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Abstract

Training deep classifiers for Extreme Multi-Label Classification (XMC) is difficult
due to the computational and memory costs caused by extremely large label sets.
Traditionally, the final output layer of these deep classifiers scales linearly with the
size of the label set, which is often in the millions for realistic settings. Reducing
the size of deep classifiers for XMC is necessary to (i) train them more efficiently
and (ii) deploy them within memory-constrained systems, such as mobile devices.
We address the current limitations of deep classifiers by proposing a novel XMC
method, DECLARE: Deep Extreme Compressed Labeling And Recovery Estima-
tion. DECLARE compresses the labels into a smaller dimension, which reduces
the training time and model-storage size. DECLARE retains enough information to
recover the most-likely predicted labels in the original label space. Empirically,
DECLARE compresses labels by up to 99.975% while outperforming uncompressed
performance.

1 Introduction

Many online services use recommender systems to foster a personalized customer experience by
assigning each product an individual label. These systems have grown to extreme sizes as online
services have expanded the past two decades. For example, there are over 600 million products for
sale on Amazon alone One [2024]. The output dimension of recommender systems is equivalent
to the number of recommended products, so the computational and memory costs become extreme
when these methods are applied to systems with millions of products. Fittingly, the name for this
situation is Extreme Multi-Label Classification (XMC) Bhatia et al. [2016].

The goal of our work is to alleviate the computational- and memory-constraints of XMC when training
recommender systems that leverage modern deep-learning methods. We propose DECLARE: Deep
Extreme Compressed Labeling And Recovery Estimation, a novel deep learning XMC algorithm.
The main contribution of DECLARE is that it reduces the computational and memory costs of training
large-scale recommender systems. Namely, DECLARE: (1) compresses the label dimension up to
99.975% by capturing key information within the compressed space that other compression methods
fail to utilize, (2) trains a small neural network to learn the compression mapping from the feature
space to the compressed label space, (3) implements a recovery method to transform compressed
predictions back to the uncompressed label space during inference time, without the need to train
multiple networks, and (4) outperforms or closely matches uncompressed performance while reducing
the label dimension by several orders of magnitude on five common XMC datasets.
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Table 1: DECLARE’s Test Performance vs. (Un)compressed Baselines.

Dataset DECLARE Unstructured Pruning Uncompressed
P@1 Output Dim. P@1 Output Dim. P@1 Output Dim.

BibTex 62.43% 100 62.73% 100 62.86% 159
EURLex-4.3K 83.24% 200 83.15% 200 86.65% 4,271

AmazonCat-13K 87.55% 200 82.52% 200 89.74% 13,330
Wiki10-31K 82.92% 100 51.68% 100 64.56% 30,938

Delicious-200K 46.12% 50 6.08% 50 40.84% 205,443

1.1 Related Work

Deep XMC. Similar to our work, existing literature is concerned with memory constraints Chen et al.
[2020b,a], Rabbani et al. [2024]. In Chen et al. [2020b], a locality-sensitive hashing scheme (SLIDE)
is used to prune the final classification layer of an XMC network. However, the full-scale weight
structure must be maintained in memory and the extent of pruning will vary batch-to-batch. Chen et al.
[2020a] considers a staggered update of hashes to avoid continuous batch-to-batch re-hashing, but the
full weight structure must still be occasionally restored, resulting in memory blowup. Rabbani et al.
[2024] designs a modified family of hashing functions to avoid the need for restoring or maintaining
the full weight structure on a low-fidelity local device, but it requires the assistance of a centralized
server to host the original weight. [Yan et al., 2022] proposes model splitting to alleviate the size of
XMC layers across multiple nodes, though in the presence of few workers, the per-client share of the
model is memory infeasible and thus inapplicable to standalone training.

Compressed Sensing. A subset of existing XMC literature focuses on compression of a large label
space into a smaller one, known as compressed sensing Bhatia et al. [2015], Zhou et al. [2012], Tai
and Lin [2012], Dasgupta et al. [2023]. Zhou et al. [2012] and Tai and Lin [2012] utilize a random
and SVD-based compression matrix to reduce the dimensionality of their label space. In Bhatia
et al. [2015], a low-rank embedding is optimized to preserve nearest-neighbor distances and sparsity.
Unlike DECLARE, the methods above are not deep learning methods. As a result, these methods
require a large number of training instances, since each input-class pair needs its own classification
model. Therefore, as the number of recommended products grows, so too do the number of training
instances, resulting in larger training and storage costs for large-scale recommender systems.

