
Gradient Boosting Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Neural networks (NN) achieve remarkable results in various tasks, but lack key1

characteristics: interpretability, support for categorical features, and lightweight im-2

plementations suitable for edge devices. While ongoing efforts aim to address these3

challenges, Gradient Boosting Trees (GBT) inherently meet these requirements.4

As a result, GBTs have become the go-to method for supervised learning tasks5

in many real-world applications and competitions. However, their application in6

online learning scenarios, notably in reinforcement learning (RL), has been limited.7

In this work, we bridge this gap by introducing Gradient-Boosting RL (GBRL),8

a framework that extends the advantages of GBT to the RL domain. Using the9

GBRL framework, we implement various actor-critic algorithms and compare their10

performance with their NN counterparts. Inspired by shared backbones in NN11

we introduce a tree-sharing approach for policy and value functions with distinct12

learning rates, enhancing learning efficiency over millions of interactions. GBRL13

achieves competitive performance across a diverse array of tasks, excelling in14

domains with structured or categorical features. Additionally, we present a high-15

performance, GPU-accelerated implementation that integrates seamlessly with16

widely-used RL libraries. GBRL expands the toolkit for RL practitioners, demon-17

strating the viability and promise of GBT within the RL paradigm, particularly in18

domains characterized by structured or categorical features.19

1 Introduction20

Reinforcement Learning (RL) has shown great promise in various domains that involve sequential21

decision making. However, many real-world tasks, such as inventory management, traffic signal22

optimization, network optimization, resource allocation, and robotics, are represented by structured23

observations with categorical or mixed data types. These tasks can benefit significantly from24

deployment and training on edge devices due to resource constraints. Moreover, interpretability25

is crucial in these applications for regulatory reasons and for trust in the decision-making process.26

Current neural network (NN) based solutions struggle with interpretability, handling categorical data,27

and supporting light implementations suitable for low-compute devices.28

Gradient Boosting Trees (GBT) is a powerful ensemble method extensively used in supervised29

learning due to its simplicity, accuracy, interpretability, and natural handling of structured and30

categorical data. Frameworks such as XGBoost [7], LightGBM [20], and CatBoost [36] have become31

integral in applications spanning finance [49], healthcare [54, 27, 43], and competitive data science32

[6]. Despite their successes, GBT has seen limited application in RL. This is primarily because33

traditional GBT libraries are designed for static datasets with predefined labels, contrasting with the34

dynamic nature of RL. The distribution shift in both input (state) and output (reward) poses significant35

challenges for the direct application of GBT in RL. Moreover, there is a notable lack of benchmarks36

or environments tailored for structured data, further hindering progress in this area.37
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In this paper, we introduce Gradient Boosting Reinforcement Learning (GBRL), a GBT framework38

tailored for RL. Our contributions are:39

1. GBT for RL. We demonstrate the viability and potential of GBT as function approximators40

in RL. We present GBT-based implementations of PPO, A2C, and AWR, and show that41

GBRL is competitive with NNs across a range of environments. In addition, similarly to42

supervised learning, GBRL outperforms NNs on categorical tasks (see Figure 1).43

2. Tree-based Actor-Critic architecture. Inspired by shared architectures in NN-based44

actor-critic (AC), we introduce a GBT-based AC architecture. This reduces the memory and45

computational requirements by sharing a common ensemble structure for both the policy and46

value. This approach significantly reduces runtime compared to existing GBT frameworks,47

thus removing the barrier to solving complex, high-dimensional RL tasks with millions of48

interactions.49

3. Modern GBT-based RL library. We provide a CUDA-based [33] hardware-accelerated50

GBT framework optimized for RL. GBRL is designed to work as part of a broader system51

and seamlessly integrates with popular repositories such as Stable-baselines3 [39].This new52

tool offers practitioners a powerful option for exploring GBT in RL settings. 153
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Figure 1: PPO GBRL vs PPO NN. Aggregated mean and standard deviation of the normalized
average reward for the final 100 episodes. Rewards were normalized as: rewardnorm = reward

rewardmax{NN,GBRL}

per environment and then aggregated across each domain.

2 Related Work54

Gradient boosted trees. Recent advances have extended GBT’s capabilities beyond traditional55

regression and classification. In ranking problems, GBT has been used to directly optimize ranking56

metrics, as demonstrated by frameworks like StochasticRank [51] and recent advancements explored57

in Lyzhin et al. [26]. Additionally, GBT offer probabilistic predictions through frameworks like58

NGBoost [11], enabling uncertainty quantification [28]. The connection between GBT and Gaussian59

Processes [52, 45] offers further possibilities for uncertainty-aware modeling. Recently, Ivanov and60

Prokhorenkova [18] modeled graph-structured data by combining GBT with graph neural networks.61

Despite their versatility, applying GBT in RL remains a relatively less explored area. Several works62

have employed GBT as a function approximator within off-policy RL methods, including its use63

in Q-learning [1] and in bandit settings to learn inverse propensity scores [24]. Recently, Brukhim64

et al. [5] proposed a boosting framework for RL where a base policy class is incrementally enhanced65

using linear combinations and nonlinear transformations. However, these previous works have not66

yet demonstrated the scalability and effectiveness in complex, high-dimensional RL environments67

1We attached the GBRL repository as supplementary material and will release it after the review process.
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requiring extensive interactions. In this work, we show how to adapt the framework of GBT to68

successfully solve large-scale RL problems.69

Interpretability. Due to the inherent non-linearities, NNs are challenging to interpret and require70

sophisticated methods to do so. Interpreting NNs often involves either approximation with simpler71

models such as decision trees or using gradient-based techniques, which require additional forward72

and backward passes [16, 9, 44, 3, 37]. On the other hand, interpretability methods for GBT can take73

advantage of the structure of a decision tree for high speed, efficiency, and accuracy [25, 10].74

Structured and categorical data. Previous work in RL has predominantly focused on using75

NNs due to their ability to capture complex patterns in high-dimensional data. Techniques such as76

Q-learning and AC methods have advanced significantly, demonstrating success in tasks involving77

raw sensory inputs like images, text, and audio. However, NNs that perform well on structured and78

categorical data typically have very specialized architectures [19, 46, 14, 2] and are not standard79

multi-layer perceptrons (MLPs) that are often used in many RL tasks and algorithms [34]. Even with80

these specialized architectures, Gradient Boosting Trees (GBT) often perform equally or better on81

structured and categorical datasets [19, 31, 14, 15].82

Policy optimization through functional gradient ascent. In this approach, the policy is parameter-83

ized by a growing linear combination of functions [29]. Each linear addition represents the functional84

gradient with respect to current parameters. Kersting and Driessens [21] demonstrated the direct85

optimization of policies using the policy gradient theorem [48]. Similarly, Scherrer and Geist [41]86

proposed a functional gradient ascent approach as a local policy search algorithm. While these works87

lay theoretical groundwork, practical results on complex, high-dimensional RL environments have88

not been shown. To adapt GBT’s to RL, we leverage the framework of functional gradient ascent.89

