
Published as a conference paper at ICLR 2022

NEUPL: NEURAL POPULATION LEARNING

Siqi Liu
University College London
DeepMind
liusiqi@google.com

Luke Marris
University College London
DeepMind
marris@google.com

Daniel Hennes
DeepMind
hennes@google.com

Josh Merel∗
DeepMind
jsmerel@gmail.com

Nicolas Heess
DeepMind
heess@google.com

Thore Graepel†
University College London
t.graepel@ucl.ac.uk

ABSTRACT

Learning in strategy games (e.g. StarCraft, poker) requires the discovery of diverse
policies. This is often achieved by iteratively training new policies against existing
ones, growing a policy population that is robust to exploit. This iterative approach
suffers from two issues in real-world games: a) under finite budget, approximate
best-response operators at each iteration needs truncating, resulting in under-trained
good-responses populating the population; b) repeated learning of basic skills at
each iteration is wasteful and becomes intractable in the presence of increasingly
strong opponents. In this work, we propose Neural Population Learning (NeuPL)
as a solution to both issues. NeuPL offers convergence guarantees to a population
of best-responses under mild assumptions. By representing a population of policies
within a single conditional model, NeuPL enables transfer learning across policies.
Empirically, we show the generality, improved performance and efficiency of
NeuPL across several test domains1. Most interestingly, we show that novel
strategies become more accessible, not less, as the neural population expands.

The need for learning not one, but a population of strategies is rooted in classical game theory.
Consider the purely cyclical game of rock-paper-scissors, the performance of individual strate-
gies is meaningless as improving against one entails losing to another. By contrast, performance
can be meaningfully examined between populations. A population consisting of pure strategies
{rock, paper} does well against a singleton population of {scissors} because in the meta-game where
both populations are revealed, a player picking strategies from the former can always beat a player
choosing from the latter2. This observation underpins the unifying population learning framework of
Policy Space Response Oracle (PSRO) where a new policy is trained to best-respond to a mixture
over previous policies at each iteration, following a meta-strategy solver (Lanctot et al., 2017). Most
impressively, Vinyals et al. (2019) explored the strategy game of StarCraft with a league of policies,
using a practical variation of PSRO. The league counted close to a thousand sophisticated deep RL
agents as the population collectively became robust to exploits.

Unfortunately, such empirical successes often come at considerable costs. Population learning
algorithms with theoretical guarantees are traditionally studied in normal-form games (Brown, 1951;
McMahan et al., 2003) where best-responses can be solved exactly. This is in stark contrast to
real-world Game-of-Skills (Czarnecki et al., 2020) — such games are often temporal in nature, where
best-responses can only be approximated with computationally intensive methods (e.g. deep RL). This
has two implications. First, for a given opponent, one cannot efficiently tell apart good-responses that
temporarily plateaued at local optima from globally optimal best-responses. As a result, approximate
best-response operators are often truncated prematurely, according to hand-crafted schedules (Lanctot
et al., 2017; Mcaleer et al., 2020). Second, real-world games often afford strategy-agnostic transitive

∗Currently at Reality Labs, work carried out while at DeepMind.
†Work carried out while at DeepMind.
1See https://neupl.github.io/demo/ for supplementary illustrations.
2This is formally quantified by Relative Population Performance, see Definition A.1 (Balduzzi et al., 2019).

1

https://neupl.github.io/demo/

Published as a conference paper at ICLR 2022

1

2

3

1⁄3 1⁄3 1⁄3
1⁄3 1⁄3 1⁄3
1⁄3 1⁄3 1⁄3

Population Self-Play

1

2

3

0 1 0
0 0 1
1 0 0

Strategic Cycle

1

2

3

0 0 0
1 0 0
1⁄2 1⁄2 0

Fictitious Play

1

2

3

1− p

p

0 0 0
1 0 0
p 1− p 0

PSRO-NASH

Figure 1: Popular population learning algorithms implemented as directed interaction graphs (Bot-
tom), or equivalently, a set of meta-game mixture strategies Σ ∈ R3×3 := {σi}3i=1 (Top). A directed
edge from i to j with weight σij indicates that policy i optimizes against j, with probability σij .
Unless labeled, out edges from each node are weighted equally and their weights sum up to one.

skills that are pre-requisite to strategic reasoning. Learning such skills from scratch at each iteration
in the presence of evermore skillful opponents quickly becomes intractable beyond a few iterations.

This iterative and isolated approach is fundamentally at odds with human learning. For humans,
mastering diverse strategies often facilitates incremental strategic innovation and learning about
new strategies does not stop us from revisiting and improving upon known ones (Caruana, 1997;
Krakauer et al., 2006). In this work, we make progress towards endowing artificial agents with
similar capability by extending population learning to real-world games. Specifically, we propose
NeuPL, an efficient and general framework that learns and represents diverse policies in symmetric
zero-sum games within a single conditional network, using the computational infrastructure of simple
self-play (Section 1.2). Theoretically, we show that NeuPL converges to a sequence of iterative
best-responses under certain conditions (Section 1.3). Empirically, we illustrate the generality of
NeuPL by replicating known results of population learning algorithms on the classical domain of rock-
paper-scissors as well as its partially-observed, spatiotemporal counterpart running-with-scissors
(Vezhnevets et al., 2020) (Section 2.1). Most interestingly, we show that NeuPL enables transfer
learning across policies, discovering exploiters to strong opponents that would have been inaccessible
to comparable baselines (Section 2.2). Finally, we show the appeal of NeuPL in the challenge domain
of MuJoCo Football (Liu et al., 2019) where players must continuously refine their movement skills
in order to coordinate as a team. In this highly transitive game, NeuPL naturally represents a short
sequence of best-responses without the need for a carefully chosen truncation criteria (Section 2.4).

1 METHODS

Our method is designed with two desiderata in mind. First, at convergence, the resulting population of
policies should represent a sequence of iterative best-responses under reasonable conditions. Second,
transfer learning can occur across policies throughout training. In this section, we define the problem
setting of interests as well as necessary terminologies. We then describe NeuPL, our main conceptual
algorithm as well as its theoretical properties. To make it concrete, we further consider deep RL
specifically and offer two practical implementations of NeuPL for real-world games.

1.1 PRELIMINARIES

Approximate Best-Response (ABR) in Stochastic Games We consider a symmetric zero-sum
Stochastic Game (Shapley, 1953) defined by (S,O,X ,A,P,R, p0) with S the state space, O the
observation space and X : S → O × O the observation function defining the (partial) views of
the state for both players. Given joint actions (at, a

′
t) ∈ A × A, the state follows the transition

distribution P : S ×A×A → Pr(S). The reward functionR : S → R× R defines the rewards for
both players in state st, denotedR(st) = (rt,−rt). The initial state of the environment follows the
distribution p0. In a given state st, players act according to policies (π(·|o≤t), π′(·|o′≤t)). Player π
achieves an expected return of J(π, π′) = Eπ,π′ [

∑
t rt] against π′. Policy π∗ is a best response to π′

2

Published as a conference paper at ICLR 2022

if ∀π, J(π∗, π′) ≥ J(π, π′). We define π̂ ← ABR(π, π′) with J(π̂, π′) ≥ J(π, π′). In other words,
an ABR operator yields a policy π̂ that does no worse than π, in the presence of an opponent π′.

Meta-game Strategies in Population Learning Given a symmetric zero-sum game and a set of N
policies Π := {πi}Ni=1, we define a normal-form meta-game where players’ i-th action corresponds
to executing policy πi for one episode. A meta-game strategy σ thus defines a probability assignment,
or an action profile, over Π. Within Π, we define U ∈ RN×N ← EVAL(Π) to be the expected
payoffs between pure strategies of this meta-game or equivalently, Uij := J(πi, πj) in the underlying
game. We further extend the ABR operator of the underlying game to mixture policies represented by
σ, such that π̂ ← ABR(π, σ,Π) with Eπ′∼P (σ)[J(π̂, π′)] ≥ Eπ′∼P (σ)[J(π, π′)]. Finally, we define
f : R|Π|×|Π| → R|Π| to be a meta-strategy solver (MSS) with σ ← f(U) and F : RN×N → RN×N
a meta-graph solver (MGS) with Σ ← F(U). The former formulation is designed for iterative
optimization of approximate best-responses as in Lanctot et al. (2017) whereas the latter is motivated
by concurrent optimization over a set of population-level objectives as in Garnelo et al. (2021). In
particular, Σ ∈ RN×N := {σi}Ni=1 defines N population-level objectives, with πi optimized against
the mixture policy represented by σi and Π. As such, Σ ∈ RN×N corresponds to the adjacency
matrix of an interaction graph. Figure 1 illustrates several commonly used population learning
algorithms defined by Σ or equivalently, their interaction graphs.

