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Abstract

As large language models (LLMs) have grown in prevalence,
particular benchmarks have become essential for the evalu-
ation of these models and for understanding model capabil-
ities. Most commonly, test accuracy averaged across multi-
ple subtasks is used to rank models on leaderboards, to de-
termine which model is best for our purposes. In this paper,
we investigate the robustness of the accuracy measurement
on a widely used multiple choice question answering dataset,
MMLU. When shuffling the answer label contents, we find
that all explored models decrease in accuracy on MMLU, but
not every model is equally sensitive. These findings suggest
a possible adjustment to the standard practice of leaderboard
testing, where we additionally consider the percentage of ex-
amples each model answers correctly by random chance.

Introduction
One of the largest outstanding issues with interpreting the
results of model evaluation pertains to the robustness of ac-
curacy measurements. For example, the accuracy of natu-
ral language processing models has been shown to be fairly
brittle. For example, accuracy can drop when researchers
apply input alterations based on paraphrasing (Gan and
Ng 2019), word order changes (Gauthier and Levy 2019;
Ribeiro et al. 2020; Sinha et al. 2021a, 2022; Allen-Zhu and
Li 2023a,b; Berglund et al. 2023; Golovneva et al. 2024;
Kitouni et al. 2024; Sugawara et al. 2020), or other minor,
largely meaning-preserving input variations or perturbations
(Belinkov and Bisk 2018; Ebrahimi et al. 2018; Jiang et al.
2020; Gao, Fisch, and Chen 2021; Li et al. 2021; Sinha et al.
2021b; Moradi and Samwald 2021; Papakipos and Bitton
2022; Qian et al. 2022; Goodarzi et al. 2023; Sinha et al.
2023). If many models fail to be robust on a benchmark, re-
gardless of their initially measured accuracy, we may need
to reconsider how we use it as the basis for a leaderboard
that actually ranks models.

While there are many approaches to investigating robust-
ness, our approach relies on the intuition that a test-taker,
human or model, should always select the right answer re-
gardless of its label, i.e. whether it is listed as answer ‘A’ or
‘C’. Surely, if the right answer is unknown to the test-taker
and they make an uneducated guess, they still could happen
upon the right answer by chance, but, in an ideal scenario, a
true expert should achieve the same score when tested mul-

tiple times on versions of a test where only the order that
answers are presented in changes.

In humans, this performance stability, often called test-
retest reliability is an important consideration to deter-
mine how to interpret the results of running a test (Bland
and Altman 1986). Humans test scores can fluctuate over
time, because they are filtered through irrelevant mental or
physical factors that affect measurement (Spearman 1910;
Dunlap 1933). Such uninformative fluctuations can affect
multiple choice tests, for example, when answers are pre-
sented in a different order during retest (Krosnick and Fab-
rigar 1991; Tellinghuisen and Sulikowski 2008; Lions et al.
2022). However, as models do not have the biological limi-
tations of humans, we may expect them to exhibit less vari-
ation than humans, or possibly even none at all. Thus, we
claim that a model should be robust to answer order changes:
if it gets the correct answer to a question when the answer
is labeled ‘A’, it should also always get the correct answer
when it is labeled ‘C’. Put another way, the model should
select the same answer for each question, regardless of its
label, for every possible version of a benchmark; its accu-
racy should be static between test and retest.

In our work, we ask whether shuffling the order of the an-
swer label contents, leaving the order of the labels (A, B, C,
D) the same, affects the measurement of accuracy. We keep
the question exactly the same while we perform shuffling.
We focus our investigation on the MMLU dataset, a popu-
lar dataset included on the widely used Hugging Face Open
LLM Leaderboard1, which runs with the Eleuther LM Eval-
uation Harness (Gao et al. 2023) as its backend.

While testing top performers on the Open LLM Leader-
board, we find that all ten models are affected by our answer
shuffling. This indicates that there is serious non-robustness
in benchmarking with MMLU. To better rank models on a
leaderboard with the MMLU dataset, we may want to take
more random shuffles of label contents to better understand
the extent to which a model genuinely can output the correct
answer. We also found that different categories in MMLU
are affected differently by answer order shuffling.