This combination enables a seamless integration of GBRL directly into existing RL optimization90

packages, such as Stable-baselines [39].91

3 Preliminaries92

We begin by introducing Markov Decision Processes (MDPs) and the AC schema. Then, we introduce93

GBT. In the following section, we show how to combine both of these paradigms into GBRL.94

3.1 Markov Decision Process95

We consider a fully observable infinite-horizon Markov decision process (MDP) characterized by the96

tuple (S,A, P,R). At each step, the agent observes a state s ∈ S and samples an action a ∈ A from97

its policy π(s,a). Performing the action causes the system to transition to a new state s′ based on98

the transition probabilities P (s′ | s,a), and the agent receives a reward r ∼ R(s,a). The objective is99

to find an optimal policy π∗ that maximizes the expected discounted reward J(π) = E[
∑∞

t=0 γ
t rt],100

with a discount factor γ ∈ [0, 1).101

The action-value function Qπ(s,a) := Eπ[
∑∞

t′=0 γ
t′R(st+t′ ,at+t′)| st = s,at = a] estimates the102

expected returns of performing action a in state s and then acting according to π. Additionally, the103

value function Vπ(s) := Eπ[
∑∞

t′=0 γ
t′R(st+t′ ,at+t′)| st = s], predicts the expected return starting104

from state s and acting according to π. Finally, the advantage function Aπ(s,a) := Qπ(s,a)−Vπ(s),105

indicates the expected relative benefit of performing action a over acting according to π.106

3.2 Actor-Critic Reinforcement Learning107

Actor-critic methods are a common method to solve the objective J(π). They learn both the policy108

and value. In the GBRL framework, we extend three common AC algorithms to support GBT-based109

function approximators.110

A2C [32] is a synchronous, on-policy AC algorithm designed to improve learning stability. The critic111

learns a value function, V (s), used to estimate the advantage. This advantage is incorporated into the112

policy gradient updates, reducing variance and leading to smoother learning. The policy is updated113

using the following gradient: ∇θJ(πθ) = E[∇θ log πθ(a | s)A(s,a)].114
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PPO [42] extends A2C by improving stability. This is achieved through constrained policy115

update steps using a clipped surrogate objective. This prevents drastic policy changes and116

leads to smoother learning. To achieve this, PPO solves the following objective: ∇θJ(πθ) =117

E[∇θclip( log πθ(a | s)
log πθold (a | s) , 1 − ϵ, 1 + ϵ)A(s,a)]. Additionally, PPO enhances sample efficiency by118

performing multiple optimization steps on each collected rollout.119

AWR [35] is an off-policy AC algorithm. Provided a dataset D, AWR updates both the policy and the120

value through supervised learning. This dataset can be pre-defined and fixed (offline), or continually121

updated using the agents experience (replay buffer). At each training iteration k, AWR solves the122

following two regression problems:123

Vk = argmin
V

Es,a∼D[∥G(s,a)− V (s)∥22] , πk+1 = argmax
π

Es,a∼D[log π(a | s) exp(
1

β
Ak(s,a))] ,

where G(s,a) represents the monte-carlo estimate or TD(λ) of the expected return [47].124

3.3 Gradient Boosting Trees as Functional Gradient Descent125

Gradient boosting trees (GBT) [12] are a non-parametric machine learning technique that combines126

decision tree ensembles with functional gradient descent [30]. GBT iteratively minimizes the expected127

loss L(F (x)) = Ex,y[L(y, F (x))] over a dataset D = {(xi,yi)}Ni=1. A GBT model, FK , predicts128

outputs using K additive trees as follows:129

FK(xi) = F0 +

K∑
k=1

ϵhk(xi) , (1)

where ϵ is the learning rate, F0 is the base learner, and each hk is an independent regression tree130

partitioning the feature space.131

In the context of functional gradient descent, the objective is to minimize the expected loss L(F (x)) =132

Ex,y[L(y, F (x))] with respect to the functional F . Here, a functional F : H → R maps a function133

space to real numbers. A GBT model can be viewed as a functional F that maps a linear combination134

of binary decision trees to outputs: F : lin(H)→ RD, whereH is the decision tree function class.135

We start with an initial model, F0, and iteratively add trees to F to minimize the expected loss.136

Similar to parametric gradient descent, at each iteration k, we minimize the loss by taking a step in137

the direction of the functional gradient gik := ∇Fk−1
L(yi, Fk−1(xi)). However, we are constrained138

to gradient directions withinH. Thus, we project the gradient gk into a decision tree by solving:139

hk = argmin
h
∥ − ϵgk − h(x)∥22 . (2)

4 Gradient Boosting Reinforcement Learning140

In this work, we extend the framework of GBT to support AC algorithms in the task of RL. The141

objective in RL is to optimize the return J , the cumulative reward an agent receives. Unlike in142

supervised learning, the target predictions are unknown a priori. RL agents learn through trial143

and error. Good actions are reinforced by taking a step in the direction of the gradient ∇πJ . This144

formulation aligns perfectly with functional gradient ascent; thus, in GBRL, we optimize the objective145

directly over the decision tree function class. This is achieved by iteratively growing the ensemble of146

trees {hi}. The ensemble outputs θ, representing AC parameters such as the policy π and the value147

function. For example, θ = [µ(s), σ(s), V (s)] for a Gaussian policy. At each iteration, a new tree148

hk, constructed to minimize the distance to∇θk−1
J , is added to the ensemble. Here, The resulting149

method is an application of GBT as a functional gradient optimizer θk ≈ θ0 + ϵ
∑k−1

m=0∇θmJ .150

However, RL presents unique challenges for GBT. RL involves a nonstationary state distribution and151

inherent online learning, causing gradients to vary in magnitude and direction. Large gradients in152

unfavorable directions risk destabilizing training or leading to catastrophic forgetting. Moreover,153

feedback in RL is provided through interactions with the environment and is not available a priori.154

This contrasts with supervised learning settings, where gradients decrease with boosting iterations,155

and targets are predefined. As a result, many of the key features that traditional GBT libraries rely on156
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Figure 2: The GBRL framework. The actor’s policy and critic’s value function are parameterized
by θk. For example, θk = [µ(s), σ(s), V (s)] for a Gaussian policy. θk is calculated by summing
all the outputs of trees in the ensemble. Starting from θ0, at each training iteration, GBRL collects
a rollout and computes the gradient ∇θ0J . This gradient is then used to fit the next tree added to
the ensemble, which is updated to θ1. This process repeats with each iteration fitting a new tree,
refining the parameterization, and expanding the ensemble towards θk ≈ θ0 + ϵ

∑k−1
m=0∇θmJ , an

approximated scaled sum of gradients with respect to past parametrizations.

are not suitable. For example, GOSS [20], categorical feature encoding [36], early-stopping signals,157

pruning methods [53], and strategies to tackle online learning [55].158

To address these challenges, we employ appropriate tools from the NN and GBT literature, such as159

batch learning [13, 40] to update the ensemble. At each boosting iteration, we fit a decision tree on160

a random batch sampled with replacement from the experience buffer. This approach helps handle161

non-stationary distributions and improve stability by focusing on different parts of the state space,162

allowing beneficial gradient directions to accumulate and minimizing the impact of detrimental ones.163

