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Abstract

Reinforcement learning from human feedback (RLHF) alleviates the problem of
designing a task-specific reward function in reinforcement learning by learning it
from human preference. However, existing RLHF models are considered inefficient
as they produce only a single preference data from each human feedback. To tackle
this problem, we propose a novel RLHF framework called SeqRank, that uses
sequential preference ranking to enhance the feedback efficiency. Our method
samples trajectories in a sequential manner by iteratively selecting a defender
from the set of previously chosen trajectories K and a challenger from the set
of unchosen trajectories U \ K, where U is the replay buffer. We propose two
trajectory comparison methods with different defender sampling strategies: (1)
sequential pairwise comparison that selects the most recent trajectory and (2)
root pairwise comparison that selects the most preferred trajectory from K. We
construct a data structure and rank trajectories by preference to augment additional
queries. The proposed method results in at least 39.2% higher average feedback
efficiency than the baseline and also achieves a balance between feedback efficiency
and data dependency. We examine the convergence of the empirical risk and the
generalization bound of the reward model with Rademacher complexity. While
both trajectory comparison methods outperform conventional pairwise comparison,
root pairwise comparison improves the average reward in locomotion tasks and
the average success rate in manipulation tasks by 29.0% and 25.0%, respectively.
Project page: https://rllab-snu.github.io/projects/SeqRank

1 Introduction

Designing a suitable reward function in reinforcement learning often requires task-specific prior
knowledge [1] and sufficient time to design the reward function to capture the true task objective.
Without this effort, the agent may be easily led to suboptimal policies. These limitations motivate the
use of reinforcement learning from human feedback (RLHF), which can directly learn from human’s
preferences without the need for a hand-crafted reward function [1]. A conventional way to learn a
reward function in RLHF is pairwise comparison: querying human preference between two different
trajectories as described in Figure 1. Despite the significant success of RLHF, conventional pairwise
comparison requires a human to remember at least two trajectories to determine a single preference.
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Figure 1: Overview. Reinforcement learning from human feedback captures human preference
against agent trajectories. While the agent learns the control policy by interacting with the environment,
it also learns the reward function from human feedback, given as binary labels for trajectory pairs.

In this regard, it is essential to develop an efficient comparison method that can obtain multiple
preference data from a single human feedback, thus reducing a human’s labeling effort. In this paper,
we define the concept of feedback efficiency as the ratio between the number of trajectory pairs over
the number of feedbacks, where the feedback efficiency of conventional pairwise comparison is set at
a standardized level. We aim to develop a novel RLHF framework with greater feedback efficiency
than existing methods.

The key idea of our approach is to utilize the preference relationships of the previous trajectory pairs.
Bringing the nature of transitivity in human preferences [2], given three trajectories, σi, σj , and σk, a
human with preference over σi to σj and σj to σk also prefers σi over σk. Hence, if we maintain the
history of preference relationships, we can easily augment preference data without additional human
feedback. In the proposed method, the comparison process maintains two sets of trajectories. One
collects previously compared trajectories, and the other includes remaining trajectories that have not
yet been compared. We iteratively select and compare a defender trajectory from the set of previously
chosen trajectories and a challenger trajectory from the set of unchosen trajectories. In this paper,
we propose two trajectory comparison methods: (1) sequential pairwise comparison that selects the
most recently sampled trajectory and (2) root pairwise comparison that selects the previously most
preferred trajectory as the defender. For both methods, the agent can augment additional preference
data from the comparison results due to the transitivity.

We show that the proposed sequential preference ranking substantially improves the feedback effi-
ciency and significantly outperforms conventional pairwise comparison. We prove that the proposed
method converges faster for the empirical risk of the reward model than conventional pairwise com-
parison. One drawback of the proposed method is that it generates dependencies within the original
and the augmented preference data, which are both used to train the reward model. Still, we prove
the generalization bound of the reward model with Rademacher complexity converges with rates
of O(

√
(ln(T ))2/T ) and O(

√
ln(T )/T ) for sequential and root pairwise comparison, respectively,

where T is the number of iterations. We demonstrate the effectiveness of the proposed method in
both locomotion tasks from Deepmind Control Suite (DMControl) [3] and manipulation tasks from
Meta-World [4]. Among the proposed two trajectory comparison methods, root pairwise comparison
shows the highest performance in all tasks, which is improved by 29.0% and 25.0% against the pair-
wise baseline in locomotion and manipulation tasks, respectively. Additional experiments using real
human feedback validate the effectiveness of the proposed method, showing significant improvements
in true reward, sample efficiency, feedback efficiency, and user satisfaction. Furthermore, our method
successfully outperforms the baseline in terms of success rates in controlling a real UR-5 robot for a
block placing task, demonstrating its practical applicability in the real world.

