq} are the output condition latent variables. Note that our Modulate&Gate module is simple yet effective. More sophisticated designs can be considered for better performance, which is not the focus of this work.

¹Unlike blind super-resolution and blind image denoising in (Lin et al., 2024), where the entire LQ image is degraded.

We concatenate \bar{c}_s , \bar{c}_{lq} , and the noisy latent z_t together, and send them to \mathbf{F}_{con} for generating the control signals, which are added to the denoising U-Net via zero convolutions (Zhang et al., 2023). At each time step, the noise prediction U-Net estimates the noise component and performs denoising on the noisy latent z_t . During the inference phase, the noisy latent starts from random Gaussian noise and iteratively passes through the pretrained U-Net to estimate the clean latent \hat{z}_0 .

4.3 ADDITIONAL FIDELITY ENCODER

Even with the control branch, we still observe some unwanted textural and structural distortions in some cases after decoding estimated clean latent \hat{z}_0 back to pixel space. An example can be found in Fig. 7 (a). To deal with this issue and improve the fidelity of generated results, we train a fidelity encoder after the training of control branch, inspired by (Chang et al., 2023). Fig. 5 is the training pipeline of our fidelity encoder, which shares the same architecture with VAE encoder (Kingma & Welling, 2013) (besides the first convolutional layer).

To keep consistent with the control branch, both LQ image I_{lq} and initial result I_s are fed into the fidelity encoder through a Gate block to extract faithful features. The extracted fidelity features are added to corresponding positions in VAE Decoder via zero convolutions. Then, we encode the ground truth I_{gt} via the pretrained VAE encoder to latent space, simulating the denoised latent i.e., z_0 . Finally, guided by the fidelity features, pretrained VAE decoder (Kingma & Welling, 2013) converts the compressed latent z_0 to a reconstructed image \hat{I}_{gt} . The whole pipeline is trained by minimizing a mean absolute error (i.e., L_1 loss) between \hat{I}_{gt} and I_{gt} .

5 EXPERIMENTAL RESULTS

5.1 IMPLEMENTATION DETAILS AND METRICS

Our DiffUR³ is trained on our RDRF-training dataset. We train the restoration model in stage I for 300k iterations (batch size = 4) on a single RTX 4090 GPU. Then we adopt the Stable Diffusion 2.1-base (Rombach et al., 2022) as the generative prior, and train the control branch in stage II for 50k iterations (batch size = 40) on two A6000 GPUs. The fidelity encoder is trained for 300k iterations (batch size = 6) on two A6000 GPUs. **More details can be found in Appendix A.2.**

We adopt three traditional metrics (PSNR, SSIM, LPIPS (Zhang et al., 2018)) and four no-reference image quality assessment metrics (MUSIQ (Ke et al., 2021), CLIPQA (Wang et al., 2023), CLIP-IQA+ (Wang et al., 2023), HyperIQA (Su et al., 2020)) to evaluate our performance.

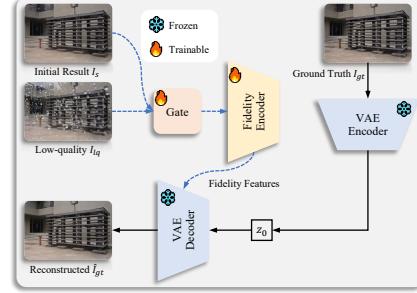


Figure 5: Training pipeline of our fidelity encoder.

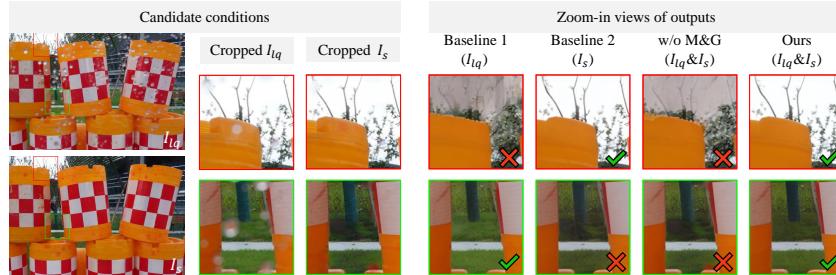


Figure 6: Ablation study of our Modulate&Gate (M&G) module. \checkmark and \times denote good and bad results, respectively.

378 5.2 ABLATION STUDY

5.2.1 OVERALL

First, we employ the naive diffusion-based method which solely adopts I_{lq} as the condition image (similar to (Özdenizci & Legenstein, 2023)) and denote it as **Baseline 1**. In addition, **Baseline 2** means only the I_s is regarded as the condition image (similar to (Lin et al., 2024)). To validate the effectiveness of key components in our DiffUR³, we perform ablation studies of modulate&gate module and fidelity encoder on our RDRF-testing dataset. We remove correspondingly them as ‘**w/o components**’ in Table 1.

