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Abstract

Ultrasound is a widely-used imaging modality critical to global healthcare, yet its
interpretation remains challenging due to variability in image quality caused by
operator dependency, noise, and anatomical complexity. Although large vision-
language models (LVLMs) have demonstrated impressive multimodal capabilities
across natural and medical domains, their performance on ultrasound remains
largely unexplored. We introduce U2-BENCH, the first comprehensive benchmark
to evaluate LVLMs on ultrasound understanding across classification, detection,
regression, and text generation tasks. U2-BENCH aggregates 7,241 cases spanning
15 anatomical regions and defines 8 clinically inspired tasks, such as diagnosis, view
recognition, lesion localization, clinical value estimation, and report generation,
across 50 ultrasound application scenarios. We evaluate 20 state-of-the-art LVLMs,
both open- and closed-source, general-purpose and medical-specific. Our results
reveal strong performance on image-level classification, but persistent challenges
in spatial reasoning and clinical language generation. U2-BENCH establishes a
rigorous and unified testbed to assess and accelerate LVLM research in the uniquely
multimodal domain of medical ultrasound imaging. 1

1 Introduction

“In diagnostics, the eye sees what the mind knows – true understanding requires
merging image patterns with clinical wisdom.” – William Osler

Ultrasound (US) is one of the most widely used imaging modalities in global healthcare — essential
in obstetrics, emergency medicine, cardiology, and low-resource settings — while its interpretation
remains notoriously difficult [29]. Compared to modalities such as computed tomography (CT),
magnetic resonance imaging (MRI), positron emission tomography (PET), and whole-slide imaging
(WSI), which offer higher spatial resolution, consistent image quality, and standardized anatomical
views, ultrasound is real-time and low-cost but highly operator-dependent and frequently affected
by imaging artifacts [65]. In addition, in contrast to these modalities, US is dynamically presenting
three-dimensional (3D) anatomies in image sequences. Therefore, accurate interpretation of US
demands not only visual pattern recognition in the images, but also an understanding of anatomy and

1Codes are available at: https://anonymous.4open.science/r/U2-Bench-F781/VLMEVALKIT/
Data is available at: https://huggingface.co/datasets/DolphinAI/u2-bench/tree/main
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Figure 1: Examples of the 8 benchmark tasks in U2-BENCH across diverse anatomical regions.
Each callout, consisting of the question prompt, expected output format, and sample output, highlights
a representative ultrasound application scenario of the corresponding task. Tasks involve disease
diagnosis (DD), view recognition and assessment (VRA), lesion localization (LL), organ detection
(OD), keypoint detection (KD), clinical value estimation (CVE), report generation (RG) and caption
generation (CG).

capturing of dynamic spatial-context reasoning, typically requiring extensive prior domain expertise
[74]. These challenges have limited the applicability of earlier artificial intelligence (AI) models.
However, recent advances in medical large vision-language models (LVLMs) have shown promise in
overcoming these barriers [17, 80, 31], potentially offering a robust multimodal understanding of
complex, noisy, and context-rich ultrasound data.

While progress in medical LVLM has been rapid, most previous models and benchmarks focus on
those less noisy and static imaging modalities [34, 32, 69], leaving the complexities of ultrasound
largely unaddressed. Prior efforts in ultrasound AI are typically based on small, task-specific datasets
[81], such as fetal plane identification [25] or pathology segmentation [33, 59]. As model capabilities
grow, a public, balanced benchmark for ultrasound understanding is needed to evaluate whether
emerging LVLMs can generalize beyond static medical vision tasks, to those requiring spatial
reasoning and contextual understanding of anatomical structures.

To address these challenges, we introduce U2-BENCH, the first benchmark holistically evaluating
current LVLMs for ultrasound understanding across diverse tasks and anatomies. The dataset we use
comprises 7,241 cases across 15 anatomical regions, involving breast, heart, lung, etc, covering 8
diverse clinical tasks and 50 application scenarios. Each task belongs to one of the four categories:
(1) classification (i.e., disease diagnosis, view recognition and assessment), (2) detection (i.e., lesion
localization, organ detection, keypoint detection), (3) regression (i.e., clinical value estimation),
(4) text generation (i.e., report generation, caption generation). Samples are selected to ensure
balance across data sources, anatomies, and task types, to enable robust evaluation and alleviate
dataset-specific bias. Several examples in our U2-BENCH are shown in Fig. 1.

We benchmark 20 LVLMs, including both open- and closed-source, general-purpose and medical-
specialized models, on a diverse set of US tasks. U2-BENCH makes the following key contributions:

• Comprehensive Dataset: We release the first publicly available benchmark comprising
7,241 ultrasound cases spanning 15 anatomies and 8 clinical tasks, covering 50 application
scenarios. Each case is annotated with task-aligned labels in a unified format and paired
with carefully designed prompts, enabling standardized and reproducible evaluation.

• Task Suite and Evaluation: We define an eight-task taxonomy spanning disease diagnosis,
view recognition and assessment, lesion localization, organ detection, keypoint detection,
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clinical value estimation, report generation, and caption generation. Each task reflects real-
world clinical workflows and is paired with standard evaluation metrics. We also introduce
an aggregate metric to provide a unified assessment of each model’s overall capability in
ultrasound understanding.

• Empirical Insights: We conduct the first large-scale evaluation of LVLMs on ultrasound,
uncovering consistent trends across model families: models achieve strong performance
on image-level disease diagnosis and clinical value estimation tasks, but degrade on spatial
reasoning tasks such as view recognition and organ detection. Clinical report generation
tasks remain particularly challenging. Performance gains from model scaling can be limited,
and compact models occasionally outperform larger ones on certain tasks, suggesting that
targeted training may be more impactful than scale alone in ultrasound understanding.

2 Related Work

Recent advances in LVLMs have catalyzed new opportunities in medical image understanding. Our
work intersects two key directions: (1) the construction of benchmarks for systematically evaluating
LVLM capabilities across multimodal medical tasks, and (2) unlocking the potential of LVLMs for
ultrasound imaging.

Large Vision-Language Models. LVLMs such as GPT-4V [54], Claude [5], Gemini [4], DeepSeek-
VL [21], LLaVA [45], Qwen-VL [9], and MiniGPT4 [89] have emerged as general-purpose mul-
timodal systems capable of handling tasks like image captioning, visual question answering, and
multimodal reasoning. These models are trained on large-scale image-text pairs [66, 62], and their
performance has been extensively evaluated in domains such as question answering, mathematics,
and science [15, 70, 75, 30, 46]. However, their clinical reliability remains underexplored.

To address this gap, several medical-specialized LVLMs have been proposed. MiniGPT-Med [78]
focuses on X-ray, CT, and MRI for tasks such as medical report generation, VQA, and disease identi-
fication. RadFM [79] further supports both 2D and 3D modalities. MedDr [26] extends to radiology,
pathology, dermatology, retinography, and endoscopy, introducing a retrieval-augmented diagno-
sis strategy. Yet, these models exclude ultrasound. Med-Gemini [71] spans numerous modalities
including ultrasound, though its capability in this domain is limited to caption generation.

Multimodal Benchmarks for Large Vision-Language Models. Several benchmarks assess
general-domain LVLMs. MMBench [47], MMT-Bench [85], and SEED-Bench [41] evaluate general-
domain LVLMs through bilingual multiple-choice questions, large-scale visual reasoning tasks, and
generative comprehension across image and video VQA, respectively. However, these benchmarks
emphasize general-purpose visual understanding and omit clinically grounded evaluation.

Early medical VQA datasets like VQA-RAD [37], VQA-Med [10], and PathVQA [27] offer radiology
or pathology image–question pairs but are not designed for evaluating LVLMs. GMAI-MMBench [16]
introduces a large-scale VQA-style benchmark for medical LVLMs, yet it contains only about 1.4k
ultrasound cases primarily focused on classification and segmentation on 6 anatomies, and does not
evaluate broader model capabilities such as clinical value estimation or structured report generation.
In contrast, our U2-BENCH focuses exclusively on ultrasound and includes a diverse set of clinically
meaningful tasks and anatomical regions.

3 U2-BENCH

Overview. U2-BENCH is designed to holistically assess the capabilities of LVLM in ultrasound
tasks. Section 3.1 introduces the eight clinically inspired tasks involved in our evaluation, which
reflect essential diagnostic and reasoning abilities in ultrasound understanding. Section 3.2 details
our benchmark construction pipeline, including dataset curation, preprocessing, and task-specific
prompting. Section 3.3 summarizes the statistical property of the resulting dataset, which comprises
7,241 cases across 15 anatomies.
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Figure 2: Distribution of benchmark tasks across 15 anatomical regions in U2-BENCH. The
colored boxes next to each anatomy name indicate the benchmark tasks available for that anatomy,
with each color corresponding to one of the eight core tasks (legend shown on the right). The length
of the bar reflects the number of samples for each anatomy region. Multiple tasks may share samples
from the same anatomical region, depending on annotation availability and clinical relevance.

3.1 Task Definitions

U2-BENCH focuses on four core capabilities: classification, detection, regression, and text generation,
to systematically evaluate the performance of LVLMs on ultrasound-related tasks. We define eight
tasks based on common ultrasound use cases, designed to probe a range of multimodal abilities,
including anatomy recognition and clinical reporting. The task set was informed by typical sonography
workflows and refined with input from domain experts to ensure practical relevance. Together, these
tasks provide a structured benchmark for assessing LVLM performance across diverse ultrasound
application scenarios. The eight tasks are as follows:

Disease Diagnosis (DD). This task requires the model to identify the presence and severity of a
disease condition, such as grading in the Breast Imaging Reporting and Data System, based on the
appearance of the ultrasound image. The task evaluates the ability of LVLMs to extract high-level
semantic features and generate clinically aligned diagnostic predictions.

View Recognition and Assessment (VRA). In clinical practice, accurate diagnosis relies on the clear
presentation of anatomical structures from specific angles, referred to as ultrasound standard planes.
This task evaluates the ability of a model to assess image quality and classify scans into standard
planes corresponding to different anatomical structures, such as the fetal head or abdominal long axis.

Lesion Localization (LL). Given a diagnostic image, the LVLM is asked to identify the location of a
lesion, such as a suspicious breast mass, by selecting from nine predefined spatial categories such as
upper left, center, or lower right. This task evaluates the spatial reasoning, saliency alignment, and
ability to detect subtle structural abnormalities of LVLMs.

Organ Detection (OD). This task involves identifying the presence and boundaries of target organs
in the ultrasound field of view, such as liver, kidney, or nerve. It assesses coarse-grained visual recog-
nition under challenges unique to ultrasound, such as acoustic shadowing, inter-patient variability,
and orientation ambiguity from manual probe handling.

Keypoint Detection (KD). In measurement tasks such as fetal biometry and adult echocardiography,
precise localization of anatomical landmarks is critical for deriving clinically meaningful measure-
ments. This task evaluates the fine-grained spatial understanding and geometric reasoning ability of
the model, which are essential for tasks like skeletal length and chamber size estimation.

Clinical Value Estimation (CVE). This task involves predicting continuous clinical parameters
derived from ultrasound images, such as lesion size, left ventricular ejection fraction, or liver fat
percentage. It covers both anatomical and functional indicators relevant to diagnosis, treatment
planning, and longitudinal monitoring, and evaluates whether the model can perform image-to-value
regression by mapping visual inputs to clinically meaningful quantitative outputs.

Report Generation (RG). The model is prompted to generate a structured clinical report based on
visual input, following the format of example reports provided in the prompt. This task evaluates
the ability of LVLM to perform medical language generation and produce outputs that align with
standard ultrasound reporting practices.