Additionally, GBRL fits gradients directly to optimize objectives, whereas traditional GBT methods164

require targets and need workarounds to utilize gradients effectively.165

A common theme in AC algorithms is to utilize a shared approximation for the actor and the critic.166

We adopt this approach in GBRL, constructing trees where each leaf provides two predictions. GBRL167

predicts both the policy (distribution over actions) and the value estimate. The internal structure of the168

tree is shared, providing a single feature representation for both objectives and significantly reducing169

memory and computational bottlenecks. Accordingly, in GBRL we apply differentiated learning rates170

to the policy and value outputs during prediction, effectively optimizing distinct objectives within171

this shared structure. We present the full algorithm in Algorithm 1 and diagram in Figure 2.172

5 Experiments173

Our experiments aim to answer the following questions:174

1. GBT as RL Function Approximator: Can GBT-based AC algorithms effectively solve175

complex high-dimensional RL tasks?176

2. Comparison to NNs: How does GBRL compare with NN-based training in various RL177

algorithms?178

3. Benefits in Categorical Domains: Do the benefits of GBT in supervised learning transfer179

to the realm of RL?180

4. Comparison to Traditional GBT libraries: Can we use traditional GBT libraries instead181

of GBRL for RL tasks?182

5. Evaluating the shared AC architecture: How does sharing the tree structure between the183

actor and the critic impact performance?184

We implemented GBT-based versions of A2C, PPO, and AWR within Stable Baselines3. We refer to185

our implementations as PPO GBRL, A2C GBRL, and AWR GBRL. We evaluated GBRL against the186
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Algorithm 1 Gradient Boosting for Reinforcement Learning (GBRL)

1: Initialize: θ0, ϵactor, ϵcritic, experience buffer B, total training iterations K, number of updates U ,
batch size N , k ← 1

2: while k < K do
3: Collect trajectory τ (k) = (s0,a0, . . . , sT ,aT )

(k) and rewards (r0, . . . , rT )(k) using πθk−1

4: Add trajectory τ (k) and rewards to the experience buffer B
5: for each update u = 1 to U do
6: Sample a batch from the experience buffer B
7: Compute gradients g according to AC algorithm (e.g., PPO, A2C, AWR)
8: Construct dataset D = {(sn, gn)}Nn=0 and fit a decision tree hk

9: for each dimension d = 0 to D do
10: if 0 ≤ d < D then
11: Update θ

(d)
k = θ

(d)
k−1 + ϵactorhk(s)

12: else
13: Update θ

(d)
k = θ

(d)
k−1 + ϵcritichk(s)

14: k ← k + 1
15: Output: AC parameters θ(d)K (s) for d = 0, 1, . . . , D

equivalent NN implementations. Where available, we utilize hyperparameters from RL Baselines3187

Zoo [38]; otherwise, we optimize the hyperparameters for specific environments. The AWR NN188

implementation is based on the original paper [35].189

We conducted experiments on a range of RL domains. We test classic control tasks, high-dimensional190

vectorized problems, and finally categorical tasks. We use 5 random seeds per experiment on a191

single NVIDIA V100-32GB GPU. We present the cummulative non-discounted reward, averaged192

across the last 100 episodes. We normalize the plots for simple visual comparison between GBRL193

and the corresponding NN implementations. The normalized score is computed as scorenorm =194
scoreGBRL−scoreNN

scoremax{NN,GBRL}−scoremin{NN,GBRL}
. We provide the full learning curves, implementation details, compute195

resources, un-normalized numerical results, and hyperparameters in the supplementary material.196

Classic Enviroments. We evaluate GBRL’s ability to solve classic RL tasks using Continuous-197

Control and Box2D environments, provided via Gym [50]. We trained agents for 1M steps (1.5M for198

LunarLander-v2) and provide the results in Figure 3. For exact values, refer to Table 2.199

Considering the algorithmic objective, we observe that GBRL and NN present similar performance200

when optimized using PPO. In contrast, the other methods demonstrate inconclusive results. In201

certain environments, such as MountainCar, GBRL outperforms NN with all AC methods. On the202

other hand, in Pendulum NN is better.203

−1 0 1

Acrobot-v1

CartPole-v1

LunarLander-v2

MountainCar

MountainCarContinuous

Pendulum-v1

A2C

−1 0 1

AWR

−1 0 1

PPO

Best Performer
GBRL
NN

Figure 3: Continuous-Control and Box2D environments. Normalized comparison between GBRL
and NN. PPO, the best performing method, shows similar performance with GBRL and NN function
classes.

High-Dimensional Vectorized Environments. The decision-tree function class operates on in-204

dividual features at each step. Consequently, this function class is not well-suited for handling205

pixel-based representations, which require more complex feature interactions. Therefore, we evaluted206

GBRL in the Football [22] and Atari RAM [4] domains. These offer high-dimensional vectorized207
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representations. We trained agents in both environments for 10 million timesteps. The complete208

results are reported in Tables 3 and 4 and illustrated in Figure 4.209

The results portray the following phenomenon. While both tasks may seem similar, there is a distinct210

difference. The features in the football domain are manually constructed and represent identifiable211

information, such as the location of the ball and the players. However, the Atari RAM domain212

provides a flattened view of the system RAM, which is unstructured.213

At their core, binary decision trees are if-else clauses. This function class is naturally suited to work214

with structured data. These insights are emphasized in the football domain. Here, PPO GBRL greatly215

outperforms PPO NN across most environments and exhibits equivalent performance on the rest. In216

addition, as Atari RAM is unstructured, we observe that, as can be expected, in most cases GBRL217

underperforms NN, except for AWR. However, AWR NN underperformed considerably compared to218

the other NN implementations.219

−1 0 1

3 vs 1 with Keeper
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Easy Counter-Attack
Hard Counter-Attack

Empty Goal
Empty Goal Close

Pass and Shoot with Keeper
Run, Pass and Shoot with Keeper

Run to Score
Run to Score with Keeper

11 vs 11 with Lazy Opponents

A2C

−1 0 1

AWR

−1 0 1

PPO

(a) Football Academy environments.
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Kangaroo
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MsPacman

Pong
SpaceInvaders

A2C

−1.0 −0.5 0.0 0.5 1.0
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−1.0 −0.5 0.0 0.5 1.0
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Best Performer
NN GBRL

(b) Atari-ramNoFrameskip-v4 environments.

Figure 4: High-Dimensional Vectorized Environments. GBRL outperforms NN on the structured
Football domain using PPO. NN outperforms on unstructured tasks, such as Atari RAM.