1.2 NEURAL POPULATION LEARNING

We now present NeuPL and contrast it with Policy-Space Response Oracles (PSRO, Lanctot et al.
(2017)) which similarly focuses on population learning with approximate best-responses by RL.

Algorithm 1 Neural Population Learning (Ours)

1: Πθ(·|s, σ) . Conditional neural population net.
2: Σ := {σi}Ni=1 . Initial interaction graph.
3: F : RN×N → RN×N . Meta-graph solver.
4: while true do
5: ΠΣ

θ ← {Πθ(·|s, σi)}Ni=1 . Neural population.
6: for σi ∈ UNIQUE(Σ) do
7: Πσi

θ ← Πθ(·|s, σi)
8: Πσi

θ ← ABR(Πσi
θ , σi,Π

Σ
θ) . Self-play.

9: U ← EVAL(ΠΣ
θ) . (Optional) if F adaptive.

10: Σ← F(U) . (Optional) if F adaptive.
11: return Πθ , Σ

Algorithm 2 PSRO (Lanctot et al., 2017)
1: Π := {π0} . Initial policy population.
2: σ ← UNIF(Π) . Initial meta-game strategy.
3: f : R|Π|×|Π| → R|Π| . Meta-strategy solver.
4:
5: for i ∈ [[N]] do . N-step ABR.
6: Initialize πθi .
7: πθi ← ABR(πθi , σ,Π)
8: Π← Π ∪ {πθi}
9: U ← EVAL(Π) . Empirical payoffs.

10: σ ← f(U)

11: return Π

NeuPL deviates from PSRO in two important ways. First, NeuPL suggests concurrent and continued
training of all unique policies such that no good-response features in the population prematurely
due to early truncation. Second, NeuPL represents an entire population of policies via a shared
conditional network Πθ(·|s, σ) with each policy Πθ(·|s, σi) conditioned on and optimised against a
meta-game mixture strategy σi, enabling transfer learning across policies. This representation also
makes NeuPL general: it delegates the choice of effective population sizes |UNIQUE(Σ)| ≤ |Σ| = N
to the meta-graph solver F as σi = σj implies Πθ(·|s, σi) ≡ Πθ(·|s, σj) (cf. Section 2.1). Finally,
NeuPL allows for cyclic interaction graphs, beyond the scope of PSRO. We discuss the generality of
NeuPL in the context of prior works in further details in Appendix D.

N-step Best-Responses via Lower-Triangular Graphs A popular class of population learning
algorithms seeks to converge to a sequence of N iterative best-responses where each policy πi
is a best-response to an opponent meta-game strategy σi with support over a subset of the policy
population Π<i = {πj}j<i. In NeuPL, this class of algorithms are implemented with meta-graph
solvers that return lower-triangular adjacency matrices Σ with Σi≤j = 0. Under this constraint, σ0

becomes a zero vector, implying that Πθ(·|s, σ0) does not seek to best-respond to any policies. Similar
to the role of initial policies {π0} in PSRO (Algorithm 2), Πθ(·|s, σ0) serves as a starting point for
the sequence of N-step best-responses and any fixed policy can be used. We note that this property
further allows for incorporating pre-trained policies in NeuPL, as we discuss in Appendix D.1.

3

Published as a conference paper at ICLR 2022

Algorithm 3 A meta-graph solver implementing PSRO-NASH.

1: function FPSRO-N(U) . U ∈ RN×N the empirical payoff matrix.
2: Initialize meta-game strategies Σ ∈ RN×N with zeros.
3: for i ∈ {1, . . . , N − 1} do
4: Σi+1,1:i ← SOLVE-NASH(U1:i,1:i) . LP Nash solver, see Shoham & Leyton-Brown (2008).
5: return Σ

One prominent example is PSRO-NASH, where πi is optimized to best-respond to the Nash mixture
policy over Π<i. This particular meta-graph solver is shown in Algorithm 3.

1.3 CONVERGENCE TO N-STEP BEST-RESPONSES VIA NEUPL

Under certain assumptions on the best-response operator, interaction graph, and meta-graph solver
(MGS) we can construct proofs that NeuPL converges to an N -step best-response. We introduce the
term grounded (Section C) to refer to interaction graphs and MGS that have a structure that imposes
convergence to a unique set of policies. Certain interaction graphs are grounded, in particular, lower-
triangular graphs are one such class which describe an N -step best response. In addition, certain
MGSs are grounded, in particular, ones that operate on the sub-payoff and output a lower-triangular
interaction graph, F : U<i,<i → Σi,<i. The lower-triangular maximum entropy Nash equilibrium
(MENE) is one such grounded MGS. Therefore with sufficiently large N , NeuPL will converge to a
normal-form Nash equilibrium. See Section C for the full definitions, theorems and proofs.

1.4 NEURAL POPULATION LEARNING BY RL

We now define the discounted return maximized by Πθ(·|o≤t, σi) in Equation 1. We denote P (σi) as
the probability distribution over policy i’s opponent identities σj ∈ {σ1, . . . , σN}. Intuitively, each
policy is maximizing its expected returns in the underlying game under a double expectation: the
first is taken over its opponent distribution, with σj ∼ P (σi) and the second taken under the game
dynamics partly defined by the pair of policies (Πθ(·|o≤t, σi),Πθ(·|o′≤t, σj)).

Jσi = E
σj∼P (σi)

[
E

a∼Πθ(·|o≤t,σi),a′∼Πθ(·|o′≤t,σj)

[∑
t

rtγ
t
]]

(1)

To optimize ΠΣ
θ by RL, we jointly train an opponent-conditioned action-value3 function, approx-

imating the expected return of choosing an action at given an observation history o≤t, follow-
ing Πθ(·|o≤t, σi) thereafter in the presence of Πθ(·|o′≤t, σj), denoted by Q(o≤t, at, σi, σj) =

EΠθ(·|o,σi),Πθ(·|o′,σj)[
∑t+T
τ=t γ

τ−trτ |o≤t, at] with γ the discount factor. In the case of ABR by
deep RL, we could additionally approximate the expected payoffs matrix U by learning a payoff esti-
mator φω(σi, σj) minimizing the loss Lij = Eo∼D

[
(φω(σi, σj)−Ea∼Πθ(·|o,σi)[Qθ(o, a, σi, σj)])

2
]

where the expectation is taken over the state visitation distribution D defined by the pair of policies
and the environment dynamics P . In other words, φω(σi, σj) approximates the expected return of
Πθ(·|o≤, σi) playing against Πθ(·|o′≤, σj). By connecting payoff matrix U to the learned Q function,
we can evaluate U efficiently, without explicitly evaluating all policies at each iteration.

Finally, we propose Algorithm 4 in the setting where the meta-graph solver Σconst ← F(U) is a
constant function and extends it to Algorithm 5 where the meta-graph solver is adaptive in U . For
instance, population learning algorithms such as Fictitious Play (Brown, 1951) implement static
interaction graphs while algorithms such as PSRO (Lanctot et al., 2017) rely on adaptive MGS.

2 EXPERIMENTS

In this section, we validate different contributions of NeuPL across several domains. First, we
verify the generality of NeuPL from two aspects: a) NeuPL recovers expected results of existing
population learning algorithms (Brown, 1951; Heinrich et al., 2015; Lanctot et al., 2017) on the

3We present the case for an action-value function but a value function could be used instead.

4

Published as a conference paper at ICLR 2022

Fictitious PlayStrategic CycleSelf-Play

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PS

R

PSFigure 2: Neural Population Learning in rock-paper-scissors induced by static interaction graphs.
Policy distributions are colored by training iteration from red (earliest) to green (latest). (Left)
learning by self-play. (Middle) a neural population of 4 strategies exploring a strategic cycle. (Right)
a neural population of 6 strategies iteratively best respond to the average previous strategies.

classical game of rock-paper-scissors where we can visualize the learned policy population over
time and; b) NeuPL generalises to the spatiotemporal, partially observed strategy game of running-
with-scissors (Vezhnevets et al., 2020), where players must infer opponent behaviours through
tactical interactions. Second, we show that NeuPL induces skill transfer across policies, enabling
the discovery of exploiters to strong opponents that would have been out-of-reach otherwise. This
property translates to improved efficiency and performance compared to PSRO-NASH baselines, even
under favorable conditions. Lastly, we show that NeuPL scales to the large-scale Game-of-Skills of
MuJoCo Football (Liu et al., 2019) where a concise sequence of best-responses are learned, reflecting
the prominent transitive skill dimension of the game.