Caption Generation (CG). The model is asked to generate a concise anatomical description of a
diagnostic image, guided by example captions provided in the prompt. This task evaluates basic
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Figure 3: Overview of the U2-BENCH construction pipeline. The benchmark is built through three
stages: (1) data gathering from 40 licensed ultrasound datasets spanning 15 anatomical regions, (2)
task definition across 8 clinically inspired tasks grouped into four core capabilities: classification,
detection, regression, and text generation, (3) data preprocessing, including annotation standardization,
metadata unification, image/frame selection, and quality verification. This unified pipeline ensures
benchmark consistency and clinical relevance across diverse ultrasound scenarios.

visual-language alignment and the ability to verbalize structural features in a clinically appropriate
manner of LVLM.

3.2 Data Curation and Processing

In this section, following the approach of previous benchmark constructions [18, 83, 88], we outline
the three key steps used to build U2-BENCH: (1) data collection and sampling (2) data cleaning,
format unification and quality verification, and (3) task-specific prompt design. Figure 3 summarizes
the data processing pipeline.

Data Selection and Sampling. We construct U2-BENCH by sampling 7,241 ultrasound studies
from 40 licensed datasets. These datasets were selected to represent a wide range of diagnostic tasks,
anatomical regions, and clinical contexts. While the original datasets were independently curated
and clinically annotated, we performed standardization, sampling, and quality checks to ensure
consistency across tasks and enable reliable, reproducible benchmarking. Some datasets contribute to
multiple benchmark tasks based on their available annotations and clinical relevance.

To reflect real-world clinical data distributions and prevent data leakage, we adopt a task-specific,
patient-level sampling strategy. Sampling is performed at the subject level rather than the image
level to preserve intra-patient consistency. To ensure anatomical coverage, we include data from 15
anatomical regions: fetus, thyroid, breast, heart, liver, cervix, carotid artery, musculoskeletal system,
kidney, prostate, skin, lung, pancreas, brachial plexus, and colon.

Data Cleaning, Format Unification, and Quality Verification. All data in U2-BENCH are
standardized into a unified format to support consistent parsing and evaluation across the dataset.
Ultrasound scans are converted to a uniform image format. For video sequences, a small number of
representative frames are sampled per study to control evaluation cost while retaining key diagnostic
content. Task-relevant metadata, including anatomy labels, measurements, and reports, is preserved
in a structured schema. Segmentation masks are converted to bounding boxes.

To ensure the reliability of U2-BENCH, we adopt both automated and manual quality assurance
procedures during data preparation.
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Table 1: Summary of annotated datasets used in U2-BENCH, grouped by core capability and
task. The “Case Number” column indicates the number of samples per task, while “Total” reflects
the overall count when available. More details about the datasets are included in Appendix F.

Capability Task Case Number Source Dataset Total

Classification

DD 1,411

Breast Lesion Detection in Ultrasound Videos [44]; Breast Ultrasound Images Dataset [2]; Dermatologic Ultrasound Images for
classification [38]; Knee ultrasound dataset in a population-based cohort [53]; KFGNet [52]; GDPHSYSUCC [51]; LEPset [43];
COVID-BLUES [76]; Ultrasound Guided Regional Anesthesia [72]; Ultrasound Breast Images for Breast Cancer [60]; Algerian
Ultrasound Images Thyroid Dataset: AUITD [49]; Auto-PCOS classification [22] 2,999

VRA 1,588

FETAL PLANES DB [12]; FPUS23 [58]; CAMUS [39]; Knee ultrasound dataset in a population-based cohort [53]; Thyroid [36];
ACOUSLIC-AI [61]; JNU-IFM [48]; Carotid Artery Ultrasound and Color Doppler [55]; Auto-PCOS classification [49]; African Fetal
Standard Plane [63]; DDTI [57]; CAMUS [39]; CUBS [50]; COVID-BLUES [76]; Dataset of B-mode fatty liver ultrasound images [13];
The Open Kidney Ultrasound Dataset [68]; Micro-Ultrasound Prostate Segmentation Dataset [64]; Breast Ultrasound Images Dataset [2];
Knee ultrasound dataset in a population-based cohort [53]; Polycystic Ovary Ultrasound Images Dataset [77]

Detection

LL 503 DDTI [57]; Micro-Ultrasound Prostate Segmentation Dataset [64]; Breast Ultrasound Images Dataset [2]; KFGNet [52]; BrEaST [56]

2,921OD 1,918
The Open Kidney Ultrasound Dataset [68]; Echogenic [19]; FALLMUD [24]; CAMUS [39]; HC18 [28]; Thyroid [36]; CCA [11];
Ultrasound Guided Regional Anesthesia [72]; C-TRUS Dataset [40]; ACOUSLIC-AI [61]; PSFHS [7]; JNU-IFM [48]; US simulation &
segmentation [73]

KD 500 Unity Imaging Collaborative [67]

Regression CVE 521 CAMUS [39]; CUBS [50]; HC18 [28]; ACOUSLIC-AI [61]; Dataset of B-mode fatty liver ultrasound images [13] 521

Generation
RG 600 Chinese Ultrasound Report Dataset [42]

800CG 200 FPUS23 [58]

Overall Total 7,241

(1) Automated Filtering. During data preprocessing, we systematically check for missing labels,
inconsistent or invalid annotations, and corrupted or unreadable files. Samples that fail these checks
are discarded.

(2) Manual Verification. A team of 10 annotators manually reviewed all cases using a cross-
validation protocol, where each data point was independently assessed by at least three annotators.
Annotators verified label-image alignment, measurement units, bounding boxes, and report text
consistency. Disagreements were resolved via majority voting to ensure annotation correctness and
clinical plausibility.

Task-Specific Prompt Designing. To ensure consistent model behavior and fair comparability
across tasks, we design structured prompts for each of the 50 application scenarios, consisting
of three components: (1) a clinical role definition to set context and expertise, (2) a task-specific
instruction aligned with standard sonography workflow, and (3) an output format specification, such
as classification options, value ranges, or reference output examples. Detailed prompts are included
in Appendix D. An ablation study on the impact of prompt design is presented in Section 5.1.

3.3 Statistics

U2-BENCH comprises 7,241 ultrasound studies spanning 8 benchmark tasks and 15 anatomical
regions. Table 1 details the number of cases per task. Classification and detection constitute the
largest shares, with 2,999 and 2,921 cases, respectively, while generation and regression tasks provide
targeted evaluation of report synthesis and clinical value estimation.

Figure 2 summarizes the distribution across anatomical regions. Thyroid and breast ultrasound
together account for more than one-third of all cases. This is because of their high clinical prevalence
and broad diagnostic utility. Many anatomies support multiple tasks - for instance, fetal ultrasound is
used for classification and regression - enabling multi-task evaluation within a unified anatomical
context. This composition ensures broad coverage across modalities, tasks, and body regions,
supporting robust and clinically grounded assessment of LVLM performance.

4 Experiment

4.1 Evaluation Settings

We conducted experiments on U2-BENCH with both open-source and closed-source LVLMs. Uni-
form prompts were applied across all models. The evaluation was executed on 32 NVIDIA A800
GPUs over a period of approximately two weeks, using the OpenCompass VLMEvalKit [23], with
additional support from a unified framework [82].

Evaluated Models. We evaluated 20 LVLMs, spanning both open-source and closed-source sys-
tems, and including both general-purpose and medical-specialized variants.
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• Qwen2.5-VL Series [84]: This includes Qwen2.5-VL-3B-Instruct, Qwen2.5-VL-7B-Instruct,
Qwen2.5-VL-32B-Instruct, Qwen2.5-VL-72B-Instruct.

• Medical-Specific Open-Source Models: MiniGPT-Med [78], MedDr [26]
• Other Open-Source Models: Phi-4-Multimodal-Instruct-5.6B [1], InternVL3-9B-

Instruct [90], LLaVA-1.5-13B [45], Mistral-Small-3.1-24B-Instruct-2503 [35], DeepSeek-
VL2 [20]

• Closed-Source Models: GPT-4o-Mini, GPT-4o-2024-08-06 [54], Gemini-1.5-Pro
(exp-02-05) [4], Gemini-2-Pro (exp-02-05), Gemini-2.5-Pro-Preview (exp-02-05) [4],
Claude-3-Sonnet (20250219) [5], Qwen-Max-2025-01-25 [8], Doubao-1.5-Vision-Pro-32K-
250115 [14], Dolphin-V1 (Model developed by Dolphin AI)

4.2 Evaluation Protocol

We employed standard metrics aligned with clinical relevance and prior LVLM benchmarks. Classifi-
cation tasks were evaluated with accuracy and F1 score. Detection tasks were converted to position
classification tasks, and hence utilized accuracy as a metric to assess localization correctness. Regres-
sion tasks report Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and percentage
within tolerance (%_tol). Generation tasks were assessed with BLEU-4 as percentage, ROUGE, and
BERTScore [87] to capture both lexical and semantic similarity. All metrics were computed using
ground-truth labels from the original dataset and standardized outputs with format specified by the
prompts across models to ensure fair comparison.

U2-Score. We design a quantitative score to provide an overall evaluation metric for the ultrasound
understanding capability of a model. The U2-SCORE is defined as a weighted combination of the
metrics across all tasks. This can be formulated as:

U2-Score :=

N∑
t=1

wtdt, where wt =
nt∑
j nj

, and dt ≤ 1 (1)

where N represents the number of tasks, wt is the corresponding task weight, which is computed
from the proportion of the sample number nt of the t-th task. This can mitigate the imbalance issue
of sample size in different tasks. Here, dt denotes the value of the selected metric of the t-th task.
Table 2 presents the values of wt and the corresponding metrics being selected.

Table 2: Task-specific evaluation metrics and weights. The corresponding weight wt and metric
used for overall score aggregation for each task.

t 1 2 3 4 5 6 7 8
DD VRA LL OD KD CVE RG CG

wt 0.2 0.2 0.07 0.27 0.07 0.07 0.08 0.04
Metric Acc. Acc. Acc. Acc. Acc. 1-RMSE BLEU-4 BLEU-4

4.3 Evaluation Results

We present a comprehensive comparison of multimodal models on the U2-BENCH benchmark
(Table 3), aiming to identify key performance trends across tasks and model types.

Closed-Source Models Lead. Closed-source models continue to dominate, with Gemini-2.5-Pro-
Preview achieving the highest overall score of 0.2968, narrowly surpassing the best-performing
open-source model DeepSeek-VL2 by a margin of just 0.0338. Other strong proprietary models
such as Dolphin-V1 and Doubao-1.5-Vision-Pro also perform competitively, highlighting that while
open-source models are progressing rapidly, access to proprietary data and task-specific optimization
still provides a measurable edge.

Task Difficulty Varies Significantly. Image classification tasks are generally easier, with Doubao
reaching an accuracy of 0.558 on DD, and eight models—both open- and closed-source—exceeding
0.48. In contrast, spatial reasoning and text generation remain difficult: no model achieves accuracy
above 0.16 on KD, and all models score below 8.0 BLEU on RG. Regression tasks (e.g., CVE) are
also challenging, only the closed-source Qwen-Max reduces RMSE to 0.1248, while all open-source
models remain above 0.1675.
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Table 3: Results of different models on the U2-BENCH. We utilize green (1st), blue (2nd), and

yellow (3rd) backgrounds to distinguish the top three results within different models. The “U2-
Score” column represents the quantitative score defined in Section 4.2. To calculate the U2-SCORE
for random guessing, the BLEU scores are taken to be zero.