The main contributions of this paper are as follows:

• We propose a novel RLHF framework that utilizes sequential preference ranking to enhance
human feedback efficiency. We prove the proposed sequential and root pairwise comparison
substantially improve the average feedback efficiency by 39.2% and 100%, respectively. An
increase in feedback efficiency speeds up the estimation of the reward function.

• We derive the convergence rates of the empirical risk and the generalization bound of the
reward model with Rademacher complexity using the proposed sequential and root pairwise
comparison. We address the trade-off between feedback efficiency and data dependency
required for successful reward learning.

• We empirically show that prioritizing the feedback efficiency is significantly important by
evaluating in simulation and real-world environments. Both sequential and root pairwise

2



comparison outperform conventional pairwise comparison on average. Root pairwise
comparison shows the most substantial improvement against the baseline by 29.0% and
25.0% in DMControl locomotion and Meta-World manipulation tasks, respectively.

2 Related Work

Reinforcement Learning from Human Feedback. A common approach in reinforcement learning
from human feedback, i.e., preference-based reinforcement learning, is to learn the reward function
from explicit feedback, such as ratings or comparisons provided by human experts. Christiano et
al. [5] present the human-in-the-loop reinforcement learning framework for robotic tasks. Lee et al.
(2021a) [6] propose a benchmark that introduces simulated human teachers with various irrationalities.
Recent work [7–10] introduce efficient RLHF algorithms. Lee et al. (2021b) [7] propose a method
that improves Christiano et al. [5] via unsupervised pre-training and off-policy RL with relabeling.
Park et al. [8] suggest a method that uses semi-supervised learning and data augmentation. Liang
et al. [9] show that exploration based on uncertainty in learned reward functions helps to improve
the performance with fewer samples and feedbacks. Liu et al. [10] propose a data-efficient RLHF
framework incorporating bi-level optimization for reward and policy learning.

However, most of the previous studies still achieve low feedback efficiency as they do not take into
account the nature of ranking through trajectory comparisons. Several recent work [11–13] suggest
querying a complete ranking among multiple (≥ 3) trajectories, but this assigns the responsibility of
ranking trajectories to humans, not robots. Requesting a human to remember multiple trajectories
at once and provide best-of-multiple feedback [11] is also challenging due to human uncertainty
[14]. To solve this challenge, we propose sequential preference ranking, which allows the agent to
automatically rank trajectories while a human only provides pairwise comparisons based on one’s
preference. The key idea is to perceive piecewise ranks instead of ranking the trajectories as a whole.

Generalization Bounds for Learning Under Graph-Dependence. While data augmentation
via sequential preference ranking can improve the efficiency of reward learning, this can lead to
dependencies within the training data. However, traditional learning theories are based on the
assumption that data are identically and independently distributed (i.i.d.). Hence, to analyze the
generalization bound of the proposed method, we investigate the generalization bounds for learning
with data dependencies. A common approach to consider data dependency is to construct a graph
that characterizes the dependency relationship within the data [15]. Janson et al. [16] establish that
the probability of the sum of graph-dependent random variables deviating from its expected value is
bounded based on the fractional chromatic number of the dependency graph, by extending Hoeffding’s
inequality. Usunier et al. [17] present a concentration inequality by extending fractional Rademacher
complexity, and prove generalization bounds for binary classification over interdependent data. Zhang
et al. (2019) [18] propose McDiarmid-type concentration inequalities for Lipschitz functions of
graph-dependent random variables and show that concentration relies on the forest complexity of
the dependency graph. In this paper, we derive the generalization bound of the reward model with
Rademacher complexity in terms of the maximum degree of the dependency graph and the number of
training data, which includes augmented preference queries and labels.

3 Learning the Reward Function from Human Preferences

Following prior work [5, 7, 10, 19], we use a deterministic human model that provides preference as
a binary feedback over a pair of trajectory segments. We define the true preference label y for a pair
of segments (σi, σj) as follows:

y =

{
1, if

∑H
t=1 r(s

i
t, a

i
t) >

∑H
t=1 r(s

j
t , a

j
t )

0, otherwise,
(1)

where r is the true reward function of a state-action pair (sit, a
i
t) in σi at timestep t and H is

the length of a segment. The true reward of a trajectory segment σ = (s1, a1, ..., sH , aH) can
be written as r(σ) =