In all experiments, we use Maximum A Posterior Optimization (MPO, Abdolmaleki et al. (2018)) as
the underlying RL algorithm, though any alternative can be used instead. Similarly, any conditional
architecture can be used to implement ΠΣ

θ . Our specific proposal reflects the spinning-top geometry
(Czarnecki et al., 2020) so as to encourage positive transfers across polices. Further discussions on
the network design is available in Appendix B.2.

2.1 IS NEUPL GENERAL?

Static Interaction Graphs Figure 2 illustrates the effect of NEUPL-RL-STATIC implementing
popular population learning algorithms in the purely cyclical game of rock-paper-scissors. Figure 2
(Left) shows that learning by self-play leads to the policy cycling through the strategy space indef-
initely, as expected in such games (Balduzzi et al., 2019). By contrast, Figure 2 (Middle) shows
the effect of a specialized graph that encourages the discovery of a strategic cycle as well as a final
strategy that trains against the others equally. As a result, we obtain a population that implements the
pure strategies of the game as well as an arbitrary strategy. This final strategy needs not be the Nash
of the game as any strategy would achieve a return of zero. Finally, Figure 2 (Right) recovers the
effect of Fictitious Play (Brown, 1951; Heinrich et al., 2015) where players at each iteration optimize
against the “average” previous players. We initialize the initial sink strategy to be exploitable, heavily
biased towards playing rock4. The resulting population, represented by {Πθ(a|o≤, σi)}6i=1, learned
to execute 6 strategies, starting with “pure-rock” which is followed by its best-response “pure-paper”,
with subsequent strategies gravitating towards the Nash equilibrium (NE) of this game.

Adaptive Interaction Graphs Figure 3 illustrates that NEUPL-RL-ADAPTIVE with FPSRO-N
recovers the expected result of PSRO-NASH in rock-paper-scissors. Specifically, the first three
strategies gradually form a strategic cycle and converge to the pure strategies of the game. As the
cycle starts to form, the final strategy, best-responding to the NE over previous ones, shifted to
optimize against a mixture of pure strategies. These results further highlight an attractive property of
NeuPL — the number of distinct strategies represented by the neural population grows dynamically
in accordance with the meta-graph solver (comparing Σ at epoch 0 and 71). In particular, a distinct

4This choice is important: had the sink strategy been initialized to be the Nash mixture strategy, subsequent
strategies would be “uninteresting” as no strategy can improve upon the sink strategy.

5

Published as a conference paper at ICLR 2022

R

PS
1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

epoch 0

R

PS

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

epoch 71

R

PS

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

epoch 142

R

PS

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

epoch 214

R

PS

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

epoch 285

R

PS

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

epoch 357

R

PS

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

epoch 428

R

PS

0

1

2

3

strategy

−1

0

1

payoff

1 2 3 4

1

2

3

4

0.0

0.5

1.0

weight

1 2 3 4

1

2

3

4

epoch 499

Figure 3: NeuPL in rock-paper-scissors induced by an adaptive interaction graph implementing
PSRO-NASH. An epoch lasts 10 iterations. (Top) strategy space explored by the neural population
of strategies over time. (Middle) the learned payoff estimates between the population of strategies.
(Bottom) Adjacency matrices representing interaction graphs as responses to payoff matrices.

objective for strategy i + 1 is introduced if and only if Πθ(·|o≤, σi) gains support in the NE over
Π

Σ≤i
θ . Unlike prior works (Lanctot et al., 2017; Mcaleer et al., 2020), the effective population size

is driven by the meta-graph solver, rather than handcrafted truncation criteria. This is particularly
appealing in real-world games, where we cannot efficiently determine if a policy has converged to a
best-response or temporarily plateaued at local optima. In NeuPL, one needs to specify the maximum
number of policies N to be represented in the neural population, yet the population need not optimize
N distinct objectives at the start, nor is it required to converge to N distinct policies at convergence.
The number of distinct polices represented in the neural population is a function of the strategic
complexity of the game, the capacity of the neural network, the effectiveness of the ABR operator and
the nature of the meta-graph solver. We recall this property in running-with-scissors and in MuJoCo
Football, which afford varying degrees of strategic complexities.

Stochastic Games running-with-scissors (Vezhnevets et al., 2020) extends rock-paper-scissors to
the spatiotemporal and partially-observed setting. Using first-person observations of the game (a 4x4
grid in front of the agent), each player collects resources representing “rock”, “paper” and “scissors”
so as to counter its opponent’s hidden inventory. At the end of an episode or when players confront
each other through “tagging”, players compare their inventories and receive rewards accordingly. To
do well, one must infer opponent behaviours from its partial observation history o≤t — if “rock”s
went missing, then the opponent may be collecting them; if the opponent ran past “scissors”, then it
may not be interested in it. We describe the environment in details in Appendix B.1. Figure 4 shows
that NeuPL with FPSRO-N leads to a population of sophisticated policies. As before, we set the initial
sink policy to be exploitable and biased towards picking up “rock”s. Early in training, we note that
the first three policies of the neural population implement the pure-resource policies of “rock”, “paper”
and “scissors” respectively, as evidenced by their relative payoffs. In contrast to rock-paper-scissors,
the mixture of pure-resource policies is exploitable in the sequential setting, where the player can
observe its opponent before implementing a counter strategy. Indeed, policy Πθ(·|o≤, σ4) observes
and exploits, beating the mixture policies at epoch 680. Following FPSRO-N, Πθ(·|o≤, σ5) updates its
objective to focus solely on this newfound NE over ΠΣ<5

θ , developing a deceptive counter strategy.

Figure 5 (Left) quantitatively verify that NeuPL implementing FPSRO-N indeed induces a policy popu-
lation that becomes robust to adversarial exploits as the population expands. To this end, we compare
independent policy populations by their Relative Population Performance (RPP5, Appendix A.1)
across 4 independent NeuPL experiments with different maximum population sizes. As expected,
we observe that neural populations representing more best-response iterations are less exploitable.
Additionally, a population size greater than 8 has limited impact on learning, both in terms of marginal
exploitability benefits and rate of improvement against smaller populations (shown in blue and or-
ange). This further mitigate the concern of using a larger maximum population size than necessary.
In fact, Figure 5 (Right) shows that the effective population sizes |UNIQUE(Σ)| plateau at 12 across
maximum neural population sizes. We hypothesise that this is due to the increased difficulty in

5A negative RPP(B,D) implies that all mixture policies in B are exploitable by a mixture policy in D.

6

Published as a conference paper at ICLR 2022

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

epoch 0

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

epoch 340

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

epoch 680

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

epoch 1020

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

epoch 1361

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

epoch 1701

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

epoch 2041

−20

0

20

payoff

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0.0

0.5

1.0

graph

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

epoch 2382

Figure 4: A NeuPL population developing an increasingly sophisticated set of diverse policies in
running-with-scissors. The interaction graph is updated every 1,000 gradient updates (an epoch).
(Top) the learned payoff estimates U between the neural population of policies as training progresses.
(Bottom) interaction graphs Σ← FPSRO-N(U) as a response to the corresponding payoff matrix.

discovering reliable exploiter beyond 12 iterations in this domain — FPSRO-N forms a curriculum
where new objectives are introduced if and only if the induced meta-game contains novel meta-game
strategies worth exploiting, regardless of the maximum population size specified. We emphasize that
the only variable across these independent runs is their respective maximum neural population size.

0 400,000 800,000 1,200,000 1,600,000 2,000,000
gradient step

2

4

6

8

10

12

14

Ef
fe
ct
iv
e
Po
pu
la
tio
n
Si
ze

4
8
16
32

max population size

Effective Neural Population Size through Training

0 400,000 800,000 1,200,000 1,600,000 2,000,000
gradient step

−40

−30

−20

−10

0

R
el
at
iv
e
Po
pu
la
tio
n
Pe
rf
or
m
an
ce

4
8
16
32

02-vs-
8
16
32

04-vs-
16
32

08-vs-
32

16-vs-

Relative Population Performance through Training

Figure 5: (Left) Relative Population Performance comparing independent NeuPL runs of different
maximum population sizes. (Right) Effective population size over time, driven by FPSRO-N.