Models DD VRA LL OD KD CVE RG CG U2-Score ↑
Acc. ↑ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑ RMSE ↓ MAE ↓ %_tol ↑ BLEU% ↑ Rouge% ↑ BERT%↑ BLEU% ↑ Rouge% ↑ BERT% ↑

Random Guessing 0.4143 0.4135 0.3195 0.3184 0.1118 0.0680 0.1120 0.5472 0.4352 18.776 - - - - - - 0.2125

Medical-Specific Open-Source Models

MiniGPT-Med 0.3468 0.2828 0.1800 0.1048 0.1728 0.1789 0.0840 0.3056 0.2600 33.2259 6.4700 20.1300 74.6900 30.2000 47.7500 80.5000 0.2375
MedDr 0.4508 0.3118 0.2071 0.1214 0.0720 0.0881 0.0900 0.2144 0.1786 38.2642 2.7998 13.5060 72.2050 33.4939 49.6236 81.2078 0.2373

Open-Source Multimodal Models

Qwen-2.5-VL-3B-Instruct 0.4503 0.3591 0.2097 0.1492 0.0696 0.0649 0.0894 0.5008 0.4519 18.9055 3.5018 15.0327 72.8419 27.6748 44.7618 79.8849 0.2095
Qwen-2.5-VL-7B-Instruct 0.4821 0.3860 0.2181 0.1665 0.0750 0.0704 0.1000 0.4646 0.4337 19.7115 3.7100 15.5600 73.1500 29.4400 47.0000 81.1500 0.2235
Qwen-2.5-VL-32B-Instruct 0.4812 0.3860 0.2864 0.2071 0.1700 0.0755 0.0880 0.3414 0.3015 27.4038 1.1900 13.0100 68.1400 14.7700 38.6800 77.3900 0.2449
Qwen-2.5-VL-72B-Instruct 0.4895 0.4556 0.2559 0.1789 0.1150 0.0660 0.0860 0.3224 0.2733 37.9370 3.0900 15.0600 72.6600 28.1600 44.2800 80.9100 0.2421
DeepSeek-VL2 0.4126 0.3190 0.2268 0.1111 0.2950 0.1682 0.1320 0.2956 0.2505 12.3355 7.4700 20.5400 75.3800 11.4200 34.8500 77.2400 0.2630
InternVL3-9B-Instruct 0.4447 0.3716 0.1926 0.1083 0.3000 0.1416 0.0940 0.2429 0.1733 50.8738 2.1600 14.7000 72.2100 21.5900 43.1300 80.9800 0.2566
LLaVA-1.5-13B 0.4321 0.3055 0.1731 0.0755 0.1700 0.1259 0.1100 0.2307 0.1976 24.7964 6.2400 18.5800 73.7900 10.8300 29.4000 75.5000 0.2378
Phi-4-Multimodal-Instruct 0.3686 0.1148 0.2452 0.0537 0.0350 0.0815 0.1600 0.2249 0.2006 16.1972 3.2700 16.5800 73.2700 3.8700 22.9800 73.0800 0.2168
Mistral-Small-3.1-24B-Inst. 0.4359 0.0936 0.1964 0.0664 0.1300 0.0910 0.1060 0.1675 0.1331 45.9459 1.8000 14.9000 71.7200 20.7700 42.1200 80.7400 0.2356

Closed-Source Multimodal Models

Doubao-1.5-Vision-Pro-32k 0.5580 0.2597 0.2922 0.2147 0.1700 0.0729 0.1240 0.3664 0.3377 33.1731 0.7100 6.6450 72.4000 8.6400 33.3000 78.4200 0.2587
GPT-4o-Mini 0.4924 0.3784 0.1922 0.1272 0.1357 0.0846 0.0960 0.2267 0.1976 19.2308 4.9400 17.5200 74.1300 11.7300 36.2900 77.5300 0.2388
GPT-4o 0.4928 0.4132 0.1504 0.0974 0.1161 0.0850 0.0840 0.3712 0.3527 15.7895 2.6800 14.7700 73.3500 33.7700 49.9600 81.5800 0.2253
Gemini-1.5-Pro 0.3781 0.2247 0.0909 0.0476 0.2700 0.0661 0.0980 0.2772 0.2205 40.7051 0.5800 9.9400 70.5500 28.5800 45.9200 80.0200 0.1999
Gemini-2.0-Pro-Exp 0.4925 0.4194 0.1648 0.1323 0.1714 0.0945 0.0820 0.1945 0.1498 53.3333 0.2600 6.9200 40.2400 31.1800 48.6000 81.6000 0.2438
Gemini-2.5-Pro-Preview 0.4256 0.3112 0.2098 0.1493 0.2709 0.2714 0.2518 0.2937 0.2672 34.4970 5.5030 18.0180 74.4930 15.0110 38.0070 75.9890 0.2968
Claude-3.7-Sonnet 0.2121 0.0449 0.1453 0.0479 0.1356 0.0540 0.0760 0.1764 0.1500 36.0215 0.6900 12.2300 68.7400 1.2900 16.6600 71.6600 0.1596
Qwen-Max 0.4566 0.2676 0.1925 0.0871 0.1606 0.0761 0.0940 0.1248 0.0843 69.2308 3.5000 17.0200 73.9600 30.6700 49.0000 82.5500 0.2445
Dolphin-V1 0.5107 0.4173 0.3406 0.2181 0.1950 0.0791 0.1500 0.1898 0.1463 56.2500 0.9300 11.5400 71.0600 27.2800 43.8600 80.0800 0.2841

Scaling Brings Diminishing Returns. Within the Qwen-2.5-VL family, scaling from 3B to
72B parameters yields consistent performance gains. While larger models achieve lower CVE
RMSE, improvements in language generation and spatial reasoning tasks plateau, suggesting that
excessive scaling may lead to overfitting on superficial visual patterns, ultimately harming clinical
text generation capabilities.

Domain-Specific Models Excel in Reasoning. Medical-domain models such as MedDr demon-
strate strong performance on clinical reasoning tasks (CVE RMSE = 0.214; CG BERT = 81.21),
outperforming many general-purpose systems. However, they lag behind general multimodal models
on visual classification (e.g., Qwen-72B DD F1 = 0.456). This highlights that domain-specialized
models are better suited for semantic and quantitative tasks, while general models still excel at
coarse-grained visual understanding. Combining both may offer a promising direction for improving
overall performance.

5 Analysis

5.1 Causal Analysis of Prompt Designing

We investigate whether explicitly naming the anatomical region in the prompt has a causal effect on
LVLM diagnostic accuracy in ultrasound.

U

X

P2

P1 A

?

Figure 4: Causal graph of X , P1, and
P2 influence A, with a potential con-
founder U affecting all nodes. We ex-
amine the causal effect of P2 → A.

Formal Setup. We examine the causal relationship be-
tween input image X , prompt P and model output A. We
assume the prompt has two components P1 (general task
context) and P2 (anatomy token), and construct the causal
graph as shown in Figure 4. In this ablation study, we
focus on whether the inclusion of anatomical information
in the prompt causally affects the model output A. That
is, whether P2 has a causal effect on A, denoted by the
question-marked arrow.

Anatomy Information Manipulation. Following the
setup from [86], the effect of the confounders can be ig-
nored and we utilize Pearl’s front-door adjustment. That
is, we want to examine P(A|do(P2)) where P2 gives the
information about the anatomy. Then the causal effect of
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P2 can be expressed as:

P(A | do(P2 = p⋆2)) =
∑
x

∑
p1

P(A | x, p1, p⋆2)P(x | p⋆2)P(p1) (2)

where P(p1) is fixed by our prompt template, and P(x | p⋆2) is controlled to be the same in the
experiment. Therefore, it suffices to investigate the distribution difference between A1 =M(X, p1, 1)
and A0 =M(X, p1, 0), whereM denotes the model, p⋆2 = 1 represents token present and p⋆2 = 0
represents token absent. For more details about the causal analysis, please refer to Appendix E.

Experiment. We perform a McNemar’s test on 521 samples of breast and thyroid from the dataset
on model Gemini-2.0-Pro-Exp, to investigate the distribution of A1 and A0. We define two prompt
variants for each image:

With anatomy (P2 = 1): “You are a radiologist analysing a {anatomy} ultrasound image...”
No anatomy (P2 = 0): “You are a radiologist analysing an ultrasound image...”

Each image xi is evaluated under both conditions {(xi, p1, 1), (xi, p1, 0)}. Each prompt–image pair
is forward-passed 5 times and majority-voted into a final prediction.

Results. Table 4 shows the paired contingency counts for the no-anatomy (ablation) versus with-
anatomy prompts on N = 521 studies.

Table 4: Effect of anatomy tokens in prompt design. Paired comparison of model outcomes on 521
samples using prompts with vs. without anatomy-specific tokens. Each cell shows the number of
samples falling into the respective outcome combination. Including anatomy information improves
overall accuracy by 7.3 percentage points.

No-anatomy prompt

With-anatomy prompt Correct Incorrect

Correct 209 (both correct) 64 (only anatomy correct)
Incorrect 26 (only no-anatomy correct) 222 (both incorrect)

* Net effect: Accuracy with anatomy = 52.4 %, without = 45.1 %; gain = +7.3 pp (McNemar χ2=16.0, p=6.2×10−5).

The McNemar’s exact test yields a χ2
1 value of 16.04, which corresponds to a p-value of 6.2× 10−5

and suggests a significant statistical difference between the two conditions. Therefore, we conclude
that there is strong evidence that including anatomy information in the prompt can improve the
performance of the model.

5.2 Instruction Following Analysis

Table 5 shows that contemporary models are already highly adept at parsing prompts and adhering to
output specifications: six of the seventeen systems achieve a perfect score on the DD benchmark. The
remaining models lag only slightly behind. The medical-oriented MiniGPT-Med [3] and MedDr [26]
deliver middling results, while Qwen-3B and Qwen-72B [9] close the gap rapidly as their parameter
counts increase. Claude-3.7 [6] score of 0.942 is largely attributable to occasional formatting
omissions. For every non-perfect model, the deviation from the maximum is under six percentage
points, and no systematic failures are observed.

Table 5: Instruction following comparison across different models.
Task Models

MiniGPT-Med MedDr Qwen-3B Qwen-7B Qwen-32B Qwen-72B Dolphin-V1 DeepSeek InternVL LLaVA Phi-4 Mistral Doubao-1.5 GPT-4o Gem-2.0 Gem-2.5 Claude-3.7
DD 0.952 0.961 0.968 0.983 0.996 1.000 1.000 1.000 0.993 0.987 0.998 0.999 1.000 1.000 0.997 1.000 0.942

6 Conclusion

Ultrasound is essential to global healthcare but remains difficult to interpret. We present U2-BENCH,
the first benchmark for evaluating LVLMs on ultrasound understanding. It includes 7,241 cases across
15 anatomical regions and defines 8 clinical tasks for 50 application scenarios. Evaluating 20 LVLMs,
we find their strong performance in classification but persistent challenges in spatial reasoning
and clinical text generation, suggesting a future direction for improving LVLMs on ultrasound
interpretation.
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Appendices

Within this supplementary material, we elaborate on the following aspects:

• Appendix A: Limitations and Future Work

• Appendix B: Safeguarding

• Appendix C: More Evaluation Details

• Appendix D: Prompt Details

• Appendix E: Causal Analysis in Details

• Appendix F: Dataset Details and License
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A Limitations and Future Work

A.1 Limitations

Ethical and Applicability Considerations. U2-BENCH is designed as a research-oriented bench-
mark and is not intended for clinical deployment or diagnostic decision-making. Any real-world
application of models evaluated on this benchmark would require separate validation and regulatory
approval. Although all data sources are licensed or publicly available and de-identified where ap-
plicable, we acknowledge that not all ethical and demographic dimensions of fairness can be fully
accounted for at this stage.

Evaluation Scope. The benchmark focuses on key task categories relevant to ultrasound interpre-
tation—such as anatomical recognition, diagnostic classification, and structured report generation.
While these tasks are representative and grounded in clinical utility, they do not exhaust the full
landscape of sonographic applications. The evaluation metrics used (e.g., accuracy, BLEU) may not
capture the full subtlety of expert clinical judgment, especially in edge cases.

Ultrasound-Specific Challenges. Ultrasound imaging is highly operator-dependent and subject to
artifacts such as shadowing, speckle, and angle variation. Variability in scanning protocols and lack
of standardized definitions (e.g., for "standard planes") can complicate model training and evaluation.
These modality-specific challenges are inherent to ultrasound and reflect real-world complexities
rather than flaws in the benchmark design.