∑
t r(st, at). Similar to prior work [13, 20–22], we implement our al-

gorithm with a linearly parameterized preference model. Assume that there exist a nonlinear
trajectory encoder ϕ : T → Rd and a parameter θ∗ ∈ Rd that represents the true reward
function as r(σ) := θ∗⊺ϕ(σ), where d is the dimension of θ∗ and T is a set of trajectory
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Figure 2: Trajectory comparison methods. (a) All three methods query a human to provide N feedback.
Pairwise comparison samples 2N trajectories to obtain N feedback, while sequential or root pairwise comparison
samples N + 1 trajectories. Despite sampling fewer trajectories, sequential or root pairwise comparison shows
higher feedback efficiency than pairwise comparison by adopting sequential preference ranking. (b) Gray
nodes illustrate fixed-length trajectory segments sampled from the replay buffer. Suppose the reward values for
segments σ1, ..., σ10 are 2, 5, 1, 8, 6, 4, 3, 7, 9, 10, respectively. Black lines indicate actual pairs that receive true
preference labels from human feedback. The upper node for each black line represents the preferred trajectory.
For root pairwise comparison, orange nodes describe non-leaf nodes in the tree. Using sequential or root
pairwise comparison, the agent can obtain augmented labels for non-adjacent pairs illustrated with purple lines.

segments. We estimate the reward using a learnable reward function r̂θ, parameterized by θ.
Then, the estimated reward of σ can be written as r̂θ(σ) =

∑
t r̂θ(st, at) = θ⊺ϕ(σ). Pref-

erence prediction is also interpreted as a binary classification problem with a class probability
P (y = 1|(σi, σj); θ∗) = Pθ∗ [σi ≻ σj ] = exp(

∑
t r(s

i
t, a

i
t))/

∑
k∈{i,j} exp(

∑
t r(s

k
t , a

k
t )) based

on the Bradley-Terry model [23], where σi ≻ σj denotes that the ith trajectory segment is prefer-
able to the jth trajectory segment. For training the reward model, we use P (ŷ = 1|(σi, σj); θ) =
Pθ[σi ≻ σj ] = exp(

∑
t r̂θ(s

i
t, a

i
t))/

∑
k∈{i,j} exp(

∑
t r̂θ(s

k
t , a

k
t )) to estimate the preference label ŷ

of (σi, σj). If Pθ[σi ≻ σj ] is greater than 0.5, ŷ is 1. Otherwise, ŷ is 0. Using cross-entropy loss, we
define the preference loss function Lpref as follows:

Lpref = −E((σi,σj),y)∈D[y logPθ[σi ≻ σj ] + (1− y) logPθ[σi ≺ σj ]], (2)

where D is the set of sampled trajectory segment pairs and their corresponding true preference labels.

In traditional RLHF methods, a common approach to sampling a segment pair is to randomly
sample each segment from the replay buffer, resulting in the selection of irrelevant pairs. This
independent sampling approach does not take into account any inherent relationships between the
non-adjacent segments, where two segments are considered adjacent if they are compared directly
from a human. In contrast, the proposed method adopts a sequential sampling approach that enables
indirect inference of the relationship between non-adjacent segments. The proposed method allows
for more comprehensive understanding of the preferences among trajectory segments, capturing both
direct and indirect relationships.

4 SeqRank

We present SeqRank, which samples trajectories and compares them in a sequential manner for
efficient reinforcement learning from human feedback. We also extend our key component, sequential
pairwise comparison, to root pairwise comparison, which not only compares trajectories sequentially
but also constructs a tree structure to rank trajectories in a more efficient way. Figure 2 (a) illustrates
the difference between three trajectory comparison methods including conventional pairwise com-
parison and the proposed sequential and root pairwise comparison. We demonstrate the feedback
efficiency and convergence of the reward model for each method. Regarding the notations used in
our paper, a summary of symbols and terms can be found in Table 1 in the supplementary material.
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We first make the following assumptions:
(Uniformness) Every trajectory is sampled uniformly from the replay buffer.
(Completeness) For any two segments σi and σj , “σi ≻ σj or σi ≺ σj” is true.
(Transitivity) For any three segments σi, σj , and σk, if σi ≻ σj and σj ≻ σk, then σi ≻ σk.

Assuming N feedback per reward update, the agent samples the (n+ 1)th defender and challenger
from Kn = {σ1, ..., σn} and U\Kn, respectively, where U is the replay buffer. The defender becomes
σn for sequential pairwise comparison and argmaxσ∈Kn

θ⊺ϕ(σ) for root pairwise comparison. After
the N th query, the agent receives N feedback in total. Figure 2 (b) illustrates the preference
relationships among trajectory segments as a graph. Especially for root pairwise comparison, the
challenger becomes a new root of the tree if it is preferred over the current root segment as described
in Figure 2 (a). Otherwise, the challenger becomes a new child of the current root. The full procedure
of our algorithm is provided in the supplementary material. Suppose SM is the total number of
trajectory segment pairs obtained from M trajectory segments. M = 2N for conventional pairwise
comparison, and M = N + 1 for sequential or root pairwise comparison. In the following section,
we first demonstrate the feedback efficiency in terms of M and substitute it with the function of N .