1https://huggingface.co/spaces/open-llm-leaderboard/open_
llm_leaderboard



Methods
MMLU
Massive Multitask Language Understanding (MMLU)
is a commonly used benchmark for evaluating LLMs
(Hendrycks et al. 2021). It is intended to test a model’s world
knowledge and problem solving ability, and consists of 57
tasks. Each example in MMLU consists of a question paired
with four possible answers, only one of which is correct. An-
swers are a concatenation of an answer label denoted as a let-
ter, with answer contents (a string of characters). To test the
robustness of models to answer choice ordering, we shuffle
the answer label contents, with prohibition that the correct
answer contents don’t change and that we preserve the or-
dering of MMLU answer labels (A, B, C, D) across different
evaluation runs, for example:

original a possible shuffle
A. 1 A. 4
B. 2 B. 2
C. 3 ✓ C. 1
D. 4 D. 3 ✓

We can think of the original orders of answer content la-
bels in each example in MMLU as one of the n (out of
24 possible) shuffles of the example. Given the size of the
MMLU dataset, it is not efficient to run all the possible shuf-
fles (as each example has 24 options and there are nearly 14
thousand questions. To do a tractable exploration, we take
two random seeds of MMLU, each of which has been shuf-
fled, where each example has been selected from one of
the 24 possible answer contents orders to create semanti-
cally equivalent versions of MMLU. We utilize the original
MMLU implementation (Hendrycks et al. 2021), which uses
5-shot in context learning during evaluation.

Metrics
In essence, we adopt a simplification of the classic formu-
lation of test-retest repeatability from Bland and Altman to
match the ML leaderboard setting: an evaluation (the run-
ning of a test on a model) is deemed perfectly stable, if and
only if the measurements realized at one time of running
it produces the same exact values when repeated at a later
time, when the test is run under the same conditions. We
minimally alter the testing conditions when we repeat the
test to measure robustness—by changing the order of answer
contents—but all other testing parameters remain static. In
our setting, we set the number of test takers, n, to 1.

In simple terms, this metric measures how often the model
answers the questions correctly in both the original and the
shuffled versions. If the model is actually robust, it will se-
lect the right answer no matter where it appears, as the an-
swer’s meaning doesn’t change when you merely change its
label and location in the answer string. If the model’s accu-
racy does change in this setting, then we can say the model
isn’t actually very competent on the task that the test is test-
ing.

To quantify (non-)robustness to answer order shuffling,
we define a new metric, our metric, which measures how of-
ten the model answers the same question(s) correctly in both

the original and in a shuffled version of MMLU. We take the
average over all the shuffles performed as our metric:

Our Metric =
1

N

N∑
i=1

1

M

M∑
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V i
0V

i
j , (1)

where V i
0 ∈ {0, 1} indicates whether the model answers

the ith question correctly in MMLU dataset (1 if correct,
0 if incorrect). V i

j indicates whether the model answers ith

question correctly in the jth shuffled version of the answer
label content. M is the total number of shuffles in the scope
of the experiment (for us 2) and N is the dataset size. We
then take the average performance across two such shuffles.

As formulated, our metric tries to capture the true capabil-
ities of the model by reducing the number of questions cor-
rectly answered by random chance. Assuming models do not
have external memory of earlier queries, enforcing that the
model correctly identify the answer M times (for us twice),
noticeably lowers the chance of it happening across the cor-
rect answer by chance.

Models
In this work, we evaluate 10 state-of-the-art LLMs, rang-
ing in size from 7 billion to 70 billion parameters, most
of which have performed very well on the Hugging Face
Open LLM leaderboard. The 10 models we use are: Llama3
70B Instruct, Llama3 70B, Llama3 8B Instruct (Meta 2024),
Llama2 70B (Touvron et al. 2023), Yi 34B (01.AI et al.
2024), Mixtral 8x7B and Mixtral 8x7B Instruct (Jiang et al.
2024), Falcon 40B Instruct (Almazrouei et al. 2023), Mis-
tral 7B Instruct (Jiang et al. 2023), and Gemma 7B Instruct
(Team et al. 2024). All models are openly available, which
enables the reproducibility of our findings.

Results
We found that all tested models performed worse according
to our metric after answer content shuffling than on the orig-
inal version of the dataset, as shown in Table 1. After shuf-
fling, we see that models fail to select the correct answer for
every question it originally selected correctly, as shown by
our metric in Figure 1.