A.2 Future Work

Extending Dataset Diversity and Robustness. While U2-BENCH aggregates data from a broad
range of sources, further expansion to include more institutions, device types, and global populations
would improve its representativeness. Future iterations of the benchmark will explore domain
adaptation, adversarial robustness, and performance under distribution shifts to better simulate
deployment conditions in varied clinical environments.

Model Generalization and Multimodal Reasoning. Current LVLMs still struggle with fine-
grained spatial tasks, consistency across subgroups, and robust generation of clinically meaningful
language. In future work, we aim to incorporate richer contextual information (e.g., patient his-
tory, multi-view inputs) to better assess models’ multimodal integration capabilities and real-world
reasoning performance.

Video-Based and Real-Time Evaluation. U2-BENCH currently operates on frame-based inputs
to ensure comparability across models. However, clinical ultrasound interpretation often involves
dynamic, probe-controlled acquisition. Extending the benchmark to include video sequences, real-
time tasks, and longitudinal case studies will be a major step toward closing the simulation-to-clinic
gap.

Theoretical Foundations and Causality. Our current benchmark is designed for practical per-
formance evaluation. Future work will incorporate diagnostic reasoning audits, causal probing
methods, and uncertainty quantification frameworks to deepen our understanding of LVLM behavior
in high-stakes medical applications.

Standardization in Ultrasound AI. There is a growing need for community consensus on annota-
tion standards, task definitions, and evaluation protocols in ultrasound AI. We hope U2-BENCH can
serve as a starting point for these conversations and will actively evolve in response to feedback from
both clinical and technical communities.
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B Safeguarding

This study involves secondary use of de-identified, publicly available or licensed ultrasound datasets
for the purpose of benchmarking machine learning models. All data used in U2-BENCH are either
publicly released with appropriate usage permissions or obtained through official licensing agreements.
No personally identifiable information is used, and all experiments are conducted in accordance with
relevant data protection and ethical guidelines. Human annotators involved in quality assurance were
trained to follow data confidentiality protocols, and no clinical decision-making was involved at any
stage of this work.

C More Evaluation Details

C.1 Justification of U2-Score Weighting

The U2-Score summarizes model performance across the eight benchmark tasks in U2-BENCH
through a weighted aggregation:

U2-Score :=
N∑
t=1

wt · dt, where wt =
nt∑
j nj

, dt ∈ [0, 1] (3)

Each task t is associated with a weight wt proportional to its number of annotated examples nt, and a
normalized evaluation score dt representing performance on that task. This formulation ensures that
the final score reflects both task competence and dataset composition.

The weighting design of U2-Score is rooted in data-driven representation of ultrasound practice.
All benchmark tasks are constructed from licensed and publicly available datasets sourced through
a comprehensive and systematic search. As a result, the sample distribution across tasks captures
the structure of real-world ultrasound data availability and usage. Tasks with greater sample counts
typically correspond to more standardized, clinically widespread, and institutionally supported
workflows—such as disease diagnosis and view recognition. Conversely, tasks with fewer examples
often reflect more specialized applications or less frequently annotated modalities.

By aligning task weights with dataset size, the U2-Score encodes the practical significance and
maturity of each task in the public ultrasound domain. This approach also promotes reliable aggregate
evaluation, as scores are more robustly informed by tasks with greater data coverage. The resulting
metric balances comprehensiveness with grounded applicability, supporting fair and reproducible
model comparison in the current landscape of ultrasound AI research.
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C.2 Error Analysis

Diagnosis Task 40: case001273

Accuracy: 0.05 (1/20 models correct)
Reference Answer: 4A
Model Responses:

• gemini-2.5-pro-preview-03-25: 5
• Do-3B: 2
• gpt-4o-2024-08-06: ’3’
• doubao-1.5-vision-pro-32k-250115:

Insufficient information provided to
determine BI - RADS category. Please
describe the sonographic characteristics
of the lesion in the image.

• MedDr: 5
• qwen-max-2025-01-25: 3
• local_model: 2
• claude-3-7-sonnet-20250219: 4C
• gemini-2.0-pro-exp-02-05: 4C
• deepseek-vl2: 4B
• qwen2.5-vl-3b-instruct: 2
• Qwen2.5-VL-7B-Instruct-Pro: 4A
• gemini-1.5-pro-latest: 2
• Qwen2.5-VL-32B-Instruct: 4B
• InternVL3-9B-Instruct: 4B
• Phi-4-multimodal-instruct: I cannot

synthesize the sonographic
characteristics of the lesions or make a
BI-RADS assessment without the
actual ultrasound images or a detailed
description of the findings. If you
provide the relevant details or images, I
would be able to assist you with the
assessment.

• LLaVA-1.5-13B-HF: ’2’
• Mistral-Small-3.1-24B-Instruct-

2503: 3
• Do-7B: The anatomical component

most vividly portrayed is the breast.
• gpt-4o-mini: 2

Figure 5: Ultrasound image for Diagnosis
Task 40: case001273
Prompt: You are a radiologist analyzing a breast
ultrasound image. Your task is to synthesize the

sonographic characteristics of any identified
lesions (or lack thereof) into a final ACR

BI-RADS (Breast Imaging Reporting and Data
System) assessment category.

BI-RADS Ultrasound Assessment Category
Definitions

- ’2’ (Benign): Findings are definitively benign
(e.g., simple cysts, intramammary lymph nodes,
stable surgical implants/changes). 0% likelihood

of malignancy. Requires routine screening
follow-up.

- ’3’ (Probably Benign): Findings have
characteristic benign features but are not

definitively benign (e.g., presumed fibroadenoma,
complicated cyst). Very low likelihood of

malignancy (<2%). Short-interval (e.g., 6-month)
follow-up is typically recommended.

- ’4A’ (Low Suspicion for Malignancy): Findings
warrant biopsy but have a low probability of

malignancy (>2% to ≤10%).
- ’4B’ (Moderate Suspicion for Malignancy):
Findings warrant biopsy with an intermediate
probability of malignancy (>10% to ≤50%).

- ’4C’ (High Suspicion for Malignancy): Findings
warrant biopsy with a high probability of

malignancy (>50% to <95%), without the classic
features of Category 5.

- ’5’ (Highly Suggestive of Malignancy):
Findings have classic malignant features (e.g.,

irregular spiculated mass). Very high probability
of malignancy (≥95%). Biopsy is required, and
definitive action should be taken regardless of

pathology results if discordant.
Choose the single most appropriate BI-RADS
assessment category from the options below.

options: [’2’, ’3’, ’4A’, ’4B’, ’4C’, ’5’]
Output format: only the exact text of the chosen
option from the list above. Do not include any

introductory phrases, explanations, numbering, or
formatting.
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View Recognition and Assessment Tasks (VRA)

Reference Answer: hdvb

Model Responses:
• Random Guessing: huvf
• MiniGPT-Med: hdvf
• MedDr: hdvb
• Qwen-2.5-VL-3B-Instruct: hdvf
• Qwen-2.5-VL-7B-Instruct: hdvb
• Qwen-2.5-VL-32B-Instruct: hdvb
• Qwen-2.5-VL-72B-Instruct: hdvb
• DeepSeek-VL2: hdvf
• InternVL3-9B-Instruct: hdvf
• LLaVA-1.5-13B: huvb
• Phi-4-Multimodal-Instruct: hdvf
• Mistral-Small-3.1-24B-Inst.:

hdvb
• Doubao-1.5-Vision-Pro-32k: hdvb
• GPT-4o-Mini: hdvf
• GPT-4o: hdvb
• Gemini-1.5-Pro: hdvf
• Gemini-2.0-Pro-Exp: hdvb
• Gemini-2.5-Pro-Preview: hdvf
• Claude-3.7-Sonnet: huvb
• Qwen-Max: hdvb
• Dolphin-V1: hdvb

Prompt: You are a radiologist analyzing a
fetal ultrasound image. Your task is to
determine the fetal presentation and
orientation based on the provided ultrasound
image. Specifically, identify whether the
fetal head is down(hd) or up(hu).
Additionally, determine if the fetal back is
primarily oriented towards the ultrasound
probe (vb) or towards the ultrasound probe
(vf). Choose the single best option from the
options below that accurately combines
these findings. options: ’hdvb’, ’hdvf’,
’huvb’, ’huvf’ Output format: only the exact
text of the chosen option from the list above.
Do not include any introductory phrases,
explanations, numbering, or formatting.
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Lesion Localization Tasks (LL)

Reference Answer: upper left

Model Responses:
• Random Guessing: lower right
• MiniGPT-Med: upper center
• MedDr: upper left
• Qwen-2.5-VL-3B-Instruct:

middle left
• Qwen-2.5-VL-7B-Instruct: upper

left
• Qwen-2.5-VL-32B-Instruct:

upper left
• Qwen-2.5-VL-72B-Instruct:

upper left
• DeepSeek-VL2: upper right
• InternVL3-9B-Instruct: upper

center
• LLaVA-1.5-13B: middle left
• Phi-4-Multimodal-Instruct:

upper center
• Mistral-Small-3.1-24B-Inst.:

upper left
• Doubao-1.5-Vision-Pro-32k:

upper left
• GPT-4o-Mini: upper right
• GPT-4o: upper left
• Gemini-1.5-Pro: upper right
• Gemini-2.0-Pro-Exp: upper left
• Gemini-2.5-Pro-Preview: upper

right
• Claude-3.7-Sonnet: upper center
• Qwen-Max: middle left
• Dolphin-V1: upper left

Prompt: You are a radiologist analyzing an
ultrasound image of thyroid. Your task is to
identify the primary location of any visible
lesion(s) relative to the boundaries of the
displayed image. Consider the lesion’s
center location or most prominent area when
deciding. Choose the single option from the
list below that best describes this location,
even if the fit is approximate. options: upper
left, upper center, upper right, middle left,
center, middle right, lower left, lower center,
lower right, not visible Output format: only
the exact text of the chosen option from the
list above. Do not include any introductory
phrases, explanations, numbering, or
formatting.
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Organ Detection Tasks (OD)

Reference Answer: center

Model Responses:
• Random Guessing: lower left
• MiniGPT-Med: middle right
• MedDr: center
• Qwen-2.5-VL-3B-Instruct:

middle right
• Qwen-2.5-VL-7B-Instruct: center
• Qwen-2.5-VL-32B-Instruct:

center
• Qwen-2.5-VL-72B-Instruct:

center
• DeepSeek-VL2: middle left
• InternVL3-9B-Instruct: lower

center
• LLaVA-1.5-13B: middle right
• Phi-4-Multimodal-Instruct:

middle right
• Mistral-Small-3.1-24B-Inst.:

center
• Doubao-1.5-Vision-Pro-32k:

center
• GPT-4o-Mini: lower center
• GPT-4o: center
• Gemini-1.5-Pro: lower center
• Gemini-2.0-Pro-Exp: center
• Gemini-2.5-Pro-Preview: lower

center
• Claude-3.7-Sonnet: center
• Qwen-Max: middle right
• Dolphin-V1: center

Prompt: You are a radiologist analyzing an
ultrasound image of liver. Your task is to
identify the primary location of the target
organ relative to the boundaries of the
displayed image. Consider the organ’s
center location or most prominent area when
deciding. Choose the single option from the
list below that best describes this location,
even if the fit is approximate. options: upper
left, upper center, upper right, middle left,
center, middle right, lower left, lower center,
lower right, not visible Output format: only
the exact text of the chosen option from the
list above. Do not include any introductory
phrases, explanations, numbering, or
formatting.
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Keypoint Detection Tasks (KD)

Reference Answer: middle right

Model Responses:
• Random Guessing: upper center
• MiniGPT-Med: middle left
• MedDr: middle right
• Qwen-2.5-VL-3B-Instruct: center
• Qwen-2.5-VL-7B-Instruct:

middle right
• Qwen-2.5-VL-32B-Instruct:

middle right
• Qwen-2.5-VL-72B-Instruct:

middle right
• DeepSeek-VL2: center
• InternVL3-9B-Instruct: middle

left
• LLaVA-1.5-13B: center
• Phi-4-Multimodal-Instruct:

lower right
• Mistral-Small-3.1-24B-Inst.:

middle right
• Doubao-1.5-Vision-Pro-32k:

middle right
• GPT-4o-Mini: center
• GPT-4o: middle right
• Gemini-1.5-Pro: center
• Gemini-2.0-Pro-Exp: middle right
• Gemini-2.5-Pro-Preview: center
• Claude-3.7-Sonnet: middle right
• Qwen-Max: center
• Dolphin-V1: middle right

Prompt: You are a radiologist analyzing an
ultrasound image of heart. Your task is to
identify the primary location of the key
anatomical landmark point relative to the
boundaries of the displayed image. Consider
the landmark’s precise position when
deciding. Choose the single option from the
list below that best describes this location,
even if the fit is approximate. options: upper
left, upper center, upper right, middle left,
center, middle right, lower left, lower center,
lower right, not visible Output format: only
the exact text of the chosen option from the
list above. Do not include any introductory
phrases, explanations, numbering, or
formatting.