Table 1 summarize the quantitative results in terms of PSNR, SSIM, and LPIPS. We observe that both modulate&gate module and fidelity encoder are critically important for our DiffUR³, as omitting either component leads to a significant performance degradation.

5.2.2 MODULATE&GATE MODULE

In Table 1, w/o Modulate&Gate Module means both I_{lq} and I_s are embedded as the condition images and fused by channel-wise concatenation in latent space. We provide an in-depth analysis on the function of modulate&gate module. As illustrated in Fig. 6, Baseline 1 occasionally exhibits generation errors due to the inherent characteristics of diffusion model. In contrast, Baseline 2 relies on the condition image I_s . They demonstrate distinct advantages across different regions. Simple channel-wise concatenation fails to systematically integrate their complementary strengths (third column). The introduced modulate&gate module enables adaptive integration of information from dual condition images, thereby enhancing the model performance.

5.2.3 FIDELITY ENCODER

We also provide the qualitative analysis on the function of fidelity encoder. As shown in Fig. 7, when the fidelity encoder is excluded, the recovered text exhibits distortions (which is highly difficult to be recognized by human beings), and some structure deformations emerge in the scene.

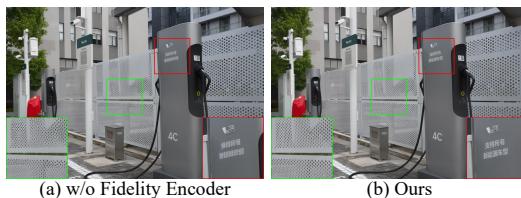


Figure 7: Ablation study of our Fidelity Encoder.

Table 1: Ablation study of key components.

Model	PSNR↑	SSIM↑	LPIPS↓
Baseline 1 (I_{lq} as condition)	28.84	0.9302	0.0817
Baseline 2 (I_s as condition)	29.18	0.9311	0.0838
w/o Modulate&Gate Module	29.21	0.9322	0.0802
w/o Fidelity Encoder	27.64	0.8198	0.0990
DiffUR ³	29.84	0.9400	0.0733

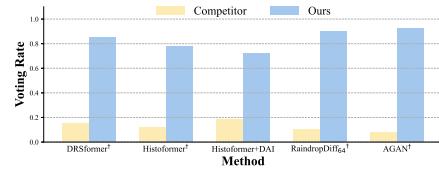


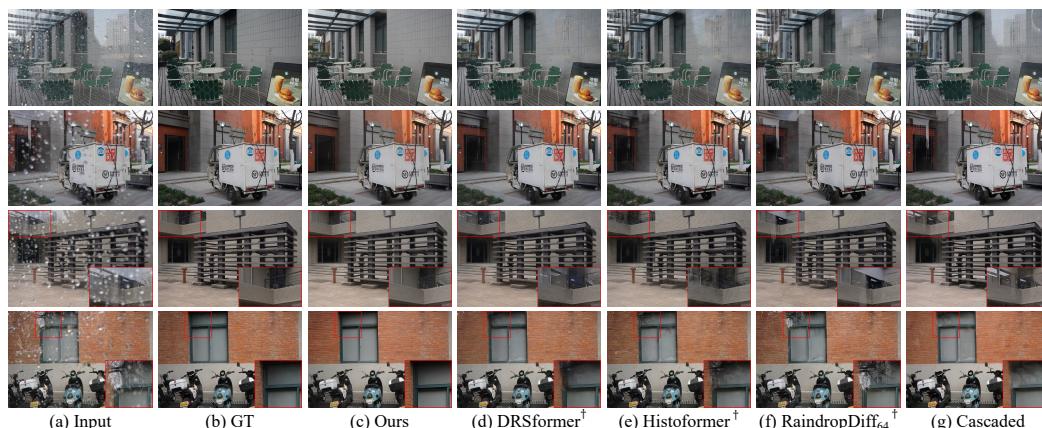
Figure 8: User study on RDRF-testing.