2.2 DOES NEUPL ENABLE TRANSFER LEARNING ACROSS POLICIES?

In contrast to prior works that train new policies iteratively from scratch, NeuPL represents diverse
policies with explicit parameter sharing. Figure 6 compares the two approaches and illustrates the
significance of transfer learning across iterations. Specifically, we verify that the shared representation
learned by training against fewer, weaker policies early in training, facilitates the learning of exploiters
to stronger, previously unseen opponents. To this end, a set of randomly initialized MPO agents with
partially transferred parameters from different epochs of the experiment shown in Figure 4 are trained
against fixed mixture policies defined by ΠΣ∗

θ∗ , with θ∗ and Σ∗ = FPSRO-N(U∗) obtained at epoch
1,200 of the same experiment. In other words, the objective for each agent is to beat a fixed NE over
pre-trained policies {Πθ∗(a|o≤, σ∗k)}nk=1, with a specific n. Figure 6 shows the learning progressions
of the agents for n ∈ {2, 4, 7}, with transferred parameters taken at epoch 0 (red) upto 1,000 (green).

Against an easily exploitable opponent mixture (NE over the first two pure-resource policies), an
agent with randomly initialized parameters (red) remains capable of learning an effective best
response, albeit at a slower pace. This difference becomes much more apparent against competent
mixture policies that execute sophisticated strategies (NE over the first 4 or 7 policies) — the
randomly initialized agent failed to counter its opponent despite prolonged training while agents with
partially transferred parameters successfully identified exploits, leveraging effective representation
of the environment dynamics and of diverse opponent strategies. By transferring skills that support
sophisticated strategic decisions across iterations, NeuPL enables the discovery of novel policies that
are inaccessible to a randomly initialized agent. In other words, learning incremental best responses

7

Published as a conference paper at ICLR 2022

0k 200k 400k
gradient step

0

10

20

30

40

50

ep
is
od
e
re
w
ar
d

0k 200k 400k
gradient step

0

10

20

30

40

50

ep
is
od
e
re
w
ar
d

0k 200k 400k
gradient step

�10

�5

0

5

10

15

20

25

ep
is
od
e
re
w
ar
d

0
200
400
600
800
1,000

from epoch

Transfer from NeuPL agent at different epochs to MPO agents

Encoder

Memory

st-1 st

ot

Policy

atgk

Encoder

Memory

st-1 st

ot

Policy

atgk

Encoder

Memory

st-1 st

ot

Policy

atσk

Encoder

Memory

st-1 st

ot

Policy

at

initialize

initialize

params. epoch

Against Nash with n=2 Against Nash with n=4 Against Nash with n=7

Figure 6: Learning progression of exploiters against incremental Nash mixture policies obtained via
NeuPL training (as shown in Figure 4). The red curve corresponds to learning an exploiter from
random initialization fully and the green curve corresponds to transferring encoder and memory
components from the trained NeuPL network at epoch 1,000. Each experiment is repeated five times.

becomes easier, not harder, as the population expands. This is particularly attractive in games where
strategy-agnostic skill learning is challenging in itself (Vinyals et al., 2019; Liu et al., 2021).

2.3 DOES NEUPL OUTPERFORM COMPARABLE BASELINES?

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 1,600,000 1,800,000 2,000,000

gradient step

−5

0

5

10

R
e
la
ti
v
e

 P
o
p
u
la
ti
o
n

 P
e
rf
o
rm
a
n
c
e

0

2

4

6

8

E
ffe
c
tiv
e

 P
o
p
u
la
tio
n

 s
iz
e

P
S
R
O
[-C

]@
1
0
0
K

P
S
R
O
[-C

]@
2
0
0
K

PSRO-C@100k

PSRO-C@200k

PSRO@100k

PSRO@200k

Experiment

Evaluating a NeuPL population at different steps against fixed PSRO policy populations obtained after 8 iterations.

Figure 7: Relative Population Performance between a NeuPL population and policy populations
obtained in PSRO baselines. Each PSRO variant is repeated over 3 trials, shown in shades.

We compare a NeuPL population implementing FPSRO-N to 4 comparable baselines implementing
variants of PSRO. Since PSRO does not prescribe a truncation criteria at each iteration, we investigate
PSRO baselines with 100k and 200k gradient steps per iteration respectively. Further, we consider
the effect of continued training across iterations, by initializing new policies with the policy obtained
at the end of the preceding iteration instead of random initialization. We refer to this continued
variant as PSRO-C. All PSRO populations are initialized with the same initial policy used for the
NeuPL population. Figure 7 illustrates the quantitative benefits of NeuPL, measuring RPP between a
NeuPL population of maximum population size of 8 against the final population of 8 policies obtained
via PSRO after 7 iterations. The vertical dashed lines indicate that both the NeuPL population and
the PSRO population have cumulatively undergone identical amount of training to allow for fair
comparison. In purple, we show the effective population size of the NeuPL population which has
been shown previously in Figure 5. We make the following observations: i) with a population size
of 8, the NeuPL population successfully exploits PSRO baselines representing an equal number of
policies, even if the latter performed twice as many gradient updates; ii) the increase in RPP coincides
with an increase in the effective population size, from 5 to 8, reaching the maximum number of
distinct policies that this NeuPL population can represent; iii) the amount of training each PSRO
generation received has limited impact on the robustness of policy populations at convergence. This
corroborates our observations in Figure 6, where the agent (in red) failed to exploit strong opponents
despite continued training. Interestingly, PSRO-C proves equally exploitable. We hypothesize that
the learned policies failed to develop reusable representations that can support diverse strategic
decisions. Details of the PSRO baselines across 3 seeds are available in Appendix B.4, demonstrating
the strategic complexities captured by the PSRO baseline populations.

8

Published as a conference paper at ICLR 2022

2.4 DOES NEUPL SCALE TO HIGHLY TRANSITIVE GAME-OF-SKILLS?

If a game is purely transitive, all policies share the same best-response policy. In this case, self-play
offers a natural curriculum that efficiently converges to this best-response (Balduzzi et al., 2019).
Nevertheless, this approach is infeasible in real-world games as one cannot rule out strategic cycles
in the game without exhaustive policy search. The MuJoCo Football domain (Liu et al., 2019) is one
such example: it challenges agents to continuously refine their motor control skills while coordinated
team-play intuitively suggests the presence of strategic cycles. In such games, PSRO is a challenging
proposal as it requires carefully designed truncation criteria. If an iteration terminates prematurely
due to temporary plateaus in performance, good-responses are introduced and convergence is slowed
unnecessarily; if iterations rarely terminate, then the population may unduly delay the representation
of strategic cycles. In such games, NeuPL offers an attractive proposal that retains the ability to
capture strategic cycles, but also falls back to self-play if the game appears transitive.

Figure 8 shows the learning progression of NeuPL implementing FPSRO-N in this domain, starting
with a sink policy that exerts zero torque on all actuators. We observe that Πθ(·|o≤, σ2) exploits
the sink policy by making rapid, long-range shots which is in turn countered by Πθ(·|o≤, σ3), that
intercepts shots and coordinates as a team to score. Impressively, the off-ball blue player learned to
blocked off defenders, creating scoring opportunities for its teammate. With the interaction graph
focused on the lower diagonal elements, this training regimes closely matches that of self-play.

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

2.0e+03

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1.6e+07

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

3.1e+07

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

4.7e+07

training epoch

pa
yo

ff
s

gr
ap

hs

Figure 8: NeuPL in 2-vs-2 MuJoCo Football implementing FPSRO-N. The red/blue/white traces
correspond to the trajectories of red/blue players and the ball respectively.

3 RELATED WORK

Prior works attempted at making population learning scalable, motivated by similar concerns as
ours. Mcaleer et al. (2020) proposed pipeline PSRO (P2SRO) which learns iterative best-responses
concurrently in a staggered, hierarchical fashion. P2SRO offers a principled way to make use of
additional computation resources while retaining the convergence guarantee of PSRO. Nevertheless,
it does not induce more efficient learning per unit of computation cost, with basic skills re-learned at
each iteration albeit asynchronously. In contrast, Smith et al. (2020a) focused on the lack of transfer
learning across best-response iterations and proposed “Mixed-Oracles” where knowledge acquired
over previous iterations is accumulated via an ensemble of policies. In this setting, each policy is
trained to best-respond to a meta-game pure strategy, rather than a mixture strategy as suggested
by the meta-strategy solver. To approximately re-construct a best-response to the desired mixture
strategy, Q-mixing (Smith et al., 2020b) re-weights expert policies, instead of retraining a new policy.
In comparison, NeuPL enables transfer while optimising Bayes-optimal objectives directly.