2 Problem Setting

The goal of XMC is to train a classifier that maps text samples to labels within an extremely large
label set. We denote D := {(x1,y1), . . . , (xn,yn)} as the dataset, having n data samples. Let
xi ∈ Rd be the input feature vector while yi ∈ {0, 1}L be its corresponding label vector. The sparse
feature and label sets are defined as X = [x1, . . . ,xn]

T ∈ Rn×d and Y = [y1, . . . ,yn]
T ∈ Rn×L

Denote f as our objective function, defined below, θ ∈ Rf as the parameters of our deep classifier,
hθ(·) as our deep classifier parameterized by θ, and ℓ as our loss function.

min
θ

f(θ;x,y) :=
1

n

n∑
i

ℓ
(
hθ(xi),yi

)
. (1)

While Equation (1) can be solved through gradient descent approaches, the major issue at hand is that
the label dimension, L, is large. As a result, the number of parameters, f , for the deep classifier is
also large, resulting in expensive storage, inference hθ(x), and gradient back-propagation ∇θhθ(x).

3 Compressed Labeling & Recovery Estimation

DECLARE performs information-aware compression of the original labels to produce compressed
labels z ∈ Rc, where c << L. Then, DECLARE trains a feed-forward neural network, hθ, to learn
the mapping from x to z. Finally, DECLARE uses a recovery-estimation scheme, proposed in Section
3.2, that takes a compressed label z as input and outputs the most-likely predicted label classes from
its corresponding original label y (which is unknown during inference).
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Algorithm 1 Deep Extreme Compressed Labeling And Recovery Estimation

Require: Data (Xtrn, Ytrn) & (Xtst, Ytst), number of training samples n, original label dimension
L, compressed label dimension c, q neighbors, top k, and T iterations

1: Compute the truncated SVD: UY
c ,ΣY

c , (V
Y
c )T ← TSVD(Ytrn, c)

2: Generate new compressed labels: Ztrn ← UY
c ∗ ΣY

c
3: Train NN hθ for T iterations (or convergence) on the compressed data (Xtrn, Ztrn)
4: for each test data sample xi,yi ∈ (Xtst, Ytst) do
5: Predict compressed label: zp

i ← hθ(xi)
6: Compute similarity scores: sp,z ← Ztrnz

p
i

7: Find q-closest indices of Ztrn: Is ← argmaxI⊆[n]:|I|=q

∑
i∈I s

p,z
i

8: Weight the true labels in Is by their relative distances: fp ← (sp,z
Ip
s
)TYIs

9: Select the top k largest label classes Iy ← argmaxI⊆[L]:|I|=k

∑
i∈I f

p
i

10: Compute and store the P@k accuracy
11: end for

3.1 Label Compression via SVD Approximation

Since the labels, y, are sparse, we believe that the information stored in y can be distilled down into
a much smaller, dense vector z. Namely, we aim to preserve the similarity between each label, yi,
and all labels in the label set yj ,∀j ∈ [n]. In matrix form, this is denoted as Y Y T . We solve the
following optimization problem in order to determine the best low-rank approximation Z ∈ Rn×c to
Y ,

argmin
rank(Z)≤c

∥∥Y Y T − ZZT
∥∥
F
. (2)

The best rank-c approximation of Y Y T are the first c singular vectors and values (via the Eckart-
Young-Mirsky Theorem Eckart and Young [1936]),

argmin
rank(Z)≤c

∥∥Y Y T − ZZT
∥∥
F
= argmin

rank(Z)≤c

∥∥UΣ2UT − ZZT
∥∥
F
= UcΣc. (3)

From Equation (3), the optimal method for label compression is to compute the truncated SVD of Y ,
select the top c left singular vectors and singular values, and then perform the matrix product to obtain
the compressed labels Z. While effective, approximating a large and sparse Y to extremely low
dimensions via the SVD can cause issues in datasets where there are many tail labels: labels that have
few training samples from which the model can learn. As a result, important tail-label information
within Y is lost when using a low-rank SVD approximation. We provide discussion of future methods
to combat this issue and further refine our SVD label compression method above within Appendix
A. In DECLARE, we compress our original labels via Equation (3) to receive compressed labels Z,
and train a neural network to learn the mapping between the feature and compressed label spaces
hθ(xi) = zi.