24



Cardiac View Evaluation Tasks (CVE)

Reference Answer: 2CH

Model Responses:
• Random Guessing: 4CH
• MiniGPT-Med: 4CH
• MedDr: 2CH
• Qwen-2.5-VL-3B-Instruct: 4CH
• Qwen-2.5-VL-7B-Instruct: 4CH
• Qwen-2.5-VL-32B-Instruct: 4CH
• Qwen-2.5-VL-72B-Instruct: 4CH
• DeepSeek-VL2: 4CH
• InternVL3-9B-Instruct: 4CH
• LLaVA-1.5-13B: 4CH
• Phi-4-Multimodal-Instruct: 4CH
• Mistral-Small-3.1-24B-Inst.: 4CH
• Doubao-1.5-Vision-Pro-32k: 2CH
• GPT-4o-Mini: 4CH
• GPT-4o: 4CH
• Gemini-1.5-Pro: 4CH
• Gemini-2.0-Pro-Exp: 4CH
• Gemini-2.5-Pro-Preview: 4CH
• Claude-3.7-Sonnet: 2CH
• Qwen-Max: 4CH
• Dolphin-V1: 2CH

Prompt: You are a radiologist or cardiologist
specializing in echocardiography, analyzing
an apical view ultrasound image of the
human heart.
Your task is to accurately identify the
specific apical view presented in the
provided echocardiogram image. Carefully
examine the cardiac structures visible.
Determine if the image displays primarily
the left ventricle and left atrium only
(indicative of a 2-Chamber view, 2CH), or if
it clearly shows all four chambers: the left
ventricle, right ventricle, left atrium, and
right atrium (indicative of a 4-Chamber view,
4CH). Choose the single best option from
the list below that correctly identifies the
view.
options: 2CH, 4CH
Output format: only the exact text of the
chosen option from the list above. Do not
include any introductory phrases,
explanations, numbering, or formatting.
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Cardiac Grading Tasks (CG)

Reference Answer: Moderate OA

Model Responses:
• Random Guessing:
• MiniGPT-Med: Questionable OA
• MedDr: Moderate OA
• Qwen-2.5-VL-3B-Instruct: No

OA
• Qwen-2.5-VL-7B-Instruct:

Questionable OA
• Qwen-2.5-VL-32B-Instruct:

Mild OA
• Qwen-2.5-VL-72B-Instruct:

Mild OA
• DeepSeek-VL2: Questionable OA
• InternVL3-9B-Instruct: No OA
• LLaVA-1.5-13B: No OA
• Phi-4-Multimodal-Instruct:

Questionable OA
• Mistral-Small-3.1-24B-Inst.:

Mild OA
• Doubao-1.5-Vision-Pro-32k:

Moderate OA
• GPT-4o-Mini: No OA
• GPT-4o: No OA
• Gemini-1.5-Pro: Questionable OA
• Gemini-2.0-Pro-Exp: Mild OA
• Gemini-2.5-Pro-Preview:

Questionable OA
• Claude-3.7-Sonnet: Mild OA
• Qwen-Max: Mild OA
• Dolphin-V1: Moderate OA

Prompt: You are a radiologist analyzing an
ultrasound image of left/right knee.
Your task is to assess the severity of
osteoarthritis (OA) using the established
Kellgren-Lawrence (KL) grading system.
Kellgren-Lawrence (KL) Grade Mapping to
Options:
•’No OA’: Corresponds to KL Grade 0 (No
radiographic features of OA).
•’Questionable OA’: Corresponds to KL
Grade 1 (Doubtful JSN and possible minute
osteophytes).
•’Mild OA’: Corresponds to KL Grade 2
(Definite osteophytes and possible JSN).
•’Moderate OA’: Corresponds to KL Grade 3
(Moderate multiple osteophytes, definite
JSN, some sclerosis, possible deformity).
•’Severe OA’: Corresponds to KL Grade 4
(Large osteophytes, marked JSN, severe
sclerosis, definite deformity).
•’Total joint replacement’: Indicates the
presence of knee arthroplasty components
(prosthesis), which replaces the native joint
structures evaluated by the KL scale.
options: ’Mild OA’, ’Moderate OA’, ’No
OA’, ’Questionable OA’, ’Severe OA’, ’Total
joint replacement’
Output format: only the exact text of the
chosen option from the list above. Do not
include any introductory phrases,
explanations, numbering, or formatting.
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Report Generation Tasks (RG) Input

Prompt: You are a radiologist analyzing an ultrasound image focused on the Liver.
Your task is generate a concise and informative radiological report based strictly on the visual
findings within the provided image. Your report should describe the primary organ’s
appearance (size, shape, borders/capsule), its parenchymal echotexture (e.g., homogeneous,
heterogeneous, echogenicity relative to reference structures), and identify any visible
abnormalities (e.g., masses, cysts, fluid collections, calcifications, ductal dilation). Comment
on relevant adjacent structures if visualized. Use standard radiological terminology.
Output format: Strings, that is your report.
Example: The liver morphology is full with a smooth capsule. The parenchymal echotexture
is fine and diffusely increased. Visualization of the portal venous system is suboptimal.
Intrahepatic and extrahepatic bile ducts are not dilated. The main portal vein diameter is
within normal limits. The gallbladder is normal in size and shape. The wall is smooth and not
thickened. No obvious abnormal echoes are seen within the lumen. The pancreas is normal in
size and shape with homogeneous parenchymal echotexture. The pancreatic duct is not
dilated. No definite space-occupying lesion is seen within the pancreas. The spleen is normal
in size and shape with homogeneous parenchymal echotexture. No obvious space-occupying
lesion is seen within the spleen.

Report Generation Tasks (RG) Output

Reference Answer: The liver morphology is full with a smooth capsule. The parenchymal
echotexture is fine and diffusely increased. Visualization of the portal venous system is
suboptimal. Intrahepatic and extrahepatic bile ducts are not dilated. The main portal vein
diameter is within normal limits. No focal lesions are identified.

Model Responses:
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• Random Guessing:
• MiniGPT-Med: The liver shows normal size and contour with homogeneous

echotexture. No focal lesions or biliary dilatation noted. Portal structures appear
normal.

• MedDr: The liver demonstrates normal size and contour with a smooth capsule.
The parenchymal echotexture is homogeneous with normal echogenicity. No focal
lesions identified. Intrahepatic biliary ducts are not dilated. Portal venous structures
appear normal.

• Qwen-2.5-VL-3B-Instruct: The liver appears normal in size with a smooth contour.
The parenchymal echotexture is homogeneous without focal lesions. No
intrahepatic biliary dilatation is seen.

• Qwen-2.5-VL-7B-Instruct: The liver appears normal in size with a smooth capsule.
The parenchymal echotexture is homogeneous with no focal lesions. No
intrahepatic or extrahepatic biliary dilatation is seen. The portal venous structures
appear normal.

• Qwen-2.5-VL-32B-Instruct: The liver appears normal in size with a smooth
contour. The parenchymal echotexture is homogeneous with normal echogenicity.
No focal lesions such as masses, cysts, or calcifications are identified. The
intrahepatic bile ducts are not dilated. The portal venous structures appear normal.
No perihepatic fluid collection is observed.

• Qwen-2.5-VL-72B-Instruct: The liver demonstrates normal size and contour with
a smooth capsule. The parenchymal echotexture is homogeneous with normal
echogenicity. No focal lesions or masses are identified. The intrahepatic biliary tree
is not dilated. Portal venous structures appear normal. No perihepatic fluid
collection is seen.

• DeepSeek-VL2: The liver appears normal in size with a smooth contour. The
parenchymal echotexture is homogeneous with normal echogenicity. No focal
lesions are identified. The intrahepatic bile ducts are not dilated. The portal venous
structures appear normal. No perihepatic fluid collection is observed.

• InternVL3-9B-Instruct: The liver appears normal in size with a smooth contour.
The parenchymal echotexture is homogeneous without focal lesions. No
intrahepatic or extrahepatic biliary dilatation is seen. The portal venous structures
appear normal.

• LLaVA-1.5-13B: The liver appears normal in size with a smooth contour. The
parenchymal echotexture is homogeneous without focal lesions. No intrahepatic
biliary dilatation is seen. The portal structures appear normal.

• Phi-4-Multimodal-Instruct: The liver appears normal in size with a smooth
contour. The parenchymal echotexture is homogeneous with no focal lesions. No
intrahepatic or extrahepatic biliary dilatation is seen. The hepatic vessels appear
normal.

• Mistral-Small-3.1-24B-Inst.: The liver demonstrates normal size and contour with
a smooth capsule. The parenchymal echotexture is homogeneous with normal
echogenicity. No focal lesions or masses are identified. The intrahepatic biliary tree
is not dilated. Portal venous structures appear normal.

• Doubao-1.5-Vision-Pro-32k: The liver appears normal in size with a smooth
contour. The parenchymal echotexture is homogeneous with normal echogenicity.
No focal lesions are identified. The intrahepatic bile ducts are not dilated. The
portal venous structures appear normal.

• GPT-4o-Mini: The liver appears normal in size with a smooth contour. The
parenchymal echotexture is homogeneous without focal lesions. No intrahepatic or
extrahepatic biliary dilatation is seen. The hepatic vessels appear normal. No ascites
or other abnormalities are identified in the visualized portion of the liver.
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• GPT-4o: The liver appears normal in size and shape with a smooth capsule. The
parenchymal echotexture is homogeneous with no obvious focal lesions. No
intrahepatic or extrahepatic bile duct dilation is noted. The gallbladder is not clearly
visualized in this image. No ascites or other fluid collections are present. Adjacent
structures are not well visualized for further evaluation.

• Gemini-1.5-Pro: The liver appears normal in size with a smooth contour. The
parenchymal echotexture is homogeneous with normal echogenicity. No focal
lesions such as masses, cysts, or calcifications are identified. The intrahepatic bile
ducts are not dilated. The portal venous structures appear normal.

• Gemini-2.0-Pro-Exp: The liver appears normal in size with a smooth capsule. The
parenchymal echotexture is homogeneous with normal echogenicity. No focal
lesions are identified. The intrahepatic bile ducts are not dilated. The portal venous
structures appear normal where visualized.

• Gemini-2.5-Pro-Preview: The liver appears normal in size with a smooth capsule.
The parenchymal echotexture is homogeneous with normal echogenicity. No focal
lesions such as masses, cysts, or calcifications are identified. The intrahepatic bile
ducts are not dilated. The portal venous structures appear normal where visualized.
No perihepatic fluid collection is seen. The gallbladder and other adjacent structures
are not well visualized in this limited image. Overall impression: Normal liver
parenchyma without evidence of focal lesions or biliary dilation.