4 CONCLUSION AND FUTURE WORK

We proposed an efficient, general and principled framework that learns and represents strategically
diverse policies in real-world games within a single conditional-model, making progress towards
scalable policy space exploration. In addition to exploring suitable technique from the multi-task,
continual learning literature, going beyond the symmetric zero-sum setting remain interesting future
works, too, as discussed in Appendix D.

9

Published as a conference paper at ICLR 2022

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=S1ANxQW0b.

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien Perolat, Max Jaderberg,
and Thore Graepel. Open-ended learning in symmetric zero-sum games. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 434–443. PMLR, 09–15
Jun 2019. URL http://proceedings.mlr.press/v97/balduzzi19a.html.

George W. Brown. Iterative solution of games by fictitious play. Activity Analysis of Production and
Allocation, 1951.

Rich Caruana. Multitask learning. Mach. Learn., 28(1):41–75, July 1997. ISSN 0885-6125. doi:
10.1023/A:1007379606734. URL https://doi.org/10.1023/A:1007379606734.

Wojciech M. Czarnecki, Gauthier Gidel, Brendan Tracey, Karl Tuyls, Shayegan Omidshafiei,
David Balduzzi, and Max Jaderberg. Real world games look like spinning tops. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 17443–17454. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
ca172e964907a97d5ebd876bfdd4adbd-Paper.pdf.

Marta Garnelo, Wojciech Marian Czarnecki, Siqi Liu, Dhruva Tirumala, Junhyuk Oh, Gauthier
Gidel, Hado van Hasselt, and David Balduzzi. Pick your battles: Interaction graphs as population-
level objectives for strategic diversity. In Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’21, pp. 1501–1503, Richland, SC, 2021.
International Foundation for Autonomous Agents and Multiagent Systems. ISBN 9781450383073.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games. In
Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pp. 805–813, Lille, France,
07–09 Jul 2015. PMLR. URL http://proceedings.mlr.press/v37/heinrich15.
html.

John W Krakauer, Pietro Mazzoni, Ali Ghazizadeh, Roshni Ravindran, and Reza Shadmehr. General-
ization of motor learning depends on the history of prior action. PLOS Biology, 4(10):1–11, 09
2006. doi: 10.1371/journal.pbio.0040316. URL https://doi.org/10.1371/journal.
pbio.0040316.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Perolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3323fe11e9595c09af38fe67567a9394-Paper.pdf.

Siqi Liu, Guy Lever, Nicholas Heess, Josh Merel, Saran Tunyasuvunakool, and Thore Graepel. Emer-
gent coordination through competition. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=BkG8sjR5Km.

Siqi Liu, Guy Lever, Zhe Wang, Josh Merel, S. M. Ali Eslami, Daniel Hennes, Wojciech M.
Czarnecki, Yuval Tassa, Shayegan Omidshafiei, Abbas Abdolmaleki, Noah Y. Siegel, Leonard
Hasenclever, Luke Marris, Saran Tunyasuvunakool, H. Francis Song, Markus Wulfmeier, Paul
Muller, Tuomas Haarnoja, Brendan D. Tracey, Karl Tuyls, Thore Graepel, and Nicolas Heess.
From motor control to team play in simulated humanoid football. arXiv:2105.12196 [cs], 2021.
URL http://arxiv.org/abs/2105.12196.

10

https://openreview.net/forum?id=S1ANxQW0b
http://proceedings.mlr.press/v97/balduzzi19a.html
https://doi.org/10.1023/A:1007379606734
https://proceedings.neurips.cc/paper/2020/file/ca172e964907a97d5ebd876bfdd4adbd-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ca172e964907a97d5ebd876bfdd4adbd-Paper.pdf
http://proceedings.mlr.press/v37/heinrich15.html
http://proceedings.mlr.press/v37/heinrich15.html
https://doi.org/10.1371/journal.pbio.0040316
https://doi.org/10.1371/journal.pbio.0040316
https://proceedings.neurips.cc/paper/2017/file/3323fe11e9595c09af38fe67567a9394-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3323fe11e9595c09af38fe67567a9394-Paper.pdf
https://openreview.net/forum?id=BkG8sjR5Km
http://arxiv.org/abs/2105.12196

Published as a conference paper at ICLR 2022

Luke Marris, Paul Muller, Marc Lanctot, Karl Tuyls, and Thore Graepel. Multi-agent training
beyond zero-sum with correlated equilibrium meta-solvers. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 7480–7491. PMLR, 18–24 Jul 2021. URL
http://proceedings.mlr.press/v139/marris21a.html.

Stephen Mcaleer, JB Lanier, Roy Fox, and Pierre Baldi. Pipeline psro: A scalable approach for
finding approximate nash equilibria in large games. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 20238–20248. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/e9bcd1b063077573285ae1a41025f5dc-Paper.pdf.

H. Brendan McMahan, Geoffrey J. Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the Twentieth International Conference on
International Conference on Machine Learning, ICML’03, pp. 536–543. AAAI Press, 2003. ISBN
978-1-57735-189-4.

Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Perolat, Siqi Liu, Daniel
Hennes, Luke Marris, Marc Lanctot, Edward Hughes, Zhe Wang, Guy Lever, Nicolas Heess,
Thore Graepel, and Remi Munos. A generalized training approach for multiagent learning. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=Bkl5kxrKDr.

L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):
1095–1100, 1953. ISSN 0027-8424. doi: 10.1073/pnas.39.10.1095. URL https://www.
pnas.org/content/39/10/1095. Publisher: National Academy of Sciences _eprint:
https://www.pnas.org/content/39/10/1095.full.pdf.

Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and
logical foundations. In Multiagent systems: Algorithmic, game-theoretic, and logical foundations,
chapter 4. Cambridge University Press, 2008.

Max Smith, Thomas Anthony, and Michael Wellman. Iterative empirical game solving via single
policy best response. In International Conference on Learning Representations, 2020a.

Max Olan Smith, Thomas Anthony, Yongzhao Wang, and Michael P Wellman. Learning to play
against any mixture of opponents. arXiv preprint arXiv:2009.14180, 2020b.

Alexander Vezhnevets, Yuhuai Wu, Maria Eckstein, Rémi Leblond, and Joel Z Leibo. OPtions
as REsponses: Grounding behavioural hierarchies in multi-agent reinforcement learning. In
Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 9733–9742. PMLR, 13–
18 Jul 2020. URL http://proceedings.mlr.press/v119/vezhnevets20a.html.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

11

http://proceedings.mlr.press/v139/marris21a.html
https://proceedings.neurips.cc/paper/2020/file/e9bcd1b063077573285ae1a41025f5dc-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e9bcd1b063077573285ae1a41025f5dc-Paper.pdf
https://openreview.net/forum?id=Bkl5kxrKDr
https://openreview.net/forum?id=Bkl5kxrKDr
https://www.pnas.org/content/39/10/1095
https://www.pnas.org/content/39/10/1095
http://proceedings.mlr.press/v119/vezhnevets20a.html

Published as a conference paper at ICLR 2022

A METHODS

A.1 POPULATION LEARNING ALGORITHMS AS INTERACTION GRAPHS

Figure 1 shows several population learning algorithms represented as directed interaction graphs
(Garnelo et al., 2021). In particular, Policy Space Response Oracle with a Nash meta-game solver
(PSRO-NASH) (Lanctot et al., 2017) proposes to learn a best-response πi to the Nash equilibrium
over policies Π<i at each iteration, resulting in an adaptive interaction graph. Specifically, the
out-edges of node i+ 1 are weighted according to the Nash equilibrium over the first i policies (e.g.
shown as (1− p, p) for node 3 in Figure 1).

A.2 RELATIVE POPULATION PERFORMANCE

Relative population performance was first introduced in Balduzzi et al. (2019) as the performance
of individual agents is meaningless in purely cyclical games. Intuitively, a relative population
performance measure of v(B,D) implies that there exists a mixture policy in the population B that
achieves a payoff at least v(B,D) against all mixture policies in the opponent population D. This
measure is defined formally in Definition A.1.
Definition A.1 (Relative Population Performance). Given two populations of policies B,D and
let (p,q) be a Nash equilibrium over the zero-sum game on UB,D ∈ RM×N , Relative Population
Performance measures their relative performance: v(B,D) := pT · UB,D · q.

A.3 NEUPL WITH STATIC INTERACTION GRAPH AND ABR BY RL

In this section, we describe a specialised implementation of NeuPL given static meta-graph solvers
F with an approximate best-response operator implemented via deep Reinforcement Learning. The
algorithm is described in Algorithm 4.