4.1 Feedback Efficiency of the Algorithm

From the uniformness assumption, suppose the agent compares M trajectory segments with corre-
sponding rewards as a random ordering of 1, 2, ...,M . Based on the completeness and transitivity
assumptions, the agent can augment non-adjacent segment pairs as illustrated in Figure 2 (b). Consid-
ering that the number of augmented pairs differs by the order of sampling trajectories with different
rewards, SM becomes a random variable indicating the total number of pairs collected from M
trajectory segments. In this section, we demonstrate the average feedback efficiency of our method.
Definition 1. We define feedback efficiency as the ratio between the total number of trajectory pairs
over the number of feedbacks. The expected feedback efficiency forN human feedback is E[SN+1]/N
for sequential and root pairwise comparison.

Sequential Pairwise Comparison. Following Definition 1, we use Lemma 1 to examine the expected
number of segment pairs collected from sequential pairwise comparison.
Theorem 1. For any integer M ≥ 2, the expected number of trajectory segment pairs collected from
sequential pairwise comparison aM is approximately linear to M as |aM/M − 1/(e− 2)| = o(1).
Lemma 1. For any integer M ≥ 2, aM can be induced from the following recurrence relation.

aM =
(total number of pairs from all possible orderings of trajectories)

(number of all possible orderings of trajectories)

= 2− 2/M ! +
∑M−1

j=2
aM−j+1(2j/(j + 1)!)

(3)

By solving the recurrence relation stated in Lemma 1, we derive Theorem 1 that aM is approximately
equal to a linear equation α(M − γ) with an error less than ϵ, for any M such that M ! is greater
than 2γ/ϵ. α = 1/(e− 2) ≊ 1.392 and γ > 1, respectively. By substituting a sufficiently large
value of M ≥ 100, γ is calculated as 1.324, and the expected feedback efficiency of sequential
pairwise comparison becomes 1.392(M−1.324)/(M−1), which converges to 1.392 asM increases.
Moreover, for any M ≥ 4, the linear approximation error of aM is bounded by 0.003. Detailed
proofs of Lemma 1 and Theorem 1 are in the supplementary material.

Comparing the proposed sequential pairwise comparison with conventional pairwise comparison
that requires 2N trajectory segments for N human feedback, we observe that sequential pairwise
comparison only requires N + 1 trajectory segments to query a human for N feedback. Additionally,
using the proposed sequential pairwise comparison, the expected number of augmented queries is
given by aN+1 −N ≊ 0.392N − 0.451.

Extension to Root Pairwise Comparison. We further extend sequential pairwise comparison to root
pairwise comparison by exploiting a specific defender sampling strategy. The key idea is to compare
the current segment with the most preferred one from the previously sampled segments. As described
in Figure 2 (b), root pairwise comparison augments more pairs than sequential pairwise comparison
by constructing a tree structure. Using root pairwise comparison, the average feedback efficiency is
increased to two. Theorem 2 demonstrates the average feedback efficiency of our algorithm using
root pairwise comparison. The detailed proof of Theorem 2 is in the supplementary material.
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Method M Best Average Worst
pN η pN η pN η

Pairwise 2N N 1 N 1 N 1
Sequential
Pairwise N + 1 N(N + 1)/2 (N + 1)/2 1.392(N − 0.324) 1.392 N 1

Root
Pairwise N + 1 N(N + 1)/2 (N + 1)/2 2(N + 1−

∑N+1
n=1

1
n ) 2 N 1

Table 1: Trajectory compari-
son methods. We compare thr-
ee trajectory comparison meth-
ods: pairwise, sequential pair-
wise, and root pairwise. η de-
notes the feedback efficiency.

Theorem 2. In root pairwise comparison, for any integer M ≥ 2, the expected number of pairs bM
can be denoted by

bM = 2(M −
∑M

n=1
(1/n)). (4)

Considering that
∑M

n=1
1
n < 1 +

∫M

1
1
xdx = 1 + lnM , (

∑M
n=1

1
n )/(M − 1) converges to 0 as

M increases. Therefore, root pairwise comparison achieves the expected feedback efficiency as
bM/(M − 1) ≊ 2. This implies that the proposed root pairwise comparison achieves higher feedback
efficiency than sequential pairwise comparison on average.