• Claude-3.7-Sonnet: The liver demonstrates normal size and contour with a smooth
capsule. The parenchymal echotexture appears homogeneous with mildly increased
echogenicity, suggesting possible early fatty infiltration. No focal lesions, masses,
or cysts are identified. The intrahepatic biliary tree is not dilated. Portal venous
structures appear normal where visualized. No perihepatic fluid collection is seen.
Adjacent structures are not well visualized in this limited view.

• Qwen-Max: The liver appears normal in size with a smooth contour. The
parenchymal echotexture is homogeneous with normal echogenicity. No focal
lesions such as masses, cysts, or calcifications are identified. The intrahepatic bile
ducts are not dilated. The portal venous structures appear normal. No perihepatic
fluid collection is observed. The visualized portions of adjacent structures appear
unremarkable. Overall, the liver appears sonographically normal based on this
limited view.

• Dolphin-V1: The liver morphology is full with a smooth capsule. The parenchymal
echotexture is fine and diffusely increased. Visualization of the portal venous
system is suboptimal. Intrahepatic and extrahepatic bile ducts are not dilated. The
main portal vein diameter is within normal limits. No focal lesions are identified.
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To provide deeper insights into model performance on medical imaging tasks, we conduct a compre-
hensive error analysis of models across four critical ultrasound image analysis tasks: measurement,
classification, segmentation, and report generation. This analysis reveals distinct error patterns and
task-specific challenges that inform future model improvements.

Numerical Regression Task Analysis Among 101 total responses, the most significant challenge
is the prevalence of descriptive responses instead of numerical values (53.47%). The model
frequently generates interpretative text such as “The principal anatomical element visualized here is
unequivocally the fetus head” rather than the expected numerical measurement (e.g., 291.4mm). This
pattern suggests fundamental misunderstanding of task requirements, where the model interprets the
task as image content identification rather than quantitative measurement.

Format violations constitute 1.98% of responses, where models provide numerical values with units
(e.g., “113.6 mm”) despite explicit formatting constraints. Notably, 43.56% of responses follow the
correct numerical format, though accuracy assessment requires comparison with ground truth values.
The high rate of descriptive responses indicates that current vision-language models struggle with the
transition from visual analysis to precise quantitative output.

Classification Task Performance Classification tasks demonstrate superior format compliance
compared to measurement tasks, with 75.66% of responses providing valid option selections from
152 total responses. However, two distinct error patterns emerge: explanatory responses (5.92%)
where models provide justifications rather than selections (e.g., “There is no definitive view of the
fetal abdomen or pelvis to determine fetal position”), and format violations (18.42%) containing
additional descriptive content alongside valid options.

The tendency toward explanatory responses reveals an interesting model behavior where excessive
caution leads to task avoidance rather than best-effort selection from available options. This suggests
that models may benefit from more explicit instructions emphasizing the requirement for definitive
option selection even under uncertainty.

Segmentation and Localization Analysis Segmentation tasks, requiring spatial reasoning for
anatomical structure localization, show moderate success with 66% valid position responses from 500
total responses. The primary error categories include invalid position terminology (27.80%) with
responses like “Not visible.” or “Upper right.” that contain punctuation or non-standard terms, and
complete task deviation (6.20%) where models provide structural descriptions instead of positional
information.

Case Study Examples: Analysis of specific segmentation cases reveals distinct model behaviors.
In thyroid lesion localization tasks, while Gemini-2.5-Pro and GPT-4o consistently provide concise
responses (“center”), Claude-3.7-Sonnet exhibits significant format violations. For instance, when
tasked with identifying tumor location in breast ultrasound images, Claude generated extensive
explanatory text:

“This image appears to be an ultrasound showing tissue layers with varying
echogenicity... I cannot identify a clear, definitive lesion... For proper medical
diagnosis, this ultrasound should be evaluated by a qualified radiologist...”

Such responses, while demonstrating medical awareness, completely violate the specified output
format requiring only location terms. This pattern suggests that Claude prioritizes safety disclaimers
over task compliance in medical contexts.

Additionally, a concerning pattern emerges where multiple models consistently respond “center”
regardless of actual lesion position, as evidenced by reference bounding boxes indicating lesions at
coordinates [0.6, 0.247] and [0.595, 0.308]. This suggests potential spatial reasoning limitations or
default response bias that could compromise clinical utility.

The relatively high success rate in spatial localization compared to numerical measurement suggests
that discrete spatial reasoning may be more accessible to current vision-language architectures than
continuous numerical estimation.

Report Generation Excellence Report generation tasks achieve the highest success rate (98%)
among all evaluated tasks, with only 2% exhibiting structural misidentification and 1% showing false
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findings. The rare but critical errors include anatomical misidentification (“Top view of fetus head and
thorax” for fetal head ultrasound) and false pathological findings (“Aneuploid fetus with abnormal
facial features”). While infrequent, such errors carry significant clinical implications, potentially
leading to unnecessary medical interventions or patient anxiety.

Cross-Task Error Pattern Analysis Task difficulty ranking from most to least challenging reveals:
measurement (43.56% success) > segmentation (66% success) > classification (75.66% success) >
report generation (98% success). This hierarchy reflects the increasing complexity of transitioning
from free-form text generation to structured, constrained outputs requiring precise adherence to
format specifications.

Common error patterns across tasks include: (1) descriptive language substitution, most prominent
in measurement tasks where models default to interpretative text rather than required numerical
values; (2) format non-compliance, prevalent across classification and segmentation tasks despite
clear formatting instructions; and (3) task misunderstanding, where models completely misinterpret
task objectives, such as treating localization as structure identification.

Implications for Medical AI Development These findings highlight critical considerations for
deploying vision-language models in medical imaging applications. The inverse relationship between
task constraint and model performance suggests that current architectures excel at unconstrained
text generation but struggle with precise, structured outputs essential for clinical decision-making.
Future developments should prioritize: (1) enhanced instruction following capabilities for constrained
output generation, (2) domain-specific fine-tuning on medical imaging tasks emphasizing numerical
precision, and (3) robust validation mechanisms to detect and prevent false findings in clinical
applications.

The analysis underscores that while large vision-language models show promise for medical imaging
applications, careful task-specific optimization and human oversight remain essential, particularly for
quantitative measurements and diagnostic assessments where precision directly impacts patient care.
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D Prompt for Tasks

Prompt Template used for fetal view classification (dataset 10)

You are a radiologist analyzing a fetal ultrasound image.

Your task is to determine the fetal presentation and orientation based on the provided ultra-
sound image. Specifically, identify whether the fetal head is down(hd) or up(hu). Additionally,
determine if the fetal back is primarily oriented towards the ultrasound probe (vb) or towards
the ultrasound probe (vf). Choose the single best option from the options below that accu-
rately combines these findings.

options: ’hdvb’, ’hdvf’, ’huvb’, ’huvf’

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.

Prompt Template used for heart view classification (dataset 18)

You are a radiologist or cardiologist specializing in echocardiography, analyzing an apical
view ultrasound image of the human heart.

Your task is to accurately identify the specific apical view presented in the provided echocar-
diogram image. Carefully examine the cardiac structures visible. Determine if the image
displays primarily the left ventricle and left atrium only (indicative of a 2-Chamber view,
2CH), or if it clearly shows all four chambers: the left ventricle, right ventricle, left atrium,
and right atrium (indicative of a 4-Chamber view, 4CH). Choose the single best option from
the list below that correctly identifies the view.

options: 2CH, 4CH

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for (KL) grading (dataset 28)

You are a radiologist analyzing an ultrasound image of left/right knee.

Your task is to assess the severity of osteoarthritis (OA) using the established Kellgren-
Lawrence (KL) grading system. Kellgren-Lawrence (KL) Grade Mapping to Options:

• ’No OA’: Corresponds to KL Grade 0 (No radiographic features of OA).
• ’Questionable OA’: Corresponds to KL Grade 1 (Doubtful JSN and possible minute

osteophytes).
• ’Mild OA’: Corresponds to KL Grade 2 (Definite osteophytes and possible JSN).
• ’Moderate OA’: Corresponds to KL Grade 3 (Moderate multiple osteophytes, definite

JSN, some sclerosis, possible deformity).
• ’Severe OA’: Corresponds to KL Grade 4 (Large osteophytes, marked JSN, severe

sclerosis, definite deformity).
• ’Total joint replacement’: Indicates the presence of knee arthroplasty components

(prosthesis), which replaces the native joint structures evaluated by the KL scale.
Choose the single best option from the following list that accurately describes the image.

options: ’Mild OA’, ’Moderate OA’, ’No OA’, ’Questionable OA’, ’Severe OA’, ’Total joint
replacement’

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for BI-RADS classification (dataset 40)

You are a radiologist analyzing a breast ultrasound image.

Your task is to synthesize the sonographic characteristics of any identified lesions (or lack
thereof) into a final ACR BI-RADS (Breast Imaging Reporting and Data System) assessment
category.

BI-RADS Ultrasound Assessment Category Definitions:
• ’2’ (Benign): Findings are definitively benign (e.g., simple cysts, intramammary

lymph nodes, stable surgical implants/changes). 0% likelihood of malignancy.
Requires routine screening follow-up.

• ’3’ (Probably Benign): Findings have characteristic benign features but are not
definitively benign (e.g., presumed fibroadenoma, complicated cyst). Very low
likelihood of malignancy (<2%). Short-interval (e.g., 6-month) follow-up is typically
recommended.

• ’4A’ (Low Suspicion for Malignancy): Findings warrant biopsy but have a low
probability of malignancy (>2% to ≤10%).

• ’4B’ (Moderate Suspicion for Malignancy): Findings warrant biopsy with an inter-
mediate probability of malignancy (>10% to ≥50%).

• ’4C’ (High Suspicion for Malignancy): Findings warrant biopsy with a high prob-
ability of malignancy (>50% to <95%), without the classic features of Category
5.

• ’5’ (Highly Suggestive of Malignancy): Findings have classic malignant features
(e.g., irregular spiculated mass). Very high probability of malignancy (≥95%).
Biopsy is required, and definitive action should be taken regardless of pathology
results if discordant.

Choose the single most appropriate BI-RADS assessment category from the options below.

options: [’2’, ’3’, ’4A’, ’4B’, ’4C’, ’5’]

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.

Prompt Template used for fetal abdomen (dataset 50)

You are a radiologist analyzing an ultrasound image of fetal abdomen.

Your task is to determine if the presented cross-sectional view of the fetal abdomen is tech-
nically adequate for performing an accurate Abdominal Circumference (AC) measurement
according to standard obstetric guidelines. Identify the specific anatomical plane shown for
the fetal abdomen. Determine if this plane meets the criteria for an optimal AC measurement
(correct landmarks visible, proper transverse orientation) or if it is suboptimal (incorrect
plane, missing landmarks, oblique/foreshortened view, presence of interfering structures like
kidneys). Choose the single best option describing the plane’s suitability for AC measure-
ment.

options: ’none’, ’optimal’, ’suboptimal’

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for breast classification

You are a radiologist analyzing a breast ultrasound image.

Your task is carefully examine the provided breast ultrasound image, evaluate any identified le-
sions or abnormalities based on key sonographic characteristics (including shape, orientation,
margin, echo pattern, posterior acoustic features, and associated features), synthesize these
features to form an overall impression about the likelihood of malignancy, and then choose
the single best option from the following list that accurately summarizes this assessment.

options: (normal), benign, malignant

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.

Prompt Template used for thyroid classification

You are a radiologist specializing in head and neck or endocrine imaging, analyzing an
ultrasound image of the thyroid gland.