5.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

Since this work is the first exploration for unified removal of raindrops and reflections (UR³) task. There are no prior methods. We employ three classical raindrop removal methods (i.e., AGAN (Qian et al., 2018), Histoformer (Sun et al., 2024), WeatherDiff₆₄ (Özdenizci & Legenstein, 2023)), three classical reflection removal methods (i.e., RDNet (Zhao et al., 2025), DSIT (Hu et al., 2024), DAI (Hu et al., 2025)), two cascaded methods (de-raindrop then de-reflection, and de-reflection then de-raindrop) as the competitors. We adopt their published models for these methods. In addition, by utilizing their published codes, we re-train AGAN, DRSformer, Histoformer, RaindropDiff₆₄ on our RDRF-training dataset, endowing them with capabilities for UR³ task. We do not re-train reflection removal models because they typically require access to additional synthetic data for training, which would make the comparison unfair.

432
 433 Table 2: Benchmark results on our RDRF-testing dataset. We report PSNR, SSIM, LPIPS and four
 434 no-reference image quality assessment metrics (i.e., MUSIQ, CLIPQA, CLIPQA+, HyperIQA) to
 435 perform comprehensive comparisons. The **bold** and underline indicate the best and second best.

436 437 Type	438 Method	439 RDRF-testing						
		440 PSNR↑	441 SSIM↑	442 LPIPS↓	443 MUSIQ↑	444 CLIPQA↑	445 CLIPQA+↑	446 HyperIQA↑
447 Raindrop 448 removal	AGAN	25.71	0.9258	0.0990	74.36	0.4844	0.6479	0.6915
	Histoformer	26.47	0.9300	0.0990	74.08	0.4315	0.6226	0.6816
	WeatherDiff ₆₄	25.19	0.9067	0.1074	73.85	0.4497	0.6604	0.6679
449 Reflection 450 removal	RDNet	27.11	0.9232	0.1076	72.34	0.4637	0.6243	0.6585
	DSIT	26.53	0.9207	0.1130	72.86	0.4450	0.6326	0.6585
	DAI	27.75	0.9294	0.0951	74.53	0.4556	0.6413	0.6896
451 Cascaded	Histoformer+DAI	28.13	0.9395	0.0804	<u>75.31</u>	0.4743	0.6490	<u>0.7083</u>
	DAI+Histoformer	27.78	0.9340	0.0851	<u>75.09</u>	0.4768	0.6520	<u>0.7007</u>
452 Re-trained	AGAN [†]	26.02	0.9145	0.1475	71.85	0.4193	0.5768	0.6669
	Histoformer [†]	29.53	0.9384	<u>0.0745</u>	73.38	0.4738	0.6433	0.6764
	RaindropDiff ₆₄ [†]	26.95	0.9236	0.0922	73.49	<u>0.5013</u>	<u>0.6662</u>	0.6493
	DRSformer [†]	<u>29.61</u>	0.9417	<u>0.0745</u>	74.16	0.4706	0.6536	0.6864
Ours	DiffUR ³	29.84	0.9400	0.0733	75.41	0.5018	0.6800	0.7256



453 Figure 9: Visual results of various methods on our RDRF-testing. For Cascaded in (g), we choose
 454 Histoformer+DAI. Superscript [†] means this method is re-trained on our RDRF-training dataset. Please
 455 check and zoom in on screen for a better view.

456 Table 2 shows the quantitative results on our RDRF-testing dataset. Note that our DiffUR³ ranks the
 457 first among six metrics, except SSIM. We conduct a user study to evaluate our DiffUR³ subjectively
 458 against other methods. The statistical results in Fig. 8 indicates that our DiffUR³ is more favored
 459 by the invited experts. **More details about the user study can be found in Appendix A.3.** In
 460 addition, some visual comparisons of our DiffUR³ and the competitors are provided in Fig. 9. It is
 461 worth mentioning that the results of our DiffUR³ are closer to the ground truth with less degradation
 462 residuals and artifacts than the alternatives. We also capture some testing images from real-world
 463 driving scenarios in rainy weather to form the RDRF-wild dataset. **More visual results of RDRF-
 464 testing and RDRF-wild can be found in Appendix A.4.**

465 6 CONCLUSION

466 This work introduces a pioneering approach to the challenging task of UR³. By establishing the first
 467 dedicated dataset (RDRF dataset) and proposing a novel diffusion-based framework (DiffUR³), we
 468 successfully address the limitations of previous methods that treat raindrop and reflection removal as
 469 separate tasks. Our two-stage pipeline, incorporating a restoration stage and a conditional generation
 470 stage, effectively leverages generative priors to remove both types of degradations simultaneously.
 471 Extensive experiments demonstrate the superiority of our approach over state-of-the-art methods.
 472 The RDRF dataset and DiffUR³ framework contribute significantly to the advancement of the UR³
 473 task, offering valuable resources for future research.