Model Name MMLU Our Metric % Drop

Llama-3-70B-it 80.3 75.3 6.2
Llama-3-70B 78.9 72.4 8.2
Yi-34B 75.8 67.7 10.7
Mixtral-8x7B-it 70.6 60.7 14.0
Mixtral-8x7B 70.4 60.9 13.5
Llama-2-70B 69.0 58.8 14.8
Llama-3-8B-it 66.4 58.0 12.7
Mistral-7B-it 59.3 46.5 21.6
Falcon-40B-it 54.7 39.8 27.2
Gemma-7B-it 51.7 38.0 26.5

Table 1: Accuracy drop on MMLU due to changing answer
order. Here ‘-it’ marks instruction tuned models.



Figure 1: This figure illustrates the performance of a selection of state-of-the-art models that we tested on the original MMLU
(v0) and 2 shuffled versions (v1 and v2). Models are ordered by accuracy drop in ‘our metric’. Here ‘-it’ denotes an instruction
tuned model. The width of the violin corresponds to the number of subdatasets where the model received a particular score.
The white indicator marks the median score for subdataset accuracies.

We found that some models had higher retest accuracy
than others. Models from the Llama-3 family were the most
robust, especially Llama-3-70B for which performance drop
was only 6.2%. Interestingly, we found that smaller models
can be more robust than larger ones. In particular, we found
that Llama-3-8B model was more robust than larger, gen-
erally high-performing models such as Mixtral-8x7B and
Llama-2-70B. For Llama3-70B and Mixtral-8x7B, we also
found that their base and instruction finetuned models were
comparably robust. Smaller models, like Mistral-7B and
Gemma-7B, were generally more impacted. This result is
consistent with findings in (Zhou et al. 2024), which found
more inconsistency for smaller models (less than 8B param-
eters), although in a slightly different setting. Some larger
models, such as Falcon-40B-instruct whose score dropped
from 54.7 to 39.8 with our approach, were also strongly im-
pacted.

We also analyzed performance drop by subdataset in Ta-
ble 2, and discovered that the models struggled the most
with problem-solving subdatasets, such as high school math-
ematics. For Gemma-7B and Falcon-40B models, the drop
in accuracy on these categories were as high as 40% (as
compared to 26% on entire MMLU). As these subdatasets
make up a significant portion (over 15%) of original MMLU
dataset, this analysis suggests serious robustness issues
affecting accuracy scores on problem-solving categories.
Additionally, among most impacted subdatasets, such as

Model Name MMLU Our Metric % Drop

Llama-3-70B-it 72.1 64.5 10.5
Llama-3-70B 68.7 57.7 16.0
Yi-34B 65.6 52.9 19.4
Mixtral-8x7B-it 56.9 43.4 23.7
Mixtral-8x7B 57.0 43.4 23.9
Llama-2-70B 54.6 40.4 26.0
Llama-3-8B-it 54.3 40.9 24.7
Mistral-7B-it 45.2 29.8 34.1
Falcon-40B-it 41.5 24.3 41.4
Gemma-7B-it 38.9 22.2 42.9

Table 2: Accuracy drop on problem solving categories of
MMLU dataset due to option text shuffling.

“college mathematics” and “global facts”, we investigated
whether the drop may be due to the fact that shuffling can
ablate the logical order of the original questions. In hu-
mans, presenting answer orders in logical order—such as
0,1,2,3 or 3,2,1,0—is recommended by test design research,
because random order may pose unnecessary challenge for
lower ability students (Huntley and Welch 1993; Haladyna,
Downing, and Rodriguez 2002). We discovered that more
than 95% of the original MMLU dataset was presented in
logical order, which indicates that models may be benefiting
from logical answer order and perhaps that they should be
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Figure 2: The most and least affected categories of MMLU with our proposed shuffling. The number above each plot signifies
percentage change after shuffling. Here ‘-it’ marks instruction finetuned models.

seen as lower ability test takers.

Related Works
LLMs can be Sensitive to Option Order and Label. Re-
cent works have also shown that the accuracy of models on
multiple-choice question datasets can change significantly
when the order of answer options is rearranged (Robin-
son and Wingate 2023; Pezeshkpour and Hruschka 2024;
Alzahrani et al. 2024; Wei et al. 2024; Xue et al. 2024; Zong
et al. 2024). This suggests that models are sensitive to the or-
der of answer options, which can impact their performance.
(Wang et al. 2024a) studies how changing the number of op-
tions in mutliple choice question datasets affect the model
performance. They found that LLMs have overfitted to mul-
tiple choice question datasets with exactly four options.