3.2 Label Recovery

As the output of our neural network hθ(·) is within the compressed space, a label-recovery mechanism
is necessary to recover the most-likely true predicted label classes in the original label space. As
detailed in Section 3.1, the compressed labels Z are optimized to best approximate the similarity
between each label in Y . Thus, by computing the inner product between a predicted compressed
label zp and all existing compressed labels Z, we approximate the similarity s between the original,
and unknown, uncompressed prediction yp with all labels Y ,

sp,z = Zzp ≈ Y yp = sp,y. (4)

Equation (4) not only defines a relationship between zp and yp, it directly relates the true and low-
rank similarity vectors sp,y, sp,z ∈ Rn. The indices Is of the q largest values in sp,z approximate the
indices of the q most similar labels YIs := Y [Is, :] within the dataset to the unknown true prediction
yp,

Is := argmax
I⊆[n]:|I|=q

∑
i∈I

sp,zi . (5)
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Figure 1: Simultaneous Performance and Efficiency Improvement. DECLARE outperforms
its uncompressed counterpart by 5.28% and 18.36% on Delicious-200K (top) and Wiki10-31K
(bottom) while reducing the final output dimension by 99.975% and 99.677% respectively. DECLARE
outperforms the baselines in terms of test accuracy (left) and convergence (right).

In summary, we compute the top-q indices of sp,z and use their corresponding labels within Y as the
closest approximate labels YIs to yp. Once the closest labels are found, they are scaled element-wise
by their similarity scores and summed to determine the most frequent label classes,

fp := (sp,z
Ip
s
)TYIs , Iy := argmax

I⊆[L]:|I|=k

∑
i∈I

fp
i . (6)

The indices Iy are the top-k largest label classes and are thus selected in DECLARE as the k most-
likely true label classes. We use Iy to compute the Precision@k accuracy metric widely used within
XMC settings.

4 Experiments

We compare DECLARE with the original, uncompressed neural network as well as a neural network
trained with unstructured pruning, one of the best deep-learning compression techniques. We test
DECLARE on five common XMC datasets Bhatia et al. [2016].

Datasets. Our experiments use five publicly available datasets: BibTex Katakis et al. [2008] (159
labels), EURLex-4.3K Loza Mencía and Fürnkranz [2010] (4,271 labels), AmazonCat-13K McAuley
and Leskovec [2013] (13,330 labels), Wiki10-31K Zubiaga [2012] (30,938), and Delicious-200K
Wetzker et al. [2008] (205,443 labels). Success across this variety of datasets (see Table 1) indicates
that DECLARE will scale to real-world applications.

Unequal Baselines. DECLARE is at a disadvantage when compared to the uncompressed neural
network or a neural network pruned via unstructured pruning. The uncompressed network is much
larger and contains many more parameters than DECLARE. As a result, we expect the uncompressed
network to be an upper bound on how well DECLARE can perform. However, we observe below that
this is not always true; DECLARE significantly outperforms the uncompressed network on our largest
XMC dataset, Delicious-200K. Unstructured pruning, like DECLARE, trains a reduced (pruned)
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Figure 2: DECLARE outperforms Unstructured Pruning while keeping pace with the uncompressed
network under 98.5% compression (left). Furthermore, DECLARE trains faster than uncompressed
and compressed baselines (right) for AmazonCat-13K.

version of a model. Unstructured pruning serves as an upper bound for how well pruning-based
compression performs. Unlike its structured counterpart, unstructured pruning sets a given number of
parameters to zero (irregular sparsity) and generally performs better Wang et al. [2019], Yao et al.
[2019]. As a result, the size of an unstructured pruning model is the same as the uncompressed
network albeit with many more parameters set to zero. This incurs larger memory costs than
DECLARE. Furthermore, due to its irregular sparsity, unstructured pruning is more difficult to
exploit for efficient computation Anwar et al. [2017]. Many modern deep learning packages, like
TensorFlow and PyTorch, cannot handle irregular sparsity to speed up tensor computations. As a
result, unstructured pruning does not provide much computational speed-up, as shown in Figure 1.

Hyper-parameters & Evaluation. We train a feed-forward neural network with one hidden layer
having 256 neurons (following previous deep-learning XMC papers Chen et al. [2020b,a], Rabbani
et al. [2024]). For BibTex, EURLex-4.3K, Wiki10-31K, and Delicious-200K we use a batch size of
128 while we use a batch size of 256 for AmazonCat-13K. The recovery scheme uses 25 nearest
neighbors for all experiments, and we train using ADAM with a standard learning rate of 5e-4. Each
experiment is run three times, with the average results being shown in Table 1 as well as the dark
lines on all our Figures. The test accuracies listed are Precision@k (we use k = 1), a metric widely
used in XMC Bhatia et al. [2015, 2016], Chen et al. [2020b,a], Rabbani et al. [2024]. This metric
gauges the percentage of k predicted label classes that are indeed found within a target label yi.