Categorical Environments. The football experiment suggests that GBRL outperforms when220

assigned structured data. Here, we focus on categorical environments. This is a regime where GBT221

excels in supervised learning. In these experiments, we evaluated the MiniGrid domain [8]. It consists222

of 2D grid worlds with goal-oriented tasks that require object interaction. We trained in PutNear,223

FourRooms, and Fetch tasks for 10M timesteps, matching the reported PPO NN in RL Baselines3224

Zoo. We trained the remaining environments for 1M timesteps. We give the results in Figure 5. For225

exact numbers, see Table 5.226

In MiniGrid, GBRL outperforms or is on-par with NN in most tasks. Specifically, PPO GBRL is227

significantly better than PPO NN. We observe the same trend when comparing between environments.228

These results emphasize that GBRL is a strong candidate for problems characterized by structured229

data, specifically when using PPO as the algorithmic backend.230

GBRL vs Traditional GBT Libraries. Here, we compare GBRL with Catboost and XGBoost.231

We focus on the PPO variant. When comparing to the standard libraries, we utilize their built-in232
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Figure 5: MiniGrid environments. GBRL combined with the PPO backend outperforms NN across
a range of categorical environments.

options for incremental learning, vectorized leaves, and custom loss functions. As both CatBoost and233

XGBoost do not support differential learning rates, we used separate ensembles for the actor and the234

critic. For the comparison, we use the CartPole-v1 environment, training for 1M steps. The results235

are shown in Figure 6.236

As seen, standard GBT libraries are unable to solve RL tasks in a realistic timeframe. GBRL, however,237

efficiently solves the task while also remaining competitive with NN across a range of environments.238
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Figure 6: Comparing to standard GBT libraries. CatBoost and XGBoost are intractable in RL.
Specifically, CatBoost lacks GPU support for custom losses, leading to low FPS and early termination.

Evaluating the shared AC architecture. Finally, we evaluated the benefits of using a shared AC239

architecture by training PPO GBRL on three MiniGrid environments. We train agents with shared240

and non-shared architectures for 10M timesteps and compare the score, GPU memory usage, and241

FPS. We provide the aggregated results in Figure 7, and environment-specific breakdowns in the242

supplementary.243

The benefit of the shared structure is clear both in terms of GPU memory consumption and computa-244

tion speed. By sharing the tree structure, GBRL requires less than half the memory and almost triples245

the training FPS. This is achieved without any negative performance on the resulting policy, as seen246

in the reward plot.247

Result summary. The performance of GBRL varied across RL algorithms, but environments like248

MiniGrid highlight the potential advantages of using GBT in RL. The results suggest that GBT’s249

strengths in handling structured and categorical data from supervised learning can effectively transfer250

to the RL domain. Conversely, GBRL underperformed in Atari-RAM environments, indicating that251

certain environments, characterized by unstructured observations, are less suited for GBTs.252

The results can be explained by the findings of Grinsztajn et al. [15], which suggest that NNs have253

an inductive bias toward overly smooth solutions and that MLP-like architectures are not robust254

to uninformative features. The optimal solutions for Atari-RAM might be smoother, which could255

explain the better performance of NNs. On the other hand, McElfresh et al. [31] argue that GBT256

outperforms NNs on ‘irregular’ datasets. Tree-based models excel in handling irregular patterns and257

categorical data, aligning with GBRL’s success in environments like MiniGrid.258
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Figure 7: Shared Actor-Critic. Sharing the tree structure significantly increases training efficiency
and memory, without impacting on the score.

Comparing different algorithmic backbones, we find PPO to be the strongest. PPO GBRL excelled259

in the MiniGrid and Football domains, and performed comparably with NN in classic control260

tasks. PPO GBRL’s success can be attributed to its alignment with GBRL’s incremental learning261

strategy. On the other hand, A2C’s single gradient update per rollout may limit its effectiveness and262

contribute to its underwhelming performance in many environments. Similarly, AWR’s design for263

multiple sample updates results in very large ensembles, creating a trade-off between large, slow, and264

memory-intensive ensembles, and lighter, less performant versions.265

6 Conclusion266

Historically, RL practitioners have relied on tabular, linear, and NN-based function approximators.267

But, GBT, a widely successful tool in supervised learning, has been absent from this toolbox. We268

present a method for effectively integrating it into RL and demonstrate domains where it excels269

compared to NNs. GBRL is a step toward solutions that are more interpretable, well suited for270

real-world tasks with structured data, or capable of deployment on low-compute devices.271

The choice of an RL method depends on the task characteristics: tabular and linear approaches272

are suitable for small state spaces or simple mappings, while NNs handle complex relationships in273

unstructured data. GBT thrives in complex, yet structured environments. In such cases, we observe274

the advantage of GBRL over NNs, reflecting its already known benefits in supervised learning.275

A crucial component of GBRL is our efficient adaptation of GBT for AC methods, which allows276

the simultaneous optimization of distinct objectives. We optimized this approach for large-scale277

ensembles using GPU acceleration (CUDA). Furthermore, GBRL integrates seamlessly with existing278

RL libraries, promoting ease of use and adoption.279

7 Limitations and Future Directions280

In this work, we integrated the highly popular GBT, typically used in supervised learning, into RL.281

Our results show that GBT is competitive across a range of problems. However, we identified several282

limitations and compelling areas for further research. First, a significant challenge lies in the continu-283

ous generation of trees. As the policy improves through numerous updates, the size of the ensemble284

increases. This unbounded growth has implications for memory usage, computational efficiency, and285

the feasibility of online real-time adaptation. The problem is exacerbated by off-policy methods that286

build many trees per sample. Moreover, the redundancy of trees, especially those from early stages,287

suggests that the final policy could be represented with a much smaller ensemble. Consequently,288

developing strategies for tree pruning, ensemble compression, or dynamically managing ensemble289

size could offer crucial optimizations without compromising performance.290

Another key challenge lies in effectively integrating GBT with additional state-of-the-art RL algo-291

rithms such as DDPG [23] or SAC [17]. These require differentiable Q-functions to update the policy.292

Since GBTs are not differentiable, new solutions are needed to incorporate them into these algorithms.293

One such possible direction can be probabilistic trees, where each node represents the probability of294

traversing the graph.295
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Appendix453

This appendix provides supplementary materials that support the findings and methodologies dis-454

cussed in the main text. It is organized into four sections to present the full experiment results,455

implementation details, hyperparameters used during the experiments, training progression plots, and456

experimental plots, respectively. These materials offer detailed insights into the research process and457

outcomes, facilitating a deeper understanding and replication of the study.458

A Implementaion Details and Hyperparameters459

Included in this section are implementation details, information regarding compute resources, and460

tables containing the hyperparameters used in our experiments enabling the reproducibility of our461

results. Table 1 lists GBRL hyperparameters for all experiments.462

A.1 Environments463

The Football domain consists of a vectorized 115-dimensional observation space that summarizes the464

main aspects of the game and 19 discrete actions. We focus on its academy scenarios, which present465

situational tasks involving scoring a single goal. A standard reward of +1 is granted for scoring, and466

we employed the "Checkpoints" shaped reward structure. This structure provides additional points as467

the agent moves closer towards the goal, with a maximum reward of 2 per scenario. The Atari-ram468

environment consists of a vectorized 128-dimensional observational space representing the 128 byte469

RAM state and up to 18 discrete actions. We trained agents in both domains for 10M timesteps.470

The MiniGrid environment [8] is a 2D grid world with goal-oriented tasks requiring object interaction.471