Algorithm 4 Neural Population Learning by RL (static F)
1: function RUN-EPISODES(Σ,Πθ,M) . Visualized in Figure 10 (Right).
2: DΠ ← {}; DQ ← {} . Initialize actor, critic trajectory buffers.
3: for Episode ∈ {1, . . . ,M} do . Generate trajectories for M episodes.
4: Sample σi ∼ UNIQUE(Σ) uniformly (excluding sink nodes) and σj ∼ P (σi). . Match-making.
5: Sample trajectories T σi , T σj from interactions between (Πθ(·|o, σi),Πθ(·|o′, σj)).
6: DΠ ← DΠ ∪ T σi ; DQ ← DQ ∪ T σi ∪ T σj .
7: return DΠ,DQ
8:
9: function NEUPL-RL-STATIC(Σ, T) . Σ ∈ RN×N the static interaction graph.

10: Initialize Πθ(a|o, σi), the task-conditioned policy.
11: Initialize Qθ(o, a, σi, σj), the action-value function.
12: for Iteration t ∈ {1, . . . , T} do . T the number of iterations to run for.
13: DΠ,DQ ← RUN-EPISODES(Σ,Πθ,M)
14: Optimize policy Πθ from DΠ and Qθ from DQ by RL.

A.4 NEUPL WITH ADAPTIVE META-GRAPH SOLVERS AND ABR BY RL

Building on Algorithm 4, we now extend to the case of adaptive meta-graph solvers F that are
functions of empirical payoff matrices U . Specifically, the set of meta-game strategies the set of
policies seek to best-respond to are given by Σ← F(U). This algorithm is described in Algorithm 5.

B EXPERIMENTS

B.1 RUNNING-WITH-SCISSORS ENVIRONMENT

Figure 9 shows an example view of the running-with-scissors environment at the start of an episode.
The dashed squares shows the type of resources initialized in the enclosed area with some of them
consistently initialized with one type of resources while others randomly initialized with one of the

12

Published as a conference paper at ICLR 2022

Algorithm 5 Neural Population Learning by RL (adaptive F)

1: function NEUPL-RL-ADAPTIVE(F ,K, T,M, ε) . F : RN×N → RN×N .
2: Initialize Πθ(a|o≤, σi), the neural population network.
3: Initialize Qθ(o≤, a, σi, σj), the action-value function.
4: Initialize φω(σi, σj), the empirical payoff estimator.
5: Let Σc ∈ RN×N ← 1/N. . All-to-all interactions.
6: for Epoch ∈ {1, . . . ,K} do . K epochs to run.
7: ∀i, j : Uij ← φω(σi, σj) the payoff matrix over N policies. . Re-compute payoff estimates.
8: Σ ∈ RN×N ← F(U) the interaction graph over N policies. . Update the interaction graph.
9: for Iteration t ∈ {1, . . . , T} do . T iterations per epoch.

10: DΠ,DQ ← RUN-EPISODES(Σ, πθ,M × (1− ε)) . M episodes per iteration.
11: _,DεQ ← RUN-EPISODES(Σc, πθ,M × ε) . ε the prop. of evaluation episodes.
12: Optimize policy πθ from DΠ and Qθ from DQ ∪ DεQ by RL.
13: Optimize φω from DQ ∪ DεQ by minimizing Lij .

Player B view

Player A view

Rock Paper

Scissors

Random

RandomRandom
Tagging

Figure 9: An example view of the running-with-scissors environment upon initialization.

three types. On the right, we visualize the 4x4 pixel observations of the two players. The visual
observation is oriented along each player’s forward direction. In addition to the visual observations,
each player observes their current inventory of the three types of resources, expressed in terms of their
normalized ratios. Each player is initialized with an equal weight inventory at the start of an episode.
To move around, a player can turn left, turn right, strafe left, strafe right, move forward or move
backwards. Finally, each player can proactively seek out its opponent and “tag” it to terminate the
game. A player is considered tagged if it falls into the tagging area of its opponent. Bottom right view
illustrates the shape of the tagging area in front of a player. If neither player tags its opponent, the
game ends after a fixed number of 500 steps. On the terminal step, the game resolves by comparing
the inventory of both players and the rewards are assigned according to the classical anti-symmetric
payoff matrix of rock-paper-scissors. On all other steps, both players receive zero rewards.

B.2 CONDITIONAL NETWORK ARCHITECTURE FOR NEUPL

Figure 10 (Left) illustrates the general network architecture of a NeuPL population for a typical
Q-learning based RL agent. In particular, the encoder, memory and policy head network modules are
shared across all policies within the neural population with the conditioning variable σ introduced at
the final policy head layer via concatenation. This reflects the hypothetical Game-of-Skills geometry
proposed in Czarnecki et al. (2020), where each policy can be understood as a point within a
“spinning-top” volume. Each policy is interpreted as a combination of strategy-agnostic transitive
skills (e.g. movement skills for embodied agents; representational capability of past observations
in partially-observed games) and a cyclic strategic element that decides which mixture policy to
best-respond to, leveraging its transitive skills.

At a high-level, the goal of NeuPL is to represent a compact set of policies that corresponds to the
top layer of this “spinning-top” geometry, or the NE of the game. As such, our proposed conditional
network architecture facilitates the sharing of strategy-agnostic transitive skills across policies, while
isolating strategy-specific decisions that may call for different actions in the same state within the

13

Published as a conference paper at ICLR 2022

NeuPL

Encoder

Memory

ht-1 ht

Q

Πθ(a|o≤,σ)

+

+

qt
σi

σj

ot

at

Interaction
graph Σ

σ1
…
σk
…
σN

Self-Play Episode

Πθ(a|o,σi)
Πθ(a’|o’,σj)

Env.
(σi, σj)

(a, a’)

(o, o’)

θ
strategy-agnostic

transitive skills

σ
strategic cycle
(at a skill-level)

NE of the game

Figure 10: (Left) The conditional neural population network architecture for a Q-learning based
RL agent. The "

⊕
" sign denotes a concatenation of all inputs tensors and dashed components are

only used for training (and not necessary for acting); (Middle) A diagram illustrating the separation
between the strategy-agnostic transitive skill dimension captured by the shared parameters θ and
the strategic cycles captured by σ at a skill-level; (Right) A diagram illustrating the mechanism of
a NeuPL self-play episode: at the start of an episode, a pair of conditioning vectors are sampled
(σi, σj) from the interaction graph Σ. The pair of policies, using the same conditional policy network
Πθ(a|o≤, σ), act simultaneously in the environment. The circles correspond to the conditioning
vectors, observations and actions for the exploiter policy (shaded) and its opponent (blank).

final opponent-conditioned policy head network, mitigating the concern of negative transfer. We note
that while we limited ourselves to the simplest conditioning architecture in this work, investigating
conditional network architecture with suitable inductive biases could be an interesting future direction.

B.3 HYPER-PARAMETERS & TRAINING INFRASTRUCTURE

For experiments on the normal form game of rock-paper-scissors, the “Encoder” and “Memory”
components are omitted and the policy head network πθ alone is parameterized and learned, with its
only input g. The policy and action-value networks are both parameterized by 4-layer MLPs, with 32
neurons at each layer. We use a small entropy cost of 0.01, learning rates of 0.001 and 0.01 for the
main networks and the MPO dual variables (Abdolmaleki et al., 2018) respectively. As is typical
in an MPO agent, the online network parameters are copied to target networks periodically at every
10 gradient steps. For the spatiotemporal, partially observable game of running-with-scissors, we
use a small convolutional network to encode the agent’s partial observation of the environment (a
4x4 grid surrounding itself). The encoding is further concatenated with the agent’s own inventory
information and encoded through a 2-layer MLP with 256 neurons each, with relu activation. The
memory module corresponds to a recurrent LSTM network, with a hidden size of 256. The policy,
action-value networks are parameterized as 4-layer MLP networks. The learned payoff estimator
φω(σi, σj) is parameterized as a 3-layer MLP network. The learning rate of the agent networks is
set to 0.0001 while the MPO dual variables are optimized with a learning rate of 0.001. The online
network parameters are copied to target networks every 100 gradient steps. For the MuJoCo Football
environment, we used a domain specific encoder network that encodes egocentric observations
of each player individually. The state representation is then implemented as a weighted sum of
per-player embedding, using a learned attention mask. Instead of outputting a discrete categorical
action profile in each state, the policy head network is trained to output a Gaussian distribution with
learned mean and variance distribution parameters. As is common in continuous control literature,
we used elu as the activation function between network components. The rest of the network
architecture and hyper-parameters remain consistent with that of running-with-scissors. The same
network architecture and hyper-parameters are used across all experiments for the same environment.