Table 1 shows the comparison results of trajectory comparison methods when the number of human
feedback is fixed to N . M and pN denote the number of sampled trajectories at each reward
update session and the expected number of trajectory pairs obtained from N human feedback, i.e.,
E[SN ], respectively. For sequential and root pairwise comparison methods, pN is aN+1 and bN+1,
respectively. The baseline method using conventional pairwise comparison samples 2N trajectories,
which are approximately twice as many of sequential or root pairwise comparison methods. As
shown in Table 1, sequential pairwise comparison achieves an average feedback efficiency of 1.392.
Also, root pairwise comparison achieves the highest average feedback efficiency of 2.

4.2 Convergence of the Reward Model

Notations. Suppose (ϕ(σi)−ϕ(σj)) is the input and σi ≻ σj is the true label of a binary classification
using a logistic regression model and a cross-entropy loss. Then, Pθ[σi ≻ σj ] can be interpreted as a
logistic regression model as follows:

Pθ[σi ≻ σj ] =
1

1 + exp(
∑

t r̂θ(s
j
t , a

j
t )− r̂θ(sit, a

i
t))

=
1

1 + exp(−θ⊺(ϕ(σi)− ϕ(σj)))
. (5)

For simplicity, we define the training data for reward update as D = {(xk, yk)}, where xk and yk
denote the features of two trajectories included in the kth query and its corresponding preference
label provided from a human, respectively. Note that if the kth query is (σi, σj), xk = ϕ(σi)−ϕ(σj).
We define the true risk of the reward model as R(θ) := E[ℓ(θ∗⊺(x), θ⊺(x))] and the empirical risk of
the reward model as R̂(θ) := Lpref = (1/|D|)

∑
xk∈D ℓ(θ

∗⊺(xk), θ
⊺(xk)), where the cross-entropy

loss and its minimizer are denoted as ℓ and θ∗, respectively. Assume that ||ϕ||2, ||θ∗||2, and ||∇θ||2
are bounded with constants S, D, and Q, respectively. Since RLHF involves an iterative process of
policy and reward update, we distinguish the overall iteration T that represents the global iterative
process, and the local iterations of policy and reward update, W and U , respectively. SM,T represents
the cumulative sum of the number of training data of the reward model from iteration 1 to T , with M
segments compared per iteration. We introduce the concept of dependency graph and its maximum
degree ∆M,t at iteration t ∈ [T ] = {1, 2, ..., T} for further analysis, following previous work [15].
Detailed proofs for the following theorems, lemmas, and corollaries are in the supplementary material.

High Probability Feedback Efficiency. We find a high probability bound for SM,T in terms of the
expected values of SM as described in Lemma 2. This implies that for sufficiently large T and N , the
feedback efficiency averaged across T iterations is at least equal to pN/(2N) in the proposed method
with high probability. For sequential and root pairwise comparison, the lower bounds become 0.696
and 1, respectively, while the feedback efficiency for pairwise comparison is fixed to 1.

Lemma 2. For a sufficiently large T > (maxt ∆M,t + 1) (M − 1) ln(1/δ)/(β2M) and δ ∈ (0, 1),
with probability at least 1− δ, SM,T is greater than βTM/2, where β denotes the expected number
of pairs obtained from M segments divided by M .
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Convergence Rate of the Empirical Risk. From the completeness assumption, data in D should be
linearly separable. According to prior work [24], the empirical risk converges with a rate of O(1/U).
Let nB be the batch size of reward update. Then, after the global iteration T , U = ⌊SM,T /nB⌋.

From Lemma 2, we prove that with probability at least 1− δ and a sufficiently large T , the empirical
risk of the reward model converges at a rate of O(2nB/(βTM)). Therefore, higher β results in faster
convergence. While (β,M) for pairwise comparison are fixed as (0.5, 2N), the values for sequential
and root pairwise comparison are approximated to (1.392, N+1) and (2, N+1), respectively. Based
on our analysis, the reward model is likely to converge faster in the order of root pairwise, sequential
pairwise, and pairwise comparison in terms of the global iteration T .

Convergence Rate of the Generalization Bound. Based on prior work [15, 25], we derive a
generalization bound with Rademacher complexity for learning the reward model under graph-
dependence in D. Theorem 3 shows the generalization bound of the reward model. Detailed proof of
the theorem and definitions of F and B are presented in the supplementary material.
Theorem 3. Assume that a comparison algorithm generates a train set D of size SM,T with depen-
dency graph G after T iteration. Then, for any δ ∈ (0, 1), with probability at least 1− δ,

∀θ ∈ H, R(θ) ≤ R̂(θ) +
√

(maxt ∆M,t + 1)/SM,T · (2FD + 3B
√
ln(4/δ)/2), (6)

where H is the parameter space of θ, and F and B are functions of M with rates at O(M2).