The observation space consists of a 7x7 image representing the grid, a mission string, and the agent’s472

direction. Each tile in the observed image contains a 3D tuple dictating an object’s color, type, and473

state. All MiniGrid tasks emit a reward of +1 for successful completion and 0 otherwise.474

We trained our NN-based agents on a flattened observation space using the built-in one-hot wrapper.475

For GBRL agents, we generated a 51-dimensional categorical observational space by encoding each476

unique tile tuple as a categorical string to represent the observed image. Categorical features were477

added for the agent’s direction (up, left, right, down) and missions. All agents were trained for 1M478

timesteps, except for PutNear, FourRooms, and Fetch tasks, which were trained for 10M based on the479

reported values for PPO NN in RL Baselines3 Zoo.480

A.2 Compute Resources481

All experiments were done on the NVIDIA NGC platform on a single NVIDIA V100-32GB GPU482

per experiment. Training time and compute requirements vary between algorithms and according483

to hyperparameters. The number of boosting iterations has the largest impact on both runtime and484

memory. GBRL experimental runs required from 1GB to 24GB of GPU memory. Moreover, runtime485

varied from 20 minutes for 1M timesteps training on classic environments and up to 5 days for 10M486

timesteps on Atari-ram. NN experimental runs required up to 3GB of GPU memory and runtime487

ranged from 10 minutes and up to 3 days. The total compute time for all experiments combined was488

approximately 1800 GPU hours. Additionally, the research project involved preliminary experiments489

and hyperparameter tuning, which required an estimated additional 168 GPU hours.490

B Detailed Results Tables491

This section contains tables presenting the mean and standard deviation of the average episode reward492

for the final 100 episodes within each experiment. More specifically, Table 2 presents results for493

Continuous Control & Block2D environments, Tables 3 and 4 present results for the high-dimensional494

vectorized environments, and Table 5 presents results for the categorical environments.495
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batch size clip range ent coef gae lambda gamma num epochs num steps num envs policy lr value lr

Acrobot 512 0.2 0.0 0.94 0.99 20 128 16 0.16 0.034
CartPole 64 0.2 0.0 0.8 0.98 1 128 8 0.029 0.015

LunarLander 256 0.2 0.0033 0.98 0.999 20 512 16 0.031 0.003
MountainCar 256 0.2 0.033 0.98 0.999 20 512 16 0.031 0.003

MountainCar Continuous 256 0.2 0.033 0.98 0.999 20 512 16 0.031 0.003
Pendulum 512 0.2 0.0 0.93 0.91 20 256 16 0.031 0.013
Football 512 0.2 0.0 0.95 0.998 10 256 16 0.033 0.006

Atari-Ram 64 0.92 8e-5 0.95 0.99 4 512 16 0.05 0.002
MiniGrid 512 0.2 0.0 0.95 0.99 20 256 16 0.17 0.01

(a) PPO. For continuous action spaces we used log std init = -2 and log std lr = lin_0.0017. We utilized gradient
norm clipping for Gym environments. Specifically, 10 for the value gradients and 150 for the policy gradients.

ent coef gae lambda gamma num steps num envs policy lr value lr log std init log std lr

Acrobot 0.0 1 0.99 8 4 0.79 0.031 - -
CartPole 0.0 1 0.99 8 16 0.13 0.047 - -

LunarLander 0.0 1 0.995 5 32 0.16 0.04 - -
MountainCar 0.0 1 0.99 8 16 0.64 0.032 - -

MountainCar Continuous 0.0 1 0.995 128 16 0.0008 2.8e-6 0 0.0004
Pendulum 0.0 0.9 0.9 10 32 0.003 0.056 -2 0.00018
Football 0.0004 0.95 0.998 128 8 0.87 0.017 - -

Atari-Ram 0.0009 0.95 0.993 128 8 0.17 0.013 - -
MiniGrid 0.0 0.95 0.99 10 128 0.34 0.039 - -

(b) A2C

batch size ent coef gae lambda gamma train freq gradient steps num envs policy lr value lr log std init log std lr

Acrobot 1024 0.0 0.95 0.99 2000 150 1 0.05 0.1 - -
CartPole 1024 0.0 0.95 0.99 2000 150 1 0.05 0.1 - -

LunarLander 1024 0.0 0.95 0.99 2000 150 1 0.05 0.1 - -
MountainCar 64 0.0 0.95 0.99 2000 150 1 0.64 0.032 - -

MountainCar Continuous 64 0.0 0.95 0.99 2000 150 1 0.089 0.083 -2 lin_0.0017
Pendulum 1024 0.0 0.9 0.9 1000 50 1 0.003 0.07 -2 0.0005
Football 512 0.03 0.95 0.99 750 10 1 0.09 0.00048 - -

Atari-Ram 1024 0.0 0.95 0.993 2000 50 1 0.0779 0.0048 - -
MiniGrid 1024 0.0 0.95 0.99 1500 25/100* 1 0.0075 0.005 - -

(c) AWR. For all envs, buffer size = 50,000, β = 0.05. *MiniGrid environments used 100 gradient steps for tasks
trained for 1M steps, and 25 gradient steps for tasks trained for 10M steps, for a reduced tree size.

Table 1: GBRL hyperparameters - NN represented by an MLP with two hidden layers.

Table 2: Continuous-Control and Box2D environments: Average episode reward for the final 100
episodes.

Acrobot CartPole LunarLander MountainCar MountainCar Continuous Pendulum-v1
NN: A2C −82.27± 3.29 500.00± 0.0 −43.01± 106.26 −148.90± 24.10 92.66± 0.32 −183.64 ± 22.32

GBRL: A2C −90.73± 2.98 500.00± 0.0 47.93 ± 41.00 −124.42± 5.74 93.15± 1.19 −538.83± 66.25

NN: AWR −102.53± 57.25 500.00± 0.0 282.48 ± 1.96 −160.65± 53.97 18.93± 42.34 −159.64 ± 9.42
GBRL: AWR −118.12± 33.54 497.54± 3.11 76.03± 56.62 −146.68± 24.53 44.38± 45.94 −1257.61± 98.10

NN: PPO −74.83± 1.22 500.00± 0.0 261.73± 6.93 −115.53± 1.39 85.81± 7.51 −249.31± 60.00
GBRL: PPO −87.82± 2.16 500.00± 0.0 248.72± 59.10 −110.55± 15.60 89.42± 5.73 −246.89± 20.61

C Training Plots496

This section presents learning curves depicting model performance throughout the training phase.497

Figures 8 to 11 show the training reward as a function of environment steps of the agents trained in498

the experiments. The column order is: A2C, AWR, and PPO.499
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Table 3: Football Academy environments: Average episode reward for the final 100 episodes.