486
487
ETHICS STATEMENT488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
We have carefully reviewed and adhered to the ICLR Code of Ethics. Our research does not involve human subjects, personal data, or sensitive attributes, and thus does not raise concerns regarding privacy or informed consent. We declare that there are no conflicts of interest, commercial sponsorships, or ethical concerns beyond those stated above.**REPRODUCIBILITY STATEMENT**

We have taken several measures to ensure the reproducibility of our results. The main paper and the appendix provide detailed descriptions of the model architecture, training procedure & hyper-parameters, and evaluation protocols.

To further facilitate reproducibility, We provide the essential code snippets in the supplementary material to illustrate the core components of our method. In addition, the random seed used in all experiments is fixed, ensuring consistent results. These efforts are intended to make it possible for other researchers to replicate and extend our findings.

REFERENCES

Zheng Chang, Shuchen Weng, Peixuan Zhang, Yu Li, Si Li, and Boxin Shi. L-CAD: Language-based Colorization with Any-level Descriptions using Diffusion Priors. In *NeurIPS*, volume 36, pp. 1–13, 2023.

Junyang Chen, Jinshan Pan, and Jiangxin Dong. FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolution. In *CVPR*, 2025.

Sixiang Chen, Tian Ye, Jinbin Bai, Erkang Chen, Jun Shi, and Lei Zhu. Sparse Sampling Transformer with Uncertainty-Driven Ranking for Unified Removal of Raindrops and Rain Streaks. In *ICCV*, pp. 13060–13071, 2023a.

Sixiang Chen, Tian Ye, Kai Zhang, Zhaochu Xing, Yunlong Lin, and Lei Zhu. Teaching Tailored to Talent: Adverse Weather Restoration via Prompt Pool and Depth-Anything Constraint. In *ECCV*, pp. 95–115, 2024.

Xiang Chen, Hao Li, Mingqiang Li, and Jinshan Pan. Learning A Sparse Transformer Network for Effective Image Deraining. In *CVPR*, pp. 5896–5905, 2023b.

David Eigen, Dilip Krishnan, and Rob Fergus. Restoring an image taken through a window covered with dirt or rain. In *ICCV*, pp. 633–640, 2013.

Qingnan Fan, Jiaolong Yang, Gang Hua, Baoquan Chen, and David Wipf. A Generic Deep Architecture for Single Image Reflection Removal and Image Smoothing. In *ICCV*, pp. 3238–3247, 2017.

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. *Communications of the ACM*, 24(6):381–395, 1981.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for image classification with convolutional neural networks. In *CVPR*, pp. 558–567, 2019.

Yuchen Hong, Haofeng Zhong, Shuchen Weng, Jinxiu Liang, and Boxin Shi. L-DIFFER: Single Image Reflection Removal with Language-Based Diffusion Model. In *ECCV*, pp. 58–76, 2024.

Jichen Hu, Chen Yang, Zanwei Zhou, Jiemin Fang, Xiaokang Yang, Qi Tian, and Wei Shen. Derelection Any Image with Diffusion Priors and Diversified Data. *ArXiv*, 2503.17347, 2025.

Qiming Hu and Xiaojie Guo. Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation. In *NeurIPS*, volume 30, pp. 24683–24694, 2021.

540 Qiming Hu and Xiaojie Guo. Single Image Reflection Separation via Component Synergy. In *ICCV*,
 541 pp. 13092–13101, 2023.

542

543 Qiming Hu, Hainuo Wang, and Xiaojie Guo. Single image reflection separation via dual-stream
 544 interactive transformers. In *NeurIPS*, volume 37, pp. 55228–55248, 2024.

545

546 Yeying Jin, Xin Li, Jiadong Wang, Yan Zhang, and Malu Zhang. Raindrop Clarity: A Dual-Focused
 547 Dataset for Day and Night Raindrop Removal. In *ECCV*, 2024.

548

549 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image
 550 quality transformer. In *ICCV*, pp. 5148–5157, 2021.

551

552 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv*, 1312.6114, 2013.

553

554 Chao Li, Yixiao Yang, Kun He, Stephen Lin, and John E. Hopcroft. Single image reflection removal
 555 through cascaded refinement. In *CVPR*, pp. 3562–3571, 2020.

556

557 Yizhou Li, Yusuke Monno, and Masatoshi Okutomi. Dual-Pixel Raindrop Removal. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(12):10748–10762, 2024.

558

559 Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang,
 560 and Chao Dong. DiffBIR: Toward Blind Image Restoration with Generative Diffusion Prior. In
 561 *ECCV*, pp. 430–448, 2024.