Computation and Memory Reduction Without Sacrificing Performance. The main takeaway
from our experimental results is that DECLARE can dramatically reduce memory and computational
costs while reducing performance by no more than 3% across all datasets. Furthermore, DECLARE
can improve performance while simultaneously reducing memory and computational costs by up to
99.975% versus an uncompressed neural network. On Delicious-200K, DECLARE achieves 46.12%
P@1 accuracy compared to 40.84% for its uncompressed counterpart, while only requiring an
output dimension of 50 (compared to the original dimension of 205,443). DECLARE also performs
better as the output dimension grows (see Table 1). While unstructured pruning is competitive on
smaller datasets, DECLARE outpaces it on the larger AmazonCat-13K and Delicious-200K datasets.
DECLARE outperforms unstructured pruning on the larger datasets due to its distance-preserving
compression scheme.

Improved Convergence Speed. Another advantage that DECLARE has over its peers is that it trains
faster and converges quicker to peak performance. Figure 1 shows DECLARE outperforming its
baselines at the beginning of training. DECLARE trains faster than the uncompressed network due
its greatly reduced size (its final layer weight is reduced by upwards of four magnitudes). While
unstructured pruning compresses the original network by a similar amount as DECLARE, its irregular
sparsity requires a full forward pass since PyTorch does not support unstructured sparse matrix
operations (as detailed above).
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5 Conclusion

Our novel XMC algorithm, DECLARE: Deep Extreme Compressed Labeling And Recovery Estima-
tion, addresses the ever-increasing size of recommender systems through intelligent compression and
recovery of large and sparse labels. By compressing labels in a manner that preserves label-wise
similarity, DECLARE is able to reduce memory footprint and computational costs of recommender
systems by up to 99.975%. This is accomplished without sacrificing predictive performance: DE-
CLARE not only maintains near state-of-the-art performance of uncompressed recommender systems,
it actually improves performance compared to uncompressed systems (by nearly 6%) on large XMC
datasets such as Delicious-200K. In summary, DECLARE is an XMC algorithm that efficiently trains
and stores large-scale recommender systems without sacrificing performance.
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A Future Work

The compression method we utilize is fast and effective, but is prone to possibly over-weighting the
zero values within an extremely large and not dealing with tail labels in Y (as detailed in Section 3.1).
As a result, we are looking into variations of our SVD approach that can alleviate over-weighting of
zero values that can possibly cause issues when predicting datasets with heavy-tailed labels.

Nearest-Neighbor Preserving Compression. Within the non-deep learning approach of SLEEC
Bhatia et al. [2015], the authors propose preserving the similarity between only a few nearest
neighbors of each label. They utilize a masking function PΩ to only penalize nearest-neighbor
similarities between Y Y T and ZZT . The goal is to ensure that the compressed labels maintain
nearest-neighbor information that could be washed away by the non-nearest-neighbor terms when a
normal SVD is computed. Mathematically, they solve for Z such that,

argmin
rank(Z)≤c

∥∥PΩ(Y Y T )− PΩ(ZZT )
∥∥2
F
, (7)

where the masking function is defined as,

[PΩ(Y Y T )]ij =

{
⟨yi,yj⟩ if j is a neighbor of i,
0 else.

(8)

In order to solve Equation (7), a projected gradient descent method, with step-size η, is used to solve
for the matrix M = ZZT ,

Mt+1 = Pc

(
Mt + ηPΩ

(
Y Y T −Mt

))
, (9)

where Pc is the projection of M onto the set of rank-c matrices. The projection Pc can be computed
via an eigenvalue decomposition or SVD of M , Pc(M) = UM

c ΣM
c (UM

C )T . Once M has converged,
the compressed labels are determined as Z = UM

c (ΣM
c )1/2 A major issue with this method, however,

is that storing the projection Pc is expensive when there are many data samples, as Pc(M) ∈ Rn×n.
To circumvent this issue, Bhatia et al. [2015] cluster the data X , and compute compressed labels Zk

via Equation (9) for the corresponding labels in each k clusters of data.

Our future goal is to implement a nearest-neighbor preserving compression method that is memory-
efficient (does not require full storage of Pc) while incorporating SVD approximation. In Bhatia et al.
[2015], the initial matrix when performing projected gradient descent is the zero matrix M0 = 0.
We hope to initialize M0 as the SVD approximation to Y or Y Y T and preserve nearest-neighbor
distances via projected gradient descent while simultaneously penalizing deviation away from the
initial SVD at non-nearest neighbor values.
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