3 vs 1 with keeper Corner Counterattack Easy Counterattack Hard Empty Goal Empty Goal Close
NN: A2C 1.78± 0.10 1.00± 0.17 1.58 ± 0.35 1.43 ± 0.17 1.93 ± 0.05 2.0± 0.0

GBRL: A2C 1.59± 0.17 1.01± 0.07 1.11± 0.14 1.00± 0.05 1.81± 0.03 2.00± 0.00

NN: AWR 1.50± 0.37 1.01± 0.04 1.59 ± 0.36 1.18± 0.21 1.90± 0.08 1.92± 0.17
GBRL: AWR 1.66± 0.34 0.92± 0.05 0.95± 0.05 0.92± 0.05 1.93± 0.07 2.0± 0.0

NN: PPO 1.61± 0.05 0.95± 0.02 1.43± 0.15 1.23± 0.18 1.98 ± 0.01 1.99± 0.00
GBRL: PPO 1.63± 0.19 1.05± 0.20 1.64± 0.09 1.23± 0.07 1.84± 0.06 2.0± 0.0

Pass & Shoot keeper Run Pass & Shoot keeper Run to Score Run to score w/ keeper Single Goal vs Lazy
NN: A2C 1.41± 0.37 1.77± 0.08 1.87± 0.12 1.25± 0.23 1.65 ± 0.04

GBRL: A2C 1.60± 0.21 1.60± 0.14 1.82± 0.10 1.15± 0.08 1.31± 0.11

NN: AWR 1.26± 0.46 1.15± 0.14 1.81± 0.14 1.25± 0.34 1.28± 0.27
GBRL: AWR 1.35± 0.37 1.53± 0.40 1.98 ± 0.01 0.99± 0.16 1.03± 0.12

NN: PPO 1.31± 0.13 1.64± 0.16 1.91± 0.09 1.13± 0.06 1.68± 0.09
GBRL: PPO 1.87 ± 0.09 1.85± 0.08 1.83± 0.04 1.95 ± 0.02 1.73± 0.06

Table 4: Atari-ramNoFrameskip-v4 environments: Average episode reward for the final 100 episodes.
Alien Amidar Asteroids Breakout Gopher

NN: A2C 1802.24 ± 323.12 304.62 ± 55.61 2770.46 ± 271.97 76.69 ± 30.08 3533.84 ± 118.50
GBRL: A2C 595.08± 43.51 48.71± 14.65 1402.66± 161.67 11.52± 2.34 502.20± 341.88

NN: AWR 739.82± 303.06 86.32± 40.16 2308.68 ± 257.72 26.57± 9.91 1471.93± 716.65
GBRL: AWR 829.99± 166.48 125.53± 25.25 1592.63± 109.96 17.32± 1.89 913.06± 79.95

NN: PPO 1555.32 ± 107.59 310.93 ± 80.13 2309.46 ± 145.66 32.88 ± 15.74 2507.84 ± 108.37
GBRL: PPO 1163.86± 76.54 186.32± 50.63 1514.34± 317.46 19.96± 1.93 1215.04± 81.01

Kangaroo Krull MsPacman Pong SpaceInvaders
NN: A2C 2137.6 ± 425.64 9325.38 ± 777.12 2007.64 ± 116.52 15.39 ± 4.26 462.30 ± 35.56

GBRL: A2C 948.8± 483.80 5291.4± 433.35 989.68± 100.02 −12.80± 11.10 265.36± 44.64

NN: AWR 1214.8± 313.42 4519.78± 522.11 892.31± 289.36 −10.25± 2.11 842.00± 130.51
GBRL: AWR 1809.26 ± 37.51 6419.26 ± 387.76 1641.84 ± 284.19 −11.68± 3.79 397.85± 566.38

NN: PPO 2487.4± 829.65 9167.3± 294.30 2069.22± 202.48 18.50± 1.60 479.77± 65.07
GBRL: PPO 2160.8± 826.92 6888.66± 756.18 2069.22± 538.62 15.40± 6.55 434.84± 31.83

Table 5: MiniGrid environments: Average episode reward for the final 100 episodes.
DoorKey-5x5 Empty-Random-5x5 Fetch-5x5-N2 FourRooms GoToDoor-5x5

NN: A2C 0.96± 0.00 0.77± 0.42 0.43± 0.03 0.62± 0.19 0.05± 0.04
GBRL: A2C 0.96± 0.00 0.96± 0.00 0.62± 0.02 0.51± 0.07 0.78± 0.02

NN: AWR 0.57± 0.52 0.96± 0.00 0.90± 0.26 0.19± 0.12 0.95± 0.01
GBRL: AWR 0.96 ± 0.00 0.97± 0.00 0.95 ± 0.01 0.54 ± 0.05 0.94± 0.01

NN: PPO 0.78± 0.40 0.96± 0.00 0.89± 0.03 0.53± 0.03 0.60± 0.06
GBRL: PPO 0.96± 0.00 0.96± 0.00 0.96 ± 0.01 0.56± 0.04 0.96 ± 0.00

KeyCorridorS3R1 PutNear-6x6-N2 RedBlueDoors-6x6 Unlock
NN: A2C 0.75± 0.42 0.01± 0.00 0.30 ± 0.22 0.77± 0.43

GBRL: A2C 0.39± 0.48 0.18 ± 0.018 0.0± 0.0 0.90± 0.09

NN: AWR 0.93± 0.00 0.60 ± 0.13 0.83± 0.00 0.96± 0.00
GBRL: AWR 0.94± 0.00 0.36± 0.01 0.84± 0.03 0.95± 0.00

NN: PPO 0.76± 0.42 0.001± 0.00 0.17± 0.40 0.97± 0.00
GBRL: PPO 0.95 ± 0.00 0.44 ± 0.19 0.88 ± 0.02 0.97± 0.00
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Figure 8: Classic Control and Box2D environments: Training reward as a function of environment
steps.
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Figure 9: Football Academy environments: Training reward as a function of environment step.
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Figure 10: Atari-ramNoFrameskip-v4 environments: Training reward as a function of environment
step.
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Figure 11: MiniGrid environments: Training reward as a function of environment step.
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NeurIPS Paper Checklist500

1. Claims501

Question: Do the main claims made in the abstract and introduction accurately reflect the502

paper’s contributions and scope?503

Answer: [Yes]504

Justification: The main claims made in the abstract and introduction accurately reflect the505

paper’s contributions and scope. The abstract provides a concise overview of the problem,506

the proposed solution, and the key contributions, including the introduction of GBRL, which507

extends the advantages of GBT to the RL domain. The paper demonstrates competitive508

performance with NN-based methods, especially in domains with structured or categorical509

features, and presents a high-performance, GPU-accelerated implementation that can be510

integrated with RL libraries. While the paper includes some aspirational goals related to511

future applications, these are clearly distinguished from the results shown and serve as512

motivation for further research..513

Guidelines:514

• The answer NA means that the abstract and introduction do not include the claims515

made in the paper.516

• The abstract and/or introduction should clearly state the claims made, including the517

contributions made in the paper and important assumptions and limitations. A No or518

NA answer to this question will not be perceived well by the reviewers.519

• The claims made should match theoretical and experimental results, and reflect how520

much the results can be expected to generalize to other settings.521

• It is fine to include aspirational goals as motivation as long as it is clear that these goals522

are not attained by the paper.523

2. Limitations524

Question: Does the paper discuss the limitations of the work performed by the authors?525