562

563 Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. *ArXiv*, 1711.05101,
 564 2017.

565

566 David G Lowe. Distinctive image features from scale-invariant keypoints. *International journal of
 567 computer vision*, 60(2):91–110, 2004.

568

569 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 570 In *ICML*, pp. 8162–8171, 2021.

571

572 Ozan Özdenizci and Robert Legenstein. Restoring Vision in Adverse Weather Conditions With
 573 Patch-Based Denoising Diffusion Models. *IEEE Transactions on Pattern Analysis and Machine
 574 Intelligence*, 45(8):10346–10357, 2023.

575

576 Horia Porav, Tom Bruls, and Paul Newman. I can see clearly now: Image restoration via de-raining.
 577 *IEEE International Conference on Robotics and Automation*, pp. 7087–7093, 2019.

578

579 Rui Qian, Robby T. Tan, Wenhan Yang, Jiajun Su, and Jiaying Liu. Attentive Generative Adversarial
 580 Network for Raindrop Removal from a Single Image. In *CVPR*, pp. 2482–2491, 2018.

581

582 Ruijie Quan, Xin Yu, Yuanzhi Liang, and Yi Yang. Removing Raindrops and Rain Streaks in One
 583 Go. In *CVPR*, pp. 9143–9152, 2021.

584

585 Yuhui Quan, Shijie Deng, Yixin Chen, and Hui Ji. Deep learning for seeing through window with
 586 raindrops. In *ICCV*, pp. 2463–2471, 2019.

587

588 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 589 resolution image synthesis with latent diffusion models. In *CVPR*, pp. 10684–10695, 2022.

590

591 Ming Wen Shao, Le Li, De Yu Meng, and Wang Meng Zuo. Uncertainty Guided Multi-Scale
 592 Attention Network for Raindrop Removal from a Single Image. *IEEE Transactions on Image
 593 Processing*, 30:4828–4839, 2021.

594

595 Vera Soboleva and Oleg Shipitko. Raindrops on Windshield: Dataset and Lightweight Gradient-
 596 Based Detection Algorithm. In *IEEE Symposium Series on Computational Intelligence*, pp. 1–7,
 597 2021.

598

599 Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge, Jinqiu Sun, and Yanning Zhang. Blindly
 600 Assess Image Quality in the Wild Guided by a Self-Adaptive Hyper Network. In *CVPR*, pp.
 601 3664–3673, 2020.

594 Shangquan Sun, Wenqi Ren, Xinwei Gao, Rui Wang, and Xiaochun Cao. Restoring Images in
 595 Adverse Weather Conditions via Histogram Transformer. In *ECCV*, 2024.

596

597 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 598 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, volume 30, 2017.

599

600 Renjie Wan, Boxin Shi, Ling-Yu Duan, Ah-Hwee Tan, and Alex C. Kot. Benchmarking Single-
 601 Image Reflection Removal Algorithms. In *ICCV*, pp. 3922–3930, 2017.

602

603 Jianyi Wang, Kelvin C. K. Chan, and Chen Change Loy. Exploring CLIP for assessing the look and
 604 feel of images. In *AAAI*, pp. 2555–2563, 2023.

605

606 Jie Xiao, Xueyang Fu, Aiping Liu, Feng Wu, and Zheng Jun Zha. Image De-Raining Transformer.
 607 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(11):12978–12995, 2023.

608

609 Shaodi You, Robby T. Tan, Rei Kawakami, and Katsushi Ikeuchi. Adherent Raindrop Detection
 610 and Removal in Video. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 38(9):
 611 1721–1733, 2016.

612

613 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 614 diffusion models. In *ICCV*, pp. 3836–3847, 2023.

615

616 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 617 effectiveness of deep features as a perceptual metric. In *CVPR*, pp. 586–595, 2018.

618

619 Hao Zhao, Mingjia Li, Qiming Hu, and Xiaojie Guo. Reversible decoupling network for single
 620 image reflection removal. In *CVPR*, pp. 26430–26439, 2025.

621

622 Chunyu Zhu, Shangqi Deng, Xuan Song, Yachao Li, and Qi Wang. Mamba Collaborative Implicit
 623 Neural Representation for Hyperspectral and Multispectral Remote Sensing Image Fusion. *IEEE
 624 Transactions on Geoscience and Remote Sensing*, 63:1–15, 2025a.

625

626 Chunyu Zhu, Xuan Song, Yachao Li, Shangqi Deng, and Tinghao Zhang. A spatial-frequency
 627 dual-domain implicit guidance method for hyperspectral and multispectral remote sensing image
 628 fusion based on Kolmogorov–Arnold Network. *Information Fusion*, 123:103261, 2025b.