Your task is to carefully examine the provided thyroid ultrasound image, evaluate the over-
all thyroid gland parenchyma (echogenicity, texture, vascularity), identify any focal nod-
ules, assess the specific sonographic features of any nodules found (including composition,
echogenicity, shape, margin, and echogenic foci), synthesize these findings to determine if
the gland appears normal, contains benign-appearing findings, or contains findings suspicious
for malignancy, and then choose the single best option from the following list that accurately
summarizes this assessment.

options: (normal thyroid), benign, malignant

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.

Prompt Template used for skin cancer classification (dataset 25)

You are a radiologist analyzing an ultrasound image of skin.

Your task is to carefully examine the provided skin ultrasound image, evaluate the identified
lesion or abnormality based on key sonographic characteristics (including its location within
skin layers, echogenicity, internal echo texture, shape, margins, size/depth, posterior acoustic
phenomena, and vascularity assessed with Doppler), synthesize these features to form an
overall impression regarding the likelihood of malignancy, and then choose the single best
option from the following list that summarizes this assessment.

options: benign, malignant

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for pancreas cancer classification (dataset 42)

You are a radiologist analyzing an ultrasound image of the pancreas.

Your task is to carefully examine the provided ultrasound image of the pancreas, evaluate
the gland’s echotexture, size, margins, and the pancreatic duct diameter, identify any focal
lesions or masses (noting their echogenicity, margins, size, and vascularity if Doppler is
available), assess for associated findings such as ductal dilation (including potential "double
duct" sign), vascular involvement (encasement/thrombosis), regional lymphadenopathy, or
fluid collections, synthesize these findings to determine if there is evidence suspicious for
primary pancreatic cancer versus other findings, and then choose the single best option from
the following list that summarizes this assessment.

options: non-pancreas cancer, pancreas cancer

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.

Prompt Template used for PCOS classification (dataset 74)

You are a radiologist analyzing an ultrasound image obtained during a pelvic examination,
potentially as part of an evaluation for Polycystic Ovary Syndrome (PCOS).

Your task is to evaluate the overall appearance of the anatomical structures presented in the
ultrasound image (primarily focusing on the ovaries and potentially the uterus). Consider
sonographic features such as ovarian size, morphology, follicle count and distribution, stro-
mal echogenicity, as well as any other findings that might indicate pathology. Based on
this assessment, determine if the image appears generally normal or if it displays features
suggestive of an abnormality (which could include findings consistent with PCOS or other
conditions). Choose the single best option from the following list that accurately describes
this overall impression.

options: ’Appears abnormal’, ’Appears normal’

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.

Prompt Template used for PCOS classification (dataset 74)

You are a radiologist analyzing an ultrasound image obtained during a pelvic examination.
Crucially, assume this specific image has already been determined to show some form of
abnormality. Your focus now is on the nature of that abnormality.

Your task is to specifically assess whether the abnormality present in this ultrasound im-
age includes clear sonographic evidence consistent with a polycystic ovary. Evaluate the
visualized ovarian structures, paying close attention to features commonly associated with
PCOS, such as: increased number of follicles, peripheral distribution of follicles, increased
ovarian volume, increased stromal echogenicity or volume. Based on whether these specific
PCOS-related sonographic features are identifiable within the overall abnormal appearance,
specifies whether the ultrasound image shows evidence/ visibility of a polycystic ovary or not.
Choose the single best option from the following list.

options: ’Not-visible’, ’Visible’

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for PCOS classification (dataset 75)

You are a radiologist analyzing an ultrasound image obtained during a pelvic examination,
specifically being evaluated for features potentially related to Polycystic Ovary Syndrome
(PCOS).

Your task is to carefully evaluate the provided ultrasound image for sonographic features
consistent with Polycystic Ovarian Morphology (PCOM), which is the ultrasound compo-
nent relevant to PCOS detection. Analyze the visualized ovary (or ovaries), considering
criteria such as increased ovarian volume, increased antral follicle count (e.g., ≥ 20 per
ovary), peripheral follicle distribution, and / or increased stromal echogenicity / volume. If
sonographic features consistent with PCOM are present, select the label ’infected’, otherwise
’noninfected’. Choose the single best option from the following list.

options: ’infected’, ’noninfected’

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.

Prompt Template used for lung parenchyma (dataset 44)

You are a radiologist or clinician skilled in performing and interpreting Lung Ultrasound
(LUS), specifically analyzing an ultrasound image of the lung pleura and parenchyma.

Your task is to carefully examine the provided lung ultrasound image, focusing on the
appearance of the pleural line and the underlying lung parenchyma, identify the presence and
characteristics of A-lines, B-lines (number, coalescence), and any consolidations according
to the defined severity scoring criteria below, and then choose the single best integer score (0,
1, 2, or 3) from the following list that accurately reflects the observed findings.

LUS Severity Score Criteria:
• 0: Normal lung pattern. Characterized by a continuous, regular, thin pleural line with

horizontal reverberation artifacts (A-lines) below it. Sliding lung sign is typically
present.

• 1: Mild interstitial syndrome. Characterized by an indented or slightly irregular
pleural line. Scattered, well-defined vertical artifacts (B-lines) are visible (typically
≥3 B-lines per intercostal space but not coalescent).

• 2: Moderate interstitial syndrome or early consolidation. Characterized by a broken
or significantly irregular pleural line. Multiple coalescent B-lines (small "white
lung" areas) or small subpleural consolidations are present.

• 3: Severe interstitial syndrome or large consolidation. Characterized by dense and
largely extended confluent B-lines ("white lung" appearance occupying most or all
of the screen) with or without large consolidations.

Options: 0, 1, 2, 3

Output format: only the single chosen integer number from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for fatty liver classification (dataset 57)

You are a radiologist analyzing a static B-mode ultrasound image displaying the liver.

Your task is to evaluate the liver parenchyma in the provided image to determine the grade of
hepatic steatosis. For this task, label 1 is assigned if the image displays features consistent
with fatty liver (which often correlates histologically with >5% hepatocyte steatosis), while
label 0 is assigned if such features are absent. Based on your comprehensive assessment of
these sonographic features, determine whether the image displays sufficient evidence to be
classified as showing fatty liver (Label 1) or not (Label 0). Choose the single best option
from the following list that accurately reflects your classification.

options: 0, 1

Output format: only the single chosen integer number from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.

Prompt Template used for fetal (dataset 03)

You are a radiologist analyzing a single ultrasound image acquired during a fetal examination.

Your task is to carefully examine the provided image, identify the primary anatomical
structure or region being visualized, and determine the most appropriate description based on
the standard imaging planes used in fetal ultrasound. Choose the single best option from the
following list that accurately describes the main subject shown in the image.

options: ’fetal abdomen’,’fetal femur’,fetal brain’, ’fetal thorax’, ’maternal cervix’, ’other’

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.

Prompt Template used for throid plane classification (dataset 37)

You are a radiologist with expertise in interpreting neck and thyroid ultrasound images. You
are presented with a single B-mode ultrasound image focused on the thyroid gland and
adjacent neck structures.

Your task is to identify the Cardinal Anatomical Plane depicted in the provided ultrasound
image. Choose the single best option from the following list that accurately describes the
image.

options: ’Axial/Transverse Plane’, ’Coronal Plane’, ’Sagittal Plane’

Output format: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for fetal (dataset 53)

You are a radiologist analyzing a single B-mode ultrasound image obtained during a fetal
assessment.

Your task is to carefully examine the provided ultrasound image frame to identify the presence
or absence of two specific anatomical landmarks: the fetal head and the maternal symphysis
pubis. Based on this identification, classify the frame’s content by choosing the single best
option from the following list that accurately describes which of these landmarks are visible.
Choose the single best option from the following list that accurately describes the frameś
content.

options: ’None’, ’OnlyFetalHead’, ’OnlySymphysisPubis’, ’SymphysisPubis+FetalHead’

Output prompt: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or other formatting.

Prompt Template used for cartoid classification (dataset 69)

You are a radiologist analyzing an ultrasound image depicting a portion of the carotid arterial
system in the neck.

Your task is to carefully examine the provided ultrasound image, analyzing anatomical
landmarks, vessel morphology, and its position relative to other neck structures, to identify
the primary carotid artery segment shown. Choose the single best option from the following
list that accurately describes the main vessel visualized in the frame’s content. Assume ’left
carotid’ and ’right carotid’ refer generally to the common or internal carotid artery on that
respective side, while ’external carotid’ refers specifically to the external carotid artery branch.
Choose the single best option from the following list that accurately describes the image.

options: ’external carotid’, ’left carotid’, ’right carotid’

Output prompt: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or other formatting.

Prompt Template used for anatomy classification

You are an expert specialized in analyzing medical ultrasound images. You are provided with
a single ultrasound image frame, which could depict various parts of the human body.

Your task is to analyze the provided ultrasound image and identify the primary anatomical
region or organ system being visualized. Choose the single best option from the following
list that most accurately represents this primary anatomical subject.

options: ’fetal’, ’thyroid’, ’heart’, ’lung’, ’liver’, ’carotid’, ’kidney’, ’prostate’, ’breast’,
’other’

Output prompt: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or other formatting.
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Prompt Template used for knee classification

You are a radiologist analyzing an ultrasound image of knee.

Your task is to classify the specific anatomical view, laterality (left/right), orientation, and any
specific imaging technique or patient positioning shown in the image:

• ’left anterior suprapatellar longitudinal’: Image of the left knee, taken from the front
(anterior), just above the kneecap (suprapatellar), with the ultrasound probe oriented
along the long axis of the thigh/patellar tendon. Standard B-mode imaging.

• ’left anterior suprapatellar longitudinal with power Doppler’: Same view as above
(left, anterior suprapatellar, longitudinal), but with Power Doppler mode activated,
typically used to assess blood flow or inflammation.

• ’left anterior suprapatellar transverse in 30 degrees flexion’: Image of the left knee,
from the front (anterior), above the kneecap (suprapatellar), with the probe oriented
across (transverse) the thigh, and the knee bent at approximately 30 degrees.

• ’left anterior suprapatellar transverse in maximal flexion’: Same view as above
(left, anterior suprapatellar, transverse), but with the knee bent as much as possible
(maximal flexion).

• ’left lateral longitudinal’: Image of the outer side (lateral) of the left knee, with the
probe oriented along the long axis of the structures (e.g., LCL, IT band).

• ’left medial longitudinal’: Image of the inner side (medial) of the left knee, with the
probe oriented along the long axis of the structures (e.g., MCL, medial meniscus).

• ’left posterior medial transverse’: Image of the back, inner corner (posterior medial)
of the left knee, with the probe oriented across (transverse) the structures (often used
for Baker’s cysts).

• ’right anterior suprapatellar longitudinal’: Image of the right knee, taken from the
front (anterior), just above the kneecap (suprapatellar), with the ultrasound probe
oriented along the long axis of the thigh/patellar tendon. Standard B-mode imaging.

• ’right anterior suprapatellar longitudinal with power Doppler’: Same view as above
(right, anterior suprapatellar, longitudinal), but with Power Doppler mode activated.

• ’right anterior suprapatellar transverse in 30 degrees flexion’: Image of the right
knee, from the front (anterior), above the kneecap (suprapatellar), with the probe
oriented across (transverse) the thigh, and the knee bent at approximately 30 degrees.

• ’right anterior suprapatellar transverse in maximal flexion’: Same view as above
(right, anterior suprapatellar, transverse), but with the knee bent as much as possible
(maximal flexion).

• ’right lateral longitudinal’: Image of the outer side (lateral) of the right knee, with
the probe oriented along the long axis of the structures.

• ’right medial longitudinal’: Image of the inner side (medial) of the right knee, with
the probe oriented along the long axis of the structures.

• ’right posterior medial transverse’: Image of the back, inner corner (posterior medial)
of the right knee, with the probe oriented across (transverse) the structures.

Choose the single best option from the following list that accurately describes the image.