Figure 10 (Right) illustrates how self-play experience data is generated for a NeuPL population
at training time. At the start of an episode, a pair of conditioning vectors is sampled (σi, σj) and
used to condition the pair of policies interacting in the game. In running-with-scissors, each NeuPL
experiment uses 128 actor workers running the policy environment interaction loops and a single
TPU-v2 chip running gradient updates to the agent networks. The same computational resources are

14

Published as a conference paper at ICLR 2022

s
e
e
d

Experiment

1

1

2

3

4

5

6

7

8

2

1

2

3

4

5

6

7

8

3

1

2

3

4

5

6

7

8

PSRO-C@100K PSRO-C@200K PSRO@100K PSRO@200K

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

−1

0

1

payoff

Figure 11: Visualization of empirical payoff matrices for each PSRO population after 8 iterations
across three independent trials. Each iteration lasts 100k or 200k gradient steps. PSRO-C indicates
that the policy trained at iteration i+ 1 is initialized from the policy obtained at iteration i instead of
from random initialization. A payoff of 1.0 (-1.0) indicates a win (loss) probability of 100% for the
row player.

used across different maximum population size for NeuPL as well as the PSRO baseline experiments.
For MuJoCo Football, 256 CPU actors are used per learner. For the game of rock-paper-scissors, a
single CPU worker is used instead. In running-with-scissors, all experiments converge within 2 days
wall-clock time. For all experiments using NeuPL, an evaluation split ε = 0.3 is used.

B.4 BASELINE PSRO EXPERIMENTS

Figure 11 visualizes the empirical payoff matrices obtained in 12 independent experiments. In each
experiment, we develop a discrete population of policies via 8 iterations of PSRO training. In
particular, we show the payoff matrices between trained policies where each PSRO iteration lasts
100k or 200k gradient steps. PSRO-C further shows the effect of initializing each iteration by the
policy obtained at the end of the preceding iteration instead of random initialization as prescribed in
(Lanctot et al., 2017). We note that across all experiments, policy populations successfully recover
the rock-paper-scissors dynamics among the first three policies. In most but not all trails, PSRO also
manages to learn a reliable exploiter of the mixture of the three pure strategies. Finally, we note that
continued training appears to facilitate the discovery of richer strategic cycles, and so does allowing
each PSRO iteration to perform more gradient updates.

B.5 SENSITIVITY TO THE CHOICE OF HYPER-PARAMETERS

Figure 12 investigates the sensitivity of NeuPL to the choice of hyper-parameters. In particular,
NeuPL introduces two additional hyper-parameters: the proportion of simulation episodes used for
learning pairwise empirical payoffs (σ in Algorithm 5) and the interval between interaction graph
update (T in Algorithm 5). Intuitively, if ε is too low, the empirical payoff estimator risk being
under-trained when its estimations are used by the meta-graph solver while a value too high would
delay the policy learning due to insufficient simulation data being generated for policy learning. When
it comes to the meta-graph update interval, a value too high may slow down strategic exploration if
the approximate best-response operators have already converged to best-responses while a value too
low may lead to noisy gradients in the optimization process, as the set of learning objectives may
change too frequently.

15

Published as a conference paper at ICLR 2022

0 200,000 400,000 600,000 800,000

gradient step

−6

−4

−2

0

2

4

R
e
la
ti
v
e
 P
o
p
u
la
ti
o
n

 P
e
rf
o
rm
a
n
c
e

eps = 0.1; T = 1000
eps = 0.3; T = 1000
eps = 0.5; T = 1000

Experiment

0 200,000 400,000 600,000 800,000

gradient step

−6

−4

−2

0

2

4

R
e
la
ti
v
e
 P
o
p
u
la
ti
o
n

 P
e
rf
o
rm
a
n
c
e

eps = 0.1; T = 2000
eps = 0.3; T = 2000
eps = 0.5; T = 2000

Experiment

0 200,000 400,000 600,000 800,000

gradient step

−6

−4

−2

0

2

4

R
e
la
ti
v
e
 P
o
p
u
la
ti
o
n

 P
e
rf
o
rm
a
n
c
e

eps = 0.1; T = 500
eps = 0.3; T = 500
eps = 0.5; T = 500

Experiment

0 200,000 400,000 600,000 800,000

gradient step

−6

−4

−2

0

2

4

R
e
la
ti
v
e
 P
o
p
u
la
ti
o
n

 P
e
rf
o
rm
a
n
c
e

eps = 0.1; T = 5000
eps = 0.3; T = 5000
eps = 0.5; T = 5000

Experiment

NeuPL: sensitivity to hyper-parameters (vs. PSRO-C@200k).

Figure 12: Hyper-parameter sweep across proportion of matches used for empirical payoff evaluation
(ε) and interaction graph update interval in gradient steps (T). Population-level performance is
measured in RPP, relative to the same held out population PSRO-C@200k with seed = 1.

In practice, we observe that NeuPL is reasonably robust to these hyper-parameters across a wide
range of choices. Across all experiments, we evaluate the NeuPL population’s relative population
performance against a fixed, held-out population obtained via PSRO-C@200k, seed = 1.

B.6 TEST-TIME EXECUTION OF LEARNED POLICIES

A distinctive property of population learning is that we obtain a population of policies that can be
executed individually at test time. In NeuPL, the population of policies is jointly defined by two
elements: a conditional network Πθ(·|o≤t, σ) and a set of meta-game strategies Σ = {σi}Ni=1, derived
from the empirical payoffs between policies. To execute a mixture policy defined over the population,
it suffice to execute Πθ(·|o≤t, σ̂) with σ̂ ∼ Pr(Σ).

Specific mixture policies have well-understood properties. For instance, playing the NE mixture
policy implies that an opponent who has access to the same set of policies is indifferent to playing any
mixtures. This could be a principled option in the absence of prior knowledge about one’s opponent.

C CONVERGENCE PROOFS

In this section we detail the conditions upon which NeuPL will converge to a unique sets of policies.
First, we discuss the theory when the interaction graph is static and grounded (Section C.1). Then we
discuss the theory when the interaction graph is a function of the payoff matrix, a so-called meta-graph
solver (Section C.2). Finally we discuss a specific function, Nash Equilibrium meta-graph solver,
that is popular in the literature, and prove NeuPL’s convergence to a normal-form Nash Equilibrium
under certain conditions (Section C.3).

C.1 GROUNDED INTERACTION GRAPHS

Assumption C.1 (Unique, Exact, Finite Best Response). Assume that we have access to a best
response (BR) operator that responds to a policy, πn, (or equivalently a mixture over policies) exactly
converges to a unique best response, πn+1 = BR(πn), in finite time.

When using RL as the BR operator, uniqueness can be approximated with a small entropy term on
policy being optimized. Therefore, in the situation where there is more than one best response, the

16

Published as a conference paper at ICLR 2022

BR operator will opt for the one with maximum entropy. This is a common additional loss that is
often added to RL agents, and is also believed to aid exploration (Haarnoja et al., 2018).

The second assumption, that the BR will be exact, is idealised. With sufficient model capacity, enough
time, and appropriate hyper-parameter annealing schedules, RL can get close to an exact BR.

The final assumption, that the BR operator converges in finite time, is assumed because proofs follow
easily from this assumption. It may be possible to relax this assumption to converge as t→∞, but
we leave this for future work.

Definition C.1 (Grounded Interaction Graph). An interaction graph’s edges define how policies
should best respond to each other. We call an interaction graph grounded if its structure imposes
convergence to a unique set of policies, where each policy is a unique, exact, finite BR over opponent
policies defined by the interaction graph.

Theorem 1 (Grounded Lower Triangular). All lower-triangular interaction graphs (Σi≥j = 0) are
grounded.

Proof. The first row of a lower triangular matrix is all zeros meaning that the first policy does not
respond to any other policies. The first policy is therefore static (and arbitrary) and does not change
over time. The second row only responds to the first policy. Since the first policy is static and we
are using a unique, exact and finite BR, the second policy will converge exactly to a unique policy.
The nth row will respond to the n− 1 previous policies. Since over time all previous policies will
converge to uniquely, so will the nth policy.