629

630

631

632

633

634

635

636

637

638

639

640

641

642

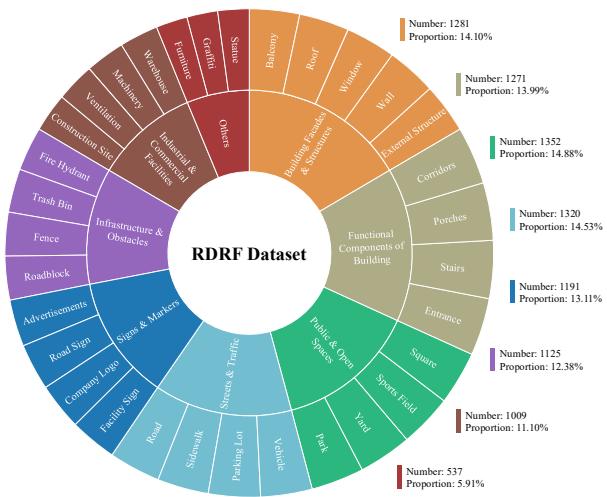
643

644

645

646

647

648 **A APPENDIX**
649650 **USE OF LLMs**
651652 In accordance with ICLR’s guidelines, we disclose that large language models (LLMs) were em-
653 ployed solely as a general-purpose tool for aiding or polishing writing in this submission.
654655 **A.1 CATEGORY DISTRIBUTION DIAGRAM**
656657 Our RDRF dataset covers a diverse range of urban scene categories with varying semantic attributes.
658 As shown in Fig. 10, the category distribution diagram reveals a rich diversity of semantic groups,
659 along with a relatively balanced representation across them, thereby providing a solid foundation for
660 the UR³ task.
661678 **Figure 10: The category distribution diagram of our RDRF dataset.**
679680 **A.2 IMPLEMENTATION DETAILS**
681682 For the training of stage I, we adopt DRSformer (Chen et al., 2023b) as the restoration model.
683 $\{N_0, N_1, N_2, N_3, N_4\}$ are set to $\{0, 2, 4, 4, 8\}$, and the number of attention heads for sparse transformer
684 blocks (i.e., STBs) in level 1 to level 4 are set to $\{1, 2, 4, 8\}$. The initial channel C is set to 16.
685 Compared with the original, we make certain simplifications to accelerate the computation in Stage
686 I. Patches of size 256×256 are randomly cropped from the RDRF-training dataset, and horizontal
687 and vertical flips are applied as the data augmentation techniques. This model is trained with a
688 batch size of 4 and with an initial learning rate of $3e^{-4}$ for the first 100K iterations, which will
689 gradually reduced to $1e^{-6}$ using cosine annealing schedule (He et al., 2019) during the remaining
690 200K iterations.
691692 For stage II, the images in our RDRF-training dataset are randomly cropped into 512×512 patches.
693 Horizontal and vertical flips, resizing, rotation are applied as the data augmentation techniques. The
694 control branch is trained with a batch size of 40 and with a fixed learning rate of $1e^{-4}$ for entire 50K
695 iterations. To accelerate the sampling process, we adopt a spaced DDPM sampling schedule (Nichol
696 & Dhariwal, 2021) which requires 50 sampling steps.
697698 For the training of the additional fidelity encoder, we follow the training settings of stage II, except
699 the batch size and number of iterations.
700701 Note that the images in our RDRF-training dataset are firstly resized to a fixed resolution of $1080 \times$
720, and we use AdamW (Loshchilov et al., 2017) optimizer with default settings for all the training
procedures.
702

702 A.3 DETAILS OF OUR USER STUDY
703

704 We conduct a user study to evaluate our DiffUR³ subjectively against five methods (i.e., DRSformer
705 (Chen et al., 2023b), Histoformer (Sun et al., 2024), Histoformer+DAI (Sun et al., 2024; Hu et al.,
706 2025), RaindropDiff₆₄ (Özdenizci & Legenstein, 2023), AGAN (Qian et al., 2018)). Apart from
707 the cascaded method (Histoformer+DAI), all the other methods are re-trained on our RDRF dataset.
708 Specifically, we randomly select 50 images from our RDRF-testing dataset and invite 20 experts
709 with image restoration background as volunteers. For every image, each expert is asked to compare
710 the result of our DiffUR³ with the alternatives one by one. For each comparison, the observers are
711 demanded to choose the favored one after at least 10 seconds of observation. Afterward, we statistic
712 the percentage of certain method to be selected.