Options: ’left anterior suprapatellar longitudinal’, ’left anterior suprapatellar longitudinal
with power Doppler’, ’left anterior suprapatellar transverse in 30 degrees flexion’, ’left
anterior suprapatellar transverse in maximal flexion’, ’left lateral longitudinal’, ’left medial
longitudinal’, ’left posterior medial transverse’, ’right anterior suprapatellar longitudinal’,
’right anterior suprapatellar longitudinal with power Doppler’, ’right anterior suprapatellar
transverse in 30 degrees flexion’, ’right anterior suprapatellar transverse in maximal flexion’,
’right lateral longitudinal’, ’right medial longitudinal’, ’right posterior medial transverse’

Output prompt: only the exact text of the chosen option from the list above. Do not include
any introductory phrases, explanations, numbering, or other formatting.
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Prompt Template used for lesion detection

You are a radiologist analyzing an ultrasound image of thyroid.

Your task is to identify the primary location of any visible lesion(s) relative to the boundaries
of the displayed image. Consider the lesion’s center location or most prominent area when
deciding. Choose the single option from the list below that best describes this location, even
if the fit is approximate.

Choose the single most appropriate location from the following list:
• upper left
• upper center
• upper right
• middle left
• center
• middle right
• lower left
• lower center
• lower right
• not visible

Output format: only one or two word(s) representing the chosen location. No additional text
or formatting is allowed.
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Prompt Template used for organ detection

You are a radiologist analyzing an ultrasound image of abdominal.

Your task is to determine the primary location, relative to the image boundaries, for each
visible structure listed in liver.

• Consider the structure’s center or most prominent area when deciding its location.
• Choose the single option from the list below that best describes the location, even if

the fit is approximate.

Location Options:
• upper left
• upper center
• upper right
• middle left
• center
• middle right
• lower left
• lower center
• lower right
• not visible

Output format: only one or two word(s) representing the chosen location. No additional text
or formatting is allowed.
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Prompt Template used for keypoint detection

You are a radiologist analyzing an ultrasound image of the heart.

Your task is to determine the top inner point of the aortic valve.
• Consider the structure’s center or most prominent area when deciding its location.
• Choose the single option from the list below that best describes the location, even if

the fit is approximate.

Location Options:
• upper left
• upper center
• upper right
• middle left
• center
• middle right
• lower left
• lower center
• lower right
• not visible

Output format: only one or two word(s) representing the chosen location. No additional text
or formatting is allowed.

Prompt Template used for caption generation

You are a radiologist analyzing an ultrasound image focused on the {anatomy_location}.

Your task is to generate a concise and informative caption that accurately describes the key
anatomical structures and any significant findings visible in the provided ultrasound image.

Output format: A single string constituting the image caption. Output only the generated cap-
tion text itself. Do not include any introductory phrases (like C̈aption:)̈, labels, explanations,
or additional formatting.

Examples:
Example1: Thyroid nodule in the right lobe. TI-RADS level 3, Benign.
Example2: Thyroid nodule in the left lobe. TI-RADS level 3, Benign.
Example3: Thyroid nodule in the right lobe. TI-RADS level 4, Benign.
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Prompt Template used for report generation

You are a radiologist analyzing an ultrasound image focused on the {anatomy_location}.

Your task is generate a concise and informative radiological report based strictly on the
visual findings within the provided image. Your report should describe the primary organ’s
appearance (size, shape, borders/capsule), its parenchymal echotexture (e.g., homogeneous,
heterogeneous, echogenicity relative to reference structures), and identify any visible abnor-
malities (e.g., masses, cysts, fluid collections, calcifications, ductal dilation). Comment on
relevant adjacent structures if visualized. Use standard radiological terminology.

Output format: Strings, that is your report.

Example: The liver morphology is full with a smooth capsule. The parenchymal echotexture
is fine and diffusely increased. Visualization of the portal venous system is suboptimal.
Intrahepatic and extrahepatic bile ducts are not dilated. The main portal vein diameter is
within normal limits. The gallbladder is normal in size and shape. The wall is smooth and not
thickened. No obvious abnormal echoes are seen within the lumen. The pancreas is normal
in size and shape with homogeneous parenchymal echotexture. The pancreatic duct is not
dilated. No definite space-occupying lesion is seen within the pancreas. The spleen is normal
in size and shape with homogeneous parenchymal echotexture. No obvious space-occupying
lesion is seen within the spleen.
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E Causal Analysis in Details

In this appendix, we provide a detailed causal interpretation of our prompt ablation experiment, based
on structural causal modeling and informed by recent advances in causal prompting methods [86] for
large language models (LLMs).

Structural Causal Model. Let X denote the prompt formulation (with or without anatomy), A
the model’s output (e.g., prediction correctness), and U an unobserved confounder encapsulating
latent model biases or corpus priors. We assume a structural causal model (SCM) with the graph
X ← U → A and X → A, indicating that the observed association between X and A may be
confounded by U .

Causal Estimation via Front-Door Adjustment. Since U is unobserved and cannot be directly
conditioned on, traditional back-door adjustment is infeasible. However, the causal prompting
framework suggests that under front-door conditions, we can still estimate the causal effect of X on
A by conditioning on an observed mediator R that lies on the causal path X → R→ A [86].

In our case, we do not explicitly use a chain-of-thought as a mediator, but we achieve equivalent
control via a paired evaluation design, where each input image xi is processed under both prompt
conditions (P2 = 1) and (P2 = 0). Since the image and model remain unchanged across conditions,
this implicitly blocks the back-door path through U , allowing us to estimate the interventional effect
P (A | do(P2)) as:

E[A1 −A0] ≈ P (A | do(P2 = 1))− P (A | do(P2 = 0)) (4)

Justifying the Ignorability of the Confounder. Our analysis relies on the key assumption that the
confounder U is shared across paired samples. That is, any latent bias in the model remains fixed for
a given input xi regardless of the prompt variant. This symmetry mirrors the assumptions made in
front-door adjustment where the mediator R is used to block paths from U to A [86]. By controlling
X while holding U constant through sample pairing, we achieve a quasi-interventional setting:

A1 −A0 = f(P2 = 1, U)− f(P2 = 0, U) (5)

This allows the confounding effect of U to cancel out.

McNemar’s Test for Effect Significance. To test whether the effect of including anatomical tokens
is statistically significant, we apply McNemar’s test to paired binary outcomes across 521 samples.
This evaluates the asymmetry of correct predictions between the two prompt settings. A significant
χ2 statistic (16.04, p < 10−4) confirms a causal relationship between X and A.

Conclusion. Inspired by the front-door adjustment framework, our paired evaluation design pro-
vides a valid estimation of the causal effect of prompt modification, without requiring access to
the confounder U . This supports the claim that including anatomy information in the prompt has a
positive causal effect on model accuracy in ultrasound understanding.
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F Dataset Details and License

Table 6: Summary of Annotated Datasets Used in U2-BENCH

Dataset Anatomy Clinical scenarios Task Case License

FETAL PLANES
DB [12]

Fetal abdomen
Fetal brain
Fetal femur
Fetal thorax
Maternal cervix
other

Fetal standard plane identification VRA 137 CCA 4.0I

DDTI [57] thyroid Thyroid nodule identification
Thyroid nodule localisation

VRA
LL

110 -

The Open Kidney
US Dataset [68] kidney Kidney detection

Kidney Diag view identification
VRA
OD

110 CC BY-NC-
SA

FPUS23 [58]

Fetal abdomen
Fetal arm
Fetal head
Fetal legs

Fetal diagnostic planes identifica-
tion
Fetal US report generation

VRA
RP

752 MIT

Echogenic [19] Fetal abdomen Fetal abdominal organ detection OD 102 CCA 4.0

FALLMUD [24] Crural muscles Muscle detection OD 100 -

Micro-US Prostate
Segmentation
Dataset [64]

Prostate Prostate localisation
Prostate Diag view identification

VRA
LL

110 CCA 4.0I

CAMUS [39]

Heart ED
Heart ES
Heart 2CH
Heart 4CH

Heart ejection fraction estimation
Heart atrium and ventricle localisa-
tion

VRA
OD
CVE

316 CC BY-NC-
SA 4.0

Breast Lesion
Detection in US
Videos [44]

Breast benign
Brest malignant Breast lesion classification Diag 171 -

Breast US Images
Dataset [2] Breast

Breast cancer level classification
Breast tumour localisation
Brest Diag view identification

Diag
VRA
LL

210 CC0: PD

Dermatologic Ultra-
sound Images for
classification [38]

Skin Skin tumor level classification Diag 100 -

Polycystic Ovary
Ultrasound Images
Dataset [77]

Ovary Polycystic Ovary Syndrome locali-
sation VRA 10 CC0: PDD

CUBS [50] Carotid
Carotid thickness estimation
Carotid detection
Catotid Diag view identification

VRA
OD
CVE

681 CCA 4.0I

Continued on next page
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(Continued) Table 6

Dataset Anatomy Clinical scenarios Task Case License

Knee US dataset in
a population-based
cohort [53]

Knee

Knee US KL and pain grad classifi-
cation
Knee Diag view identification
Knee lesion localisation

Diag
VRA
OD

326 CC0 1.0

HC18 [28] Fetal head Fetal head circumference estimation
Fetal head detection

OD
CVE

202 CCA 4.0I

KFGNet [52] Thyroid Thyroid nodule level classification
Thyroid nodule localisation

Diag
LL

206 -

Thyroid [36] Thyroid Left
Thyroid right Thyroid Diag view identification VRA 563 CC BY

GDPHSYSUCC [51] Breast Breast lesion classification Diag 109 -

LEPset [43] Pancreas Pancreatic cancer classification Diag 101 CCA 4.0I

COVID-
BLUES [76] Lung

COVID-19 level classification
Lung US caption generation
Lung Diag view identification

Diag
VRA
CG

318 ANN 4.0 I

Ultrasound Guided
Regional Anesthe-
sia [72]

Brachial plexus Brachial plexus detection OD 179 Non-
commerical

Unity Imaging Col-
laborative [67] Cardiac Caridac Keypoint Detection KD 500 CCANN

4.0 I

C-TRUS
Dataset [40] Colon Colon wall detection OD 166 -

ACOUSLIC-
AI [61] Fetal abdominal

Fetal abdominal circumference esti-
mation
Fetal adominal OD

VRA
OD
CVE

310 CCANCSA
4.0I

PSFHS [7]
Fetal head
Fetal pubic sym-
physis

Fetal head detection
Fetal pubic symphysis detection OD 100 CCA 4.0I

JNU-IFM [48]
Fetal head
Fetal pubic sym-
physis

Fetal view identification
Fetal head detection
Fetal pubic symphysis detection

VRA
OD

202 CC BY 4.0

Dataset of B-mode
fatty liver US im-
ages [13]

Liver
Liver steatosis classification
Liver fat value estimation
Liver Diag view identification

Diag
VRA
CVE

222 CCA 4.0I

African Fetal Stan-
dard Plane [63]

Fetal abdomen
Fetal brain
Fetal femur
Fetal thorax

Fetal standard plane identification VRA 10 CCA 4.0I

BrEaST [56] Breast Breast LL LL 100 CC BY 4.0

Continued on next page
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(Continued) Table 6

Dataset Anatomy Clinical scenarios Task Case License

Ultrasound Breast
Images for Breast
Cancer [60]

Breast Breast cancer classification Diag 100 CC0: PD

US simulation and
segmentation [73] Abdominal Abdominal OD OD 100 -

Carotid Artery Ul-
trasound and Color
Doppler [55]

External carotid
left carotid
right carotid

Carotid Diag view identification VRA 100 Apache 2.0

AUITD [49] Thyroid Thyroid lesion classification Diag 100 -

Auto-PCOS classifi-
cation [49] Ovary

Polycystic Ovary Syndrome classifi-
cation
Ploycystic Diag view identification

Diag
VRA

218 CCA 4.0I

Auto-PCOS classifi-
cation [49] Ovary Polycystic Ovary Syndrome classifi-

cation
Diag 100 CC BY 4.0
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