Theorem 3 addresses a critical aspect of the proposed method by proving that even with dependent
data, the empirical risk of the reward model converges to the true risk with probability at least
1− δ. This high probability bound contributes to the practical analysis of general RLHF models with
graph-dependent data such as rankings. Additionally, we consider the trade-off between feedback
efficiency (∝ SM,T ) and data dependency (∝ ∆M,t). As shown in (6), lower ∆M,t and larger SM,T

lead to a tighter generalization bound of the reward model. However, data dependency increases in
our settings as we augment more queries and enhance feedback efficiency. Hence, we demonstrate
∆M,t for sequential and root pairwise comparison in Lemma 3 and 4, respectively.
Lemma 3. Let G be a dependency graph generated by sequential pairwise comparison with M
trajectory segments. Then, for any δ ∈ (0, 1), the maximum degree of G is bounded as follows, with
probability at least 1− δ,

maxt∈[T ] ∆M,t ≤ 2 + ln(1 +M/(ln(1/(1− δ)))). (7)
Lemma 4. Let G be a dependency graph generated by root pairwise comparison with M trajectory
segments. Then, for any δ ∈ (0, 1), the maximum degree of G is bounded as follows, with probability
at least 1− δ,

maxt∈[T ] ∆M,t ≤M(2− δ)− 3. (8)
Corollary 3.1. For a fixedM ≥ 2, the generalization bounds of the reward model for pairwise, sequen-
tial pairwise, and root pairwise comparison converge at rates of O(

√
ln(T )/T ), O(

√
(ln(T ))2/T ),

and O(
√
ln(T )/T ), respectively, with probability at least 1− 1/T .

By applying Lemma 2, 3, and 4 to Theorem 3, we derive Corollary 3.1, which compares the
generalization bounds of three methods. While generalization bounds of all methods are guaranteed
to converge as T increases, root pairwise comparison demonstrates a faster convergence rate than
sequential pairwise comparison, and has the same convergence rate as pairwise comparison.

Overall analysis of convergence. To sum up, root pairwise comparison theoretically surpasses the
baseline as it proves better and equal convergence rates of both metrics, while requiring a half of
samples than pairwise comparison. Sequential pairwise comparison achieves faster convergence
of the empirical risk but slower convergence of the generalization bound compared to pairwise
comparison. From the perspective of reward model convergence, prioritizing the feedback efficiency
to speed up the convergence of the empirical risk is more critical than considering the generalization
error in worst-case scenarios. In Section 5, we empirically show the superiority of root pairwise
comparison over sequential and pairwise comparison.

5 Experiments

We evaluate our method on robotic locomotion tasks from DeepMind Control Suite (DMControl)
[3, 26] and robotic manipulation tasks from Meta-World [4]. We also demonstrate the proposed
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Task # feedback Oracle Pairwise Sequential Pairwise Root Pairwise
Walker Walk 0.4K 957.3 ± 2.3 862.5 ± 85.3 883.7 ± 71.9 907.5 ± 66.2
Cheetah Run 0.2K 886.9 ± 43.2 690.2 ± 93.2 715.8 ± 117.4 739.4 ± 100.8
Quadruped Walk 1K 843.3 ± 247.3 353.5 ± 183.9 479.5 ± 234.7 728.8 ± 274.1
Humanoid Walk 40K 272.5 ± 117.0 114.3 ± 80.5 141.3 ± 34.4 163.8 ± 71.6
Hopper Hop 4K 273.5 ± 47.0 26.2 ± 37.0 37.3 ± 59.8 100.1 ± 70.7

Table 2: Rewards after convergence in DMControl locomotion tasks. Two elements in each cell
denote the average value and standard deviation of rewards across runs with 10 random seeds.

Task # feedback Oracle Pairwise Sequential Pairwise Root Pairwise
Button Press 10K 99.3 ± 0.9 95.6 ± 7.6 97.0 ± 4.3 97.6 ± 5.6
Door Open 10K 100.0 ± 0.0 77.9 ± 41.3 77.4 ± 40.8 97.8 ± 5.0
Drawer Open 20K 99.9 ± 0.3 65.3 ± 41.6 72.0 ± 45.4 89.9 ± 31.6
Sweep Into 10K 88.8 ± 29.9 68.4 ± 35.2 55.7 ± 48.1 88.0 ± 31.0
Window Open 1K 99.9 ± 0.3 55.9 ± 45.1 66.1 ± 36.5 70.7 ± 40.8
Hammer 10K 91.5 ± 26.5 31.0 ± 24.7 30.8 ± 35.4 48.8 ± 41.2

Table 3: Success rates in Meta-World manipulation tasks. Two elements in each cell denote the
average value and standard deviation of success rates across runs with 10 random seeds.

method in the real-world using a UR-5 robot for a block placing task. Experiment details and
additional analyses with rendered results are provided in the supplementary material.