It is easy to imagine other grounded interaction graphs with interesting structure, however we will
only focus on lower-triangular graphs for the purpose of this section. Research into other grounded
interaction graphs may be interesting future work.

Definition C.2 (Static Interaction Graph). We call an interaction graph static if it does not change
over time: Σt = Σ.

We now prove our first NeuPL result, that it can find an exact N -step best response under certain
assumptions.

Theorem 2 (NeuPL Static Lower-Triangular Exact N -Step Best Response). NeuPL with a static,
lower triangular interaction graph, an arbitrary fixed initial policy, π0, and N more policies, will
converge to an exact N -step best response, assuming that the BR is unique, exact, and converges in
finite time.

Proof. The bulk of this proof can recycle the arguments in Theorem 1. Note that NeuPL trains its
conditional policies in parallel according to an interaction graph. If that graph is lower-triangular,
it is grounded, and NeuPL will find the conditioned policies corresponding to the N -step best
response.

C.2 GROUNDED META-GRAPH SOLVER

It is possible to extend this result on any deterministic function acting on a sub-payoff, producing a
lower triangular interaction graph.

Definition C.3 (Grounded Meta-Graph Solver). A meta-graph solver is a function that takes the
payoff matrix as an argument and outputs an interaction graph as an output. We call a meta-graph
solver, F , grounded if, when using unique, exact, finite BRs, it converges to a grounded interaction
graph in finite time.

Theorem 3 (Any Deterministic Lower-Triangular Meta-Graph Solver is Grounded). Any determinis-
tic function, F , that maps a sub-payoff, U<i,<i, to a row, Σi,<i, in a lower-triangular interaction
graph is a grounded meta-graph solver.

Σi,<i = F(U<i,<i) (2)

Proof. The difficulty here is that in general, as the policies change, so will the payoff, and hence so
will interaction graph, etc. Similar to the arguments in Theorem 1 the first policy is static and does not

17

Published as a conference paper at ICLR 2022

change. The second policy can only respond to the first policy (under the lower-triangular constraint),
so the meta-graph solver has no flexibility to do otherwise, and therefore the second policy will also
converge to a unique result. Note that as these policies converge, so will their sub-payoffs, U<3,<3.
Therefore, for row n any deterministic mapping F : U<i,<i → Σi,<i will result in a unique set of
policies.

We can now make a further claim about NeuPL: that it will converge to a unique set of conditioned
policies under certain grounded meta-graph solvers.

Theorem 4 (NeuPL Deterministic Lower-Triangular Exact N -Step Best Response). Assuming any
deterministic lower-triangular meta-graph solver, an arbitrary fixed initial policy, π0, and N more
policies, NeuPL will converge to an exact N -step best response, assuming a unique, exact and finite
BR.

Proof. Similar in structure to Theorem 2 and Theorem 3.

Of course, the more general result, that NeuPL will also converge for any grounded meta-graph solver
is also true.

C.3 NASH EQUILIBRIUM META-GRAPH SOLVER

Note that the maximum entropy Nash Equilibrium (MENE) is such as grounded meta-graph solver.
This will result in an algorithm similar to PSRO-NASH (Lanctot et al., 2017) or Double Oracle
(McMahan et al., 2003).

Theorem 5 (NeuPL Nash Exact N -Step Best Response). Using an interaction-graph function that
maps payoff to a lower triangular NE distribution:

Gn,<n = NE(U<n,<n) (3)

With a such a function, an arbitrary fixed initial policy, and sufficiently large N policies, NeuPL will
converge to an exact normal-form Nash Equilibrium (NE), assuming a unique, exact, finite BR.

Proof. Starting from the proof in Theorem 4, we follow additional arguments from DO (McMahan
et al., 2003) to prove that for sufficient N we will converge to a normal form NE.

Of course, many other algorithms can be recovered using specific meta-graph solvers (Muller et al.,
2020; Marris et al., 2021).

D GENERALITY OF NEUPL AND DISCUSSION ON FUTURE WORKS

For simplicity of presentation, we focused on the simple setting of learning from scratch in symmetric
zero-sum games. In this section, we discuss elements needed towards applying NeuPL more generally
from several aspects.

D.1 INCORPORATING PRIOR KNOWLEDGE IN NEUPL

As we alluded to in Section 1.2, the formulation of NeuPL offers a principled way to incorporate prior
knowledge in the form of pre-trained policies. In short, pre-trained policies can be incorporated in the
same way as the sink policy, with the requirement that it can only gain in-edges in the interaction graph.
Figure 13 offers an illustration of such an example, where the population includes 2 pre-trained
policies (Πθ(·|o≤t, σ1) and Πθ(·|o≤t, σ2)) while Πθ(·|o≤t, σ3) is optimized to best-respond to a
mixture over its predecessors according to a suitable meta-graph solver. As an implementation details
due to the use of neural networks, σ1 and σ2 need to be unique vectors and they need to be treated
specifically in the corresponding MGS as they no longer represent valid probability distribution and
should be excluded from policy training, similar to the treatment of the sink policy.

Finally, we note that our proposed conditional network architecture is in fact synergistic with the
use of pre-trained policies, beyond naively including pre-trained expert policies as opponents in

18

Published as a conference paper at ICLR 2022

1

2

3

1− p

p

-1 0 0
0 -1 0
p 1− p 0

Figure 13: Example NeuPL experiment with an interaction graph incorporating pre-trained policies.

the population. This is because the shared action-value function Qθ(o≤t, σi, σj) would learn to
predict expected returns between fixed pre-trained expert policies, kick-starting the learning of
encoder and memory components in the underlying game. As proposed in Figure 10, this kick-started
representation learning process should in principle transfer to the learning of other policies within the
neural population as well, rendering it an attractive proposal.

D.2 GENERALIZATION TO N-PLAYER GENERAL-SUM GAMES

NeuPL can in principle extend to n-player general-sum games. We offer elements of the solution in
this section while deferring thorough investigation in this direction to dedicated future work.

Consider an n-player general-sum game where the i-th player can play one of M i policies, the
induced meta-game corresponds to a normal-form game between n players, each selecting a policy
to execute for an episode for one player. This yields n empirical payoff tensors U = {U i}ni=1 with
U i ∈ RM1×M2···×Mn

the payoff tensor for player i, given all players’ policy selections.

Coarse Correlated Equilibrium (CCE): in this setting, solving for NE becomes intractable but
solution concepts such as CCE could be readily used instead (Marris et al., 2021). This leads to a
solver that takes on the form P ← F(U) with P ∈ RM1×M2···×Mn

a joint-distribution over the
cartesian product of policy choices across n players. This solver can thus be used in place of the
meta-strategy solver, similarly and repeatedly invoked by the meta-graph solver. Note that instead of
obtaining a marginal distribution for a given player as in NE, CCE offers the joint distribution which
can be marginalized for each player.

Heterogeneous Neural Populations: in the n-player setting, different players may take on dif-
ferent roles in the game and admit entirely different observation, action spaces. This implies that
heterogeneous neural populations are needed. Specifically, each player’s policies can be represented
by its own neural population of maximum capacity M i and its own n-dimensional marginal inter-
action tensor. The i-th neural population is defined by a conditional model Πi

θ(·|o≤t, σi) and a
marginalized interaction tensor Σi ∈ RM1×M2···×Mn

= {σik}M
i

k=1, derived from incremental CCE
joint distributions.

19

	Methods
	Preliminaries
	Neural Population Learning
	Convergence to N-step Best-Responses via NeuPL
	Neural Population Learning by RL

	Experiments
	Is NeuPL General?
	Does NeuPL enable Transfer Learning across Policies?
	Does NeuPL Outperform Comparable Baselines?
	Does NeuPL Scale to Highly Transitive Game-of-Skills?

	Related Work
	Conclusion and Future Work
	Methods
	Population Learning Algorithms as Interaction Graphs
	Relative Population Performance
	NeuPL with Static Interaction Graph and ABR by RL
	NeuPL with Adaptive Meta-Graph Solvers and ABR by RL

	Experiments
	Running-with-Scissors environment
	Conditional Network Architecture for NeuPL
	Hyper-Parameters & Training Infrastructure
	Baseline PSRO experiments
	Sensitivity to the choice of Hyper-Parameters
	Test-time Execution of Learned Policies

	Convergence Proofs
	Grounded Interaction Graphs
	Grounded Meta-Graph Solver
	Nash Equilibrium Meta-Graph Solver

	Generality of NeuPL and Discussion on Future Works
	Incorporating Prior Knowledge in NeuPL
	Generalization to N-player General-sum Games