Answer: [Yes]526

Justification: We have included a limitations section, in which we discuss the computational527

efficiency and the memory limits of our current method. Additionally, we discuss the528

challenges in implementing our methods to other popular RL algorithms.529

Guidelines:530

• The answer NA means that the paper has no limitation while the answer No means that531

the paper has limitations, but those are not discussed in the paper.532

• The authors are encouraged to create a separate "Limitations" section in their paper.533

• The paper should point out any strong assumptions and how robust the results are to534

violations of these assumptions (e.g., independence assumptions, noiseless settings,535

model well-specification, asymptotic approximations only holding locally). The authors536

should reflect on how these assumptions might be violated in practice and what the537

implications would be.538

• The authors should reflect on the scope of the claims made, e.g., if the approach was539

only tested on a few datasets or with a few runs. In general, empirical results often540

depend on implicit assumptions, which should be articulated.541

• The authors should reflect on the factors that influence the performance of the approach.542

For example, a facial recognition algorithm may perform poorly when image resolution543

is low or images are taken in low lighting. Or a speech-to-text system might not be544

used reliably to provide closed captions for online lectures because it fails to handle545

technical jargon.546

• The authors should discuss the computational efficiency of the proposed algorithms547

and how they scale with dataset size.548

• If applicable, the authors should discuss possible limitations of their approach to549

address problems of privacy and fairness.550
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• While the authors might fear that complete honesty about limitations might be used by551

reviewers as grounds for rejection, a worse outcome might be that reviewers discover552

limitations that aren’t acknowledged in the paper. The authors should use their best553

judgment and recognize that individual actions in favor of transparency play an impor-554

tant role in developing norms that preserve the integrity of the community. Reviewers555

will be specifically instructed to not penalize honesty concerning limitations.556

3. Theory Assumptions and Proofs557

Question: For each theoretical result, does the paper provide the full set of assumptions and558

a complete (and correct) proof?559

Answer: [NA]560

Justification: We do not include theoretical results.561

Guidelines:562

• The answer NA means that the paper does not include theoretical results.563

• All the theorems, formulas, and proofs in the paper should be numbered and cross-564

referenced.565

• All assumptions should be clearly stated or referenced in the statement of any theorems.566

• The proofs can either appear in the main paper or the supplemental material, but if567

they appear in the supplemental material, the authors are encouraged to provide a short568

proof sketch to provide intuition.569

• Inversely, any informal proof provided in the core of the paper should be complemented570

by formal proofs provided in appendix or supplemental material.571

• Theorems and Lemmas that the proof relies upon should be properly referenced.572

4. Experimental Result Reproducibility573

Question: Does the paper fully disclose all the information needed to reproduce the main ex-574

perimental results of the paper to the extent that it affects the main claims and/or conclusions575

of the paper (regardless of whether the code and data are provided or not)?576

Answer: [Yes]577

Justification: The paper fully discloses the architecture, the GBRL method, hyperparameters578

used, and the code will be released publicly.579

Guidelines:580

• The answer NA means that the paper does not include experiments.581

• If the paper includes experiments, a No answer to this question will not be perceived582

well by the reviewers: Making the paper reproducible is important, regardless of583

whether the code and data are provided or not.584

• If the contribution is a dataset and/or model, the authors should describe the steps taken585

to make their results reproducible or verifiable.586

• Depending on the contribution, reproducibility can be accomplished in various ways.587

For example, if the contribution is a novel architecture, describing the architecture fully588

might suffice, or if the contribution is a specific model and empirical evaluation, it may589

be necessary to either make it possible for others to replicate the model with the same590

dataset, or provide access to the model. In general. releasing code and data is often591

one good way to accomplish this, but reproducibility can also be provided via detailed592

instructions for how to replicate the results, access to a hosted model (e.g., in the case593

of a large language model), releasing of a model checkpoint, or other means that are594

appropriate to the research performed.595

• While NeurIPS does not require releasing code, the conference does require all submis-596

sions to provide some reasonable avenue for reproducibility, which may depend on the597

nature of the contribution. For example598

(a) If the contribution is primarily a new algorithm, the paper should make it clear how599

to reproduce that algorithm.600

(b) If the contribution is primarily a new model architecture, the paper should describe601

the architecture clearly and fully.602
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(c) If the contribution is a new model (e.g., a large language model), then there should603

either be a way to access this model for reproducing the results or a way to reproduce604

the model (e.g., with an open-source dataset or instructions for how to construct605

the dataset).606

(d) We recognize that reproducibility may be tricky in some cases, in which case607

authors are welcome to describe the particular way they provide for reproducibility.608

In the case of closed-source models, it may be that access to the model is limited in609

some way (e.g., to registered users), but it should be possible for other researchers610

to have some path to reproducing or verifying the results.611

5. Open access to data and code612

Question: Does the paper provide open access to the data and code, with sufficient instruc-613

tions to faithfully reproduce the main experimental results, as described in supplemental614

material?615

Answer: [Yes]616

Justification: The code is attached as supplimentary material and will be released publicly.617

Guidelines:618

• The answer NA means that paper does not include experiments requiring code.619

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/620

public/guides/CodeSubmissionPolicy) for more details.621

• While we encourage the release of code and data, we understand that this might not be622

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not623

including code, unless this is central to the contribution (e.g., for a new open-source624

benchmark).625

• The instructions should contain the exact command and environment needed to run to626

reproduce the results. See the NeurIPS code and data submission guidelines (https:627

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.628

• The authors should provide instructions on data access and preparation, including how629

to access the raw data, preprocessed data, intermediate data, and generated data, etc.630

• The authors should provide scripts to reproduce all experimental results for the new631

proposed method and baselines. If only a subset of experiments are reproducible, they632

should state which ones are omitted from the script and why.633

• At submission time, to preserve anonymity, the authors should release anonymized634

versions (if applicable).635

• Providing as much information as possible in supplemental material (appended to the636

paper) is recommended, but including URLs to data and code is permitted.637

6. Experimental Setting/Details638

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-639

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the640

results?641

Answer: [Yes]642

Justification: We share our hyperparameters and code required to reproduce our results in643

the appendix and as supplemental material.644

Guidelines:645

• The answer NA means that the paper does not include experiments.646

• The experimental setting should be presented in the core of the paper to a level of detail647

that is necessary to appreciate the results and make sense of them.648

• The full details can be provided either with the code, in appendix, or as supplemental649

material.650

7. Experiment Statistical Significance651

Question: Does the paper report error bars suitably and correctly defined or other appropriate652

information about the statistical significance of the experiments?653

Answer: [Yes]654
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Justification: We report mean and standard deviation for the average episodic reward over the655

last 100 training episodes across five different agents trained random seeds per environment656

for all our experiments.657

Guidelines:658

• The answer NA means that the paper does not include experiments.659

• The authors should answer "Yes" if the results are accompanied by error bars, confi-660

dence intervals, or statistical significance tests, at least for the experiments that support661

the main claims of the paper.662

• The factors of variability that the error bars are capturing should be clearly stated (for663

example, train/test split, initialization, random drawing of some parameter, or overall664

run with given experimental conditions).665

• The method for calculating the error bars should be explained (closed form formula,666

call to a library function, bootstrap, etc.)667

• The assumptions made should be given (e.g., Normally distributed errors).668

• It should be clear whether the error bar is the standard deviation or the standard error669

of the mean.670

• It is OK to report 1-sigma error bars, but one should state it. The authors should671