5.1 Experiment Settings

Tasks. Locomotion tasks from DMControl consist of walker walk, cheetah run, quadruped walk,
humanoid walk, and hopper hop. Manipulation tasks from Meta-World consist of button press,
door open, drawer open, sweep into, window open, and hammer. For each task, we train with 10
different seeds used in prior work [6, 10] and measure the average performance with a standard
deviation. Evaluation metrics are chosen as the ground-truth return per episode for DMControl and
the success rate for Meta-World. Additionally, we conduct experiments with real human feedback
for 30 participants using policy and reward models pre-trained in the simulation environment. We
also demonstrate a block placing task using a UR-5 robot in the real-world, by pre-training the policy
in the Mujoco simulator [27] and fine-tuning in the real-world. Detailed experiment settings are
provided in the supplementary material.

Baselines and Implementation Details. We use three baselines for all tasks: SAC [28], Meta-
Reward-Net (MRN) [10], and PEBBLE [7]. Agents learned via SAC with the true reward functions
are considered as the upper bound of all tasks. We use MRN and PEBBLE as the baseline methods
using the traditional trajectory comparison method, pairwise comparison. MRN utilizes bi-level
optimization for both reward and policy learning and achieves state-of-the-art among previous
methods. We apply our sequential preference ranking algorithm on both MRN and PEBBLE to show
the effectiveness of our algorithm. Results with MRN baseline are described in this section and
results with PEBBLE baseline are provided in the supplementary material. We use unsupervised
pre-training [7] for 9, 000 steps for all experiments. The trajectory encoder is implemented using
a two-layer feed-forward neural network, where the input dimension is the combined size of the
state and action spaces, and the output dimension is set to 256. The linear reward model then takes
the encoded feature and passes it through a single fully connected neural network. For each task,
hyperparameters and implementation details are described in the supplementary material.

5.2 Simulation Experiments

Locomotion Tasks from DMControl. Results in Table 2 demonstrate the superiority of the proposed
root pairwise comparison over the baseline pairwise comparison and sequential pairwise comparison
in all locomotion tasks. The reward obtained after convergence is higher by an average of 29.0%
compared to conventional pairwise comparison used in MRN [10]. Sequential pairwise comparison,
on the other hand, does not exceed root pairwise comparison, but it improves performance against
pairwise comparison by 10.3% on average. Based on the standard deviation of rewards after con-
vergence across 10 different runs, root pairwise comparison shows higher stability than sequential
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(a) Quadruped Walk
(feedback=1K)

(b) Hopper Hop
(feedback=4K)

(c) Drawer Open
(feedback=20K)

(d) Window open
(feedback=1K)

Figure 3: Comparison results in two locomotion tasks from DMControl and two manipulation tasks
from Meta-World. All methods are implemented based on MRN. Each subfigure describes the comparison
results among three trajectory comparison methods: pairwise (green), sequential pairwise (orange), and root
pairwise (blue). Pink lines describe the oracle performance using SAC with the true reward.

(a) Average Rewards
1 2 3 4 5

(b) User Satisfaction Score

Figure 5: Training the Cheetah Run Task with Real Human Feedback. (a) The bar plot describes the ratio
between the average rewards after training the policy with real human feedback. (b) The histogram describes
distributions of user satisfaction scores for three trajectory comparison methods.

pairwise comparison. Reward graphs in Figure 3 (a) and (b) show that root pairwise comparison
enables faster convergence of the policy learning.

Figure 4: Average reward per num-
ber of feedbacks after convergence.

Additionally, we assess the converged reward for various feed-
back maximums (0.1K, 1K, 2.5K, 4K) in the quadruped walk
task, as illustrated in Figure 4. The graph reveals that both
sequential and root pairwise comparison methods converge to
higher average reward values and lower variance as the num-
ber of feedbacks increases. This implies that with a sufficient
number of feedbacks, the amount of augmented preference data
affects performance more than data dependency does. By taking
advantage of learning a dense reward [5, 29, 30], root pairwise
comparison outperforms the oracle baseline with a sufficient
number of feedbacks.