713 A.4 ADDITIONAL VISUAL RESULTS OF RDRF-WILD AND RDRF-TESTING
714

715 Images collected in real-world scenarios often exhibit lower quality than those captured in controlled
716 environments, making them more suitable for evaluating model robustness in practical settings. We
717 capture a set of images from actual driving environments, namely **RDRF-wild**. As shown in Fig. 11,
718 the results demonstrate that our method effectively removes raindrops and reflections, significantly
719 enhancing image quality. This indicates the robustness and generalization capability of our approach
720 in real-world applications. We also provide additional visual results of various methods on our
721 RDRF-testing in Fig. 12.

722 A.5 DOWNSTREAM APPLICATION
723

724 To further demonstrate the downstream applicability of our DiffUR³, we employ Google Vision
725 API² to test whether our outputs can improve the object detection performance. Specifically, we
726 conduct object detection on degraded images and our restored results. As shown in Fig. 13, the original
727 inputs yield missing or incorrect object annotations due to the visual interference of raindrops
728 and reflections. In contrast, our DiffUR³ effectively assist the detector in recognizing the omitted
729 objects. This proves that our method not only improves perceptual image quality but also enhances
730 performance in high-level vision tasks, validating its potential for real-world applications.

731 A.6 DISCUSSION ON STAGE I
732

733 Our DiffUR³ pipeline represents a highly flexible framework. Although it needs a condition image
734 generated by the restoration model (i.e., DRSformer) within stage I during the training phase, this
735 condition can be discarded during the testing phase, and instead, another condition image generated
736 by other models (e.g., Histoformer (Sun et al., 2024), DAI (Hu et al., 2025)) can be utilized.
737 This indicates that the DiffUR³ has already learned the capability to extract valuable information
738 from the condition image. Fig. 14 shows the experimental results with different stage I. By replacing
739 DRSformer with DAI during the inference phase, our DiffUR³ still can output pleasing result
740 (Fig. 14 (c)). Note this DAI model has not been re-trained on our RDRF dataset. We also extend our
741 DiffUR³ to let it incorporate two stage I (Fig. 14 (d)). This model achieves the best performance.
742 We will further delve into an in-depth exploration of this research direction.

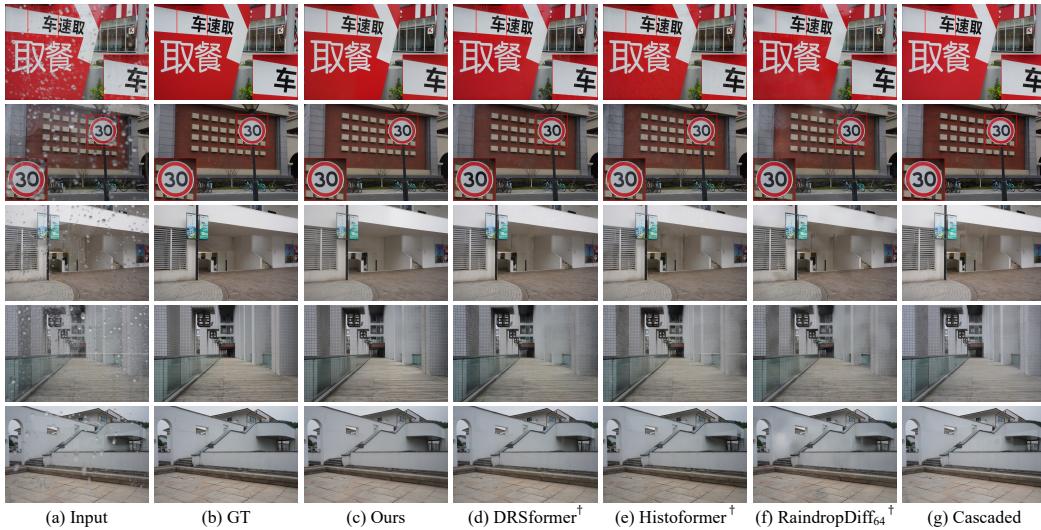
743 A.7 GENERALIZATION TO SINGLE-DEGRADATION DATASET
744

745 We also apply our DiffUR³ on raindrop-only dataset (i.e., Qian’s dataset (Qian et al., 2018)). It
746 contains 861 image pairs for training and another 58 pairs for testing. The benchmark results on
747 the testing image pairs (i.e., Test-a) are listed in Table 3. We observe that our DiffUR³ ranks first
748 in terms of no-reference image quality assessment metrics, which aligns closely with human visual
749 perception (some visual results are illustrated in Fig. 15). It should be noted that Qian’s dataset
750 has a relatively small number of samples (861 pairs) and relatively low resolutions (mostly merely
751 720 × 480), which is detrimental to the training of diffusion models and may lead to sub-optimal
752 results. During the training, we have to reduce the patch size to accommodate Qian’s dataset.