Other studies have shown that models may exhibit prior
biases towards specific option IDs (e.g., ‘A’) (Wei et al.
2024; Zheng et al. 2023b; Reif and Schwartz 2024; Ross
et al. 2024; Li and Gao 2024; Zheng et al. 2023a). Some
works have also shown that models can perform surpris-
ingly well above random chance even when question text
is removed and only answer options are provided (Balepur,
Ravichander, and Rudinger 2024; Shah, Gupta, and Roth
2020; Balepur and Rudinger 2024). Recent works have also
shown that replacing the correct option with “None of the
Above” leads to a drastic decline in performance across all
models (Wang et al. 2024a; Xu et al. 2024). These find-
ings suggest that models may be relying on artifacts or bi-
ases in the data rather than truly understanding the questions
(Röttger et al. 2024; Raj et al. 2023).

In a concurrent work, McIlroy-Young et al. (2024) pro-
posed a solution fro mitigating the issue of order dependency
in LLMs by modifying the self attention matrix of the in-
put sequence. They set the attention scores between differ-
ent options to be zero, effectively preventing the model from
attending to the order of options.

In contrast to above works, our work focuses on category-
wise differences in model performance and proposes a new
metric that takes into account the variation in model per-

formance across different answer orders. Our approach pro-
vides a more nuanced understanding of the impact of answer
option ordering on model accuracy.

Evaluation Dataset Validity. For all evaluation datasets,
validity is important, and MMLU is no exception. Several
recent works have discussed MMLU’s validity (Gema et al.
2024; Zheng et al. 2023a; Wang et al. 2024a,b). In partic-
ular, Wang et al. (2024b) found trivial and noisy questions
in the dataset and proposed an update, MMLU-Pro, which
aims to mitigate those issues. Concurrent work on model
robustness to question-answering order (Zhou et al. 2024)
applies a similar approach to ours that shuffles answer label
content and also explores other possible modes of interrogat-
ing robustness. While they also find non-robustness to ques-
tion variants, our work differs from theirs in that our metric
can account for the multiplicity of potential orderings of an-
swer labels; we provide further analysis for each category in
MMLU in the appendix.

Conclusion
This work tested the robustness of the evaluation benchmark
pipeline for the popular leaderboard dataset - MMLU. To
separate out the effect of chance on model answers, we ap-
ply a largely meaningless change to the datasets by shuf-
fling label contents. We find that this meaning-preserving
alteration resulted in a decrease in MMLU accuracy for all
models, but not to the same degree. We define a new met-
ric that quantifies the effect of chance and suggest that it is
important to take it into consideration during evaluation and
leaderboard rankings of models. We also found that differ-
ent categories in MMLU are affected differently by shuffling
label contents.

Limitations
While we explore two possible shuffles of the answer label
contents, we restricted ourselves to the M to curtail compute
costs. We do acknowledge that there are many more possible
shuffles that might be tested, and more would doubtless lead
to a better approximation of the non-robustness.
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Appendix
Category Wise Analysis
We analyzed how changing the answer order affects each
category in the MMLU dataset. We found that some cate-



gories are more sensitive to these changes than others. Fig-
ure 2 shows the impact of answer order changes on eight
randomly selected categories.

The MMLU has 57 subcategories, and we observed that
some categories are more affected by answer order changes
than others. For example, categories such as high school
physics, abstract algebra, college mathematics, and moral
disputes witnessed a significant decrease in performance af-
ter answer order changes. On the other hand, categories such
as high school us history, econometrics, and professional law
were less affected. In some cases, the impact was highly sig-
nificant - for instance, the accuracy for Mistral-7B-instruct
model on moral scenarios category decreased by 77%, from
31.4 to 7.1, after changing the answer order.

The different plots in Figure 2 highlight that not all cat-
egories are equally affected, some parts of MMLU dataset
might be good indicator of model performance.

Computation Resources
For all experiments for this work, we utilized 8 V100 32GB
GPUs. These GPUs were assembled in a cluster of 8 GPUs
in a node. The cumulative computing time required to eval-
uate all the language models and complete the experiments
amounted to approximately 2000 GPU hours.
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Figure 3: Here we show accuracy scores on random categories of MMLU with our proposed shuffling. The number along with
each category name signifies the number of questions for that category in MMLU.