Manipulation Tasks from Meta-World. Results in Table 3 show the comparison results with
baseline in manipulation tasks. The proposed method using root pairwise comparison outperforms
the methods using pairwise comparison and sequential pairwise comparison in all tasks, improving
the overall success rate by 25.0% compared to the pairwise comparison baseline. Reward graphs in
Figure 3 (c) and (d) show that root pairwise comparison enables faster convergence of the policy.
Unlike the locomotion tasks, sequential pairwise comparison only improves the success rate by 1.2%
over pairwise comparison. This may be due to the generalization error using sequential pairwise
comparison. Comparing the standard deviation of success rates among 10 different runs, root pairwise
comparison achieves the lowest standard deviation. This implies that root pairwise comparison is the
most stable algorithm for manipulation tasks among three trajectory comparison methods.

Experiments with Real Human Feedback. To compare the performance and the user stress levels
associated with three different methods: pairwise, sequential pairwise, and root pairwise comparison,
we conduct experiments involving 35 real human participants. 5 participants trained the policy
and the reward models from scratch with 200 human feeedbacks. Other participants fine-tuned the
models with 20 human feedbacks, where the models were pre-trained with simulated feedbacks.
Figure 5 (a) shows that the proposed methods outperform the baseline in both training from scratch
and fine-tuning experiments. Especially for training the models from scratch, root and sequential
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Method # feedback Success True Episode Reward
Rate↑ Reward↑ Length↓ Accuracy↑

Pairwise 0.8K 34.4 17.1 29.6 75.8
Sequential Pairwise 0.8K 41.0 20.1 28.4 80.9

Root Pairwise 0.8K 50.5 25.9 27.9 84.9

Table 4: Average performance in the real robot manipulation task. For
each method, the agent is fine-tuned in the real world for 3,000 steps.

Figure 6: Block placing
using a UR-5 robot.

pairwise comparison outperform conventional pairwise comparison by 47.7% and 38.6%, respectively.
Quantitative results are provided and analyzed in the supplementary material. Additionally, as a user
study, we asked the participants to rate their user satisfaction on a scale from one to five, with higher
scores indicating greater satisfaction and lower stress levels. Figure 5 (b) illustrates that the average
user satisfaction scores resulted in 2.20, 3.00, and 3.93 for pairwise, sequential, and root pairwise
comparison, respectively. We perform paired-sample t-test and the differences between the scores are
statistically significant for all cases, with the average p-value 0.035. Specifically, users responded that
it is convenient to compare with one’s most preferred trajectory. These results imply that root pairwise
comparison is the least burdensome for real human users while achieving the highest performance.

5.3 Real Robot Experiments

Block Placing Task. To demonstrate our method in real-world environments, we conduct a block
placing task using a real UR-5 robot. As illustrated in Figure 6, the goal of this task is to place a
block at a given target position starting from a randomly chosen initial position. For faster training
and stable movements of the agent, we train the policy with a deep Q-learning network (DQN) and
discrete action space following prior work [31]. In this setting, an action is given by the moving
direction ψ, where ψ is the heading direction of the end effector discretized into eight angle bins
{0, π4 ,

2π
4 , ...,

7π
4 }. Once ψ is determined, the agent changes its pose and moves the end effector

for a fixed distance in the angle of ψ. The policy is pre-trained in the simulator for 20,000 steps
and fine-tuned in the real-world for 3,000 steps. The reward model is initialized before fine-tuning.
Results in Table 4 show the comparison results with baseline after fine-tuning in the real-world. Using
root pairwise comparison, the agent exhibits the highest success rate and the reward model achieves
the fastest convergence with the highest accuracy among three trajectory comparison methods.

6 Conclusion

We propose a novel RLHF framework called SeqRank that utilizes sequential preference ranking,
resulting in a substantial improvement in the feedback efficiency by at least 39.2%. Both sequential
and root pairwise comparison enables faster estimation of the reward function. We also prove the
convergence rates of the empirical risk and the generalization bound of the reward model for each
method. Theoretical and experimental results show that both methods outperform conventional
pairwise comparison, with root pairwise comparison showing the most substantial improvement
against the baseline. The proposed method and theoretical analyses can be applied to other domains
and serve as a practical solution to enhance the feedback efficiency and performance of RLHF.
Potential negative societal impacts include amplifying existing biases present in human preferences.
We hope our method encourages RLHF to be used for social good without violating ethics.
Limitations. As we experimentally show that the proposed root pairwise comparison achieves the
highest reward accuracy among three trajectory comparison methods, we expect to find a tighter
generalization bound of the reward model. As the generalization bound of logistic regression with
dependent data is not fully studied yet, it will be our future work.
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