753
754
755 ²<https://cloud.google.com/vision>.

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

Figure 11: Visual results of various methods on our RDRF-wild dataset. Please check and zoom in on screen for a better view.



790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 12: More visual results of various methods on our RDRF-testing dataset. Please check and zoom in on screen for a better view.

Figure 13: We conduct object detection on original images and our restored results.

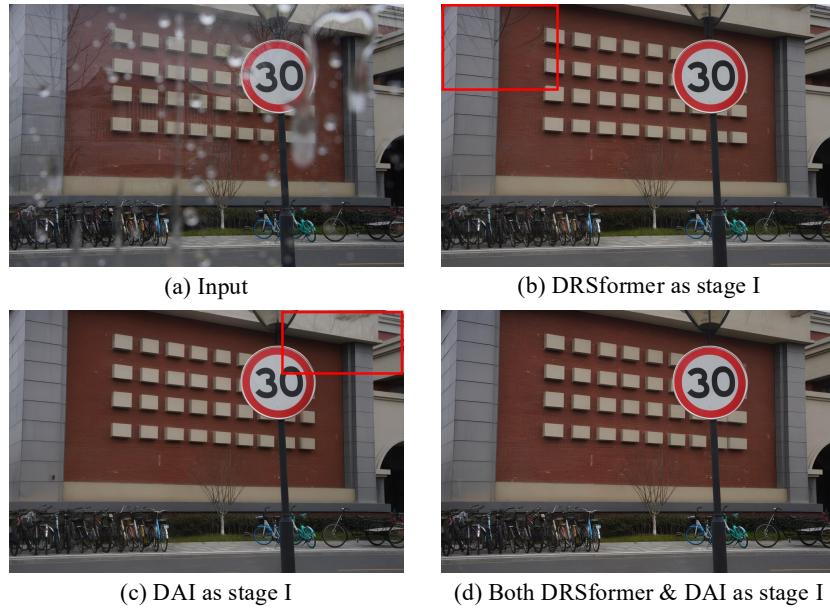


Figure 14: Experimental results with different settings of stage I.

Table 3: Benchmark results on Test-a dataset. We report PSNR, SSIM and three no-reference image quality assessment metrics (i.e., MUSIQ, CLIPQA+, HyperIQA) to perform comprehensive comparisons. The **bold** and underline indicate the best and second best.

Method	Train: Qian's dataset Test: Test-a				
	PSNR↑	SSIM↑	MUSIQ↑	CLIPQA+↑	HyperIQA↑
AGAN	31.57	0.9023	70.52	0.6691	0.6650
Histoformer	33.06	0.9441	70.66	0.6530	0.6695
DuRN	31.24	0.9259	70.30	0.6433	0.6545
DiffUR ³	<u>31.66</u>	<u>0.9324</u>	72.22	0.6857	0.7058

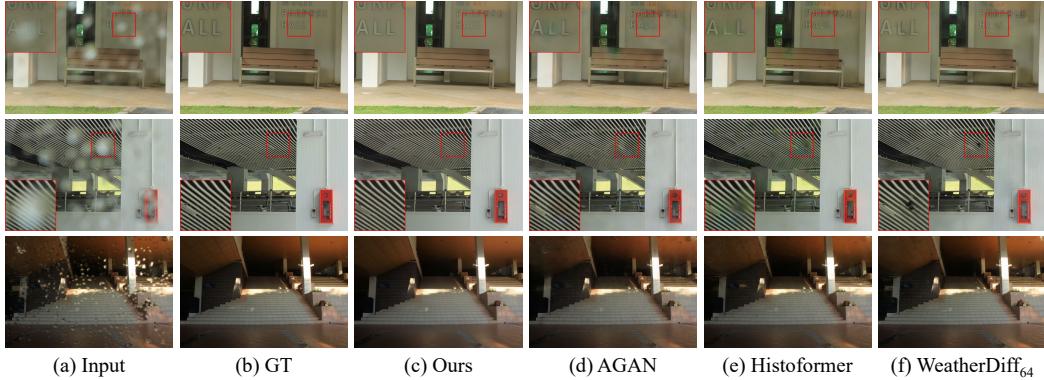


Figure 15: Visual results of various methods on Test-a dataset. Please check and zoom in on screen for a better view.