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis672

of Normality of errors is not verified.673

• For asymmetric distributions, the authors should be careful not to show in tables or674

figures symmetric error bars that would yield results that are out of range (e.g. negative675

error rates).676

• If error bars are reported in tables or plots, The authors should explain in the text how677

they were calculated and reference the corresponding figures or tables in the text.678

8. Experiments Compute Resources679

Question: For each experiment, does the paper provide sufficient information on the com-680

puter resources (type of compute workers, memory, time of execution) needed to reproduce681

the experiments?682

Answer: [Yes]683

Justification: We provide information on computer resources in the appendix.684

Guidelines:685

• The answer NA means that the paper does not include experiments.686

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,687

or cloud provider, including relevant memory and storage.688

• The paper should provide the amount of compute required for each of the individual689

experimental runs as well as estimate the total compute.690

• The paper should disclose whether the full research project required more compute691

than the experiments reported in the paper (e.g., preliminary or failed experiments that692

didn’t make it into the paper).693

9. Code Of Ethics694

Question: Does the research conducted in the paper conform, in every respect, with the695

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?696

Answer: [Yes]697

Justification: Yes, our work conforms with the NeurIPS Code of Ethics.698

Guidelines:699

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.700

• If the authors answer No, they should explain the special circumstances that require a701

deviation from the Code of Ethics.702

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-703

eration due to laws or regulations in their jurisdiction).704

10. Broader Impacts705
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Question: Does the paper discuss both potential positive societal impacts and negative706

societal impacts of the work performed?707

Answer: [No]708

Justification: The primary focus of this paper is on the algorithmic development and709

performance evaluation of Gradient Boosting Trees in Reinforcement Learning (GBRL).710

While the paper does not explicitly discuss societal impacts, GBRL has the potential711

to positively influence various domains, such as inventory management, traffic signal712

optimization, network optimization, resource allocation, and robotics. These domains have713

direct implications for the day-to-day lives of many people. The enhanced performance and714

the capability of GBRL to be deployed on edge devices could bring AI to new applications,715

potentially leading to significant societal benefits. However, as this work is foundational716

research, it does not address specific societal impacts or applications directly.717

Guidelines:718

• The answer NA means that there is no societal impact of the work performed.719

• If the authors answer NA or No, they should explain why their work has no societal720

impact or why the paper does not address societal impact.721

• Examples of negative societal impacts include potential malicious or unintended uses722

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations723

(e.g., deployment of technologies that could make decisions that unfairly impact specific724

groups), privacy considerations, and security considerations.725

• The conference expects that many papers will be foundational research and not tied726

to particular applications, let alone deployments. However, if there is a direct path to727

any negative applications, the authors should point it out. For example, it is legitimate728

to point out that an improvement in the quality of generative models could be used to729

generate deepfakes for disinformation. On the other hand, it is not needed to point out730

that a generic algorithm for optimizing neural networks could enable people to train731

models that generate Deepfakes faster.732

• The authors should consider possible harms that could arise when the technology is733

being used as intended and functioning correctly, harms that could arise when the734

technology is being used as intended but gives incorrect results, and harms following735

from (intentional or unintentional) misuse of the technology.736

• If there are negative societal impacts, the authors could also discuss possible mitigation737

strategies (e.g., gated release of models, providing defenses in addition to attacks,738

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from739

feedback over time, improving the efficiency and accessibility of ML).740

11. Safeguards741

Question: Does the paper describe safeguards that have been put in place for responsible742

release of data or models that have a high risk for misuse (e.g., pretrained language models,743

image generators, or scraped datasets)?744

Answer: [NA]745

Justification: The paper poses no such risks.746

Guidelines:747

• The answer NA means that the paper poses no such risks.748

• Released models that have a high risk for misuse or dual-use should be released with749

necessary safeguards to allow for controlled use of the model, for example by requiring750

that users adhere to usage guidelines or restrictions to access the model or implementing751

safety filters.752

• Datasets that have been scraped from the Internet could pose safety risks. The authors753

should describe how they avoided releasing unsafe images.754

• We recognize that providing effective safeguards is challenging, and many papers do755

not require this, but we encourage authors to take this into account and make a best756

faith effort.757

12. Licenses for existing assets758
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in759

the paper, properly credited and are the license and terms of use explicitly mentioned and760

properly respected?761

Answer: [Yes]762

Justification: We are the original owners of the models and algorithm code. We credit the763

repository and authors of all datasets/models we based our implementations on.764

Guidelines:765

• The answer NA means that the paper does not use existing assets.766

• The authors should cite the original paper that produced the code package or dataset.767

• The authors should state which version of the asset is used and, if possible, include a768

URL.769

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.770

• For scraped data from a particular source (e.g., website), the copyright and terms of771

service of that source should be provided.772

• If assets are released, the license, copyright information, and terms of use in the773

package should be provided. For popular datasets, paperswithcode.com/datasets774

has curated licenses for some datasets. Their licensing guide can help determine the775

license of a dataset.776

• For existing datasets that are re-packaged, both the original license and the license of777

the derived asset (if it has changed) should be provided.778

• If this information is not available online, the authors are encouraged to reach out to779

the asset’s creators.780

13. New Assets781

Question: Are new assets introduced in the paper well documented and is the documentation782

provided alongside the assets?783

Answer: [Yes]784

Justification: We will release the GBRL code publicly. The code is documented, with785

instructions provided on how to install, use, and incorporate within RL libraries. Additionally,786

details regarding the training process, license, limitations, and other relevant information are787

included in the documentation. The documentation will be made available alongside the788

code upon release.789

Guidelines:790

• The answer NA means that the paper does not release new assets.791

• Researchers should communicate the details of the dataset/code/model as part of their792

submissions via structured templates. This includes details about training, license,793

limitations, etc.794

• The paper should discuss whether and how consent was obtained from people whose795

asset is used.796

• At submission time, remember to anonymize your assets (if applicable). You can either797

create an anonymized URL or include an anonymized zip file.798

14. Crowdsourcing and Research with Human Subjects799

Question: For crowdsourcing experiments and research with human subjects, does the paper800

include the full text of instructions given to participants and screenshots, if applicable, as801

well as details about compensation (if any)?802

Answer: [NA]803

Justification: The paper does not involve crowdsourcing nor research with human subjects.804

Guidelines:805

• The answer NA means that the paper does not involve crowdsourcing nor research with806

human subjects.807

• Including this information in the supplemental material is fine, but if the main contribu-808

tion of the paper involves human subjects, then as much detail as possible should be809

included in the main paper.810
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,811

or other labor should be paid at least the minimum wage in the country of the data812

collector.813

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human814

Subjects815

Question: Does the paper describe potential risks incurred by study participants, whether816

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)817

approvals (or an equivalent approval/review based on the requirements of your country or818

institution) were obtained?819

Answer: [NA]820

Justification: the paper does not involve crowdsourcing nor research with human subjects.821

Guidelines:822
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